68,567 research outputs found

    Using Strategic Options Development and Analysis (SODA) to Understand the Simulation Accessibility Problem

    Get PDF
    Simulation modelling is applied to a wide range of problems, including defense and healthcare. However, there is a concern within the simulation community that there is a limited use and implementation of simulation studies in practice. This suggests that despite its benefits, simulation may not be reaching its potential in making a real-world impact. The main reason for this could be that simulation tools are not widely accessible in industry. In this paper, we investigate the issues that affect simulation modelling accessibility through a workshop with simulation practitioners. We use Strategic Options Development and Analysis (SODA), a problem-structuring approach that allows for the stakeholder views to be expressed and linked in a systematic way. The causal map derived represents the emerging concepts and their effects, with the view to identifying their impact on the accessibility problem. We present our analysis of the issues and options identified. Based on our findings, we discuss the implications and recommendations for the future uptake of simulation

    The context, influences and challenges for undergraduate nurse clinical education: Continuing the dialogue

    Get PDF
    Introduction – Approaches to clinical education are highly diverse and becoming increasingly complex to sustain in complex milieu Objective – To identify the influences and challenges of providing nurse clinical education in the undergraduate setting and to illustrate emerging solutions. Method: A discursive exploration into the broad and varied body of evidence including peer reviewed and grey literature. Discussion - Internationally, enabling undergraduate clinical learning opportunities faces a range of challenges. These can be illustrated under two broad themes: (1) Legacies from the past and the inherent features of nurse education and (2) Challenges of the present, including, population changes, workforce changes, and the disconnection between the health and education sectors. Responses to these challenges are triggering the emergence of novel approaches, such as collaborative models. Conclusion(s) – Ongoing challenges in providing accessible, effective and quality clinical learning experiences are apparent

    A perspective on the Healthgrid initiative

    Full text link
    This paper presents a perspective on the Healthgrid initiative which involves European projects deploying pioneering applications of grid technology in the health sector. In the last couple of years, several grid projects have been funded on health related issues at national and European levels. A crucial issue is to maximize their cross fertilization in the context of an environment where data of medical interest can be stored and made easily available to the different actors in healthcare, physicians, healthcare centres and administrations, and of course the citizens. The Healthgrid initiative, represented by the Healthgrid association (http://www.healthgrid.org), was initiated to bring the necessary long term continuity, to reinforce and promote awareness of the possibilities and advantages linked to the deployment of GRID technologies in health. Technologies to address the specific requirements for medical applications are under development. Results from the DataGrid and other projects are given as examples of early applications.Comment: 6 pages, 1 figure. Accepted by the Second International Workshop on Biomedical Computations on the Grid, at the 4th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2004). Chicago USA, April 200

    A multi-faceted approach to optimising a complex unplanned healthcare system

    Get PDF
    Unscheduled and urgent health care represents the largest area of activity and cost for the UK’s National Health Service (NHS). Like typical complex systems unplanned care has the features of interdependence and having structures at different scales which requires modelling at different levels. The aim of this paper is to discuss the development of a multifaceted approach to study and optimise this complex system. We aim to integrate four different methodologies to gain better understanding of the nature of the system and to develop ways to enhance its performance. These methodologies are: (a) Lean/ Flow theory to look at the process and patients and other flows; (b) Simulation/ System Dynamics to undertake analytical analysis and multi-level modelling; (c) stakeholder consultation and use of system thinking to analyse the system and identify options, barriers and good practice; and (d) visual analytic modelling to facilitate effective decision making in this complex environment. Of particular concern are the boundary issues i.e. how changes in unplanned care will impact on the adjacent facilities and ultimately on the whole Healthcare system

    Prescriptions for Excellence in Health Care Winter 2009 Download PDF of Full Issue

    Get PDF

    Use of functional near-infrared spectroscopy to evaluate cognitive change when using healthcare simulation tools

    Get PDF
    This is an accepted manuscript of an article published by BMJ on 01/11/2020, available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8936993/ The accepted version of the publication may differ from the final published version.Background The use of brain imaging techniques in healthcare simulation is relatively rare. However, the use of mobile, wireless technique, such as functional nearinfrared spectroscopy (fNIRS), is becoming a useful tool for assessing the unique demands of simulation learning. For this study, this imaging technique was used to evaluate cognitive load during simulation learning events. Methods This study took place in relation to six simulation activities, paired for similarity, and evaluated comparative cognitive change between the three task pairs. The three paired tasks were: receiving a (1) face-toface and (2) video patient handover; observing a simulated scene in (1) two dimensions and (2) 360° field of vision; and on a simulated patient (1) taking a pulse and (2) taking a pulse and respiratory rate simultaneously. The total number of participants was n=12. Results In this study, fNIRS was sensitive to variations in task difficulty in common simulation tools and scenarios, showing an increase in oxygenated haemoglobin concentration and a decrease in deoxygenated haemoglobin concentration, as tasks increased in cognitive load. Conclusion Overall, findings confirmed the usefulness of neurohaemoglobin concentration markers as an evaluation tool of cognitive change in healthcare simulation. Study findings suggested that cognitive load increases in more complex cognitive tasks in simulation learning events. Task performance that increased in complexity therefore affected cognitive markers, with increase in mental effort required
    • …
    corecore