5,205 research outputs found

    Fog Computing Architecture for Indoor Disaster Management

    Get PDF
    Most people spend their time indoors. Indoors have a higher complexity than outdoors. Moreover, today's building structures are increasingly sophisticated and complex, which can create problems when a disaster occurs in the room. Fire is one of the disasters that often occurs in a building. For that, we need disaster management that can minimize the risk of casualties. Disaster management with cloud computing has been extensively investigated in other studies. Traditional ways of centralizing data in the cloud are almost scalable as they cannot cater to many latency-critical IoT applications, and this results in too high network traffic when the number of objects and services increased. It will be especially problematic when in a disaster that requires a quick response. The Fog infrastructure is the beginning of the answer to such problems. This research started with an analysis of literature and hot topics related to fog computing and indoor disasters, which later became the basis for creating a fog computing-based architecture for indoor disasters. In this research, fog computing is used as the backbone in disaster management architecture in buildings. MQTT is used as a messaging protocol with the advantages of simplicity and speed. This research proposes a disaster architecture for indoor disasters, mainly fire disasters

    Peripatetic electronic teachers in higher education

    Get PDF
    This paper explores the idea of information and communications technology providing a medium enabling higher education teachers to act as freelance agents. The notion of a ‘Peripatetic Electronic Teacher’ (PET) is introduced to encapsulate this idea. PETs would exist as multiple telepresences (pedagogical, professional, managerial and commercial) in PET‐worlds; global networked environments which support advanced multimedia features. The central defining rationale of a pedagogical presence is described in detail and some implications for the adoption of the PET‐world paradigm are discussed. The ideas described in this paper were developed by the author during a recently completed Short‐Term British Telecom Research Fellowship, based at the BT Adastral Park

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces

    A Review of DJI’s Mavic Pro Precision Landing Accuracy

    Get PDF
    Precision landing has the potential to increase the accuracy of autonomous landings. Unique applications require specific landing performance; for example, wireless charging loses efficiency with a misalignment of 100mm. Unfortunately, there is no publicly available information for the DJI Mavic Pro’s landing specifications. This research investigated the ability of a Mavic Pro to land at a specified point accurately. The purpose of this research is to determine if precision landings are more accurate than non-precision autonomous landings and if the Mavic Pro is capable of applications such as wireless charging when using precision landings. A total of 128 (64 precision and 64 non-precision) landings were recorded. A two-tail two-sample t-test compared the differences between Precision Landing On vs. Precision Landing Off (PLON vs. PLOFF). Data showed statistical evidence to reject the null hypothesis indicating there was a statistical performance in mean landing accuracy with PLON (M = 3.45, SD = 1.30) over PLOFF (M = 4.40, SD = 1.89), t(109) = -3.313, p = 0.0013. A one-tail one-sample t-test comparing the landing distance of PLON to 100mm (distance for effective wireless charging) produced statistical evidence to reject the null hypothesis indicating the PLON landing accuracy (M = 87.63mm, SD = 33.02mm) was less than 100mm, t(62) = -2.98, p = 0.002. Evidence showed that precision landings increased the landing performance and may allow for future potential applications, including wireless charging

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings
    • 

    corecore