21,403 research outputs found

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    The Evolution of Social Contracts

    Get PDF
    Influential thinkers such as Young, Sugden, Binmore, and Skyrms have developed game-theoretic accounts of the emergence, persistence and evolution of social contracts. Social contracts are sets of commonly understood rules that govern cooperative social interaction within societies. These naturalistic accounts provide us with valuable and important insights into the foundations of human societies. However, current naturalistic theories focus mainly on how social contracts solve coordination problems in which the interests of the individual participants are aligned, not competition problems in which individual interests compete with group interests. In response, I set out to build on those theories and provide a comprehensive naturalistic account of the emergence, persistence and evolution of social contracts. My central claim is that social contracts have culturally evolved to solve cooperation problems, which include both coordination and competition problems. I argue that solutions to coordination problems emerge from “within-group” dynamics, while solutions to competition problems result largely from “between-group” dynamics

    Critical behavior in an evolutionary Ultimatum Game

    Full text link
    Experimental studies have shown the ubiquity of altruistic behavior in human societies. The social structure is a fundamental ingredient to understand the degree of altruism displayed by the members of a society, in contrast to individual-based features, like for example age or gender, which have been shown not to be relevant to determine the level of altruistic behavior. We explore an evolutionary model aiming to delve how altruistic behavior is affected by social structure. We investigate the dynamics of interacting individuals playing the Ultimatum Game with their neighbors given by a social network of interaction. We show that a population self-organizes in a critical state where the degree of altruism depends on the topology characterizing the social structure. In general, individuals offering large shares but in turn accepting large shares, are removed from the population. In heterogeneous social networks, individuals offering intermediate shares are strongly selected in contrast to random homogeneous networks where a broad range of offers, below a critical one, is similarly present in the population.Comment: 13 pages, 7 figure

    Cooperation, collective action, and the archeology of large-scale societies

    Full text link
    Archeologists investigating the emergence of large-scale societies in the past have renewed interest in examining the dynamics of cooperation as a means of understanding societal change and organizational variability within human groups over time. Unlike earlier approaches to these issues, which used models designated voluntaristic or managerial, contemporary research articulates more explicitly with frameworks for cooperation and collective action used in other fields, thereby facilitating empirical testing through better definition of the costs, benefits, and social mechanisms associated with success or failure in coordinated group action. Current scholarship is nevertheless bifurcated along lines of epistemology and scale, which is understandable but problematic for forging a broader, more transdisciplinary field of cooperation studies. Here, we point to some areas of potential overlap by reviewing archeological research that places the dynamics of social cooperation and competition in the foreground of the emergence of large-scale societies, which we define as those having larger populations, greater concentrations of political power, and higher degrees of social inequality. We focus on key issues involving the communal-resource management of subsistence and other economic goods, as well as the revenue flows that undergird political institutions. Drawing on archeological cases from across the globe, with greater detail from our area of expertise in Mesoamerica, we offer suggestions for strengthening analytical methods and generating more transdisciplinary research programs that address human societies across scalar and temporal spectra

    Emergence and resilience of cooperation in the spatial Prisoner's Dilemma via a reward mechanism

    Get PDF
    We study the problem of the emergence of cooperation in the spatial Prisoner's Dilemma. The pioneering work by Nowak and May showed that large initial populations of cooperators can survive and sustain cooperation in a square lattice with imitate-the-best evolutionary dynamics. We revisit this problem in a cost-benefit formulation suitable for a number of biological applications. We show that if a fixed-amount reward is established for cooperators to share, a single cooperator can invade a population of defectors and form structures that are resilient to re-invasion even if the reward mechanism is turned off. We discuss analytically the case of the invasion by a single cooperator and present agent-based simulations for small initial fractions of cooperators. Large cooperation levels, in the sustainability range, are found. In the conclusions we discuss possible applications of this model as well as its connections with other mechanisms proposed to promote the emergence of cooperation

    Wisdom of groups promotes cooperation in evolutionary social dilemmas

    Get PDF
    Whether or not to change strategy depends not only on the personal success of each individual, but also on the success of others. Using this as motivation, we study the evolution of cooperation in games that describe social dilemmas, where the propensity to adopt a different strategy depends both on individual fitness as well as on the strategies of neighbors. Regardless of whether the evolutionary process is governed by pairwise or group interactions, we show that plugging into the "wisdom of groups" strongly promotes cooperative behavior. The more the wider knowledge is taken into account the more the evolution of defectors is impaired. We explain this by revealing a dynamically decelerated invasion process, by means of which interfaces separating different domains remain smooth and defectors therefore become unable to efficiently invade cooperators. This in turn invigorates spatial reciprocity and establishes decentralized decision making as very beneficial for resolving social dilemmas.Comment: 8 two-column pages, 7 figures; accepted for publication in Scientific Report

    Evolutionary games on multilayer networks: A colloquium

    Get PDF
    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.Comment: 14 two-column pages, 8 figures; accepted for publication in European Physical Journal

    Antisocial pool rewarding does not deter public cooperation

    Full text link
    Rewarding cooperation is in many ways expected behaviour from social players. However, strategies that promote antisocial behaviour are also surprisingly common, not just in human societies, but also among eusocial insects and bacteria. Examples include sanctioning of individuals who behave prosocially, or rewarding of freeriders who do not contribute to collective enterprises. We therefore study the public goods game with antisocial and prosocial pool rewarding in order to determine the potential negative consequences on the effectiveness of positive incentives to promote cooperation. Contrary to a naive expectation, we show that the ability of defectors to distribute rewards to their like does not deter public cooperation as long as cooperators are able to do the same. Even in the presence of antisocial rewarding the spatial selection for cooperation in evolutionary social dilemmas is enhanced. Since the administration of rewards to either strategy requires a considerable degree of aggregation, cooperators can enjoy the benefits of their prosocial contributions as well as the corresponding rewards. Defectors when aggregated, on the other hand, can enjoy antisocial rewards, but due to their lack of contributions to the public good they ultimately succumb to their inherent inability to secure a sustainable future. Strategies that facilitate the aggregation of akin players, even if they seek to promote antisocial behaviour, thus always enhance the long-term benefits of cooperation.Comment: 9 two-column pages, 5 figures; accepted for publication in Proceedings of the Royal Society
    corecore