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Networks form the backbone of many complex systems, ranging from the Internet to human societies. Ac-
cordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it
is also a fact that the networks that are an integral part of such models are often interdependent or even inter-
connected. Networks of networks or multilayer networks are therefore a more apt description of social systems.
This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of
cooperation as one of the main pillars of modern human societies. We first give an overview of the most sig-
nificant conceptual differences between single-layer and multilayer networks, and we provide basic definitions
and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive
evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent
populations. The focus is on coupling through the utilities of players, through the flow of information, as well as
through the popularity of different strategies on different network layers. The colloquium highlights the impor-
tance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions,
as well as the synergies between network science and evolutionary game theory.

PACS numbers: 89.75.-k, 89.75.Fb, 89.75.Hc, 89.65.-s, 87.23.Ge, 87.23.Kg

I. INTRODUCTION

The hallmark property of a complex system is that a large
number of simple units give rise to fascinating collective phe-
nomena that could not be anticipated from an individual unit
[1]. Social order, biological complexity, brain power, ant
colonies, and economic interconnectedness are all prime ex-
amples of topics one might attempt to study with a complex
system at the heart of the research endeavor. But what is be-
hind the emergent complexity? What turns people to soci-
eties and simple cells like neurons to a brain? The answer
is, primarily, the network. Although phenomena such as self-
organization and pattern formation might play a pivotal role
too, it is mainly the way the simple units that form the com-
plex system are connected with each other that makes them
so much more than just the sum of their parts. Recent decades
have seen an unprecedented development of data-driven math-
ematical models that offer fresh new insights into complex
systems, culminating into a new discipline named network
science [2].

Despite its youth, network science is enjoying widespread
recognition and appeal because many natural and social sys-
tems owe their functionality to a complex network as their
backbone [3]. Here nodes are the units or components that
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make up the system, while the links among them determine
who interacts with whom. Pioneering works [4, 5] have iden-
tified surprising similarities in networks describing very dif-
ferent natural and man-made systems, such as short average
path lengths between pairs of nodes paired with a relatively
high clustering of node triples, or heavy tailed distributions of
node degree. These universalities have propelled network sci-
ence to become one of the hottest research disciplines in the
21st century [3, 6, 7].

Almost simultaneously with network science, in evolution-
ary game theory [8–11] leaps of progress have also been
made, largely due to interdisciplinary approaches that link to-
gether knowledge from biology, sociology, economics as well
as mathematics, physics and psychology [12–21]. Evolution-
ary games provide a comprehensive theoretical framework to
investigate strategic choices in a broad variety of complex
systems [22–35]. Based on the fundamentals of evolutionary
game theory, decision-making has been extensively applied to
the fields of species variety [36], climate negotiation [37, 38],
public health [39, 40] as well as traffic flow [41], to name but
a few examples.

Despite numerous practical ramifications and application
areas mentioned above, however, the main fundamental prob-
lem that is studied in the realm of evolutionary game theory
is the evolution of cooperation [42, 43]. Cooperation is an al-
truistic act that is costly to perform but benefits others. Euso-
cial insects like ants and bees are famous for their large-scale
cooperative behavior [44, 45]. Cooperation is also found in
birds, where helpers often take care for the offspring of others
[46]. Humans have recently been dubbed supercooperators
[43] for our unparalleled other-regarding abilities and coop-
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erative drive. Importantly, altruistic cooperation is the most
important challenge to Darwin’s theory of evolution, and it
is fundamental for the understanding of the main evolution-
ary transitions that led from single-cell organisms to complex
animal and human societies [47, 48]. As such, understand-
ing the evolution of cooperation remains a grand challenge
that continues to attract research across the social and natural
sciences. Although studies in evolutionary game theory have
already revealed fundamental rules that promote cooperation
[42, 49], the chasm behind the Darwinian “only the fittest sur-
vive” and the abundance of cooperation in human and animal
societies remains quite overwhelming.

Interestingly, the relevance of networks for the outcome of
evolutionary games has been recognized already in the early
90s, when Nowak and May discovered network reciprocity
[50]. More precisely, they have observed that on a lattice
cooperators are able to survive by forming compact clusters,
and so protect themselves against the exploitation by defec-
tors even if the governing game is a social dilemma where
in a well-mixed population defectors would dominate com-
pletely. Remarkably, Rand et al. [51] have recently validated
this theoretical prediction in a large-scale human experiment.
However, it was not until Santos and Pacheco [52] discovered
that scale-free networks provide a unifying framework for the
evolution of cooperation [53–55] that the field of evolutionary
games on network really took off. Since then several excellent
works have elaborated on the relevance of the network struc-
ture for the evolution of cooperation, as reviewed comprehen-
sively in [13, 15]. It turned out that not only the structure of
the network but also the character of the interactions could be
decisive. Namely, multi-point interactions [20] or cyclically
dominant relations among strategies [21] can further amplify
the importance of the population being structured rather than
well-mixed.

Most recently, the attention has been shifting away from
single, isolated networks to networks of networks, or so-called
interdependent or multiplex or multilayer networks [56–61].
Networks of networks have been brought to the spotlight
by the discovery that even small and seemingly irrelevant
changes in one network can have catastrophic and very much
unexpected consequence in another network [56]. Indeed, not
only are our interactions limited and thus inadequately de-
scribed by well-mixed models, it is also a fact that the net-
works that should be an integral part of such models are often
interconnected, thus making the processes that are unfolding
on them interdependent. From the World economy and trans-
portation systems to social media, it is clear that processes
taking place in one network might significantly affect what is
happening in many other networks. Networks of networks are
therefore a more apt description of such interdependent sys-
tems.

As we hope this colloquium will succeed in demonstrating
based on current research, taking into account the fact that hu-
mans are typically members in many different social networks
has important consequences for the evolution of cooperation.
A few simple considerations illustrate the case in point. When
we choose a certain strategy, this choice is likely to be per-
ceived differently among our friends, in the workplace, and

within our family. It is also likely that the purchase from the
strategy is going to be different in these different networks.
Alternatively, one can choose a different strategy in each net-
work to try and optimize the outcome, especially if the net-
works are only weekly interconnected. Either way, it is natu-
ral to clarify how such considerations might affect cooperative
behavior, and by doing so move towards a more practical and
realistic modeling of human cooperation. In what follows,
we first review the general framework of multilayer networks,
then continue with the review of evolutionary games on multi-
layer networks, and lastly, we conclude and provide a concise
outlook.

II. FROM SINGLE-LAYER TOWARDS MULTILAYER
NETWORKS

Research dealing with or using networks has had, and in
fact still very much has, a strong appeal and impact across
a myriad of scientific disciplines [3, 6, 7, 62]. Based on
the most basic definition of a network, many real-world en-
tities can be quantitatively described by means of a network
[3, 60]. A network typically consists of nodes or vertices that
are connected by links or edges. For example, networks have
been used to describe interactions between neurons, the trade
among markets, the relationship among words, as well as of
course the Internet and the World Wide Web [3, 6, 63]. In-
formation in the form of rumors, messages, or digital viruses
can be transmitted through networks, as well as infectious dis-
ease, merchandize, and public goods. Due to the ubiquity
of networks, several algorithms have been proposed that de-
scribe the most important structural properties of real-world
networks [62, 64]. Prominent examples include the Erdős-
Rényi random network [65], the Watts-Strogatz small-world
network [4], or the Barabási-Albert scale-free network [5].
The rapidly growing availability of human generated data
[66], together with the ever-increasing computational capabil-
ities continue to drive progress in this field, in turn leading to
the development of new and more complex theoretical models
that are able to accurately describe certain aspects of reality, as
reviewed comprehensively in several reviews devoted to net-
works [3, 6, 7, 67, 68].

Despite great achievements during the past couple of
decades, traditional research concerning networks assumes
that nodes are connected to each other within the same, iso-
lated infrastructure, i.e., the so-called single-layer network.
This assumption, however, may in some cases be an oversim-
plification, given that certain nodes can simultaneously be the
building blocks of more than just the one network. And this
important consideration applies to natural as well as social
systems [69]. For example, major cities are interconnected
not just by means of roads, but also by means of rails, as well
as by means of air transport. Similarly, people interact face-
to-face, via phone, on online social networks, in their work
environment, and so on [70]. It is thus often justified to aban-
don the traditional assumption of a single-layer network and
replace it with a multilayer network formalism. Not surpris-
ingly then, the multilayer network, defined as a combination
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FIG. 1: Schematic illustration of a multilayer network that is com-
posed of two networks layers. In each layer, nodes have different
intra-layer connectivity (solid lines). Moreover, most nodes have an
inter-layer link to the corresponding node in the other layer. Ex-
change of information or similar is thus possible across the two lay-
ers.

class of networks that are interrelated in a nontrivial way, has
recently emerged as a fundamental concept to quantitatively
describe the interactions not just within, but also among dif-
ferent networks [59, 60, 69].

With regards to terminology, the term multilayer network is
used here to refer to the rather broad variety of network mod-
els involving several networks or network layers, including in-
terconnected networks [71–74], interdependent networks [75–
79], multiplex networks [80], networks of networks [61, 81],
as well as multivariate networks [82]. Although the generic
term “multilayer” can actually be traced back to sociological
and engineering problems of the late 1930s, the efforts of de-
veloping a theory of multilayer networks as well as the defini-
tion of concepts and methods for quantifying their structural
properties is of course a matter of current research.

In particular, the discovery of discontinuous phase transi-
tions that are brought about by cascading failures in inter-
dependent networks [56, 83, 84], where seemingly irrelevant
changes in one network can have unexpected and indeed of-
ten catastrophic consequences in another network, has lead to
an even stronger interest in network science. After this sem-
inal finding, many related works have dealt with multilayer
networks, for example related to their robustness against at-
tack and assortativity [85, 86] or their percolation properties
[75, 87]. Likewise, dynamical processes on multilayer net-
works, diffusion [88], disease spreading and prevention [89–
91], evolutionary games [92–97], voting [98], and traffic [99],
have all become hot topics of general interest as well.

What sets a multilayer network apart from the traditional
single-layer network is that a multilayer network typically
consists of M (M ≥ 2) networks (or layers), where the nodes
in each network (layer) are connected via intra-layer links, but
there are also inter-layer links that link together nodes from
other networks. Sometimes the inter-layer links do not serve
to connect the nodes, but merely serve to communicate in-
formation or some other form of influence between the nodes
forming the M networks. Sometimes also the same node ap-
pears in more than one network, and sometimes all the nodes
pertain to all M networks with the difference between them

being the intra-layer links. Depending on these particularities,
the terminology that is used also varies. In Fig. 1 we provide
a schematic illustration of a multilayer network, where, in ad-
dition to intra-layer links, most nodes have one or more links
to the nodes in the other layer.

A. Basic concepts and definitions of multilayer networks

In network science, special quantities have been introduced
to mathematically determine and analyze the properties of net-
works. Well-known and widely used examples of such quan-
tities include the degree of a node, betweenness centrality, av-
erage path length, clustering coefficient, and the degree dis-
tribution to name but a few. And these have been in use for
both theoretical and empirical research. In the continuation
of this section (in subsequent subsections), we will briefly re-
view how the definitions of some of these quantities have been
amended to account for the concept of multilayer networks.

A single-layer network or a graph is usually given in the
form G = (V,E), where V is the set of nodes and E ⊆ V ×V
corresponds to set of edges that connect said nodes [100]. It is
relatively straightforward to generalize this form to multilayer
networks. In particular,

GM = (VM , EM ), (1)

where M is the number of network layers. The set of EM is
the combination of nodes of all the network layers

VM = ∪M
α=1Vα, (2)

and

Vα = {V α
1 , ..., V α

Nα
}, (3)

where Nα is the number of nodes in network layer α.
It is worth pointing out that the number of nodes Nα can be

identical or different in each layer. Every node can have one,
more, or even no counterparts in other layers. With respect to
the set of connections EM , we can expand further by writing

EM = {Eα ∪ Eαβ ;α, β ∈ {1, ...,M}, α ̸= β}, (4)

where Eα ⊆ Vα × Vα (or Eβ ⊆ Vβ × Vβ) is the set of
intra-layer connections in the network layer α (or β); Eαβ ⊆
Vα × Vβ represents the set of so-called inter-layer connec-
tions among network layer α and layer β. If there exists an
intra-connected edge between node i and node j in network
layer α, the element aαij of the intra-connection adjacency ma-
trix Aα is equal to 1 (namely, aαij = 1, i, j ∈ (1, ..., Nα));
otherwise it is equal to 0. Similarly, the element aαβij of the
inter-connection adjacency matrix Aαβ is equal to 1 (namely,
aαβij = 1, i ∈ (1, ..., Nα), j ∈ (1, ..., Nβ)) if there is a corre-
lation between node i from network layer α and node j from
network layer β; otherwise aαβij = 0.

Based on the theory and formalism of traditional single-
layer networks [3, 6, 7], other properties and concepts, like
the weight of links, the direction of links, the adaptive nature
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of networks, can be further incorporated into the multilayer
formalism [101, 102]. We can take adaptive connections as an
example, where we just need to consider the adjacency ma-
trices Aα and Aαβ as a function of time (namely, aαij(t) and
aαβij (t)). While for weighted or directed networks, we simply
need to introduce a weight or a direction set WM into the gen-
eral framework, such as GM = (VM , EM ,WM ). Such addi-
tional considerations are usually unavoidable in the analysis
of empirical networks, especially given the current outbreak
of available data.

B. The structure of multilayer networks

Because nodes usually play different roles in the structure
of the network and in the dynamical processes taking place on
the network [3, 7], it is necessary, and indeed crucial, to exam-
ine the role of nodes in determining the structural properties
of a multilayer network. We review specific quantities in the
following subsections.

1. Node degree and related properties

In a single-layer network, the degree ki of a node i is de-
fined as the number of nodes that connect to it. This defini-
tion can be naturally extended to the framework of multilayer
networks. Thus far, there have been several methods to gen-
eralize node degree for multilayer networks, but probably the
most common way to do is by means of network aggregation
[103]. For example, the degree of node i in a multilayer net-
work can be written with the vector [59, 60]

ki = (ki1, ..., kiM ), (5)

where kiα is the degree of node i in network layer α. Equiv-
alently, we can also get the neighborhood, which is the com-
bination of its immediate neighbors in each layer. However,
since ki is a vector, it is difficult to obtain a uniform ranking
for the degree of nodes. Along this line, related formulations
are possible, such as the threshold degree, the multidegree,
or the overlapping degree (see [104] for details). Moreover,
based on the notion of walks and paths, a series of methods
measuring the distance between nodes has been proposed as
well, first for single-layer and then for multilayer networks
[105, 106].

2. Clustering coefficient

The clustering coefficient is usually used to measure the
transitivity of a network. Its value ci corresponds to the ratio
of exiting links to all the possible links among the neighbors
of a given node i, and the global clustering coefficient C is the
average of the clustering coefficients of all the nodes (namely,
C =

∑N
i=1 ci/N) [3, 4, 7, 100]. Another alternative definition

for the clustering coefficient is the fraction of closed triples
among all the possible triads [107]. Because of this relative

freedom in the definition for isolated networks, the clustering
coefficient for a multilayer network potentially gives rise to a
whole class of definitions [73, 108, 109]. There is, however,
a generic consideration, which is to involve the average of
the value of the clustering coefficient for both inter-layer and
intra-layer links. For example, based on the set of neighbors
and subgraph projection networks, the authors in [110] trans-
late the clustering coefficient into a function of each network
layer and the projection network. Perhaps most elegantly, bor-
rowing the terminology of 2-triangles and 3-triangles where
nodes are located in different layers, the clustering coefficient
of a multilayer network can be expressed as the average over
clustering coefficient values of all the nodes [103]. Along
this line, the clustering coefficient can even be introduced for
weighted and directed networks [59, 60].

3. Degree-degree correlation

Degree correlation is another important quantity, which is
traditionally used to measure the mixing pattern of nodes in
isolated, single-layer networks [3, 6, 7]. If large-degree nodes
are more likely to connect to large-degree (small-degree)
nodes, the network shows assortative (disassortative) mixing,
leading to positive (negative) values of the correlation coef-
ficient r [111, 112]. However, if one tries to translate this
quantity directly for use in multilayer networks several con-
siderations are first in order. Evidently, apart from the cor-
relation of nodes in the local layer, a new method is needed
to quantify the assortativity or disassortativity correlation be-
tween nodes across layers. This was the motivation behind
the introduction of the degree-degree correlation coefficient
rαβ , which was designed to fill this gap. If large-degree nodes
are more inclined to interconnect with large-degree (small-
degree) counterparts in the other networks, its value is positive
(negative), which shows the assortative (disassortative) mix-
ing pattern between layers. The correlation of network layers
is particularly obvious in online social systems. For example,
a famous person, a sports hero or a movie star, is likely going
to be a hub node in several online networks, like Facebook or
Twitter.

Up to now, several different methods to determine the cor-
relation across network layers have been proposed [103, 104,
113–116]. One that we single out is the Pearson correlation
coefficient, which seems to attract the most interest [103]. It
is expressed as

rαβ ≡ ⟨(kiα − ⟨kα⟩)(kiβ − ⟨kβ⟩)⟩
σασβ

=
⟨kiαkiβ⟩ − ⟨kiα⟩⟨kiβ⟩

σασβ
,

(6)
where ⟨kα⟩ represents the average degree of network layer α,
and σα =

√
⟨kiαkiα⟩ − ⟨kiα⟩2 is the standard deviation of

node degree in layer α.
Moreover, in [117] the authors define inter degree-degree

correlation between a pair of dependent nodes on interdepen-
dent networks. If two networks have the degree distribution
pkα and pkβ

, the correlation level between a pair nodes (one
node i from network α with degree kiα, another node j from
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FIG. 2: Top panel features the schematic illustration of different types of multilayer networks, where solid (dash) lines denote the intra-layer
(inter-layer) links. From (a) to (c) they are multiplex networks, interdependent networks, and interconnected networks, respectively. In each
scheme, if the nodes of each layer are the same, we use the same color and number to mark them; otherwise a different color and number
are used. In addition, inter-layer links for interdependent networks and interconnected networks are different. We note that interdependent
networks have dependency links but no actual, physical links across network layers. On the other hand, such across-layer links exist in
interconnected networks. Bottom panel features empirically measured, actual multilayer networks. In particular, (d) shows the multiplex
network composed by 20 European airline companies (see [120]), (e) shows the interdependent networks of the Italian power grid and the
computer network (see [56]), while (f) shows the interdependent networks formed by the structural subgraphs or communities in a protein-
protein interaction network (see [130]).

network β with degree kiβ) is

ς =
∑

kiαkjβ

kiαkjβ(ekiαkjβ
− pkiαpkjβ

), (7)

where ekiαkjβ
denotes the joint probability that a dependency

link connects both nodes. Normalizing by the maximum value
ςmax, a general measure

rαβ =
ς

ςmax
(8)

is obtained, which can be validated on empirical networks.

C. The classification of multilayer networks

As mentioned before, the term “multilayer” seems to have
originated already in the late 1930s. Here, we use it as a proxy
for various types of networks that are in one way or another
formed by more than just a single, isolated network. A few

examples are shown in Fig. 2. By using “multilayer network”
as the most general term, we are following the convention in
the field, where for example the robustness of multilayer net-
works has recently received notable attention [85, 86, 118].
In general, however, quite a variety of different network con-
cepts, sometimes using just different names but studying the
same thing, has emerged over the years. Examples include
multiplex networks [90, 103, 119, 120], temporal networks
[68, 121, 122], interconnected networks [71–74], multivariate
networks [82], multidimensional networks [123], cognitive
social structures [124], as well as interdependent networks
[75–79]. In the following subsections, we provide a concise
overview of some of these network concepts, although we pri-
marily focus on those that have thus far been considered in the
context of evolutionary games. A summary is provided in Ta-
ble I.

1. Multiplex networks

In a multiplex network all the layers contain the same set
of nodes or share at least some fraction of the nodes. The
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TABLE I: Different types of multilayer networks.

Term Explanation Mathematical definition
Multilayer network Generic term for networks with multiple layers.
Multiplex network Each layer has the same set of nodes (or an overlap of a fraction

nodes) but different links among them.
Vα ∩ Vβ = VM = V , ∀α ̸= β

Interdependent network Each layer typically has different types of nodes, and there are
dependency links (not physical connections) between the nodes
in different layers.

Vα ∩ Vβ = ∅, ∀α ̸= β

Interconnected network Each layer typically has different types of nodes, and there are
actual physical links between the nodes in different layers.

Vα ∩ Vβ = ∅, ∀α ̸= β

difference between the layers is the way the nodes are con-
nected with each other in each particular layer. Archetypical
examples of multiplex networks are to be found in social and
engineering systems. For example, one can construct a multi-
plex network from the scientific collaboration network and the
citation network [125]. The network of airports can be trans-
lated into a multiplex form with different layers consisting
of the routes of different airplane carriers [120, 126]. Other
well-known examples include online social networks [127],
biological metabolic networks [128], and road transportation
networks [108, 129]. If the set of nodes are the same in each
layer (i.e., V1 = V2 = . . . = VM = V ), the mathematical for-
mulation of a multiplex network becomes GM = (V,EM ).

2. Interdependent networks

An interdependent network is typical made up of two or
more different networks, such that there is little or no over-
lap between the nodes in the different layers. The wellbe-
ing of nodes in a particular layer depend on the wellbeing of
nodes in a different layer, and vice versa. There thus exist
so-called dependency links between the nodes that are part of
different layers. These links are not actual physical links, but
rather imaginary links that denote the co-dependence; hence
the name interdependent networks. The concept of interde-
pendent networks was first proposed in the seminal paper by
Buldyrev et al. [56], where cascading failures between an
electrical grid network and a computer network have been
studied. Subsequently, the concept became very popular and
used to study various other phenomena that might be affected
by dependency links between different networks. The net-
works of airports and seaports can also be described as in-
terdependent networks, because the proper functioning of an
airport in a city depends on the resources that are deliver by
sea, and similarly, the proper functioning of a seaport may de-
pend on goods delivered by air [117]. Moreover, food webs
constructed from species which depend on other species are
also interdependent when the same species participate in dif-
ferent webs [81]. Lastly, we note that since the availability of
credit from the banking network and the economic production
by the network of commercial firms are interdependent, an
interdependent network model of banks and bank assets has
also been used to analyze the propagation of failures in the
economy [131].

3. Interconnected networks

An interconnected network is similar to an interdependent
network in that it is typical made up of two or more differ-
ent networks, such that there is little or no overlap between
the nodes in the different layers. In the interconnected net-
work, however, there are actual physical links that connect
together the nodes from different layers (rather than depen-
dency links that we have described for interdependent net-
works). Interconnected networks can thus be regarded as in-
terconnected communities or clusters within a single, larger
network. Based on this theoretical framework, for example,
the climate network can be decomposed into different network
layers to exploit the stratification and circulation of the terres-
trial atmosphere [73].

Summing up the classification of multilayer networks, we
refer again to Fig. 2, where we show schematic illustrations
and empirical observations of above mentioned networks, and
to Table I, where we summarize the basic properties of these
networks. In keeping with the main theme of this colloquium,
we also now briefly touch upon the importance of different
types of multilayer networks for the consideration of evolu-
tionary games. The definition of an evolutionary game pri-
marily entails strategies and payoffs, and both are suscepti-
ble to the formalism of a multilayer network. If evolution-
ary games are played on multiplex networks, strategy imita-
tion and payoff accumulation can take place either in the local
neighborhood of a particular layer or across the layers, since
most of the nodes exist in all layer [132, 133]. On the other
hand, when considering evolutionary games on interdepen-
dent networks, which typically contain different nodes in each
layer, direct strategy exchange across the layers is not allowed.
Rather, players in a given layer can obtain information con-
cerning strategy and payoffs in the other layer via dependency
links [92, 95, 96, 134–138]. Indeed, evolutionary games on in-
terdependent network have to date received the most attention
in comparison to evolutionary games on other multilayer net-
works. With regards to evolutionary games on interconnected
networks, strategy can be imitated across the different layers,
with the main difference to single isolated networks being that
connections among the different layers are sparse in compar-
ison to connections within each layer [97, 139, 140] (which
is of course the same definition as is commonly used for the
identification of communities in networks [141]). In Section
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III, we will expand on the subject of evolutionary games on
multilayer networks in detail. Beforehand, in the next sub-
section, we briefly provide references to works where differ-
ent algorithms for the generation of multilayer networks have
been presented.

D. Algorithms for the generation of multilayer networks

Similarly as for single-layer networks [4, 5, 65], several al-
gorithms have been proposed for the generation of multilayer
networks [106, 110, 116, 142–144]. Probably the simplest
and the most straightforward approach is to first construct in-
dividual networks based on the traditional algorithms [3, 6, 7],
and then subsequently to insert inter-layer connections among
the existing networks based on some specific requirements,
like degree-degree correlation [143, 145, 146]. Somewhat less
straightforward algorithms exploit network growth or modifi-
cations of static network models.

Algorithms that rely on network growth to arrive at the
desired multilayer structure obviously require the number of
nodes to increase as a function of time [106, 147]. Similarly
to the growth of single-layer networks [3, 6, 7], preferential
attachment rules appear to attract the most interest. For ex-
ample, it has been suggested that the probability of placing an
inter-layer connection is proportional to the intra-layer degree
of all the related nodes in each layer [148]. Along this line,
further generalizations are possible to arrive at multilayer net-
works with very specific properties [59, 60, 149].

As mentioned before, an alternative is to consider modifi-
cations of static network models, where one needs to know
the specific structural properties, such as the degree distri-
bution or the degree correlation, of each layer in advance
[82, 104, 143, 146]. Subsequently, the multilayer architecture
can be realized through the adjustment of the corresponding
parameters within or across the layers (like in the configura-
tion models for single-layer networks) [101, 150].

III. EVOLUTIONARY GAMES ON MULTILAYER
NETWORKS

In line with the main concept of multilayer networks, evo-
lutionary games staged on them entail players that occupy
the nodes on different layers and interact with their neigh-
bors within and between these layers. As in traditional single-
network game theoretical models, players pass their strategies
or adopt them from more successful competitors [13, 15], typ-
ically from within the same layer. Moreover, players may in-
teract with other players from a different network layer, but
strategy transfer between the layers is typically not considered
permissible. This restriction is in place because otherwise
the whole setup becomes practically equivalent to a single-
layer network, with possibly a complicated interaction topol-
ogy. The consideration is the same as with the formulation
of interconnected networks, which in principle can always be
reduced to a single-layer network. Accordingly, evolutionary
games on interconnected networks are not of particular inter-

est, as it is unlikely that mechanisms different from the ones
already observed on isolated networks would govern the evo-
lutionary process. The main point of interest is to determine
and understand how multiplexity and various forms of inter-
dependence among the individual network layers affect the
previously-observed cooperation supporting mechanisms. Do
these mechanisms remain valid or become irrelevant? Can we
detect additional effects which further strengthen the already
known mechanisms?

The first step is to clarify the possible consequences of dif-
ferent kinds of interactions between players who are staying
in different layers. Since strategy evolution is based primar-
ily on the payoff (utility) differences between players, the first
choice could be to assume that a player can also collect pay-
offs from an external source. This practically means the pay-
off of a player in a given layer depends also on the state of a
player or players in other layers. The next subsection expands
on this option.

A. Coupling through utilities

By considering that a player’s payoff depends also on the
state of a player in another layer, there are still plenty of op-
tions to consider on how precisely such an interdependence
could be formulated. The first main direction to follow could
be to assume that the success, hence the payoff, of the external
player will directly modify the payoff of our focal player. This
assumption was in fact considered in [96, 97, 139, 140, 151].
The second option to consider could be that the actual strategy
of the player in the other layer will contribute to the payoff of
the focal player via a particular payoff matrix. In the latter
case, the strategy of the player in the other layer plays a sim-
ilar role to the strategy of a neighbor within the same layer.
The only difference is that the strategy invasion is only pos-
sible within a particular layer, but not between the network
layers.

Staying with the option that the payoff of the external player
will directly modify the payoff of the focal player, we re-
view the model and results in [92], where the evolution of
cooperation was first studied in a system where players were
distributed on two interdependent networks. The above de-
scribed connection between player x and his external partner
x′ can be given as

Ux = ΦPx + (1− Φ)Px′ , Ux′ = (1− Φ)Px′ +ΦPx , (9)

where Φ determines the bias in the consideration of payoffs
collected by the corresponding players x and x′ in the two
networks.

It has been shown that the stronger the bias in the utility
function, the higher the level of public cooperation. Due to
the symmetry breaking, unequal levels of cooperation can be
observed on the two layers, yet still, the aggregate density of
cooperators on both networks is higher than the one attainable
on an isolated network. This positive effect of biased util-
ity functions is due to the suppressed feedback of individual
success, which leads to a spontaneous separation of character-
istic time scales of the evolutionary process on the two inter-
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FIG. 3: Panel (a) shows the color coded fraction of cooperators fC
in dependence on the fraction of players ρ that are allowed to form
an external link and the strength of these links Φ, as obtained for the
temptation to defect b = 1.05 in the prisoner’s dilemma game. Panel
(b) shows that distinguished players, who have an external link with
their corresponding player in the other network, are more likely to
cooperate than those who do not have a link to the other layer. This
follows from the time evolution of the fraction of cooperators in the
whole population (fC ), among the distinguished players (fCd ), and
among ordinary players (fCo ). It can be observed that fCd > fCo .
Parameter values used were: b = 1.05, ρ = 0.3 and Φ = 0.8. For
details see [134].

dependent networks. Consequently, cooperation is promoted
indirectly because the aggressive invasion of defectors is more
sensitive to the slowing-down than the careful build-up of col-
lective efforts in sizable groups.

One may argue that the introduced asymmetry via payoff
links directly supports cooperators because it reveals the dif-
ference of speeds of spreading between the two competing
strategies. But this is not necessarily true because the posi-
tive contribution of interdependent topology to the fundamen-
tal effect of network reciprocity can also be observed if the
coupling is symmetric [135]. The phenomenon was referred
to as spontaneous emergence of interdependent network reci-
procity, which has proven to be extremely effective for main-
taining considerable cooperation levels even at extremely ad-
verse conditions. The key mechanism here is a simultaneous
formation of correlated cooperator clusters on both networks.
In the absence of this, when such a coordination process is
disturbed, network reciprocity fails on both networks, leaving
an undesired outcome in the whole system.

Until this point, we have assumed that every player has an
external link to the other layer and can thus collect an addi-
tional payoff to the one attainable within the home network.
But this assumption is of course not always realistic, as not
everybody is keen on maintaining such external links. It can
thus easily happen that there is a kind of heterogeneity among
the players, where just some specific fraction of them has an
external link established to the other layer. According to pre-
vious observations, an intuitive expectation would be that it is
better if all players have such a link to strengthen the above
mentioned interdependent reciprocity. Hence, the prediction
could be “the more (external links) is better”. But the reality
is in fact different. It was demonstrated that there is actually
an optional fraction of distinguished players ρ, whose external
links will provide the most effective interdependence between
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FIG. 4: The spontaneous emergence of a two-class society when co-
evolution of interdependency is allowed. Panel (a) illustrates that the
initially homogeneous teaching activity distribution remains practi-
cally untouched if the reward (punishment) parameter ∆ is low. For
intermediate ∆ = 0.4, however, practically a two-peak distribution
evolves in the long-time limit, as shown in panel (b). This cooperator
supporting distribution emerges for a broad range of control param-
eter, as evidence in panel (c). Lastly, panel (d) shows the excess
cooperation level in the upper class society in relation to the average
level in the whole system, suggesting that cooperation is more likely
among those who are able to control their neighborhoods. For details
see [137].

subnetworks for the successful evolution of cooperation [134].
This phenomenon is illustrated in Fig. 3. It can thus be con-
cluded that there is an optimal interdependence which war-
rants the highest cooperation level. The explanation of this
behavior is based on a phenomenon which is generally valid
also on a single network. More precisely, it is better if there
is an inhomogeneity among players because it helps forming
homogeneous groups in the population [52, 152–154]. How-
ever, the formation of uniform patches is beneficial for coop-
erators because it reveals the advantage of mutual cooperation
against defection. As a consequence, we can find more co-
operators among those who influence others or among those
who determine the strategy choice within their neighborhood.
This reasoning is valid for interdependent networks just as
much as it is valid for single-layer networks, as demonstrated
in the right panel of Fig. 3. The left panel of Fig. 3 illus-
trates in addition that a much higher cooperation level can be
reached on interdependent networks than is attainable on an
isolated network (which corresponds to the ρ = 0 case). Re-
search thus shows that interdependent networks are likely to
augment those cooperator-supporting mechanisms that have
already been observed previously single-layer, traditional net-
work.

The next logical step could be to find out whether such
an optimal interdependency can emerge spontaneously. To
explore this option, a coevolutionary rule between strategy
change and network interdependence has been proposed and
studied in [137]. More precisely, it was assumed that a suc-
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FIG. 5: Intermediate values of the utility threshold E are able to
sustain widespread cooperation both in the prisoner’s dilemma (a)
and in the public goods (b) game. For both cases each layer is formed
by a square lattice where the group size is G = 5. For details see
[138].

cessful player, who can pass his strategy to a neighbor, is
awarded by increasing its individual teaching activity (or strat-
egy pass capacity) by a finite value w = w + ∆. We note
that this property of the donor player is incorporated in the
applied Fermi strategy adoption probability via a pre-factor
wx, namely Γ(sx → sy) = wx(1 + exp[(Uy − Ux)/K])−1.
Importantly, if the attempted strategy pass was unsuccessful,
the teaching activity was reduced by the same value. Further-
more, if the strategy pass capacity wx exceeded a threshold
value, then the corresponding player was granted an exter-
nal link towards the other layer. By applying this protocol,
it was demonstrated that an optimal interdependence between
graphs can spontaneously evolve which can maintain cooper-
ation even under extremely adverse conditions. The explana-
tion of this effective construction is based on the spontaneous
emergence of a two-class society where only the upper class is
being allowed to control and take advantage of the interdepen-
dence. This segregation is illustrated in Fig. 4. Based on the
previously described argument involving the inhomogeneity
of players, it is a natural consequence that cooperative players
are more competent in sustaining compact clusters of follow-
ers if they reach the upper class. To conclude, the impact of
interdependence between networks can thus be exploited suc-
cessfully only by cooperators, which in turn extends param-
eter intervals where these seemingly weaker competitors are
able to survive.

The importance of details that determine coupling between
otherwise independent networks can be illustrated nicely in a
biology motivated model [138]. Here the relation between the
fitness and external demands, denoted by a threshold value
E , has a decisive role. According to the suggested model,
initially all players belong to one independent structured pop-
ulation. Simultaneously with the strategy evolution, players
whose current utility exceeds a threshold are rewarded by an
external link to a player belonging to the other population.
Driven by the same motivation, as soon as the utility drops
below the threshold, the external link is terminated. In this
way, the individual fitness of a player and its chance of hav-
ing an external connection are strongly correlated. As a con-
sequence, a time-varying interdependence evolves between
the networks. It turned out that, regardless of the details of
the evolutionary game and the interaction structure, the self-

FIG. 6: Information sharing between networks affects strategy trans-
fer between neighboring players. The red player in the upper network
tries to transfer its strategy to the blue player. Meanwhile, the blue
player receives information from the corresponding players in the
bottom network that they all adopt the same (blue) strategy. Because
of this, the blue player in the upper network is reluctant to change
its strategy to red, despite of the fact that the red player might have a
higher payoff.

organization of fitness and reward gives rise to distinguished
players that act as strong catalysts of cooperative behavior.
However, if the utility thresholds value E is too large distin-
guished players are no longer able to percolate [155, 156].
Hence the interdependence between the two populations van-
ishes, and cooperators are forced to rely on traditional network
reciprocity alone, which generally is able to sustain a lower
level of cooperative behavior. This threshold dependence of
the cooperation level is illustrated in Fig. 5. It is worth noting
that a similar process, namely the formation of links outside
the immediate community, seems particularly applicable also
in human societies, where an individual is typically member
in many different social networks, both in real life, as well as
online on networks such as Facebook or Twitter.

The work presented in [95] reveals another interesting re-
sult. Namely, if the symmetry constrain of individual utility
functions between two populations remains in tact (otherwise
being similar to Eq. 9), then there exists a threshold value of
coupling ΦC that leads to more favorable conditions for the
evolution of cooperation. Below the critical value, the cooper-
ation level is equal on both layers and increases monotonously
as the coupling strength Φ increases. At variance, if the utility
correlation between the two interdependent networks exceeds
the ΦC threshold, a spontaneous symmetry breaking between
cooperation levels on the two networks emerges, and this ir-
respective of the details of the interaction topology. More-
over, it has been found that the final state is closely related to
the evolution of heterogeneous strategy pairs across network
layers. The asymmetric expansion of heterogeneous strategy
pairs namely plays a pivotal role in the symmetry breaking
process. This in turn enhances traditional network reciprocity
[13, 50]. Along this line, evolutionary games based on multi-
point interactions and with more than two competing strate-
gies [20], like the public goods game with volunteering, might
be worth considering in the future.
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FIG. 7: Time evolution of cooperation and cooperative pairs within and between networks reveals why information sharing promotes cooper-
ation. Panel (a) shows the probability of finding a cooperator P (C) in dependence on time, panel (b) shows the probability of finding C − C
pairs within a network P (CCi), while panel (c) shows the probability of finding C −C pairs between the two networks P (CCe). Solid lines
in panel (d) depict the excess correlation of cooperators between the two networks, determined as P (CCe) − P (C)2. For easier reference,
panel (d) also features P (C) as dotted lines. For details see [136].

B. Alternative ways of coupling

Although payoffs play an all important and prominent role
in the success of strategies in the realm of evolutionary game
theory, there are nevertheless alternative ways to the ones re-
viewed thus far for establishing a connection between two
or more otherwise independent (isolated) networks (popula-
tions).

We may assume, for instance, that a player’s decision to
adopt a particular strategy is based not only on the payoffs
of its neighbors in a given network, but also on the popular-
ity of the potential new strategy in another network [136]. A
schematic example to illustrate this point is shown in Fig. 6,
where the willingness to adopt a more successful new strategy
is significantly lowered if the old strategy is more frequent in
the neighborhood of the corresponding player who resides in
a different network. Naturally, the reversed situation applies
too. Namely, if the potential new strategy is popular in the
other network, then this should amplify the likelihood of its
acceptance in the current network.

Despite of the fact that the proposed protocol is strategy
neutral, this kind of coupling generates an environment which
is beneficial for the evolution of cooperation. As a result, co-
operators can survive in parameter regions which would pro-
duce an all D phase if the game would be staged in a single-

layer network. The mechanism which is responsible for this
improvement is based on the spontaneous emergence of syn-
chronized strategy evolution on different networks. As Fig. 7
demonstrates, there is an enhanced correlation between the
two networks in terms of how the strategies evolve. Interest-
ingly, such a coordination has different consequence for coop-
erators than it has for defectors. In particular, while it supports
the stability of compact cooperative domains, it also simulta-
neously slows down the propagation of defection. This spec-
tacular synchronized evolution is illustrated in Fig. 8, where
the spatial distribution of strategies is illustrated separately for
the upper and lower network at the same times from left to
right. Importantly, we note that there is no payoff-driven cou-
pling between the two networks.

An interesting alternative way of coupling, not based on
player payoffs, has also been proposed by Lugo and San
Miguel [157], who considered a two-layer network where
each individual is connected to a so-called “playing” and
“learning” network . It was observed that the degree of so-
cial pressure via the level of doubt, i.e., the skepticism related
to the wisdom of crowd [158, 159], may play a decisive role
in the evolution of cooperation.

We close this section by mentioning yet another indepen-
dent way on how interdependent networks may arise in the
framework of evolutionary game theory. In contrast to the
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FIG. 8: Characteristic snapshots reveal the spontaneous emergence of strongly correlated evolution that is due to information sharing. Presented
are snapshots of the upper (a)-(d) and the lower (e)-(h) network layer, as obtained with the information-transfer model presented in [136].
Defectors are denoted by red and cooperators are denoted by blue. The random initial state and the final pure C phase are not shown. For
further details see [136].

previously discussed cases, where players formed indepen-
dent populations which were then coupled in a specific way,
it is also possible to consider interdependent networks where
the same players are members on different networks simul-
taneously. However, in line with the classification of multi-
layer networks presented in Section II, this approach is thus
most accurately classified as evolutionary games on multiplex
networks, which was also the terminology adopted Gómez-
Gardeñes et al. [94], who conducted the original research.
The study revealed that, if certain players are members in
more than one network, before unseen new phenomena may
emerge that additionally favor prosocial behavior. For exam-
ple, the enhanced resilience of cooperation can be due to a
non-trivial organization of cooperation across different net-
work layers. Accordingly, we note that this class of models,
namely evolutionary games on multiplex networks (for earlier
related work see [160, 161]), certainly provides a promising
research avenue to explore in the future.

IV. CONCLUSIONS AND OUTLOOK

This colloquium on evolutionary games on multilayer net-
works is motivated by the fact that networks of networks are
often a significantly more apt description of real-life systems
than isolated networks, and of course also more apt than well-
mixed models [56–61]. The latter two approaches are invalu-
able for conducting proof-of-principle fundamental research,
yet when it comes to actual models that ought to address a
more specific facet of reality, especially in human societies,
then networks of networks are hardly avoidable. This is why
the efforts to clarify the consequences of interdependence for
the outcome of evolutionary games should not be dismissed

as being purely “academic”, but rather acknowledge the fact
that they bring our models a step closer to real life problems.
While it is straightforward to realize that the reviewed theoret-
ical predictions will be difficult to test empirically by means
of human or economic experiments, we argue that this adds to
the relevance of theoretical research and mathematical model-
ing as basically the only means through which we may hope
to obtain quantitative insights into the relevance of multilayer
networks for the outcome of evolutionary games.

From the accumulated theoretical knowledge, we may once
filter out the most relevant aspects of human interactions that
drive our cooperative behavior. This perspective is everything
but a far-fetched illusion, as recent research clearly underlines
and emphasizes the utility and relevance of simulations and
mathematical modeling, for example as a key tool for outbreak
response [162] as well as for vitally informing research in evo-
lutionary biology [163]. Beyond interactions among living
organisms, one also does not need to look far to discover sev-
eral application points in social management systems, where
models are often more accurate if we assume the overall inter-
action topology to be somehow linked but otherwise separate
networks [123, 126].

We hope that the content of this review will be a useful
source of information, both in terms of the basic concepts
and definitions that pertain to multilayer networks, and even
more so in terms of the beautiful perspective that is offered by
evolutionary games on multilayer networks. The take home
message is that several mechanisms have already been dis-
covered by means of which the interdependence between dif-
ferent networks or network layers may help to resolve so-
cial dilemmas beyond the potency of traditional network reci-
procity [50]. A prominent example is interdependent network
reciprocity [135], which is capable to maintain healthy lev-
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els of public cooperation even under extremely adverse con-
ditions. Network interdependence can thus be exploited effec-
tively to promote cooperation past the limits imposed by iso-
lated networks, but only if the coordination between the inter-
dependent networks is not disturbed. Other mechanisms that
promote the evolution of cooperation and build prominently
on networks of networks include non-trivial organization of
cooperators across the interdependent network layers [94],
probabilistic interconnectedness [96], information transmis-
sion between different networks [136], rewarding evolution-
ary fitness by enabling links between populations [138, 140],
as well as self-organization towards optimally interdependent
networks by means of coevolution [137], all of which we have
reviewed in this colloquium.

Directions for future research are many, and the outlook for
joining the field is thus promising. In terms of evolutionary
games, perhaps the most obvious path to take is considering
other types of games on networks of networks. Viable can-
didates include the ultimatum game [164–169], rock-paper-
scissors games [21], the naming game [170], or the collective-
risk social dilemma game [37, 38, 171–173]. Here the focus is
frequently on the emergence of pattern formation and collec-
tive behavior such as fairness, species diversity, cyclical domi-
nance, language evolution, or the prevention of dangerous cli-
mate change [38, 174]. In addition to these options, disease-
spreading processes can also been embedded into the concept
of multilayer networks. For example, contagion spreads on
one layer while prevention measures, like vaccination, are

supported by another layer [175]. As is well-known, game
theoretical models are frequently employed to study the im-
pact of different strategic choices on disease prevention in
isolated networks [176–178]. Here the multilayer theoretical
framework, paired with evolutionary game theory, provides
a fascinating gateway towards richer and more detailed epi-
demiology research. Lastly, informed by the interconnect-
edness of different means of transport, the consideration of
game theoretical models in multilayer transport frameworks
also promises interesting discoveries for behavioral traffic re-
search [179], especially when combined with the optimization
of transport costs and the transition efficiency in empirical net-
works.

We conclude with the hope that our colloquium will be mo-
tivational towards the consideration of at least some of the
above research avenues in the near future.
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E 86, 026106 (2012)

[75] R. Parshani, S.V. Buldyrev, S. Havlin, Phys. Rev. Lett. 105,

048701 (2010)
[76] X. Huang, J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley,

Phys. Rev. E 83, 065101(R) (2011)
[77] J. Gao, S.V. Buldyrev, H.E. Stanley, S. Havlin, Nature Physics

8, 40 (2012)
[78] W. Li, A. Bashan, S.V. Buldyrev, Phys. Rev. Lett. 108, 228702

(2012)
[79] G. Dong, L. Tian, D. Zhou, R. Du, J. Xiao, H. Stanley, EPL

102, 68004 (2013)
[80] S. Gómez, A. Dı́az-Guilera, J. Gómez-Gardeñes, C. Pérez-
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[160] J. Gómez-Gardeñes, M. Romance, R. Criado, D. Vilone, A.

Sánchez, Chaos 21, 016113 (2011)
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