141 research outputs found

    ABE-Cities: An attribute-based encryption system for smart cities

    Get PDF
    In the near future, a technological revolution will involve our cities, where a variety of smart services based on the Internet of Things will be developed to facilitate the needs of the citizens. Sensing devices are already being deployed in urban environments, and they will generate huge amounts of data. Such data are typically outsourced to some cloud storage because this lowers capital and operating expenses and guarantees high availability. However, cloud storage may have incentives to release stored data to unauthorized entities. In this work we present ABE-Cities, an encryption scheme for urban sensing which solves the above problems while ensuring fine-grained access control on data by means of Attribute-Based Encryption (ABE). Basically, ABE-Cities encrypts data before storing it in the cloud and provides users with keys able to decrypt only those portions of data the user is authorized to access. In ABE-Cities, the sensing devices perform only lightweight symmetric cryptography operations, thus they can also be resource-constrained. ABE-Cities provides planned expiration of keys, as well as their unplanned revocation. We propose methods to make the key revocation efficient, and we show by simulations the overall efficiency of ABE-Cities

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv

    Efficient and Secure Data Sharing Using Attribute-based Cryptography

    Get PDF
    La crescita incontrollata di dati prodotti da molte sorgenti, eterogenee e di- namiche, spinge molti possessori di tali dati a immagazzinarli su server nel cloud, anche al fine di condividerli con terze parti. La condivisione di dati su server (possibilmente) non fidati fonte di importanti e non banali questioni riguardanti sicurezza, privacy, confidenzialit e controllo degli accessi. Al fine di prevenire accessi incontrollati ai dati, una tipica soluzione consiste nel cifrare i dati stessi. Seguendo tale strada, la progettazione e la realizzazione di politiche di accesso ai dati cifrati da parte di terze parti (che possono avere differenti diritti sui dati stessi) un compito complesso, che impone la presenza di un controllore fidato delle politiche. Una possibile soluzione l\u2019impiego di un meccanismo per il controllo degli accessi basato su schemi di cifratura attribute-base (ABE ), che permette al possessore dei dati di cifrare i dati in funzione delle politiche di accesso dei dati stessi. Di contro, l\u2019adozione di tali meccanismi di controllo degli accessi presentano due problemi (i) privacy debole: le politiche di accesso sono pubbliche e (ii) inefficienza: le politiche di accesso sono statiche e una loro modifica richiede la ricifratura (o la cifratura multipla) di tutti i dati. Al fine di porre rimedio a tali problemi, il lavoro proposto in questa tesi prende in con- siderazione un particolare schema di cifratura attribute-based, chiamato inner product encryption (IPE, che gode della propriet attribute-hiding e pertanto riesce a proteggere la privatezza delle politiche di accesso) e lo combina con le tecniche di proxy re-encryption, che introducono una maggiore flessibilit ed efficienza. La prima parte di questa tesi discute l\u2019adeguatezza dell\u2019introduzione di un meccanismo di controllo degli accessi fondato su schema basato su inner product e proxy re-encryption (IPPRE ) al fine di garantire la condivisione sicura di dati immagazzinati su cloud server non fidati. Pi specificamente, proponiamo due proponiamo due versioni di IPE : in prima istanza, presentiamo una versione es- tesa con proxy re-encryption di un noto schema basato su inner product [1]. In seguito, usiamo tale schema in uno scenario in cui vengono raccolti e gestiti dati medici. In tale scenario, una volta che i dati sono stati raccolti, le politiche di ac- cesso possono variare al variare delle necessit dei diversi staff medici. Lo schema proposto delega il compito della ricifratura dei dati a un server proxy parzial- mente fidato, che pu trasformare la cifratura dei dati (che dipende da una polit- ica di accesso) in un\u2019altra cifratura (che dipende da un\u2019altra politica di accesso) senza per questo avere accesso ai dati in chiaro o alla chiave segreta utilizzata dal possessore dei dati. In tal modo, il possessore di una chiave di decifratura corrispondente alla seconda politica di accesso pu accedere ai dati senza intera- gire con il possessore dei dati (richiedendo cio una chiave di decifratura associata alla propria politica di accesso). Presentiamo un\u2019analisi relativa alle prestazioni di tale schema implementato su curve ellittiche appartenenti alle classi SS, MNT e BN e otteniamo incoraggianti risultati sperimentali. Dimostriamo inoltre che lo schema proposto sicuro contro attacchi chosen plaintext sotto la nota ipotesi DLIN. In seconda istanza, presentiamo una versione ottimizzata dello schema proposto in precedenza (E-IPPRE ), basata su un ben noto schema basato suinner product, proposto da Kim [2]. Lo schema E-IPPRE proposto richiede un numero costante di operazioni di calcolo di pairing e ci garantisce che gli oggetti prodotti dall esecuzione dello schema (chiavi di decifratura, chiavi pubbliche e le cifrature stesse) sono di piccole rispetto ai parametri di sicurezza e sono efficientemente calcolabili. Testiamo sperimentalmente l\u2019efficienza dello schema proposto e lo proviamo (selettivamente nei confronti degli attributi) sicuro nei confronti di attacchi chosen plaintext sotto la nota ipotesi BDH. In altri termini, lo schema proposto non rivela alcuna informazione riguardante le politiche di accesso. La seconda parte di questa tesi presenta uno schema crittografico per la condivisione sicura dei dati basato su crittografia attribute-based e adatto per scenari basati su IoT. Come noto, il problema principale in tale ambito riguarda le limitate risorse computazionali dei device IoT coinvolti. A tal proposito, proponiamo uno schema che combina la flessibilit di E-IPPRE con l\u2019efficienza di uno schema di cifratura simmetrico quale AES, ottenendo uno schema di cifratura basato su inner product, proxy-based leggero (L-IPPRE ). I risultati sperimentali confermano l\u2019adeguatezza di tale schema in scenari IoT.Riferimenti [1] Jong Hwan Park. Inner-product encryption under standard assumptions. Des. Codes Cryptography, 58(3):235\u2013257, March 2011. [2] Intae Kim, Seong Oun Hwang, Jong Hwan Park, and Chanil Park. An effi- cient predicate encryption with constant pairing computations and minimum costs. IEEE Trans. Comput., 65(10):2947\u20132958, October 2016.With the ever-growing production of data coming from multiple, scattered, and highly dynamical sources, many providers are motivated to upload their data to the cloud servers and share them with other persons for different purposes. However, storing data on untrusted cloud servers imposes serious concerns in terms of security, privacy, data confidentiality, and access control. In order to prevent privacy and security breaches, it is vital that data is encrypted first before it is outsourced to the cloud. However, designing access control mod- els that enable different users to have various access rights to the shared data is the main challenge. To tackle this issue, a possible solution is to employ a cryptographic-based data access control mechanism such as attribute-based encryption (ABE ) scheme, which enables a data owner to take full control over data access. However, access control mechanisms based on ABE raise two chal- lenges: (i) weak privacy: they do not conceal the attributes associated with the ciphertexts, and therefore they do not satisfy attribute-hiding security, and (ii) inefficiency: they do not support efficient access policy change when data is required to be shared among multiple users with different access policies. To address these issues, this thesis studies and enhances inner-product encryption (IPE ), a type of public-key cryptosystem, which supports the attribute-hiding property as well as the flexible fine-grained access control based payload-hiding property, and combines it with an advanced cryptographic technique known as proxy re-encryption (PRE ). The first part of this thesis discusses the necessity of applying the inner- product proxy re-encryption (IPPRE ) scheme to guarantee secure data sharing on untrusted cloud servers. More specifically, we propose two extended schemes of IPE : in the first extended scheme, we propose an inner-product proxy re- encryption (IPPRE ) protocol derived from a well-known inner-product encryp- tion scheme [1]. We deploy this technique in the healthcare scenario where data, collected by medical devices according to some access policy, has to be changed afterwards for sharing with other medical staffs. The proposed scheme delegates the re-encryption capability to a semi-trusted proxy who can transform a dele- gator\u2019s ciphertext associated with an attribute vector to a new ciphertext associ- ated with delegatee\u2019s attribute vector set, without knowing the underlying data and private key. Our proposed policy updating scheme enables the delegatee to decrypt the shared data with its own key without requesting a new decryption key. We analyze the proposed protocol in terms of its performance on three dif- ferent types of elliptic curves such as the SS curve, the MNT curve, and the BN curve, respectively. Hereby, we achieve some encouraging experimental results. We show that our scheme is adaptive attribute-secure against chosen-plaintext under standard Decisional Linear (D-Linear ) assumption. To improve the per- formance of this scheme in terms of storage, communication, and computation costs, we propose an efficient inner-product proxy re-encryption (E-IPPRE ) scheme using the transformation of Kim\u2019s inner-product encryption method [2]. The proposed E-IPPRE scheme requires constant pairing operations for its al- gorithms and ensures a short size of the public key, private key, and ciphertext,making it the most efficient and practical compared to state of the art schemes in terms of computation and communication overhead. We experimentally as- sess the efficiency of our protocol and show that it is selective attribute-secure against chosen-plaintext attacks in the standard model under Asymmetric De- cisional Bilinear Diffie-Hellman assumption. Specifically, our proposed schemes do not reveal any information about the data owner\u2019s access policy to not only the untrusted servers (e.g, cloud and proxy) but also to the other users. The second part of this thesis presents a new lightweight secure data sharing scheme based on attribute-based cryptography for a specific IoT -based health- care application. To achieve secure data sharing on IoT devices while preserving data confidentiality, the IoT devices encrypt data before it is outsourced to the cloud and authorized users, who have corresponding decryption keys, can ac- cess the data. The main challenge, in this case, is on the one hand that IoT devices are resource-constrained in terms of energy, CPU, and memory. On the other hand, the existing public-key encryption mechanisms (e.g., ABE ) require expensive computation. We address this issue by combining the flexibility and expressiveness of the proposed E-IPPRE scheme with the efficiency of symmet- ric key encryption technique (AES ) and propose a light inner-product proxy re-encryption (L-IPPRE ) scheme to guarantee secure data sharing between dif- ferent entities in the IoT environment. The experimental results confirm that the proposed L-IPPRE scheme is suitable for resource-constrained IoT scenar- ios.References [1] Jong Hwan Park. Inner-product encryption under standard assumptions. Des. Codes Cryptography, 58(3):235\u2013257, March 2011. [2] Intae Kim, Seong Oun Hwang, Jong Hwan Park, and Chanil Park. An effi- cient predicate encryption with constant pairing computations and minimum costs. IEEE Trans. Comput., 65(10):2947\u20132958, October 2016

    Data Sharing on Untrusted Storage with Attribute-Based Encryption

    Get PDF
    Storing data on untrusted storage makes secure data sharing a challenge issue. On one hand, data access policies should be enforced on these storage servers; on the other hand, confidentiality of sensitive data should be well protected against them. Cryptographic methods are usually applied to address this issue -- only encrypted data are stored on storage servers while retaining secret key(s) to the data owner herself; user access is granted by issuing the corresponding data decryption keys. The main challenges for cryptographic methods include simultaneously achieving system scalability and fine-grained data access control, efficient key/user management, user accountability and etc. To address these challenge issues, this dissertation studies and enhances a novel public-key cryptography -- attribute-based encryption (ABE), and applies it for fine-grained data access control on untrusted storage. The first part of this dissertation discusses the necessity of applying ABE to secure data sharing on untrusted storage and addresses several security issues for ABE. More specifically, we propose three enhancement schemes for ABE: In the first enhancement scheme, we focus on how to revoke users in ABE with the help of untrusted servers. In this work, we enable the data owner to delegate most computation-intensive tasks pertained to user revocation to untrusted servers without disclosing data content to them. In the second enhancement scheme, we address key abuse attacks in ABE, in which authorized but malicious users abuse their access privileges by sharing their decryption keys with unauthorized users. Our proposed scheme makes it possible for the data owner to efficiently disclose the original key owner\u27s identity merely by checking the input and output of a suspicious user\u27s decryption device. Our third enhancement schemes study the issue of privacy preservation in ABE. Specifically, our proposed schemes hide the data owner\u27s access policy not only to the untrusted servers but also to all the users. The second part presents our ABE-based secure data sharing solutions for two specific applications -- Cloud Computing and Wireless Sensor Networks (WSNs). In Cloud Computing cloud servers are usually operated by third-party providers, which are almost certain to be outside the trust domain of cloud users. To secure data storage and sharing for cloud users, our proposed scheme lets the data owner (also a cloud user) generate her own ABE keys for data encryption and take the full control on key distribution/revocation. The main challenge in this work is to make the computation load affordable to the data owner and data consumers (both are cloud users). We address this challenge by uniquely combining various computation delegation techniques with ABE and allow both the data owner and data consumers to securely mitigate most computation-intensive tasks to cloud servers which are envisaged to have unlimited resources. In WSNs, wireless sensor nodes are often unattendedly deployed in the field and vulnerable to strong attacks such as memory breach. For securing storage and sharing of data on distributed storage sensor nodes while retaining data confidentiality, sensor nodes encrypt their collected data using ABE public keys and store encrypted data on storage nodes. Authorized users are given corresponding decryption keys to read data. The main challenge in this case is that sensor nodes are extremely resource-constrained and can just afford limited computation/communication load. Taking this into account we divide the lifetime of sensor nodes into phases and distribute the computation tasks into each phase. We also revised the original ABE scheme to make the overhead pertained to user revocation minimal for sensor nodes. Feasibility of the scheme is demonstrated by experiments on real sensor platforms

    Privacy-preserving data search with fine-grained dynamic search right management in fog-assisted Internet of Things

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fog computing, as an assisted method for cloud computing, collects Internet of Things (IoT) data to multiple fog nodes on the edge of IoT and outsources them to the cloud for data search, and it reduces the computation cost on IoT nodes and provides fine-grained search right management. However, to provide privacy-preserving IoT data search, the existing searchable encryptions are very inefficient as the computation cost is too high for the resource-constrained IoT ends. Moreover, to provide dynamic search right management, the users need to be online all the time in the existing schemes, which is impractical. In this paper, we first present a new fog-assisted privacy-preserving IoT data search framework, where the data from each IoT device is collected by a fog node, stored in a determined document and outsourced to the cloud, the users search the data through the fog nodes, and the fine-grained search right management is maintained at document level. Under this framework, two searchable encryption schemes are proposed, i.e., Credible Fog Nodes assisted Searchable Encryption (CFN-SE) and Semi-trusted Fog Nodes assisted Searchable Encryption (STFN-SE). In CFN-SE scheme, the indexes and trapdoors are generated by the fog nodes, which greatly reduce the computation costs at the IoT devices and user ends, and fog nodes are used to support offline users’ key update. In STFN-SE scheme, the semi-trusted fog nodes are used to provide storage of encrypted key update information to assist offline users’ search right update. In both schemes, no re-encryption of the keywords is needed in search right updates. The performance evaluations of our schemes demonstrate the feasibility and high efficiency of our system.National Key Research and Development ProgramNational Natural Science Foundation of ChinaSichuan Provincial Major Frontier IssuesState Key Laboratory of Integrated Services Networks, Xidian Universit

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Security architecture for Fog-To-Cloud continuum system

    Get PDF
    Nowadays, by increasing the number of connected devices to Internet rapidly, cloud computing cannot handle the real-time processing. Therefore, fog computing was emerged for providing data processing, filtering, aggregating, storing, network, and computing closer to the users. Fog computing provides real-time processing with lower latency than cloud. However, fog computing did not come to compete with cloud, it comes to complete the cloud. Therefore, a hierarchical Fog-to-Cloud (F2C) continuum system was introduced. The F2C system brings the collaboration between distributed fogs and centralized cloud. In F2C systems, one of the main challenges is security. Traditional cloud as security provider is not suitable for the F2C system due to be a single-point-of-failure; and even the increasing number of devices at the edge of the network brings scalability issues. Furthermore, traditional cloud security cannot be applied to the fog devices due to their lower computational power than cloud. On the other hand, considering fog nodes as security providers for the edge of the network brings Quality of Service (QoS) issues due to huge fog device’s computational power consumption by security algorithms. There are some security solutions for fog computing but they are not considering the hierarchical fog to cloud characteristics that can cause a no-secure collaboration between fog and cloud. In this thesis, the security considerations, attacks, challenges, requirements, and existing solutions are deeply analyzed and reviewed. And finally, a decoupled security architecture is proposed to provide the demanded security in hierarchical and distributed fashion with less impact on the QoS.Hoy en día, al aumentar rápidamente el número de dispositivos conectados a Internet, el cloud computing no puede gestionar el procesamiento en tiempo real. Por lo tanto, la informática de niebla surgió para proporcionar procesamiento de datos, filtrado, agregación, almacenamiento, red y computación más cercana a los usuarios. La computación nebulizada proporciona procesamiento en tiempo real con menor latencia que la nube. Sin embargo, la informática de niebla no llegó a competir con la nube, sino que viene a completar la nube. Por lo tanto, se introdujo un sistema continuo jerárquico de niebla a nube (F2C). El sistema F2C aporta la colaboración entre las nieblas distribuidas y la nube centralizada. En los sistemas F2C, uno de los principales retos es la seguridad. La nube tradicional como proveedor de seguridad no es adecuada para el sistema F2C debido a que se trata de un único punto de fallo; e incluso el creciente número de dispositivos en el borde de la red trae consigo problemas de escalabilidad. Además, la seguridad tradicional de la nube no se puede aplicar a los dispositivos de niebla debido a su menor poder computacional que la nube. Por otro lado, considerar los nodos de niebla como proveedores de seguridad para el borde de la red trae problemas de Calidad de Servicio (QoS) debido al enorme consumo de energía computacional del dispositivo de niebla por parte de los algoritmos de seguridad. Existen algunas soluciones de seguridad para la informática de niebla, pero no están considerando las características de niebla a nube jerárquica que pueden causar una colaboración insegura entre niebla y nube. En esta tesis, las consideraciones de seguridad, los ataques, los desafíos, los requisitos y las soluciones existentes se analizan y revisan en profundidad. Y finalmente, se propone una arquitectura de seguridad desacoplada para proporcionar la seguridad exigida de forma jerárquica y distribuida con menor impacto en la QoS.Postprint (published version

    Data Access in Multiauthority Cloud Storage: Expressive and Revocable Data Control System

    Get PDF
    ABSTRACT Cloud computing is rising enormously due to its advantages and the adaptable storage services being provided by it. Because of this, the number of users has reached the top level. The users will share the sensitive data through the cloud. Furthermore, the user can\u27t trust the untrusted cloud server. Subsequently, the data access control has turned out to be extremely challenging in cloud storage framework. In existing work, revocable data access control scheme proposed for multi-authority cloud storage frameworks which supports the access control in light of the authority control. The authorized users who have desirable attributes given by various authorities can access the data. However, it couldn\u27t control the attacks which can happen to the authorized user who is not having desirable attributes. In this work, they propose a new algorithm named Improved Security Data Access Control which beats the issue exists in the existing work. And furthermore, incorporates the efficient attribute revocation strategy for multi-authority cloud storage. Keywords: Access control, multi-authority, attribute revocation, cloud storage
    corecore