
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2010-07-13

Data Sharing on Untrusted Storage with Attribute-
Based Encryption
Shucheng Yu
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Yu, S. (2010). Data Sharing on Untrusted Storage with Attribute-Based Encryption. Retrieved from https://digitalcommons.wpi.edu/etd-
dissertations/321

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@WPI

https://core.ac.uk/display/212997625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/321?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/321?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Data Sharing on Untrusted Storage with Attribute-Based
Encryption

by

Shucheng Yu

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy
in

Electrical and Computer Engineering

July 2010

Approved:

Professor Wenjing Lou Professor Kaveh Pahlavan
ECE Department ECE Department
Dissertation Advisor Dissertation Committee

Professor Berk Sunar Professor Jie Wang
ECE Department CS Department, UMASS Lowell
Dissertation Committee Dissertation Committee

Abstract

Storing data on untrusted storage makes secure data sharing a challenge issue.

On one hand, data access policies should be enforced on these storage servers; on the

other hand, confidentiality of sensitive data should be well protected against them.

Cryptographic methods are usually applied to address this issue – only encrypted

data are stored on storage servers while retaining secret key(s) to the data owner her-

self; user access is granted by issuing the corresponding data decryption keys. The

main challenges for cryptographic methods include simultaneously achieving system

scalability and fine-grained data access control, efficient key/user management, user

accountability and etc. To address these challenge issues, this dissertation studies

and enhances a novel public-key cryptography – attribute-based encryption (ABE),

and applies it for fine-grained data access control on untrusted storage.

The first part of this dissertation discusses the necessity of applying ABE to

secure data sharing on untrusted storage and addresses several security issues for

ABE. More specifically, we propose three enhancement schemes for ABE: In the

first enhancement scheme, we focus on how to revoke users in ABE with the help

of untrusted servers. In this work, we enable the data owner to delegate most

computation-intensive tasks pertained to user revocation to untrusted servers with-

out disclosing data content to them. In the second enhancement scheme, we address

key abuse attacks in ABE, in which authorized but malicious users abuse their access

privileges by sharing their decryption keys with unauthorized users. Our proposed

scheme makes it possible for the data owner to efficiently disclose the original key

owner’s identity merely by checking the input and output of a suspicious user’s de-

cryption device. Our third enhancement schemes study the issue of privacy preserva-

tion in ABE. Specifically, our proposed schemes hide the data owner’s access policy

not only to the untrusted servers but also to all the users.

The second part presents our ABE-based secure data sharing solutions for two

specific applications – Cloud Computing and Wireless Sensor Networks (WSNs). In

Cloud Computing cloud servers are usually operated by third-party providers, which

are almost certain to be outside the trust domain of cloud users. To secure data

storage and sharing for cloud users, our proposed scheme lets the data owner (also a

cloud user) generate her own ABE keys for data encryption and take the full control

on key distribution/revocation. The main challenge in this work is how to make

the computation load affordable to the data owner and data consumers (both are

cloud users). We address this challenge by uniquely combining various computation

delegation techniques with ABE and allow both the data owner and data consumers

to securely mitigate most computation-intensive tasks to cloud servers, which are

envisaged to have unlimited resources.

In WSNs, wireless sensor nodes are often unattendedly deployed in the field and

vulnerable to strong attacks such as memory breach. For securing storage and shar-

ing of data on distributed storage sensor nodes while retaining data confidentiality,

sensor nodes encrypt their collected data using ABE public keys and store encrypted

data on storage nodes. Authorized users are given corresponding decryption keys

to read data. The main challenge in this case is that sensor nodes are extremely

resource-constrained and can just afford limited computation/communication load.

Taking this into account we divide the lifetime of sensor nodes into phases and dis-

tribute the computation tasks into each phase. We also revised the original ABE

scheme to make the overhead pertained to user revocation minimal for sensor nodes.

2

Feasibility of the scheme is demonstrated by experiments on real sensor platforms.

3

To my beloved wife, Jiaai, and my parents

i

Acknowledgements

A lot of people helped me complete this dissertation, either directly or more sub-

liminal. First of all, I would like to express my sincere thanks to my advisor Dr.

Wenjing Lou, who guided me into my current research area, discussed with me

about my ideas, proofread my papers, and gave me valuable advises on both my

research and my life. She set an example not only as a hardworking and passionate

researcher, but also as a responsible and decent person. The second person I would

like to thank is Dr. Kui Ren, who was working very closely with me throughout my

Ph.D study. He was always there to discuss with me on the technique details and

help me think through the difficult problems.

I am very grateful to my dissertation committee members, Dr. Kaveh Pahlavan,

Dr. Berk Sunar and Dr. Jie Wang for their valuable time and suggestions, which

significantly improved this dissertation. I wish to thank Dr. Fred J. Looft, our

department head, who has been very supportive on my research and graduation

issues. I also want to thank current and former fellow graduate students in the

Wireless Networking and Security Laboratory, Kai Zeng, Zhengyu Yang, Ming Li,

Ning Cao and Hanfei Zhao for their friendship and supports. It was with them

that made my Ph.D. a rich and enjoyable experience. I am also grateful to my

collaborators, Cong Wang and Jin Li for their valuable help.

I am greatly indebted to my parents Guohong Yu and Jiamin Zuo. They are

always very understanding and supportive on my choices. They love me more than

themselves and have sacrificed so much to support me. I am very indebted to my

grandfather, who passed away during my Ph.D study.

Most importantly, I am specially indebted to my wife, Jiaai Zhang, for her

support and sacrifice. To stay with me abroad, Jiaai gave up her chances in China,

left her family and friends, and accustomed herself to American life although it

ii

was so hard for her. I could not have reached this far without her support and

encouragement.

Finally, I would like to acknowledge National Science Foundation for funding my

research.

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 6

1.2.1 Security enhancements to ABE 6

1.2.2 Secure Data Sharing Schemes for Cloud Computing and WSNs 8

1.3 Roadmap . 10

2 Technical Preliminaries 12

2.1 Attribute-Based Encryption . 12

2.1.1 Definition . 12

2.1.2 Overview . 15

2.2 Miscellaneous Techniques . 16

2.3 Complexity Assumptions . 16

3 User Revocation for Attribute-Based Encryption 18

3.1 Problem Description and Main Idea 19

3.2 Definitions and Models . 21

3.2.1 Algorithm Definition . 21

3.2.2 Security Definition . 23

3.3 Our Construction . 25

iv

3.3.1 Overview . 25

3.3.2 The Detailed Construction . 25

3.3.3 CPA Security Proof . 28

3.4 CCA Security Construction . 31

3.4.1 CCA Secure Construction . 32

3.4.2 CCA Security Proof . 33

3.5 Applicability to KP-ABE . 35

3.6 Summary . 39

4 Attribute-Based Encryption with User Accountability 40

4.1 Main Idea . 41

4.2 Definitions and Models . 42

4.2.1 Definition of AFKP-ABE . 42

4.2.2 Definition of Attributes . 43

4.2.3 Security Definition . 45

4.3 Our Construction . 48

4.3.1 AFKP-ABE Scheme . 48

4.3.2 Security Proof . 53

4.3.3 Efficiency Analysis . 60

4.4 Applications . 61

4.5 Summary . 62

5 Privacy-Preserving Attribute-Based Encryption 63

5.1 Our Construction under Generic Group Model 64

5.1.1 Definitions . 64

5.1.2 Scheme Description . 65

5.1.3 Security Analysis . 70

v

5.1.4 Performance Evaluation . 73

5.2 Our Construction under the XDH assumption 79

5.2.1 Scheme Description . 79

5.2.2 Scheme Analysis . 81

5.3 Summary . 82

6 Secure Data Sharing with ABE in Cloud Computing 83

6.1 Models and Assumptions . 84

6.1.1 System Models . 84

6.1.2 Security Models . 85

6.1.3 Design Goals . 86

6.2 Our Proposed Scheme . 86

6.2.1 Main Idea . 86

6.2.2 Definition and Notation . 88

6.2.3 Scheme Description . 88

6.2.4 Discussion . 97

6.3 Analysis of Our Proposed Scheme . 98

6.3.1 Security Analysis . 98

6.3.2 Performance Analysis . 101

6.3.3 Related Work . 104

6.3.4 Discussion . 105

6.4 Summary . 106

7 Secure Data Sharing with ABE in Wireless Sensor Networks 107

7.1 Models and Assumptions . 108

7.1.1 Network Model . 108

7.1.2 Adversary Model . 109

vi

7.1.3 Security Requirements . 109

7.2 Our Proposed Scheme . 110

7.2.1 Access Control Strategy . 111

7.2.2 Scheme Overview . 113

7.2.3 The Basic Scheme . 114

7.2.4 The Advanced Scheme . 119

7.2.5 Discussions . 124

7.3 Scheme Evaluation . 126

7.3.1 Security Analysis . 126

7.3.2 Performance Evaluation . 129

7.4 Summary . 133

8 Conclusion and Future Work 135

8.1 Conclusion . 135

8.2 Future Work . 137

vii

List of Figures

3.1 An example application scenario of data sharing. 19

3.2 An example use of KP-ABE. 36

4.1 The form of access structure . 45

5.1 Experiment results on computation load. 77

6.1 An example case in the healthcare scenario 87

6.2 Notation used in our scheme description 89

6.3 Format of a data file stored on the cloud 90

6.4 Description of the process of user revocation 91

6.5 Attribute History Lists (AHLs) . 93

6.6 Pseudo-code of algorithm level algorithms 96

6.7 Construction of algorithm B from A 100

6.8 Complexity of our proposed scheme 103

7.1 An example access structure in the battlefield scenario 112

viii

List of Tables

5.1 Vector for the product X̄3X2X0 . 68

5.2 Summary of cryptographic operations 74

5.3 Ciphertext sizes (bits) for different elliptic curves 76

7.1 Computation load on each sensor node 130

7.2 Communication load . 130

7.3 One-phase computation load on iMote2 (MNT curves) 132

7.4 One-phase computation load on iMote2 (SS curves) 132

7.5 One-phase computation load on Tmote Sky 133

ix

Chapter 1

Introduction

Recent advances in IT have greatly facilitated remote data storage and sharing.

New applications such as online social networks and online documents provide very

convenient ways for people to store and share various data including personal profile,

electronic documents and etc on remote online data servers. Cloud Computing,

regarded as the future IT architecture, even promises to provide unlimited and

elastic storage resource (and other computing resources) as a service to cloud users in

a very cost-effective way [20–23]. Although still at its early stage, Cloud Computing

has already drawn great attention, and its benefits have attracted an increasing

number of users to outsource their local data centers to remote cloud servers.

Data security is a critical issue for remote data storage. On one hand, disclosure

of sensitive information, such as health records, stored on remote data servers has to

be strictly protected before users have liberty to use the data services. Fine-grained

data access control mechanisms often need to be in place to assure appropriate

disclosure of sensitive data among multiple users. On the other hand, in remote data

storage users do not physically possess their data. Remote data service providers

are almost certain to be outside the users’ trust domain, and are not allowed to

1

learn users’ sensitive information stored on their servers. It turns out that users

can not rely on remote data servers to enforce access control policies like traditional

access control [1,100–102] in which reference monitors should be fully trusted. User-

enforced data access control is thus highly desired for remote data storage. More

generally, such an issue also exists in any untrusted storage, e.g., distributed data

storage in Wireless Sensor Networks (WSNs) [68–70], for which storage devices

that are either owned by untrustworthy provider(s) or highly vulnerable to memory

breach attacks,

This dissertation addresses the issue of securing data sharing on untrusted stor-

age by exploring cryptographic methods to help users enforce data access policies –

only encrypted data are stored on storage servers while retaining secret key(s) to the

data owner herself; user access is granted by issuing the corresponding data decryp-

tion keys. In particular, we study a novel public-key cryptography – Attribute-Based

Encryption (ABE), and enhance it toward providing a full-fledged cryptographic ba-

sis for a secure data sharing scheme on untrusted storage. Based on ABE, we also

present our solutions for securing data sharing in Cloud Computing and wireless

sensor networks respectively.

1.1 Motivation

In untrusted storage data servers are not allowed to learn the content of sensitive

data, nor can they be relied on to enforce data access policies. To keep data confi-

dential to data servers the data owner encrypts data before upload. User access is

granted by possessing the data decryption key(s). When this kind of cryptographic-

based access control scheme provide security protection on data, there are also

several major challenges pertained to the scheme design. We can summarize the

2

challenges as follows.

Fine-grained Access Control vs. Scalability Disclosure of sensitive data

usually requires fine-grained access control in the sense that different users may have

access privileges to different types/sets of data. Traditionally, access policies are en-

forced by data servers with mechanisms such as ACL-based access control [100],

capability-based access control [101], and role-based access control [102]. For un-

trusted storage, one might think of enforcing the same access policies like ACL with

cryptographic methods. However, ACL-based and capability-based access control,

when enforced with cryptographic methods, has the scalability issue. Traditional

ACL-based access control demands every data object to record the list of autho-

rized users. When ACLs are enforced with cryptographic methods, the complexity

for each data object in terms of its ciphertext size and/or the corresponding data en-

cryption operation is linear to the number of users in the system, and thus makes the

system less scalable. Capability-based access control, if enforced with cryptographic

methods, has the similar scalability issue. In role-based access control [102], access is

granted by the user’s role(s) and the data objects do not need to keep the authorized

user list. Enforcing these access policies with cryptographic methods has to address

various attacks such as user collusion, in which users with different roles (i.e., the

corresponding decryption keys) attempt to obtain extra access privileges by piecing

together their keys (i.e., roles). There are several recent work [11, 14, 29, 30] in the

areas of “shared cryptographic file systems” and “access control of outsourced data”

addressing the similar issue of data access control with conventional symmetric-key

cryptography or public-key cryptography. When these schemes are suitable for con-

ventional file systems, most of them are less suitable for fine-grained data access

control in large-scale data centers which may have a large number users and data

files.

3

Attribute-based encryption (ABE) [2, 12, 19], a recently invented one-to-many

public-key cryptography, has the potential to enforce the fine-grained access policies

for large-scale systems. In ABE data are associated with attributes. Access policies,

defined on attributes, are enforced within the encryption procedure. Different from

traditional broadcast encryption [34, 46, 50], ABE offers the ability to encrypt data

without exact knowledge of the receiver set. In this sense the concept of ABE is

closely related to Role-Based/Attribute-Based Access Control and suitable for large-

scale applications. Existing constructions of ABE [2, 12, 19] focus on providing the

basic functionalities such as data encryption/decryption and collusion resistance.

Before ABE can be applied in practical systems there are still several challenge

security issues to be addressed as described in following sections.

User Dynamics In practical application scenarios, users may join or leave the

system. An effective and efficient user management mechanism should be in place

to deal with user access privilege grant and revocation. In particular, user key (and

hence access privilege) revocation is always a challenge issue in cryptography.

In attribute-based encryption (ABE), user secret key revocation is also a chal-

lenge issue. Existing solutions [2, 18] suggest associating expiration time attributes

to user secret keys. When this type of solutions are able to revoke user secret keys

at the designated time, they are not able to revoke users in the timely fashion. [4]

proposed an efficient revocation scheme for IBE, which is also applicable to ABE.

However, it is more suitable for realtime communication than data/file storage since

it does not address how to prevent already-existed data files from being accessed by

the revoked user(s).

User Accountability For cryptographic-based data access control, user access

is enabled by possessing the corresponding data decryption key(s). This opens the

door for an authorized but malicious user to “share” her secret key with unautho-

4

rized users. More seriously, in copyright-sensitive applications pirates may take this

advantage to make profits by selling their secret keys (and hence access privileges)

to others. These kind of attacks are extremely harmful for copyright-sensitive appli-

cations since it very easy for key abusers to duplicate and distribute data decryption

keys to others by ways such as email. As the cost of doing this is extremely low, it is

more destructive than directly distributing the data itself. Complete prevention this

kind of attacks is usually believed to be very hard. Conventional practice against

these attacks is to provide a way for the data owner to trace any suspicious pirate

device and collect evidences of key abuse by disclosing the illegal key distributor’s

identity. Then the data owner can sue the illegal key distributors by presenting

these evidences to law authorities. In doing so, it requires that the user decryption

key is somehow correlated to her identity. In conventional broadcast encryption, the

issue of key abuse is addressed by using a technique called traitor tracing which has

been well studied by previous works [36–39].

In ABE [2, 12, 19], a user secret key is defined over attributes and does not

have the one-to-one correspondence with any particular user. To defend against key

abuse attacks, we can play the same trick in ABE as traitor tracing at a high level

view. However, underlying techniques adopted by existing traitor tracing systems

can not be directly applied to ABE because receivers are represented individually

in conventional broadcast encryption while not in ABE. A novel solution is needed

for defending against key abuse attacks for ABE. In doing so, the main challenge is

how to efficiently conduct tracing activities without being detected by the suspected

users (pirate devices).

Privacy Preservation As the data storage servers can not be trusted, it is

desirable to disclose as less user privacy information as possible to servers besides

data confidentiality. In particular, the data owner would like to keep her access

5

policy information confidential to servers and users may have concerns on disclosing

their access privilege information to servers. In existing constructions of ABE [2,12,

19], either the access policy or attributes should be attached in plaintext to the data

cipheretext to facilitate user decryption. For privacy preservation it is necessary to

provide a new construction for ABE to hide the access policy or attributes.

Aside from the above general challenge issues, there are also many other application-

specific challenges. Efficiency is one of them and different applications would have

different requirements on it. Current construction of ABE introduces expensive

operations such as bilinear pairings on encryptor and/or decryptor, which are not

necessarily affordable to the parties. It is desirable either to look for efficient con-

structions for ABE, or to combine ABE with various computation delegation tech-

niques to offload the computation-intensive operations to more powerful devices.

1.2 Contributions

This dissertation makes the several major contributions as follows.

1.2.1 Security enhancements to ABE

ABE is a newly invented PKC primitive that is promising in providing cryptographic-

based fine-grained data access control for untrusted storage. Before ABE can be

securely applied in practical systems, there are several important security issues to

be addressed as listed in section 1.1. This dissertation addresses these issues and

proposes several critical security enhancements to ABE.

• User Revocation User revocation is a challenge issue in ABE as attributes

are shared among unlimited number of users. Revocation of one user may

involve key update for other non-revoked users and/or re-encryption of data

6

files on the data servers. To facilitate user revocation on untrusted storage,

this dissertation proposes a novel scheme in which the data owner is able

to revoke any user in the timely fashion. The proposed scheme makes it

possible for the data owner to securely offload most computation-intensive

tasks pertained to user revocation to data servers which are envisaged to be

powerful. It achieves this goal by uniquely combining the proxy re-encryption

technique [3] with ABE. Security of the proposed scheme is formulated and

proved under standard cryptography models.

• Key Abuse Resistance In order to defend against key abuse attacks in ABE

and hence provide user accountability, this dissertation enhances an existing

construction of ABE 1 and proposes a tracing mechanism that helps the data

owner identify the key abuser(s). In practical systems, it would be difficult

for the data owner to obtain a copy of the pirate’s decryption key and check

its validity. This is because the data owner may not be able to get physical

access to the pirate’s key storage device or the pirate may have randomized

the key storage memory. To address this issue, we propose a black-box tracing

mechanism, i.e., tracing the pirate device only by observing its outputs on

some inputs. Such a solution also enables the data owner to remotely trace

suspicious users by tricking them into decrypting tracing ciphertexts and thus

makes the tracing process very convenient. Formal security proof and per-

formance analysis are both provided for this scheme. This work provides the

same security extension to ABE as that traitor tracing techniques do to con-

ventional broadcast encryption [34,46,50]. To the best of our knowledge, this

work is among the first that addresses the issue of user accountability in ABE.

1More precisely, we enhance one branch of ABE – Key-Policy Attribute-Based Encryption (KP-
ABE). But the same technique is also applicable to Ciphertext-Policy Attribute-Based Encryption
(CP-ABE), another branch of ABE.

7

• Encryption with Hidden Policy In current CP-ABE constructions [2, 9],

the access policy should be attached in plaintext to the data ciphertext in order

to facilitate user decryption. This plaintext discloses the data owner’s access

policy and/or the users’ access privilege information, and may cause privacy

concerns. In order to provide better privacy protection, we propose two novel

CP-ABE constructions under different security models. These solutions hide

the access policy information not only from the data servers but also from

users. To the best of our knowledge, this work is among the first that addresses

CP-ABE with hidden policy.

1.2.2 Secure Data Sharing Schemes for Cloud Computing

and WSNs

• Secure Data Sharing in Cloud Computing Cloud Computing is a promis-

ing next-generation IT architecture which provides elastic and unlimited re-

sources, including storage, as services to cloud users. In Cloud Computing

cloud users and cloud service providers are almost certain to be from different

trust domains. A secure user-enforced data access control mechanism must be

provided before cloud users have the liberty to outsource sensitive data to the

cloud for storage. In this dissertation, we propose a cryptographic-based data

access control mechanism with ABE and enable the data owner to take fully

control over data access. Compared to previous work [11,14,29,30], our scheme

provides better scalability when providing fine-grained data access control be-

cause the complexity of most system operations in our scheme is linear to the

number of attributes rather than the number of users/data files.

In Cloud Computing, cloud servers are very powerful but cloud users could

8

be resource-constrained devices such as mobile phones. To reduce the compu-

tation load for cloud users, we combine various computation delegation tech-

niques with ABE and securely offload computation-intensive tasks to powerful

cloud servers. For example, we integrate the technique of proxy re-encryption

into ABE and securely mitigate the laborious user revocation task from the

data owner to cloud servers. Using another computation delegation technique,

we reduce the computation load for data consumers to constant complexity

and make it affordable to user devices such as mobile phones. The proposed

scheme also significantly saves the computation load for cloud servers by ex-

ploiting the technique of lazy re-encryption [14]. Both performance analysis

and security proof are provided.

• Access Control for Distributed Data Storage in WSNs In WSNs, stor-

ing data at local sensor nodes or at designated in-network nodes would greatly

save the network-wide communication load and brings forth a lot of bene-

fits such as energy-efficiency and ease of distributed data retrieval. However,

unattended wireless sensor nodes are easily subject to strong attacks such as

physical compromise and can not be trusted by the owner of the WSN in terms

of data security. A secure data storage and retrieval scheme is required for

distributed data storage in WSNs. Our proposed solution addresses this issue

and provides a cryptographic-based access control mechanism – encrypting

data on sensor nodes with ABE public keys and distributing decryption keys

to authorized sensor users. To make the expensive ABE encryption operation

affordable to resource-constrained sensor nodes, we divide the lifetime of sensor

nodes into phases and then distribute the underlying mathematical operations

in ABE over these phases. To minimize the communication and computation

load on sensor nodes in case of user revocation, we revise an existing ABE

9

scheme and makes the user revocation complexity on sensor nodes constant.

Formal security proof and experimental results shows that our proposed solu-

tion is provably secure and affordable to contemporary sensor nodes. To the

best of our knowledge, the only existing work prior to ours that addresses the

issue of secure distributed data storage and retrieval in WSNs is [83]. How-

ever, a recent work [84] shows that there is a severe security weakness with [83].

Our work is de facto the first that provides a secure mechanism for distributed

fine-grained data access control in WSNs.

1.3 Roadmap

The organization of this dissertation is as follows.

Chapter 2 presents technical preliminaries pertained to this dissertation. In

Section 2.1 we introduces Attribute-Based Encryption. Section 2.2 describes the

concepts of miscellaneous techniques to be used in following chapters. In Section

2.3 gives complexity assumptions we will use.

Chapter 3 proposes a user revocation scheme for ABE. In Section 3.1 describe the

problem as well as the main idea of our solution. Section 3.2 presents our algorithm

definitions and the security model. In Section 3.3, we give a CPA-secure construc-

tion for CP-ABE, which is followed by a CCA-secure construction in Section 3.4.

Section 3.5 discusses the applicability of our solution to KP-ABE. We summarize

this chapter in Section 3.6.

In Chapter 4, we present our solution for key abuse attacks in ABE. Section

4.1 gives the main idea of our solution. Section 4.2 presents models and definitions

for this work. In Section 4.3, we describe our construction in detail. Section 4.4

articulates the application scenarios for our proposed scheme. A summarization of

10

this chapter is given in Section 4.5.

Chapter 5 proposes two privacy enhancement solutions to ABE. Section 5.1

gives our construction under the generic group model. In Section 5.2, we presents

our construction under the XDH assumption. We summarize this chapter in Section

5.3.

In Chapter 6, we give our solution for secure data sharing in Cloud Computing.

Section 6.1 articulates the models and assumptions to be used in this work. In

Section 6.2, we present our scheme in detail. Section 6.3 analyzes our proposed

scheme on its security and performance. Section 6.4 summarizes this chapter.

Chapter 7 presents our solution for secure data sharing in Wireless Sensor Net-

works. Section 7.1 gives our models and assumptions for this work. We present our

detailed construction in Section 7.2. Section 7.3 evaluates our proposed scheme on

its security and performance. We summarize this chapter in Section 7.4.

Chapter 8 concludes this dissertation and presents several directions for future

work.

11

Chapter 2

Technical Preliminaries

2.1 Attribute-Based Encryption

2.1.1 Definition

Sahai and Waters [19] first introduced the public-key cryptography attribute based

encryption (ABE) for cryptographically enforced access control. In ABE both the

user secret key and the ciphertext are associated with a set of attributes. A user is

able to decrypt the ciphertext if and only if at least a threshold number of attributes

overlap between the ciphertext and user secret key. Different from traditional public-

key cryptography such as Identity-Based Encryption [5], ABE is intended for one-to-

many encryption in which ciphertexts are not necessarily encrypted to one particular

user. In Sahai and Waters ABE scheme, the threshold semantics are not very

expressive to be used for designing more general access control system. To enable

more general access control, Goyal et al. [12] proposed a key-policy attribute-based

encryption (KP-ABE) scheme – a variant of ABE. The idea of a KP-ABE scheme

is as follows: the ciphertext is associated with a set of attributes and each user

secret key is embedded with an access structure which can be any monotonic tree-

12

access structure. A user is able to decrypt a ciphertext if and only if the ciphertext

attributes satisfy the access structure embedded in her secret key. In the same

work, Goyal et al. introduced the concept of another variant of ABE – ciphertext-

policy attribute-based encryption (CP-ABE). CP-ABE works in the reverse way of

KP-ABE in the sense that in CP-ABE the ciphertext is associated with an access

structure and each user secret key is embedded with a set of attributes. Formally,

KP-ABE and CP-ABE can be defined as follows.

Key-Policy Attribute-Based Encryption A KP-ABE scheme consists of the

following four algorithms.

Setup This algorithm takes as input a security parameter κ. and returns the

public key PK as well as a system master secret key MK. PK is used by message

senders for encryption. MK is used to generate user secret keys and is known only

to the authority.

Encryption This algorithm takes a message M , the public key PK, and a set of

attributes γ as input. It outputs the ciphertext E.

Key Generation This algorithm takes as input an access structure T and the

master secret key MK. It outputs a secret key SK that enables the user to decrypt

a message encrypted under a set of attributes γ if and only if γ matches T .

Decryption It takes as input the user’s secret key SK for access structure T and

the ciphertext E, which was encrypted under the attribute set γ. This algorithm

outputs the message M if and only if the attribute set γ satisfies the user’s access

structure T .

Ciphertext-Policy Attribute-Based Encryption A CP-ABE scheme also

consists of four algorithms:

Setup This algorithm takes as input a security parameter κ. and returns the

public key PK as well as a system master secret key MK. PK is used by message

13

senders for encryption. MK is used to generate user secret keys and is known only

to the authority.

Encrypt This algorithm takes as input the public parameter PK, a message M ,

and an access structure T . It outputs the cihphertext CT .

KeyGen This algorithm takes as input a set of attributes γ associated with the

user and the master secret key MK. It outputs a secret key SK that enables the

user to decrypt a message encrypted under an access structure T if and only if γ

matches T .

Decrypt This algorithm takes as input the ciphertext CT and a secret key SK

for an attributes set γ. It returns the message M if and only if γ satisfies the access

structure associated with the ciphertext CT .

In ABE, including KP-ABE and CP-ABE, the authority runs the algorithm

Setup and Key Generation to generate system MK, PK, and user secret keys.

Any user knowing the system public key PK is able to encrypt data by calling the

algorithm Encryption. Only authorized users (i.e., users with intended access struc-

tures) are able to decrypt by calling the algorithm Decryption. In this dissertation,

we just consider the case of one-writer-and-multiple-reader in untrusted storage for

brevity. The only writer is the data owner, who also acts as the authority and is

in charge of key generation. This means that the data owner takes the role of both

the authority and the encryptor. In the following part of this dissertation, we will

alternative call this party by “authority” or “data owner”. The decryptor will be

called as “data consumer”, or just “user” for brevity.

14

2.1.2 Overview

Attribute-Based Encryption (ABE) was first proposed by Sahai and Waters [19]

with the name of Fuzzy Identity-Based Encryption, with the original goal of pro-

viding an error-tolerant identity-based encryption [5] scheme that uses biometric

identities. In [18], Pirretti et al. proposed an efficient construction of ABE under

the Random Oracle model and demonstrated its application in large-scale systems.

Goyal et al. enhanced the original ABE scheme by embedding a monotone ac-

cess structure into user secret key. The scheme proposed by Goyal et al. is called

Key-Policy Attribute-Based Encryption (KP-ABE) [12], a variant of ABE. In the

same work, Goyal et al. also proposed the concept of Ciphertext-Policy Attribute-

Based Encryption (CP-ABE) without presenting a concrete construction. CP-ABE

is viewed as another variant of ABE in which ciphertexts are associated with an

access structure. Both KP-ABE and CP-ABE are able to enforce general access

policies that can be described by a monotone access structure. In [103], Ostro-

vsky et al. proposed an enhanced KP-ABE scheme which supports non-monotone

access structures. Chase [104] enhanced Sahai-Waters ABE scheme and Goyal et

al. KP-ABE scheme by supporting multiple authority. Further enhancements to

multi-authority ABE can be found in [105,106]. Bethencourt et al. [2] proposed the

first CP-ABE construction with security under the Generic Group model. In [9],

Cheung et al. presented a CCA-secure CP-ABE construction under the Decisional

Bilinear Diffie-Hellman (DBDH) assumption (cf. Section 2.3). In [9], the CCA-

secure scheme just supports AND gates in the access structure. Towards proposing

a provably secure CP-ABE scheme supporting general access structure, Goyal et

al. [108] proposed a CP-ABE construction with an exponential complexity which

can just be viewed as theoretic feasibility. For the same goal, Waters [107] proposed

another CP-ABE scheme under various security assumptions. Aside from providing

15

basic functionalities for ABE, there are also many works proposed to provide bet-

ter security/privacy protection for ABE. These works include CP-ABE with hidden

policy [13,17,40,111], ABE with user accountability [6,15,109], ABE with attribute

hierarchy [110] and etc.

2.2 Miscellaneous Techniques

Bilinear Maps In this dissertation, some facts about groups with efficiently com-

putable bilinear maps will be used.

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be a

generator of G0. A bilinear map is is an injective function e : G0 × G0 → G1 with

the following properties:

1. Bilinearity : for all u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.

2. Non-degeneracy : e(g, g) 6= 1.

3. Computability : There is an efficient algorithm to compute e(u, v) for all

u, v ∈ G0.

Proxy Re-Encryption Proxy Re-Encryption (PRE) [3] is a cryptographic primi-

tive in which a semi-trusted proxy is able to convert a ciphertext encrypted under

Alice’s public key into another ciphertext that can be opened by Bob’s private key

without seeing the underlying plaintext. More formally, a PRE scheme allows the

proxy, given the proxy re-encryption key rka↔b, to translate ciphertexts under public

key pka into ciphertexts under public key pkb and vise versa.

2.3 Complexity Assumptions

This dissertation will use the following complexity assumptions.

16

Decisional Bilinear Diffie-Hellman (DBDH) Assumption Let a, b, c, z ∈ Zp be cho-

sen at random and g be a generator of G0. The DBDH assumption [5] states that no

probabilistic polynomial-time algorithm B can distinguish the tuples (A = ga, B =

gb, C = gc, e(g, g)abc) from the tuple (A = ga, B = gb, C = gc, e(g, g)z) with non-

negligible advantage.

The Decision Linear (D-Linear) Assumption Let z1, z2, z3, z4, z ∈ Zp be chosen at

random and g be a generator ofG0. The D-Linear assumption [44] states that that no

probabilistic polynomial-time algorithm B can distinguish the tuple (g, gz1 , gz2 , gz1z3 ,

gz2z4 , gz3+z4) from the tuple (g, gz1 , gz2 , gz1z3 ,gz2z4 , gz) with non-negligible advantage.

External Diffie-Hellman (XDH)2 Let G1,G2 be two distinct groups. The XDH

assumption [44, 112] implies the following properties: 1) the Discrete Logarithm

problem (DLP) [115], the computational Diffie-Hellman problem (CDH) [117], and

the Computational Co-Diffie-Hellman Assumption (co-CDH) [118] are all intractable

in G1 and G2; 2) an efficiently computable bilinear map e : G1 × G2 → GT exists;

3) the decisional Diffie-Hellman problem (DDH) [116] is intractable in G1.

2In practice, it is believed that the XDH assumption may hold in certain subgroups of MNT
elliptic curves [113,114].

17

Chapter 3

User Revocation for

Attribute-Based Encryption

In attribute based systems, user revocation is a challenge issue because each at-

tribute is conceivably shared by multiple users. Revocation of any single user would

affect others who share the same attributes. This chapter focuses on this impor-

tant problem. Instead of addressing the issue in general settings, we particularly

focus on practical application scenarios such as data storage and sharing, as shown

by Fig.3, in which proxy servers are always available for providing various types of

data services. Similar to previous work [11], these servers are assumed to be curious-

but-honest instead of being totally untrusted. That is, they will honestly execute

the tasks assigned by legitimate parties in the system. However, they have the in-

centive to learn the contents of encrypted data as much as possible. Based on this

assumption, our solution uniquely integrates the proxy re-encryption technique [3]

with ABE, and enables the authority to delegate most laborious tasks of user revo-

cation to proxy servers without leaking any confidential information to them. On

each revocation event, the authority just generates several proxy re-encryption keys

18

Authority

Semi-trustable

Servers

Encr
ypte

d co
nten

t
Access

User

Content

Provider

M
anagem

ent

Figure 3.1: An example application scenario of data sharing.

and transmits them to proxy servers. Proxy servers will update secret keys for all

users but the one to be revoked. In this way our construction places minimal load

on the authority upon each revocation event.

Existing schemes [2, 18] suggest associating expiration time attributes to user

secret keys. However, the expiration method just enables user revocation at a pre-

arranged time, but is not able to efficiently revoke user attributes on the fly. In

our proposed scheme the authority is able to freely revoke any attribute of users

at any time. In [4], Boldyreva et al. proposed an efficient revocation scheme for

IBE, which is also applicable to KP-ABE [12] and fuzzy IBE [19]. However, it is

not clear whether or not the proposed scheme is applicable to CP-ABE. Moreover,

this solution just addresses the case of realtime communication but not the case

of data storage. Our technique can be used for both CP-ABE and KP-ABE and

particularly designed for data storage. For brevity this chapter will mainly focus on

presenting our construction for CP-ABE which is followed by a brief discussion on

its applicability to KP-ABE.

3.1 Problem Description and Main Idea

We take the following imaginary example to demonstrate our problem: In the WPI

campus data system, which might be outsourced to Amazon S3 [21] but remotely

19

managed by a technician (i.e., the authority) in WPI, each student is associated with

a set of attributes such as (WPI, department, year of class, enrolled courses, club

memberships, ...). Data files in the system are encrypted with access structures like

“WPI ∧ (department: ECE) ∧ (year of class: 2010) ∧ (club memberships: football

∨ baseball)” which enables WPI students of class 2010 from the ECE department

who are registered with the football club or the baseball club to decrypt. When a

student quits from a club, the system should disable the corresponding attribute in

the student’s attribute set. When a student graduates from WPI, the system should

disable the “WPI” attribute in the student’s attribute set to revoke the user from

the system. Such operations should be remotely executed by the authority of the

system.

In current CP-ABE constructions [2, 9], a master key component is defined for

each attribute in the system. With these master key components, the system de-

fines the public key and user secret key components each of which corresponds to

one of the user’s attributes. To disable attributes in a user’s attribute set, it is

necessary for the authority to redefine the corresponding master key and public key

components for the corresponding attributes. Apparently, user secret keys should

be updated accordingly for data access. New data files will be encrypted with the

new public key, and existing data files should be re-encrypted to prevent revoked

users from decrypting using their old version keys. However, these operations could

represent a huge amount of computation and are not affordable to the authority if

all executed by herself. Moreover, the authority should always stay online to provide

key update services for users. To relieve the burden for the authority, we propose to

mitigate the most computation-intensive tasks to powerful data servers (e.g., cloud

servers in Amazon S3) as follows. On each user/attribute revocation event, the

authority redefines the corresponding keys for the attributes and generates proxy

20

re-key’s for the updated master key components, with which the proxy servers are

able to securely update user secret keys to the latest version on behalf of the data

authority without obtaining the users’ decryption capabilities. To revoke a user or

his attributes, the proxy servers update user secret keys for all the non-revoke users

but refuse to update for the user to be revoked3. With the proxy re-key’s the proxy

servers are also able to to re-encrypt existing ciphertexts stored on them4 to the

latest version without learning the data contents. In this way the workload placed

on the authority is minimal and the authority can go off-line after having submitted

the proxy re-key’s to the proxy servers.

3.2 Definitions and Models

3.2.1 Algorithm Definition

Our proposed scheme is composed of seven algorithms: Setup, Enc, KeyGen,

ReKeyGen, ReEnc, ReKey, and Dec. Setup, KeyGen, and ReKeyGen are per-

formed by the authority while ReEnc and ReKey are executed by proxy servers.

Enc and Dec are called by encryptors and decryptors respectively. The func-

tionalities of Setup, Enc, KeyGen, and Dec are the same as previous CP-ABE

schemes [2, 9]. ReKeyGen is defined for the authority to generate proxy re-key’s.

ReEnc and ReKey will be used by the proxy servers to re-encrypt data files and

update user secret keys respectively. In our scheme we also define a system wide

version information ver indicating the evolution of the system master key as follows:

initially it is set to one; whenever an attribute revocation event occurs and the sys-

3A user secret key is updated when the user accesses proxy servers. Aggregate update for
successive events is possible when a user has not accessed the system for a long time.

4In practice, this can be done efficiently using the technique of lazy re-encryption [14] as we
will discuss later.

21

tem master key is redefined, it increases by one. The system public key, ciphertexts,

user secret keys, and proxy re-key’s are all tagged with the version information indi-

cating which version of system master key they comply with. The seven algorithms

are defined as following:

Setup(1λ) It takes as input the security parameter 1λ and outputs the system master

key MK and public parameters PK. ver is initialized as 1.

Enc(M,AS, PK) It takes as input a message M , an access structure AS, and

current public parameters PK, and outputs a ciphertext CT .

KeyGen(MK, S) It takes as input current system master key MK and a set of

attributes S that describes the key. It outputs a user secret key SK in the form of

(ver, S, D, D̄ = {Di, Fi}i∈S).

ReKeyGen(γ, MK) It takes as input an attribute set γ that includes attributes

for update, and current master key MK. It outputs the new master key MK ′, the

new public key PK ′ (computation of PK ′ can be delegated to proxy servers), and

a set of proxy re-key’s rk for all the attributes in the attribute universe U . ver is

increased by 1. Note that, for attributes in set U − γ, their proxy re-key’s are set

as 1 in rk.

ReEnc(CT, rk, β) It takes as input a ciphertext CT , the set of proxy re-key’s

rk having the same version with CT , a set of attributes β which includes all the

attributes in CT ’s access structure with proxy re-key not being 1 in rk. It outputs

a re-encrypted ciphertext CT ′ with the same access structure as CT .

ReKey(D̄, rk, θ) It takes as input the component D̄ of a user secret key SK, the

set of proxy re-key’s rk having the same version with SK, and a set of attributes

θ which includes all the attributes in SK with proxy re-key not being 1 in rk. It

outputs updated user secret key components D̄′.

22

Dec(CT, PK, SK) It takes as input a ciphertext CT , public parameters PK, and

the user secret key SK having the same version with CT . It outputs the message

M if the attribute set of SK satisfies the ciphertext access structure. Otherwise, it

returns ⊥ with an overwhelming probability.

3.2.2 Security Definition

We first define the correctness of our proposed scheme by the following conditions:

(1) Dec(Enc(M,AS, PK), PK, SK) = M , if the attribute set S of SK satisfies

AS.

(2) Let CT ′ = ReEnc(Enc(M,AS, PK), rk, β), and SK ′ = (ver + 1, S, D, D̄′ =

ReKey(D̄, rk, θ)), where ver is the version number of PK and rk. Dec(CT ′, PK ′, SK ′)

= M , if S ′ = S\(β\θ) satisfies AS.

(3) Let CT ′′ = ReEnc(CT ′, rk′, β′), and SK ′′ = (ver+2, S ′, D, ReKey(D̄′, rk′, θ′)).

If Dec(CT ′,PK ′,SK ′) = M and S ′′ = S ′\(β′\θ′) satisfies AS, Dec(CT ′′,PK ′′,SK ′′) =

M .

(4) Inductively we get the statement for (CT (n), PK(n), SK(n)) of any n.

CPA security of our proposed scheme under the selective-structure model [9] can

be defined by the following game between an adversary A and a challenger B.

CPA Security Game Let λ be a security parameter. We say that our scheme

is secure against chosen plaintext attacks under selective-structure model if no PPT

adversary A can win the following game with non-negligible advantage.

Init The adversary A chooses the challenge access structure AS∗, a version

number ver∗, and ver∗ − 1 attribute sets {γ(1), γ(2), · · · , γ(ver∗−1)}, and submits

them to the challenger B.

23

Setup The challenger B fist runs Setup(1λ) to obtain MK and PK for version

1. He then runs ReKeyGen(γi,MK) from i = 1 to ver∗ − 1. Finally, B gives (PK,

{rk(i)}2≤i≤ver∗) to A, where rk(i) denotes the proxy re-key set for version i 5. Note

that, A is able to derive PK for all the versions with rk(i)’s.

Phase 1 The adversary A is allowed to issue polynomial times (in λ) of queries

on generation of secret keys of any version within the range of [1, ver∗]. The only

restrict is that the attribute set that A submits for each secret key query does not

satisfy AS∗.

Challenge The adversary submits two equal length messages M0 and M1. The

challenger flips a random coin b, and encrypts Mb by executing CT ∗ ← Enc(M ,

AS∗, PK), where PK is the public parameter for version ver∗. The challenge

ciphertext CT ∗ is passed to the adversary.

Phase 2 Phase 1 is repeated.

Guess The adversary A outputs his guess b0 of b.

The adversary A is advantage in winning this CPA security game is defined as

ADVCPA = Pr[b0 = b]− 1
2
.

Note that, In Phase 1, the adversary is also permitted to issue queries on re-

encryption of ciphertexts and on update of secret keys. In our security game, how-

ever, the adversary has been given all the proxy re-key’s. This means that he is

able to answer the two queries by himself. For this sake, we do not include the two

corresponding oracles in Phase 1. In fact, the adversary A has at least the same

capability as proxy servers who passively collect secret keys of unauthorized users.

Since we assume proxy servers are honest, we do not consider active attacks from

proxy servers by colluding with revoked authorized users.

5In this chapter, the superscript (i) means that the component is of version i. When there is
no confusion, we always remove the superscript for brevity. For example, we may just use rk or γ.

24

Definition 3.2.1 (CPA SECURITY) We say that our scheme is CPA secure if

ADVCPA is negligible (in λ) for any polynomial time adversary.

3.3 Our Construction

3.3.1 Overview

The basic idea of our construction is to combine the proxy re-encryption technique

with CP-ABE. Instead of building a new CP-ABE scheme from scratch, we intend

to enhance an existing construction by extending it with abilities of proxy update

of secret key and proxy re-encryption of ciphertext. Our construction is partially

based on but not limited to Cheung et al construction of CP-ABE [9].

Attribute and Access Structure In our construction, attributes are repre-

sented by their index values and the attribute universe is U = {1, 2, · · · , n} for a

certain natural number n. Each attribute would have three occurrences: positive,

negative, and “don’t care”. We just consider access structures consisting of a single

AND gate, i.e., the gate
∧

ĩ∈I ĩ, where I denotes the set of attributes of interest and

ĩ is the literal of an attribute i, which can be positive (denoted by +i) or negative

(denoted by −i). If an attribute does not appear in the AND gate, its occurrence

is “don’t care”.

3.3.2 The Detailed Construction

As is defined in section 3.2.1, there are seven algorithms in our construction: Setup,

Enc, KeyGen, ReKeyGen, ReEnc, ReKey, and Dec. Now we present the con-

struction for each of them as follows.

25

Setup(1λ) First choose a bilinear group G0 of prime order p with a generator g,

and a bilinear map e : G0×G0 → G1. Next, select random numbers y, t1, · · · , t3n ∈
Zp. Then, generate the public parameter as: PK = (e, g, Y, T1, · · · , T3n), where

Y = e(g, g)y and Ti = gti for 1 ≤ i ≤ 3n. Ti, Tn+i, and T2n+i are for the three

occurrences of i, i.e., positive, negative, and “don’t care”, respectively. The system

master key MK is: MK = (y, t1, · · · , t3n). Finally, initialize version number as

ver = 1 and publish (ver, PK). (ver,MK) is witheld by the authority.

Enc(M,AS, PK) Note that AS is a single AND gate of form AS =
∧

ĩ∈I ĩ, and

assume M ∈ G1. The algorithm chooses a random number s ∈ Zp and outputs

the ciphertext CT as: CT = (ver, AS, C̃, Ĉ, {Ci}i∈U), where ver is current version

number, C̃ = MY s, Ĉ = gs. For each i ∈ I, Ci is T s
i if ĩ = +i; or T s

n+i if ĩ = −i. If

i ∈ U\I, Ci = T s
2n+i.

KeyGen(MK, S) First choose a random number ri ∈ Zp for each i ∈ U . Let

r =
∑n

i=1 ri. User secret key is defined as SK = (ver, S,D, D̄ = {Di, Fi}i∈U), where

ver is current version number, D = gy−r. For each i ∈ U , Fi = g
ri

t2n+i , and Di = g
ri
ti

if i ∈ S, or Di = g
ri

tn+i otherwise. Note that i /∈ S means negative occurrence of

attribute i in S.

ReKeyGen(γ, MK) Each item i ∈ γ is defined to be within the range of

[1,2n]. Value less or equal to n means positive occurrence of the attribute, while

value greater than n represents the negative occurrence of attribute i − n. The

proxy re-key is computed as follows. For each i ∈ γ, randomly choose t′i ∈ Zp and

compute rki =
t′i
ti
. For each i ∈ {1, · · · , 2n}\γ, rki = 1. Output proxy re-key as

rk = (ver, {rki}1≤i≤2n) where ver is current version number. Increase the system

version number ver by 1 when everything is done.

ReEnc(CT, rk, β) Denote the access structure of CT as AS =
∧

ĩ∈I ĩ. Similar

to γ, each item in β is also defined to be within the range of [1,2n]. This algorithm

26

directly outputs CT if CT and rk contain different version numbers. Otherwise, re-

encrypt CT as follows. For each i ∈ β, C ′
i = Crki

i if 1 ≤ i ≤ n, or C ′
i−n = (Ci−n)rki

if n < i ≤ 2n. For each i ∈ U , C ′
i = Ci if i /∈ β and i + n /∈ β, or i /∈ I. Ciphertext

is output as follows: CT ′ = (ver + 1, AS, C̃, Ĉ, {C ′
i}i∈U), where ver is the version

number in CT .

ReKey(D̄, rk, θ) Each item in θ is defined to be within the range of [1,2n].

This algorithm returns with D̄ immediately if D̄ and rk contain different version

numbers. Otherwise, update D̄ as follows. For each i ∈ θ, D′
i = D

rk−1
i

i if 1 ≤ i ≤ n,

or D′
i−n = (Di−n)rk−1

i if n < i ≤ 2n. For each i ∈ U , D′
i = Di if i /∈ θ and i + n /∈ θ.

It outputs as follows: D̄′ = {D′
i, Fi}i∈U . ver in the corresponding user secret key

SK is increased by 1.

Dec(CT, PK, SK) If any two of CT , PK, and SK have different version num-

bers, return ⊥. Otherwise, continue to decrypt as follows. Suppose CT = (ver, AS,

C̃, Ĉ, {Ci}i∈U), SK = (ver, S,D, D̄ = {Di, Fi}i∈U), and denote AS by AS =
∧

ĩ∈I ĩ.

For each ĩ ∈ I, if ĩ = +i and i ∈ S,

e(Ci, Di) = e(gtis, g
ri
ti) = e(g, g)ris.

if ĩ = −i and i /∈ S,

e(Ci, Di) = e(gtn+is, g
ri

tn+i) = e(g, g)ris.

For each ĩ /∈ I,

e(Ci, Di) = e(gt2n+is, g
ri

t2n+i) = e(g, g)ris.

Ciphertext is decrypted as follows:

M = C̃/(e(Ĉ, D)
∏n

i=1 e(g, g)ris).

Its correctness can be verified easily.

27

3.3.3 CPA Security Proof

Now we prove the CPA security of our scheme. We show the CPA security of our

scheme by a theorem.

Theorem 3.3.1 If a PPT algorithm (the adversary A) wins our CPA security game

with non-negligible advantage ADVCPA, we can use this algorithm to construct an-

other PPT algorithm B to solve the DBDH problem with advantage 1
2
ADVCPA.

Proof: In the DBDH game, the challenger chooses random numbers a, b, c from Zp

and flips a fair coin µ. If µ = 0, set z = abc; If µ = 1, set z as a random value in

Zp. B is given (A,B,C, Z)=(ga, gb, gc, e(g, g)z) and asked to output µ. To answer

this challenge, B then simulates our CPA security game as follows.

Init The adversary A chooses the challenge access structure AS∗ =
∧

ĩ∈I ĩ, a

version number ver∗, and ver∗ − 1 attribute sets {γ(1), γ(2), · · · , γ(ver∗−1)}, and

submits them to the challenger.

Setup The challenger B first generates the public key of version 1 for A as

follows. Y is defined as e(A,B) = e(g, g)ab. For each i ∈ U , B randomly chooses δi,

ζi, and ηi from Zp. It outputs public parameters as follows.

For ĩ ∈ I, Ti = gδi , Tn+i = Bζi , and T2n+i = Bηi , if ĩ = +i;

if ĩ = −i, Ti = Bδi , Tn+i = gζi , and T2n+i = Bηi ;

For ĩ /∈ I, Ti = Bδi , Tn+i = Bζi , and T2n+i = gηi .

Then, B generates ver∗ versions and answers ver∗ − 1 proxy re-key generation

requests. Specifically, for each attribute set γ(k), 1 ≤ k ≤ ver∗ − 1, generate a PK

for that version as follows:

for each element j ∈ γ(k), where 1 ≤ j ≤ 2n, randomly choose rk
(k)
j from Zp. if

1 ≤ j ≤ n,

T
(k+1)
j = (T

(k)
j)rk

(k)
j , T

(k+1)
n+j = T

(k)
n+j, T

(k+1)
2n+j = T

(k)
2n+j,

28

if n < j ≤ 2n,

T
(k+1)
j−n = T

(k)
j−n, T

(k+1)
j = (T

(k)
j)rk

(k)
j , T

(k+1)
n+j = T

(k)
n+j,

where superscripts (k) and (k + 1) denote the version number of each attribute

set, re-key, and public key parameter.

For each element 1 ≤ j ≤ 2n, if j /∈ γ(k), set rk
(k)
j = 1, and calculate public key

components in the same way as above. Finally, B returns rk(k) = (k, rk
(k)
1 , rk

(k)
2 ,· · · ,rk(k)

2n)

to A.

Phase 1 Without loss of generality, we assume the adversary A submits secret

key query on a set S ⊆ U for version k, 1 ≤ k ≤ ver∗. Since S does not satisfy

the challenge access structure AS∗, we know there is a witness attribute i ∈ I that

either i ∈ S and ĩ = −i, or i /∈ S and ĩ = +i. Without loss of generality, we assume

i /∈ S and ĩ = +i. B first chooses a random number r′j ∈ Zp for each j ∈ U . Then,

it sets rj = r′j · b for every j 6= i (non-witness attribute), and rj = ab+ r′j · b. Finally,

it calculates r = Σj∈Urj = ab + Σj∈Ur′j · b. Secret key components are then returned

as follows:

D = Πn
j=1B

−r′j = g−Σn
j=1r′j ·b = gab−r.

Consider that for any j ∈ U ,

T
(k)
j = (T

(1)
j)rk

(2)
j ·rk

(3)
j ···rk

(k)
j = T

Πk
i=2rk

(i)
j

j , and

T
(k)
n+j = (T

(1)
n+j)

rk
(2)
n+j ·rk

(3)
n+j ···rk

(k)
n+j = (Tn+j)

Πk
i=2rk

(i)
n+j ,

we denote R
(k)
j = Πk

i=2rk
(i)
j and R

(k)
n+j = Πk

i=2rk
(i)
n+j. For each j ∈ U and j 6= i,

Dj is calculated as follows.

Case 1. j ∈ S.

1) Dj = B

r′
j

δj ·R
(k)
j = g

rj

δj ·R
(k)
j , if j ∈ I and j̃ = +j;

2) Dj = B

r′
j

δj ·R
(k)
j = g

rj

δj ·R
(k)
j
·b , if j ∈ I and j̃ = −j, or j /∈ I;

Case 2. j /∈ S.

29

1) Dj = g

r′
j

ζj ·R
(k)
n+j = g

rj

ζj ·R
(k)
n+j

·b , if j ∈ I and j̃ = j, or j /∈ I;

2) Dj = B

r′
j

ζj ·R
(k)
n+j = g

rj

ζj ·R
(k)
n+j , if j ∈ I and j̃ = −j.

Di is calculated as:

Di = A
1

ζi·R
(k)
i · g

r′
i

ζi·R
(k)
i = g

ab+r′
i
·b

ζi·Rk
i
·b = g

ri

ζi·R
(k)
i
·b .

For each attribute j ∈ U , Fj is calculated as follows. If j 6= i, then

1) Fj = g
r′
j

ηj = g
rj

ηj ·b , if j ∈ I;

2) Fj = B
r′
j

ηj = g
rj
ηj , if j /∈ I;

Fi is calculated as follows:

Fi = A
1
ηi · g

r′
i

ηi = g
ab+r′

i
·b

ηi·b = g
ri

ηi·b .

Challenge. The adversary submits two equal length messages M0 and M1. The

challenger flips a random coin b, sets C̃ = Mb · Z, and outputs the ciphertext CT ∗

as follows.

CT ∗ = (ver∗, AS∗, C̃, C, {Cδi·R(ver∗)
i }i∈I∧ĩ=+i, {Cζi·R(ver∗)

n+i }i∈I∧ĩ=−i, {Cηi}i/∈I).

Phase 2. Phase 1 is repeated.

Guess. A submits a guess b0 of b. If b0 = b, B will output µ′ = 0, meaning that

(A,B,C, Z) is a valid DBDH-tuple; otherwise, B outputs µ′ = 1, indicating that

(A,B,C, Z) is just a random 4-tuple. In the case of µ= 1, the adversary obtains no

information about b. We thus have Pr[b0 6= b|µ = 1] = 1
2
. B just randomly guesses

µ′= 1 when b 6= b0, we have Pr[µ′ = µ] = 1
2
. In the case of µ= 0, the adversary

obtains an encryption of mb, and his advantage is ADVCPA by definition. We thus

have Pr[b = b0|µ = 0] = 1
2

+ ADVCPA. Since B guesses µ′ = 0 whenever b = b0, we

have Pr[µ′ = µ|µ = 0] = 1
2

+ ADVCPA. The overall advantage of B in the DBDH

game is 1
2
Pr[µ′ = µ|µ = 0] + 1

2
Pr[µ′ = µ|µ = 1]− 1

2
= 1

2
(1

2
+ ADVCPA) + 1

2
1
2
− 1

2
=

1
2
ADVCPA.

30

3.4 CCA Security Construction

We now proceed to discuss the construction of the chosen ciphertext secure scheme.

For IBE schemes, a common practice of constructing a CCA secure scheme from

a CPA secure one is to generate one-time signature keys (Kv, Ks) and sign the

ciphertext with Ks with a strongly existentially unforgeable signature scheme, while

Kv is viewed as the message receiver’s identity. This technique was proposed by

Canetti, Halvei, and Katz [7]. In [9], Cheung and Newport applied the similar

technique to CP-ABE and constructed a CCA secure CP-ABE scheme from the

CPA secure one. Their construction defines an attribute for each bit in the key

space of Kv, each attribute having two occurrences for its binary values. Each user

secret key contains two components for the both occurrences of each bit. Thereafter,

these attributes are treated similarly as other normal attributes. For encryption,

the encryptor chooses a pair (Kv, Ks) and encrypts the message with the attributes

for Kv in addition to other normal attributes. The whole ciphertext is then signed

with Ks. The ciphertext along with the signature is sent to receiver(s), who will

verify the signature before decryption.

In our work, it seems to be a contradiction to construct a CCA secure scheme

since we on one hand require the ciphertext to be non-malleable, and on the other

hand give the proxy re-key’s to proxy servers and allow them to re-encrypt cipher-

texts. However, in our scheme ciphertext re-encryption is just limited to updating

partial ciphertext components to the latest version. Modification of the underlying

message or the access structure is not permitted. In terms of non-malleability, we

just need to prevent adversaries from modifying the message or the access struc-

ture. Based on this observation, we adopt the same technique as [9] but just sign

on partial ciphertext components.

31

3.4.1 CCA Secure Construction

The seven algorithms in the CCA secure construction are defined as follows, assum-

ing that the signature verification key Kv has w bits. Denote the set {1, 2, · · · , w}
as W .

Setup(1λ) The same as the CPA secure construction except that, here 2w extra

attributes are defined for Kv. Now the system master key is: MK = (y, t1, · · · , t3n,

t3n+1, · · · , t3n+2w), and the public parameters are: PK=(e, g, Y , T1, · · · , T3n,

T3n+1, · · · , T3n+2w). Initialize the system wide version number ver as 1 and publish

(ver, PK). (ver,MK) is kept by the authority.

Enc(M,AS, PK) AS is defined to be an AND gate as before. The encryptor

first chooses one-time signature key pair (Kv, Ks), and a random number s ∈ Zp. M

is encrypted as: (ver, AS, C̃, Ĉ, {Ci}i∈U , {Ki}i∈W , Kv), where ver is current version

number, C̃ = MY s, Ĉ = gs. For each i ∈ I, Ci = T s
i if ĩ = +i; or Ci = T s

n+i if

ĩ = −i. If i ∈ U\I, Ci = T s
2n+i. For each i ∈ W , Ki = T s

3n+i if the ith bit of Kv is 0,

otherwise, Ki = T s
3n+w+i. The encryptor then signs on tuple (AS, C̃, Ĉ, {Ki}i∈W , Kv)

with Ks, and obtains a signature δ. Finally, the ciphertext of M is output as

CT = (ver, AS, C̃, Ĉ, {Ci}i∈U , {Ki}i∈W , Kv, δ).

KeyGen(MK, S) First choose a random numbers ri ∈ Zp for each i ∈ U
⋃

W .

Let r =
∑w+n

i=1 ri. The secret key is defined as SK = (ver, S,D, D̄ = {Di, Fi}i∈U , D̂ =

{D̂i,0, D̂i,1}i∈W), where D and D̄ are the same as the CPA secure construction. D̂

is defined as: D̂i,0 = g
rn+i
t3n+i and D̂i,1 = g

rn+i
t3n+w+i for each i ∈ W . Note that this

definition extends the one defined in section 3.2.1.

ReKeyGen(γ, MK) The same as the CPA secure construction.

ReEnc(CT, rk, β) Let CT be (ver, AS, C̃, Ĉ, {Ci}i∈U , {Ki}i∈W , Kv, δ). The re-

encrypted ciphertext is output as CT ′ = (ver+1, AS, C̃, Ĉ, {C ′
i}i∈U , {Ki}i∈W , Kv, δ),

where each C ′
i is generated in the same way as the CPA secure construction.

32

ReKey(D̄, rk, θ) The same as the CPA secure construction.

Dec(CT, PK, SK) The decryptor first verifies the signature δ. On failure, return

⊥; otherwise, proceed as in the CPA secure construction.

3.4.2 CCA Security Proof

We first give a definition on CCA security of our scheme. Then, we sketch the

security proof.

CCA Game Let λ be a security parameter. We say that our scheme is secure

against chosen ciphertext attacks under selective-structure model if no PPT adver-

sary A can win the following game with non-negligible advantage.

Init and Setup Same as the CPA security game.

Phase 1 The adversary is allowed to adaptively make polynomial times (in λ)

of any combination of secret key and decryption queries.

Query for Secret Key The adversary submits an attribute set S. The

challenger returns a secret key SK for S, given that S does not satisfies AS∗.

Query for Decryption The adversary A submits a ciphertext CT . If CT

is not a valid ciphertext, A loses the game; otherwise, the challenger B returns the

plaintext M .

Challenge Same as the CPA security game.

Phase 2 Same as Phase 1. Similar to [8], ciphertexts submitted for decryption

are not allowed to be derivatives of CT ∗. A derivative of CT ∗ is defined as any CT

that can be used to derive CT ∗ by repeatedly executing algorithm ReEnc on proxy

re-key’s rk(2), rk(3), · · · , rk(ver∗).

Guess The adversary A outputs his guess b0 of b.

33

The adversary A is advantage in winning this CCA security game is defined as

ADVCCA = Pr[b0 = b]− 1
2
.

Definition 3.4.1 (CCA SECURITY) We say that our scheme is CCA secure if

ADVCCA is negligible (in λ) for any polynomial time adversary.

CCA security of our scheme can be shown by the following theorem.

Theorem 3.4.2 If a PPT algorithm (the adversary A) wins our CCA security

game with non-negligible advantage ADVCCA, we can use this algorithm to construct

another PPT algorithm B to solve the DBDH problem with advantage 1
2
ADVCCA,

assuming that the signature scheme is strongly existentially unforgeable.

proof: The challenger of the DBDH game generates the tuple (A,B,C, Z) exactly

as in the CPA security proof, and then sends it to B. To answer this challenge, first

choose a signature key pair (K∗
v , K

∗
s) and then simulates our CPA security game as

follows.

Init The same as the CPA security proof.

Setup In this phase, B generates (Y, T1, · · · , T3n) and (rk(2), rk(3), · · · , rk(ver∗))

exactly the same as the CPA security proof. B generates (T3n+1, · · · , T3n+2w) as

follows. For each i ∈ W , select random numbers φi, ψi ∈ Zp, and set T3n+i = gφi

and T3n+w+i = Bψi if the ith bit of K∗
v is 0, denoted by K∗

v,i = 0; otherwise, set

T3n+i = Bφi and T3n+w+i = gψi .

Phase 1. B answers queries for secret key and for decryption.

Case 1. Query for secret key. B executes in the same way as Phase 1 of the

CPA security game. When generating (Dj,0, Dj,1) for each j ∈ W , B deals in the

same way as non-witness attributes in U except that, Rk
j or Rk

n+j are no longer

needed when computing Dj,0 and Dj,1 since D̂ part of a user secret key never needs

update.

34

Case 2. Query for decryption. A submits a ciphertext CT = (ver, AS, C̃,

Ĉ, {Ci}i∈U , {Ki}i∈W , Kv, δ) for decryption. B first verifies the signature δ with

Kv. If the signature is not valid, B terminates the DBDH simulation game without

answering the DBDH challenger and start a new game. Otherwise, proceed. In

this case, we know Kv 6= K∗
v with overwhelming probability. Otherwise, Kv can be

used to successfully verify δ and the signature contained in the challenge ciphertext,

which is assumed to happen with negligible probability since the signature scheme is

strongly existentially unforgeable. In case of Kv 6= K∗
v , we can assume the jth bits

of them are different. Without loss of generality, we assume that the bit of K∗
v is 0.

Therefore, Kj = T s
3n+w+j = gb·ψj ·s. B then calculates e(Kj, A) = e(g, g)absψj = Y sψj .

Since ψj is known to B, he gives C̃/(e(Kj, A)
1

ψj) to A as the message M .

Challenge. The adversary submits two equal length messages M0 and M1. The

challenger flips a random coin b, sets C̃ = Mb · Z, and outputs the ciphertext CT ∗

as follows.

CT ∗ = (ver∗, AS∗, C̃, C, {Cδi·R(ver∗)
i }i∈I∧ĩ=+i, {Cηi}i/∈I ,

{Cζi·R(ver∗)
n+i }i∈I∧ĩ=−i, {Cφi}i∈W∧K∗

v,i=0, {Cψi}i∈W∧K∗
v,i=1).

Phase 2. Repeat Phase 1. The only restriction is that, ciphertexts submitted

for decryption are not allowed to be derivatives of CT ∗. B is able to verify this by

running algorithm ReEnc on proxy re-key’s and CT ∗, and compare the results with

the ciphertexts he received from A.

Guess. The same as the CPA security proof.

3.5 Applicability to KP-ABE

In KP-ABE, ciphertexts are associated with attributes, while user secret keys are

defined with access structures on attributes. If only the ciphertext attributes satisfy

35

a user’s access structure, can he decrypt. When CP-ABE is applicable in Role-Based

Access Control like scenarios, KP-ABE is suitable for applications such as pay-per-

view TV systems, in which user access privileges are defined over content attributes

and could be based on the prices they paid. In these application scenarios, the

issue of key revocation also exists. Fig. 2. shows such an example, in which a user

currently is allowed to access any series with name “Hero”, “Lost”, or “Dexter”’

provided by channel 4. The system administrator now wants to disable the user’s

access privilege on series with name “Lost” for some reason (maybe late payment).

For this purpose, it is necessary to revoke the corresponding component of the user’s

secret key.

AND

Channel: 4

OR

Name: Hero

Name: Lost

AND

Channel: 4

OR

Name: Hero Name: DexterName: Dexter

Figure 3.2: An example use of KP-ABE.

Similar to CP-ABE, the basic construction of current KP-ABE scheme [12] also

defines a system master key component ti for each attribute i. The corresponding

public key component is defined as Ti = gti . Encrypting a message with attribute i

means including a component T s
i into the ciphertext, where s is a random number

for this ciphertext. In user secret key, the component for attribute i has the form

of g
qx(0)

ti , where qx(·) is a polynomial uniquely defined for the user. Therefore, we

can revoke a secret key component in the same way as we did for CP-ABE, i.e., the

authority redefines the master key component as t′i and give
t′i
ti

to proxy servers as

the proxy re-key. In the same way as our CP-ABE scheme, proxy servers, which are

honest by our assumption, will use these proxy re-key’s to re-encrypt ciphertexts

stored on them and update secret keys for all but the user for revocation. Proof of

36

the new KP-ABE scheme is similar to that of our CP-ABE scheme.

Large Universe Construction In addition to the basic construction, [12] also

provides a KP-ABE construction for large universe cases. One significant advantage

of this construction is that the number of public parameter components is constant,

no matter how many attributes the system may have. In this construction, how-

ever, our technique of generating proxy re-key’s for CP-ABE and the basic KP-ABE

scheme is not applicable any more. This is because the definitions of public param-

eter components and user secret key components are no longer in the same format

as before. In this construction, it selects n+1 random points from G1
6 and defines

a function T to calculate the public key component for attribute X 7 as:

T (X) = gXn

2 ·∏n+1
i=1 t

∆i,N (X)
i ,

where g2 is another group element in G1, N = {1, 2, · · · , n + 1}, and ∆i,N(X)

is the Lagrange coefficient. Ciphertext component for each attribute i is still in the

form of T s
i as before. Each attribute has two components in user secret key:

Di = g
qx(0)
2 · T (i)ri , and Ri = gri ,

where ri ∈ Zp is a random number of attribute i in the user secret key. We refer

to [12] for the detailed construction.

In this construction, we can not simply redefine the system master key compo-

nent ti to update the attribute i for key revocation as before. Instead, we need to

change the construction of the Setup() algorithm of the original scheme as follows.

We assume the bit string for each attribute is defined in a fixed format “(attribute

description, version j)”. The version number j of each attribute in the universe will

be published.

Setup(n) Choose a random number y ∈ Zp and let g1 = gy. Next, choose a

6Following the definition of [12], we assume the bilinear map is from G1 to G2, i.e., e : G1×G1 →
G2.

7X is generated by applying a collision resistant hash function H : {0, 1}∗ → Z∗p on the bit
string representation of the attribute.

37

random element g2 from G1. Then, select random numbers w1, w2, · · · , wn+1 from

Zp. Define ti = gwi
2 for 1 ≤ i ≤ n + 1. Define function T as:

T (X) = gXn

2 ·∏n+1
i=1 t

∆i,N (X)
i = g

Xn+p(X)
2 ,

where p(·) is a n degree polynomial defined by points (1, w1), (2, w2), · · · ,
(n + 1, wn+1). The public parameters are output as: PK = (g1, g2, t1, · · · , tn+1).

The master key MK = (y, w1, w2, · · · , wn+1).

Algorithms Encryption, Key Generation, and Decryption are defined exactly

the same as the original scheme. To enable the authority to generate proxy re-key’s,

we define algorithm ReKeyGen as follows.

ReKeyGen(γ, MK) γ is the set of attributes needing redefinition. For each

attribute X ∈ γ, assuming its pre-image is a bit string “(attribute description,

version j)”, now redefine it as bit string “(attribute description, version j +1)”. We

hence obtain H(attribute name, version j +1) = X ′ 8, where H() is a cryptographic

hash function. Since hash function H(·) is collision free, X ′ can not be used for

any other attributes. The proxy re-key for attribute X will be output as rkX =

(X′)n+p(X′)
Xn+p(X)

. The set of proxy re-key’s rk for attributes in γ are sent to proxy servers.

Proxy servers, on receiving the proxy key’s, re-encrypt existing ciphertexts stored

on them as follows.

ReEnc(E, rk, β) For each attribute i ∈ β, update Ei as Erki
i .

To update user secret key, proxy servers update Ri components for users as

follows.

ReKey(Ri, rki) Update Ri as R
(rki)

−1

i .

It is easy to verify that the updated user secret key will be able to decrypt

8When the new version j + 1 is published, encryptors will use T (X ′) as the public component
for encryption thereafter.

38

ciphertexts encrypted with updated attributes if the ciphertext attributes satisfy

the access structure of the secret key. Similar to our user revocation scheme for

CP-ABE, our enhanced KP-ABE scheme places a minimal computation overhead

on the authority when supporting user revocation, and enables the authority to

manage her resources via resource constrained devices, e.g., iPhone, anywhere at

any time.

3.6 Summary

In this chapter we addressed an important issue of user revocation for attribute

based systems. In particular, we considered practical application scenarios in which

semi-trustable proxy servers are available, and proposed a user revocation scheme

for ABE. One nice property of our proposed scheme is that it places minimal load on

authority upon attribute revocation events. We achieved this by uniquely combining

the proxy re-encryption technique with ABE and enabled the authority to delegate

most laborious tasks to proxy servers. Our proposed scheme is provably secure

against chosen ciphertext attacks.

39

Chapter 4

Attribute-Based Encryption with

User Accountability

This chapter addresses the issue of user accountability in ABE. In particular, we are

interested in key abuse attacks in which authorized but malicious users duplicate

and share their secret keys (and hence their access privileges) with unauthorized

users. As we previously discussed, these kind of attacks are extremely harmful

since key abusers are able to very easily execute these attacks at a very low cost.

Complete prevention of these attacks is believed to be hard. In order for defending

against these attacks, the common method, e.g., traitor tracing mechanisms [36–39]

in conventional broadcast encryption, is to enable the authority (which could also be

the data owner herself) to identify the original user(s) of any duplicated key(s) and

hence obtain evidences of key abuse. In practical applications, it may not always be

possible for the authority to obtain the duplicated key and test its legitimacy. This is

because the authority may not have physical access to the key, or the unauthorized

user would protect the duplicated key using various techniques such as hardware

protection, re-randomization and etc. Therefore, the tracing mechanism should be

40

able to support black-box tracing, i.e., tracing the unauthorized user (a.k.a., pirate

device) only by observing its outputs on given inputs.

The main challenge for this work is on how to trick the pirate device into de-

crypting the given tracing ciphertexts (inputs) and outputing the results. In order

for doing so, the main difficulty is to make the tracing ciphertexts indistinguish-

able from normal (non-tracing) ciphertexts but uniquely correlated to the suspected

user’s identity. This chapter resolves these challenges and provides an abuse free

scheme for ABE. More precisely, this scheme addresses the case for KP-ABE and

proposes an abuse free KP-ABE scheme (AFKP-ABE). Our techniques used in

AFKP-ABE can also be applied to CP-ABE for constructing an abuse free CP-

ABE scheme (AFCP-ABE). For brevity, this chapter just presents our construction

of AFKP-ABE. In this work, we formulate the security issue with the similar secu-

rity model of traitor tracing mechanisms. Security of the proposed scheme is proved

under the Decisional Bilinear Diffie-Hellman (DBDH) assumption and the Decision

Linear (D-Linear) assumption. To the best of our knowledge, this work is among

the first that addresses the key abuse attacks in ABE.

4.1 Main Idea

The intuition of our construction can be summarized as the follows. We define a

n-bit user identity space and each bit of them is defined as an attribute with two

occurrences, one for bit value 0 and the other for bit value 1. Each user is then as-

signed a unique ID from the identity space. The encryption algorithm will associate

these identity-related attributes to the ciphertext in the following way: for normal

(non-tracing) operations, all these n attributes are set as “don’t care”; for tracing

operations, they are set to represent the suspicious identity. In tracing operations, a

41

user is able to decrypt the ciphertext if and only if his identity equals the suspicious

one. To make tracing ciphertexts indistinguishable from normal ciphertexts, we hide

these identity-related attributes in the way that any user is not able to tell which

and how many of them are set as “interested” (i.e., not “don’t care”). In addition,

we also hide some normal attributes so that upon a fail decryption the user can

not tell if it is caused by the mismatch of his ID or by his access privilege (without

considering his ID). Thus, he is not able to distinguish a tracing activity from a

normal (non-tracing) one. The security goal of our construction is to build such a

KP-ABE scheme in which 1) any user without the correct decryption key is not able

to tell a single bit of the message, and 2) given a pirate device, the authority is able

to trick it into decrypting tracing ciphertexts and thus discover the identity of the

original owner of the decryption key held by this device.

4.2 Definitions and Models

In this section, we present the definition of our abuse-free KP-ABE (AFKP-ABE)

scheme as well as its security definition. The security definition of our scheme is

consistent to traitor tracing schemes [39].

4.2.1 Definition of AFKP-ABE

The AFKP-ABE scheme has the following five algorithms:

Setup(1λ, n) The setup algorithm is a randomized algorithm. It takes as input the

security parameter 1λ and n, the length of a user identity. It outputs a master key

MK and public parameters PK.

42

Enc(M , γ, PK). The encryption algorithm is a randomized algorithm. It takes

as input a message M , a set of attributes γ, and the public parameters PK. It

outputs a ciphertext E. On different input γ, this algorithm can be used either

for normal (non-tracing) operations of content distribution, or for the purpose of

tracing.

KeyGen(T , MK, PK). The key generation algorithm is a randomized algorithm.

It takes as input an access structure T , the master secret key MK, and the public

parameters PK. It outputs a user secret key SK.

Dec(E, SK, PK). The decryption algorithm is a deterministic algorithm. It takes

as input the ciphertext E for a set of attributes γ, a user secret key SK for an access

structure T , and the public parameters PK. If γ |= T , i.e., γ satisfies T , it outputs

the message M . Otherwise it outputs ⊥ with overwhelming probability.

TraceD(ε) This algorithm takes input a parameter ε (which should be polynomi-

ally related to λ), and has black-box access to an ε-useful decoder box D which

is constructed by the adversary. It outputs a set of guilty colluders in polynomial

time.

4.2.2 Definition of Attributes

We define three set of attributes: public normal attributes, hidden normal attributes

and hidden identity-related attributes. We denote the universe of each of them by

UPN ,UHN , and UHID respectively. The letter P in the subscription denotes the word

“public”, H means “hidden”, N represents “normal”, and ID is the abbreviation

of “identity”. UPN and UHN contain attributes to be used by normal encryptions.

43

UHID contains identity-related attributes for describing the suspected user’s identity

and is particularly used for tracing. In ciphertexts, the associated attributes from

UHN and UHID have to be hidden such that any receiver is not able to tell which and

how many of them are used, while attributes from UPN are public. Each attribute in

UHID has two occurrences, one for bit value 0 and the other for bit value 1. Similarly,

we assume that attributes in UHN also have binary values like those in UHID. This

assumption is just for concise presentation of our scheme. Extending our scheme to

support the non-binary case is trivial. From now on we will call the union of UHID

and UHN as hidden attributes by capturing their common property of “hidden”. We

denote the universe of hidden attributes as UH , and thus UH = UHN ∪ UHID. We

denote the number of attributes in UHN by m and that in UPN by k. Therefore, the

total number of hidden attributes is m + n.

According to the above discussion, it is clear that in a ciphertext there could

be three types of attributes: attributes from UPN , attributes from UHN , and those

from UHID. We denote the set of these three type of attributes in a ciphertext by

γPN , γHN , and γHID respectively. Therefore, we have γ = γPN ∪ γHN ∪ γHID, where

γ represents the set of all the attributes interested by the encryptor.

Access Structure Our definition of the access structure (implemented using

an access tree) is the same as KP-ABE [12], i.e., each interior node of the tree

is a threshold gate and the leaves are associated with attributes. However, our

construction has the following restrictions on the access structure: (1) each access

structure should deal with all the hidden attributes and all of them should appear

on the second layer of the tree; (2) the root node has to be an AND gate; (3) all the

attributes from UPN should appear in a subtree which we denote by TR. Interior

nodes of the subtree TR could be any kind of threshold gates. The structure of the

access tree in our construction is illustrated by Fig. 7.1. In addition, each non-root

44

attributes from UHID

TR: subtree for attributes from UPN

attributes from UHN

AND

... ...

m n

�����
..............

�����
..............

Figure 4.1: The form of access structure

node has a unique index given by its parent. For the convenience of representation,

we will denote a node x′s parent by xpa and x′s index by idx(x).

4.2.3 Security Definition

The security of ABKP-ABE is defined by the following two security games.

Game 1. The first game captures the idea of Semantic Security. In our scheme

we follow the definition of the standard game used by KP-ABE [12] which proceeds

with the following steps.

• Init The adversary declares the set of attributes, γ, that he wishes to be

challenged upon.

• Setup The challenger runs the Setup algorithm of AFKP-ABE and gives the

public parameters to the adversary.

• Phase 1 The adversary is allowed to issue queries for private keys for many

access structures Ti , where γ 2 Ti for all i.

• Challenge The adversary submits two equal length messages M0 and M1. The

challenger flips a random coin b, and encrypts Mb with γ. The ciphertext is

passed to the adversary.

45

• Phase 2 Phase 1 is repeated.

• Guess The adversary outputs a guess b0 of b.

The advantage of an adversary A winning this game is defined as AdvSS =

Pr[b0 = b]− 1
2
.

Game 2. The second game captures the notion of Traceability against partial

collusion. Our definition of the traceability game is based on that of [39]. Given λ,

n, and ε, the game proceeds with the following steps.

• Setup The adversary A outputs a set U = {u1, u2, . . . , ut} of colluding users

with the only restriction that no pair of users have exactly the same access

privilege. The access structure associated with user ui ∈ U is denoted by Ti.

• Key Generation The challenger runs the key generation algorithm KeyGen to

provide the user secret key for each user in U .

• The adversary A outputs a pirate device D.

• The challenger runs TraceD(ε) to obtain a set S.

We say that the adversary A wins the game if the following two conditions hold:

1. The decoder D is ε-useful, i.e., for a randomly chosen M in the finite message

space, we have that Pr[D(Enc(M,γ, PK)) = M] ≥ ε if there exists a user

ui ∈ U with γ |= Ti, where γ is chosen in the way that makes Enc run under

normal (non-tracing) operation.

2. The set S is either empty, or is not a subset of U .

46

We denote the probability that the adversary A wins this game by AdvTR. If U

contains exactly one user, this game captures the notion of Traceability against sin-

gle pirate.

Definition 4.2.1 We say that AFKP-ABE is secure if AdvSS and AdvTR are neg-

ligible (in λ) for any polynomial time adversary A and any constant ε > 0.

To prove the security of AFKP-ABE in Game 2, another required security game

is the Indistinguishability Game which captures the notion that, it is hard to distin-

guish ciphertexts generated by normal (non-tracing) operations from those gener-

ated by tracing operations. This game captures the idea that ciphetexts generated

by tracing operations are indistinguishable from those generated by normal (non-

tracing) operations. In AFKP-ABE, these two types of ciphertexts are generated by

running our encryption algorithm over different sets of attributes. To differentiate

these two types of ciphertexts is actually equal to telling which set of attributes are

used in a given data encryption operation. In a tracing operation, we set γHID to rep-

resent the suspicious identity, while in a normal (non-tracing) operation we set γHID

to represent the identity of “∗ ∗ · · · ∗”, i.e., each bit if ID is set as “don’t care”. We

define the Indistinguishability Game by the following steps: γ = γPN ∪ γHN ∪ γHID

Indistinguishability Game

• Init The adversary A selects two sets of attributes to be challenged upon:

γ0 = γPN ∪ γHN ∪ γHID and γ1 = γPN ∪ γHN ∪ γ∗HID, where γHID represents

a certain identity IDi, and γ∗HID denotes the identity of “∗ ∗ · · · ∗”, i.e., each

bit if ID is set as “don’t care”. A submits these two sets of attributes to the

challenger C.

47

• Setup The challenger B runs the setup algorithm of AFKP-ABE and give

public parameters PK to A.

• Phase 1 A asks for the secret key of access structure T . If (γ0 |= T ∧ γ1 |=
T) or (γ0 2 T ∧ γ1 2 T), the challenger B answers the query and gives A
the corresponding secret key SKT . The adversary A can repeat this step

polynomially many times.

• Challenge A submits two equal length messages M0 and M1 to B. If A a secret

key SKT for which (γ0 |= T ∧ γ1 |= T), it is required that M0 = M1. B flips

a binary fair coin b and encrypts Mb using attribute set γb. The ciphertext is

given to A.

• Phase 2 Repeat Phase 1. If M0 6= M1, A can not submit secret key query for

access structure T for which (γ0 |= T ∧ γ1 |= T).

• Guess The adversary A outputs a guess b′ of b.

4.3 Our Construction

In this section, we present our construction of the secure AFKP-ABE scheme.

4.3.1 AFKP-ABE Scheme

In the description, G0 is a bilinear group of prime order p and g is a generator of

G0. We use e : G0×G0 → G1 to represent a bilinear map. The Lagrange coefficient

∆i,S(x) is defined as follows, where i ∈ Zp, x ∈ Zp are variables, and S ⊂ Zp is some

48

set.

∆i,S(x) :=
∏

j∈S\{i}

x− j

i− j
.

We use strings of length n to represent user IDs. “don’t care” bit of an ID is

represented by a “∗”.

Setup(1λ, n) Define UH = {1, · · ·n, n+1, · · ·m+n}, where the first n elements are for

UHID and the last m for UHN , and UPN = {1, 2, · · · k}. For each attribute i ∈ UPN ,

choose a random number ti from Zp. Then for each hidden attribute j ∈ UH ,

choose random numbers {aj,t, bj,t}t=0,1 from Zp and random points {Aj,t}t=0,1 from

G0. Finally, choose a random number y from Zp. The public parameters PK are

published as

PK = (Y = e(g, g)y, {Ti = gti}i∈UPN
, {Aaj,t

j,t , A
bj,t

j,t }j∈UH ,t=0,1)

and the master key MK is

MK = (y, {ti}i∈UPN
, {aj,t, bj,t}j∈UH ,t=0,1)

Enc(M,γ, PK) Define γ = γPN ∪ γHN ∪ γHID as mentioned before. Let the ID

represented by γHID be XnXn−1 · · ·X1, where Xi = 0, 1 or ∗ for each 1 ≤ i ≤ n.

The encryptor generates ciphertext components for γHID as follows. First choose a

random number s from Zp. Then for each 1 ≤ i ≤ n, pick random numbers ri,0 and

ri,1 from Zp, and compute tuples {[Êi,t, Ěi,t]}t=0,1 as follows.

(1) If Xi = b, where b = 0|1, the encryptor sets [Êi,1−b, Ěi,1−b] as random (mal-

formed), and [Êi,b, Ěi,b] = [(A
bi,b

i,b)ri,b , (A
ai,b

i,b)s−ri,b] (well-formed).

49

(2) If Xi = ∗, for t = 0, 1 the encryptor sets [Êi,t, Ěi,t] = [(A
bi,t

i,t)ri,t , (A
ai,t

i,t)s−ri,t]

(well-formed).

Ciphertext components for γHN are generated in the same way as γHID. The

encryptor generates ciphertext components for γPN as follows. For each i ∈ γPN ,

compute Ei = T s
i . Finally, the ciphertext is output as follows.

E = (γPN , Ẽ = MY s, E0 = gs,

{Ei}i∈γPN
, {{Êi,t, Ěi,t}t=0,1}i∈γHN∪γHID

)

KeyGen(T , MK, PK) The access structure T is defined as mentioned before: the

root node of the tree is an AND gate, all the hidden attributes appear on the second

layer of the tree, and all the public normal attributes are in the subtree TR. The

trusted authority generates the user secret key as follows.

(1) For the subtree TR, choose a polynomial qx for each node x, including all the

leaf nodes, of the tree in the top-down manner as follows. Starting from the root

node r of TR (with the threshold value kr), choose a random number u from Zp and

set qr(0) = u. Then randomly choose kr−1 other points to define the (kr−1)-degree

polynomial qr completely. For any other node x, qx is generated in the same way

and qx(0) = qxpa(idx(x)).

After having defined the polynomials, the following secret key component is

generated for each leaf node x in TR:

Dx = g
qx(0)

ti

where i denotes the attribute in UPN associated with node x. We use LTR to

represent the set of all the leaf nodes in TR.

(2) Secret key components for attributes from UHID are generated as follows.

50

Assume the user is assigned a unique identity ID = XnXn−1 · · ·X1, where Xi = 0|1
for each 1 ≤ i ≤ n. Then for each attribute i in UHID, the authority chooses random

numbers vi and λi from Zp and outputs a triple [D̃i, D̂i, Ďi] as follows.

D̃i = gvi(Ai,Xi
)ai,Xi

bi,Xi
λi , D̂i = gai,Xi

λi , Ďi = gbi,Xi
λi .

(3) Secret key components for attributes from UHN are generated in the same

way as UHID.

(4) The authority sets v =
∑

i∈UH
vi and generates a secret key component D0 =

gy−u−v.

Finally, the authority outputs the following as the user secret key (SK):

SK = (D0, {Di}i∈LTR
, {D̃i, D̂i, Ďi}i∈UH

)

Dec(E, SK, PK) The receiver decrypts the ciphertext E by applying his secret key

components to the ciphertext as follows.

(1) Apply secret key components for public normal attributes to the ciphertext.

For each leaf node x of TR, assuming x is associated with attribute i ∈ UPN , calculate

the following (the result is denoted by Fx):

Fx =

e(Di, Ei) = e(g, g)sqx(0), if x ∈ γPN ;

⊥, otherwise.
(4.1)

Then execute recursively for each non-leaf node z of TR in the bottom-up manner

as follows. For each child node x of z, if Fx 6=⊥ add x into a set Sz until Sz has kz

elements, where the set Sz is initialized to empty. If not able to construct such a

51

kz-sized set Sz, let Fz =⊥. Otherwise, calculate Fz as follows.

Fz =
∏

x∈Sz

F∆x,Sz (0)
x

=
∏

x∈Sz

(e(g, g)sqx(0))∆x,Sz (0)

= e(g, g)sqz(0)

where derivation of the last two steps holds because qx(0) = qz(idx(x)) and qz(0) =

∑
x∈Sz

(qz(idx(x)) ·∆x,Sz(0)).

This recursion ends up with outputting Fr = e(g, g)sqr(0) if γPN |= TR. Since

qr(0) = u, we have Fr = e(g, g)su.

(2) Apply secret key components for hidden attributes to the ciphertext. If the

set of hidden attributes in the access structure contains all the attributes in γHN

and γHID, output the result FH as follows.

FH =
∏

i∈UH

e(E0, D̃i)

e(Êi, D̂i)e(Ěi, Ďi)

= e(g, g)sv

The message can be output as follows

M =
Ẽ

e(E0, D0)FrFH

=
Me(g, g)ys

e(gs, gy−u−v)e(g, g)sue(g, g)sv

TraceD(ε) This algorithm takes as input ε and a ε-useful pirate device D. We

first show how to trace D which just holds one decryption key as follows. The

tracing algorithm repeats the following steps 1
ε

times for each identity IDi in the

system identity list:

52

• Step 1. Choose a set of attributes γ = γPN ∪ γHN ∪ γHID such that γ satisfies

the access structure of IDi and γHID just contains the attributes corresponding

to bits of IDi.

• Step 2. Choose a random message M from the finite message space. Let

E ← Enc(M,γ, PK).

• Step 3. Test if D correctly decrypts E. If it does, stop and return with IDi.

Otherwise continue.

If at the end of these repetitions the algorithm does not return with any iden-

tity, return FAIL and stop the experiment. Tracing D which holds more than one

decryption keys is similar with the exception that, in step 3 add IDi into the guilty

user set S instead of returning immediately, where S is initialized as empty. If at

the end of these repetitions S is empty, return FAIL and stop the experiment.

4.3.2 Security Proof

We show the security of our scheme as follows.

Lemma 4.3.1 If a polynomial-time adversary A can win Game 1 with non-negligible

advantage AdvSS, then we can build a simulator B that is able to solve the DBDH

problem with advantage 1
2
AdvSS.

Proof: In the DBDH game, the challenger chooses random numbers a, b, c from

Zp and flips a fair coin µ. If µ = 0, set z = abc; If µ = 1, set z as a random value in

Zp. B is given (A,B,C, Z)=(ga, gb, gc, e(g, g)z) and asked to output µ. To answer

this challenge, B then simulates Game 1 as follows.

Init B runs A. A chooses the set of attributes γ = γPN ∪γHN ∪γHID it wants to

be challenged upon. We denote the identity represented by γHID by XnXn−1 · · ·X0,

where Xi = 0, 1 or ∗, for 1 ≤ i ≤ n.We denote the set γHN ∪ γHID by γH .

53

Setup B creates public parameters as follows. First, set Y = e(A,B) = e(g, g)ab.

Then, for each attribute i ∈ UPN , generate Ti by the following steps:

• choose a random number ti ∈ Zp.

• if i ∈ γPN , sets Ti = gti ; otherwise, set Ti = gbti = Bti .

For each attribute i ∈ UHID, choose two random numbers hi,0 and hi,1 from Zp.

Then proceed as follows.

• if Xi = ∗, Ai,t = ghi,t , t = 0, 1; otherwise, Ai,Xi
= ghi,Xi and Ai,1−Xi

=

gbhi,1−Xi = Bhi,1−Xi .

• choose random numbers {ai,t, bi,t}t=0,1 from Zp.

Attributes in UHN are processed in the same way as UHID. Finally, output PK

as in the real scheme.

Phase I A submits a query for secret key of access structure T , where γ 2 T .

Note that T has the structure of 7.1. B differentiates the following two cases and

answers the query accordingly:

Case 1: In this case, γPN 2 TR. B generates secret key components for hidden

attributes as in the real scheme. To generate secret key components for attributes

attached to TR, B defines a recursive function PolyDef(x) and runs it over the root

node r of TR. For each node x in TR, use kx and px to represent the node’s threshold

value and the number of its satisfied children respectively (the satisfied child is a

child node of x that returns true over γPN).

PolyDef(x): It is defined by the following steps:

• Define qx as follows.

– If x is not r, set qx(0) = qxpa(idx(x)); otherwise, set qx(0) = ab + br′, r′

is randomly chosen from Zp.

54

– Select d (= kx − 1) children of x. For each selected child i, choose a

random number r′i from Zp and let qx(idx(i)) = br′i. This completes

the construction of polynomial qx. Note that, if px ≤ d, the set of se-

lected children should include all the px satisfied ones; otherwise, all the

d selected children should be satisfied ones. We denote the set of these

selected children of x plus x itself by Xs.

• For each remaining child j (not selected by the above step), calculate qx(j) =

∑
i∈Xs

qx(idx(i))∆i,Sx(j).

• For each child i of x, run PolyDef(i).

When PolyDef(r) terminates, B completes the construction of the polynomials

for all the nodes in TR. In particular, pr(0) = ab+br′. Note that, in our construction

of polynomials, for each node x, the polynomial values have the following properties:

(1) If qx(0) has the form of Rxb, then for each of its children i, qi(0) (= qx(idx(i)))

has the form of Rib.

(2) If qx(0) has the form of Cxab+Rxb, then for each of its children i, (i) if i ∈ Xs

(selected), qi(0) has the form of Rib; otherwise, (ii) qi(0) has the form of Ciab+Rib.

(3) In (1) and (2), Cx, Rx, Ci, and Ri are functions of Lagrange coefficients and

random numbers (i.e., r′j’s), and independent of a and b.

From these properties, we may categorize a leaf nodes x into one of the following

three types:

(1) Type A: x ∈ γPN , i.e., x is a satisfied node. qx(0) has the form of Rxb.

(2) Type B: x /∈ γPN but one of x’s ancestors (including x itself) is selected by

its parent. qx(0) has the form of Rxb.

(3) Type C: all the other leaf nodes, qx(0) has the form of Cxab + Rxb.

55

Therefore, the secret key component corresponding to each leaf node x of TR is

given as follows

Dx =

g
Rxb
tx = B

Rx
tx , x in Type A.

g
Rxb
txb = g

Rx
tx , x in Type B.

g
Cxab+Rxb

txb = A
Cx
tx g

Rx
tx , x in Type C.

The secret key component D0 of SK is output as follows

gy−u−v = gab−qr(0)−v = g−br′g−v = B−r′g−v

where v is generated when constructing secret key components for hidden attributes.

All the other components are generated as in the real scheme.

Case 2: In this case, γPN |= TR, but the hidden attributes of T do not match

with γH . Let a hidden attribute j that is not intended by γHID be the witness.

B generates secret key components corresponding to TR as in the real scheme. B
generates secret key components for hidden attributes as follows.

• For hidden attributes 1 ≤ i ≤ m+n, pick v′i randomly from Zp. Set vj = ab+v′j

and vi = v′i for every i 6= j. Finally set v =
∑m+n

i=1 vi = ab +
∑m+n

i=1 v′i.

• compute the secret key components [D̃j, D̂j, Ďj] of attribute j as follows.

D̃j = gvj(Aj,Xj
)aj,Xj

bj,Xj
λj

= gab+v′j(Aj,Xj
)aj,Xj

bj,Xj
λj

= gab+v′j(gbhj,Xj)aj,Xj
bj,Xj

λj

= gv′j(gbhj,Xj)aj,Xj
bj,Xj

λ′j

where λ′j is chosen by B and λj = a
hj,Xj

aj,Xj
bj,Xj

+λ′j. B calculates [D̂j, Ďj] and

56

[D̃i, D̂i, Ďi] for i 6= j as in the real scheme.

• Output D0 of SK as: D0 = gab−u−v = g−u−
∑m+n

i=1
v′i , where u is generated when

constructing secret key components for TR.

All the other components are generated as in the real scheme.

From the above description, we can see that B is able to construct a secret key

of T in both cases. Furthermore, the distribution of the secret key of T is the same

as that in the original scheme. The adversary A can repeat this step for polynomial

times.

Challenge The adversary A submits two equal length challenge messages m0

and m1 to B. B flips a fair binary coin v and picks out mv. The ciphertext of mv

is output as: E = (γPN , Ẽ = mvZ, E0 = C, {Ei = Cti}i∈γPN
, {{Êi,t, Ěi,t}t=0,1}i∈γH

).

Note that B can construct {{Êi,t, Ěi,t}t=0,1}i∈γH
because if the occurrence t of at-

tribute i is in γH , Ai,t does not contain the unknown value b, and if the occurrence

t of i is not in γH , {Êi,t, Ěi,t} are just chosen at random. If µ = 0 it is easy to show

that the ciphertext is a valid random encryption of message mv. Otherwise, if µ =

1, then Z = e(g, g)z and Ẽ = mve(g, g)z. Since z is random, Ẽ is just a random

element of G1 from the adversary’s view and contains no information about mv.

Phase II The simulator acts exactly as it did in Phase I.

Guess The adversary A submits a guess v′ of v. If v′ = v, B outputs µ′ = 0,

indicating that the given DBDH-tuple is a valid one. Otherwise it outputs µ′ = 1,

indicating that the given DBDH-tuple is just a random quadruple. In the case of

µ = 1, the ciphertext E contains no information about mv. Therefore, v′ is just

a random guess of v, and thus µ′ is just a random guess of µ. Thus, we have

Pr[µ′ = µ|µ = 1] = 1
2
. If µ = 0, the ciphertext E is a valid encryption of mv.

Since by definition A has the advantage of AdvSS to output a correct guess, i.e.,

57

v′ = v, B outputs µ′ = 0 with the probability of 1
2

+ AdvSS, i.e., Pr[µ′ = µ|µ =

0] = 1
2

+ AdvSS. Therefore, the overall advantage of B in the DBDH game is

1
2
Pr[µ′ = µ|µ = 0] + 1

2
Pr[µ′ = µ|µ = 1]− 1

2
= 1

2
(1

2
+ AdvSS) + 1

2
1
2
− 1

2
= 1

2
AdvSS.

Lemma 4.3.2 If a polynomial-time adversary A can win our Indistinguishability

Game (see Appendix B) with advantage AdvIND, then we can build a simulator B
that is able to solve the D-Linear problem with advantage 1

2
AdvIND.

Proof: We use a series of games to prove the security of this game as [40]. Game

Ind1 is defined in the same way as the original game except that in γ0, γHID repre-

sents the identity of “∗ ∗ · · · ∗X1”, i.e., the upper n− 1 bits are set as “don’t care”

but keep the first bit the same as in the original game. Game Ind2 is defined in the

same way that γHID represents the identity of “∗ ∗ · · · ∗X2X1”, i.e., the upper n− 2

bits are set as “don’t care” but keep the first bit the same as in the original game,

so on and so forth. Our original game is thus Game Indn. To prove the security

of our scheme, it is enough to prove that it is indistinguishable between Game Ind i

and Game Ind i+1. We can use the similar technique used by [40] to prove this. For

brevity, we do not present the complete proof here.

Lemma 4.3.3 If AdvIND and AdvSS are negligible, AdvTR is negligible.

Proof: Given a pirate device D, our tracing algorithm TraceD(ε) will try with

each identity IDi in the system identity list. We denote the attribute set chosen

for testing IDi by γi = γi
PN ∪ γi

HN ∪ γi
HID. We define the corresponding attribute

set used for normal (non-tracing) encryption as γ̄i = γi
PN ∪ γi

HN ∪ γ̄i
HID. The

only difference between the two sets of attributes is that, in γi
HID all the attributes

58

corresponding to bits of IDi are set as “interested”, but in γ̄i
HID all the identity-

related attributes are set as “don’t care”. Based on this definition, we define the

following two probabilities:

pi = Pr[D(Enc(M,γi, PK)) = M]

p = Pr[D(Enc(M, γ̄i, PK)) = M]

where M is a random message picked from the message space. We distinguish

between the following three types of ε-useful pirate devices that the pirate can

generate, where ε is some fixed constant:

1. Pirate device D for which |p− pi| is non-negligible for some identity IDi.

2. Pirate device D for which |p − pi| is negligible for each identity IDi, but the

tracing algorithm TraceD(ε) outputs an empty set.

3. Pirate device D for which |p − pi| is negligible for each identity IDi, but the

tracing algorithm TraceD(ε) outputs a set which is not contained in the set of

colluding users U .

It is obvious that we can use any pirate producing type 1) devices to win the

Indistinguishability Game with non-negligible advantage. We now show the rough

idea of how we can use any pirate producing type 2) devices to win the Indistin-

guishability Game with non-negligible advantage. Assume the set of colluding users

that the pirate claims to be able to collect is U = {u1, u2, · · · , ut}. Now denote the

challenger of the Indistinguishability Game as C, the simulator we want to build is

B, and the pirate is A. Then the simulator we build executes as follows.

• Init. B presents C two attribute sets γ0 = γi and γ1 = γ̄i to be challenged

upon, where γi is the attribute set that can be used to test user ui ∈ U by our

59

tracing algorithm.

• Setup. C generates public parameters and give them to B.

• Phase 1. B asks C to give him secret keys for all the users in U . Then B gives

all these keys to A to answer key queries in the key generation phase of Game

2.

• Challenge. B submits two equal length messages M0 and M1 to C. C flips a

coin and encrypts Mb with γb. Then the ciphertext is given to B.

• Phase 2. B submits more secret key queries.

• Guess. B asks A to decrypt the ciphertext given by C. If the message returned

by A is one of M1 and M0, B answers b0 = 1. Otherwise, B answers b0 = 0.

The advantage for our simulator B to win the Indistinguishability Game is 1
ε

times the advantage that the type 2) devices, which are generated by A, output the

empty set.

It is easy to show that type 3) devices can be used to win Game 1 (the semantic

security game). The intuition is that, type 3) devices can correctly decrypt a message

which is encrypted for users whose secret keys are not known to type 3) devices with

non-negligible advantage.

4.3.3 Efficiency Analysis

In AFKP-ABE, both the ciphertext size and the secret key size are linear to n, where

n is the number of bits in the identity space. As the maximum number of users it

can represent is N = 2n, the complexity can be written as O(logN), where N is

the total number of users. To trace a pirate, AFKP-ABE needs to try with every

user’s identity in the system list. When the number of users in a system is large, the

60

tracing algorithm would be inefficient. To resolve this issue, we can first test with

some normal ciphertexts using combinations of normal attributes. For example, we

can use different combinations of attributes like location, age, etc. In practice, this

process will hopefully rule out a significant portion of users. Our tracing algorithm

can just test over the remaining set of users.

4.4 Applications

In general, our proposed scheme is applicable to systems where 1) data can be cat-

egorized by their attributes and a user access privilege should be defined in the way

that just allows the user to access certain intended subset of resources; 2) abuse of the

access privilege should be prohibited. As we mentioned before, one important appli-

cation scenario of our abuse free KP-ABE scheme is the area of copyright-sensitive

targeted broadcast, especially commercial media broadcast systems. In these sys-

tems, contents usually have their commercial values and abuse of the access privilege

usually causes legal concerns. Another important application scenario of our pro-

posed scheme would be audit log systems. As these systems would be widely used

in applications such as network management, audit logs may contain sensitive infor-

mation and disclose of them to unauthorized parties would cause security concerns

or privacy violations. Recently, we also witnessed application of KP-ABE in wireless

networks environment. In [58], Yu et al. proposed a fine-grained data access control

scheme for wireless sensor networks for mission-critical applications. In this work,

data access control is well resolved by combining KP-ABE with some other cryp-

tographic primitives. However, the issue of access privilege abuse is not addressed

since it is yet another serious issue if we consider the application of mission-critical

scenarios such as battle fields. We believe our AFKP-ABE can serve to enhance

61

their proposed scheme as the complexity of AFKP-ABE in terms of ciphertext size

and secret key size is just O(logN), where N is the total number of users.

4.5 Summary

In this chapter, we focus on the key abuse attacks in attribute-based systems and

proposed an abuse free KP-ABE (AFKP-ABE) scheme. To defend against the key

abuse attacks, we introduce hidden attributes in the system such that the tracing

algorithm can use them to identify any single pirate or partial colluding users. Our

design enables black boxing tracing and does not require the well-formness of the

user secret key. The complexity of AFKP-ABE in terms of ciphertext size and user

secret keys size is just O(logN), where N is the total number of users. Our scheme

is provably secure under DBDH assumption and D-Linear assumption. Notably,

our techniques used in AFKP-ABE are also applicable to CP-ABE for providing an

abuse free CP-ABE (AFCP-ABE) scheme.

62

Chapter 5

Privacy-Preserving

Attribute-Based Encryption

In ABE data access policies are enforced by encryption. To facilitate user decryp-

tion, current constructions of ABE [2, 9, 12, 107, 108] attach the plaintexts of data

attributes (in KP-ABE) or data access structures (in CP-ABE) to ciphertexts. These

plaintexts, particularly data access structures in CP-ABE, reveal the data owner’s

data access policies when disclosed to untrusted servers, and hence have privacy

concerns. In order for providing better privacy protection for CP-ABE, this chapter

proposes two novel CP-ABE constructions under different security models. In our

proposed schemes the access structure is hidden to both the untrusted server and

the users, no matter authorized or unauthorized. To the best of our knowledge,

these two schemes are among the first CP-ABE schemes with hidden access policies.

63

5.1 Our Construction under Generic Group Model

5.1.1 Definitions

Recall that CP-ABE works in the following way: users are assigned a set of at-

tributes; data is associated with an access structure via encryption; a user is able

to decrypt the data if and only if the user attributes satisfy the access structure of

the data. In order for hiding the access structure of data, this work defines user

attributes and the data access structure as follows.

Attributes Definition We differentiate two kinds of attributes: application

level attributes and algorithm level attributes. Application level attributes refer

to those meaningful to human being, e.g., skill, occupation, rank etc. Algorithm

level attributes refer to those suitable for computer to interpret. Application level

attributes can be mapped to algorithm level attributes. The mapping method is

another interesting topic which is out of the scope of this work. In this work,

an attribute refers to an algorithm level attribute which is defined in such a way

that it has two possible occurrences: positive and negative which are denoted with

symbols Atti,1 and Atti,0, where i ∈ Zn is the index of attribute i and n is the

total number of attributes in the system. We do not consider don′t care case for

any attribute and assume each algorithm level attribute is meaningful to every user.

The set of attributes that each user possesses is {Atti,b|∀i ∈ Zn, b = 0|1}. In our

scheme description, we also use the binary string Xn−1Xn−2 · · ·X0 to denote the set

of attributes that the user possesses, where bit value 1 and 0 represent positive and

negative occurrences of the attribute respectively.

Access Structure We use 1-level AND logic over algorithm level attributes

to represent the access structure. For example, in the case of n = 4, an access

structure may have the form (attribute 3 is positive) ∧ (attribute 1 is negative).

64

If we use a product term to represent this access structure, it would be X3X̄1.

OR logic can be simulated using concatenation. Complex access structures over

application level attributes can be easily realized using these logics. For example, in

military scenarios we can realize the access structure “rank > second lieutenant”

as follows: First, we map the application level attribute rank to a set of algorithm

level attributes by enumerating all the ranks: {· · · , lieutenant, captain, · · · }.
Then, the logic “rank > second lieutenant” can be implemented by AND all the

negative algorithm level attributes for ranks lower than lieutenant. In this way,

we can realize access structures over application level attributes such as “(rank >

second lieutenant) ∧ (service year < 5 years) ∧ (gender = female)”. In the

remaining part of this work, we just consider the access structure over algorithm

level attributes which can be represented via one product term, i.e., AND logic

only. The term attribute in the remaining part of this chapter refers to algorithm

level attribute.

5.1.2 Scheme Description

Our scheme is composed of four algorithms: Setup, KeyGen, Encryption, and De-

cryption. The functionality of each algorithm is almost the same as that in the

standard CP-ABE scheme [2, 9]. The main difference is that our proposed scheme

hides the access structure while current CP-ABE schemes do not. To achieve this

goal our scheme omits the access structure T from the ciphertext CT . To enable

decrypting without explicitly knowing the access structure, our scheme is designed

as follows: the ciphertext in our construction comprises components for both pos-

itive and negative occurrence of all the attributes. It is designed in the way that

it is hard for all but the authority herself to tell which attributes are used in the

access structure. Data decryption requires the user to use secret key components

65

of all his attributes. After decryption, the user know nothing about which or how

many attributes grant or decline him the access. This prevents the authorized users

from knowing the access policy information of the authority (who is also the data

owner). As our current design is not a public-key solution, only the authority can

encrypt data and servers as the data owner. We leave the public-key construction

as a future work.

The four algorithms of our scheme are defined as follows.

Setup This algorithm chooses a bilinear group G0 of prime order p with gener-

ator g. Each attribute is then mapped to an element of group G0. Let hi,b denote

the corresponding element in group G0 of attribute Atti,b. We have hi,0 = gai and

hi,1 = gbi , where ai and bi are randomly generated from Zp. Let γi = ai + bi. ai and

bi should be chosen in the way that ai, bi, and γi are all non-trivial. This algorithm

also chooses other two random numbers α, β ∈ Zp. The system master key (MK)

is output as follows

MK = (α, β, {ai, bi}∀i∈Zn)

MK, hi,0 and hi,1 are only known to the authority.

KeyGen This algorithm takes as input a user’s attribute set Xn−1Xn−2 · · ·X0

and generates her secret key as follows

SK = (D = g(α+r)/β, D′ = gr, D′′ = gβr, {Di = hr
i,X̄i
}∀i∈Zn)

where r is a random numbers chosen from Zp. Xi is the value of the ith attribute

and X̄i is its inverse.

Encryption This algorithm takes as input the message (M), the access structure

66

in a product term, and the master key (MK). It outputs the ciphertext with the

following format:

CT = (C̃, Č, {Ĉj}j=0,1, {Ci}∀i∈Zn)

where C̃ = (M ||MAC) · X and X is a blind factor used to hide (M ||MAC).

MAC is the message authentication code for M . “||” means concatenation. Č,

Ĉj’s, and Ci’s are ciphertext components to help decryptors reconstruct X and thus

derive M . Each bit of the user’s attribute set Xn−1Xn−2 · · ·X0 corresponds to a

ciphertext component Ci which is a triple as we will describe later in this section.

Before presenting the detailed construction of CT , we define notation as follows:

Each symbol in a product term is called a literal, denoted by X ′
i if it is for the ith

bit of user attribute set. If the symbol has the form X̄, X ′
i = 0. Otherwise X ′

i = 1.

We denote the product term by S. The string “there is a literal in S for the ith bit

of a user’s attribute set Xi” is represented by “Xi ∈ S”. CT is constructed by the

following steps:

• Step 1. Random Number Generation. Chooses random numbers s0, s1, ..., sn−1,

k0, k1 ∈Zp, and set δ =
∑n−1

j=0 γisi.

• Step 2. Ci Computation. Ci is a triple of the form Ci = (gsi , Ci,0, Ci,1) and si

is a random number generated in step 1. Both Ci,0 and Ci,1 are elements of group

G0. If Xi ∈ S, choose a random number ti ∈ Zp and calculates Ci,X′
i

= hsi+ti
i,X′

i
and

Ci,1−X′
i
= hsi

i,1−X′
i
. Otherwise, output Ci,0 = hsi

i,0 and Ci,1 = hsi
i,1.

• Step 3. Č Computation and Ci update. First compute a value gs′ as follows:

gs′ =
n−1∏

i=0

(Ci,0Ci,1) = gδ+x

67

gsi Ci,0 Ci,1

C3 gs3 gk0hs3+t3
3,0 gk1hs3

3,1

C2 gs2 gk0hs2
2,0 gk1hs2+t2

2,1

C1 gs1 gk0hs1
1,0 gk1hs1

1,1

C0 gs0 gk0hs0
0,0 gk1hs0+t0

0,1

Table 5.1: Vector for the product X̄3X2X0

where x is some number in Zp such that

gx =
∏

∀j, X′
j∈S

h
tj
j,X′

j
(5.1)

Then, compute Č = gβs′ . Finally, update Ci,0 and Ci,1 for all i ∈ Zp as follows:

Ci,0 = gk0Ci,0, Ci,1 = gk1Ci,1

Table 5.1 illustrates an example vector (C3, C2, C1, C0) for product term X̄3X2X0,

where n = 4.

• Step 4. Ciphertext Generation. Ciphertext is output as follows:

CT = (C̃ = (M ||MAC)e(g, g)αs′ , Č = gβs′ , {Ĉj = g
kj
β }j=0,1, {Ci}∀i∈Zn) (5.2)

where MAC = hash(M). hash(·) is an one way hash function using algorithms

such as SHA-1 [53].

Decryption This algorithm takes as input the ciphertext CT and the user’s

attribute set. It returns the message M if the user’s attributes satisfy the access

structure. Otherwise, it returns an error symbol ⊥.

• Step 1. Credential Pairing. Assume the user’s attribute set is Xn−1Xn−2...X0.

68

It first calculates

Bj = e(Ĉj, D
′′) = e(g

kj
β , gβr) = e(g, g)rkj , j = 0, 1.

Then, for each i ∈ Zn, pick Ci,Xi
from Ci and compute a value Fi for bit i of her

attribute set as follows:

Fi = e(Di, g
si)e(Ci,Xi

, D′)/BXi

= e(hr
i,X̄i

, gsi)e(gkXihsi+ti
i,Xi

, gr)/BXi

= e(g, g)rγisie(g, hi,Xi
)rti (5.3)

In (3), ti = 0 if Xi /∈ S. Otherwise, ti 6= 0. In the last step of derivation, BXi

and e(g, g)rkXi are cancelled as they are equal.

• Step 2. Pairing Aggregation. Aggregate the Fi’s and compute another value

F as follows:

F =
n−1∏

i=0

Fi =
n−1∏

i=0

e(g, g)rγisie(g, hi,Xi
)rti = e(g, g)rδe(g, g)rx′

x′ is some number (unknown) in Zp such that

gx′ =
n−1∏

i=0

hti
i,Xi

=
∏

∀i, Xi∈S

hti
i,Xi

, (ti = 0, if Xi /∈ S) (5.4)

Therefore,

e(g, g)rx′ =
n−1∏

i=0

e(g, hi,Xi
)rti , x′ ∈ Zp (5.5)

Lemma 5.1.1 x = x′ if and only if the user’s ID contains all the literals of the

69

product, i.e., the user is in the set of intended users.

Proof: By Eq. (1) and Eq. (4), it is easy to see that if the user’s ID contains all

the literals of the product, x = x′. On the other hand, if the ID does not contain all

the literals of the product, the user has negligible probability to output F in which

x′ = x since ti’s are all random numbers.

• Step 3. Message Derivation. The user derives the M as follows

M ′ =
C̃

e(Č, D)/F
=

(M ||MAC)e(g, g)αs′

e(g, g)(αs′+rs′)/e(g, g)r(δ+x′) = (M ||MAC)e(g, g)r(x′−x)

(5.6)

• Step 4. Message Verification. We assume M and MAC have fixed lengths of

n1 and n2 bits respectively. To verify if she is in an intended recipient, each user

takes the first n1 bits and the remaining n2 bits from M ′, denoted by M1 and M2

respectively, and checks if M2 = hash(M1).

From Theorem 5.1.1 and Eq. (6), we know that only the intended users can

recover (M ||MAC) correctly. Therefore, only for the intended users, does equation

M2 = hash(M1) hold and M1 equal M .

5.1.3 Security Analysis

We analyze security of our scheme in terms of its correctness and fulfillment of our

security goals. Correctness of our design can be shown by the following theorems:

Lemma 5.1.2 A user can correctly decrypt M if and only if she holds all the in-

tended attributes in the data access structure.

Proof: To decrypt M , blind factor e(g, g)αs′ should be removed from C̃ as

illustrated by Eq. (6). The only way to construct e(g, g)αs′ is to perform a bilinear

70

mapping between gβs′ and g(α+r)/β, i.e., e(gβs′ , g(α+r)/β), which introduces another

blind factor e(g, g)rs′ . As shown in Eq. (6), cancelling this blind factor requires

x = x′ holds. By Theorem 5.1.1, x = x′ holds if and only if the user holds all the

intended attributes in the data access structure.

Lemma 5.1.3 Except for the authority, it is hard for any other parties to generate

a valid secret key component Di for attribute Atti,Xi
even if they have already known

secret key components of other attributes.

Proof: As defined in Section 5.1.2, hi,X̄i
= gai or gbi , where ai, bi ∈ Zp are two

independent random numbers. Without lose of generality, we assume hi,X̄i
= gai .

Therefore, the secret key component for attribute Atti,Xi
is Di = hr

i,X̄i
= grai , where

r and ai are not known to any user. Any user not assigned the attribute Atti,Xi
only

knows gr, gβr, and grbi . Without knowing ai and bi, it is hard to generate grai given

gr, gβr and grbi since ai and bi are independent. Therefore, this theorem holds.

From above lemmas, we can conclude that: (1) only the users with intended

attributes can decrypt M ; (2) Any user can not generate valid credentials for those

attributes which are not assigned to him. Therefore, our design is correct.

Our proposed scheme meets the following security goals:

Data Confidentiality As is shown above, only intended users are able to decrypt

the message M . Moreover, it can be shown that collusion does not help the unin-

tended users decrypt the message since each user’s SK is blinded by a blind factor

r which is unique to each user.

Confidentiality of Access Structure First, we show that from the ciphertext the

eavesdroppers are not able to derive the access structure information as follows. In

the ciphertext, the intended attributes are secretly marked with a random number

71

tj ∈ Zp, j ∈ Zn. Assume Ci,0 and Ci,1 of attribute i have the following form:

Ci,0 = gk0hsi+ti
i,0 and Ci,1 = gk1hsi

i,1. Since hi,0 and hi,1 are not publicly known,

Ci,0 and Ci,1 appear as the form of Ci,0 = gk0gai(si+ti) and Ci,1 = gk1gbisi from the

eavesdroppers’ viewpoint. As ai and bi are randomly and independently chosen

for any attribute i, Ci,0 and Ci,1 appear to be independent and random for the

eavesdroppers. Therefore, they are not able to tell which one is marked and how

many attributes are actually used in the access structure. Next, we show that the

intended recipients are not able to derive the access structure information. This can

be shown by observing the steps in the Decryption algorithm. As is shown in the

steps, the user does not know if she is an intended receiver until she has aggregated

the secret key components of all her attributes and decrypted the ciphertext in

Step 4. Since her attributes take effort only when they are aggregated, the user

can not tell which attributes grant or decline her access to the message M , nor how

many attributes contribute to the access grant or declination. Therefore, any user,

no matter authorized or unauthorized, can not tell, even partially, which or how

many attributes are actually used in the access structure. Collusion does not help

reveal this information because of the unique blind factor r in each user’s SK. In

addition, any user is not able to derive the number of associated attributes from the

ciphertext size because it is constant in our proposed scheme.

Backward Secrecy For backward secrecy, any new user can not decrypt the mes-

sages sent before she joined the group. To achieve this goal, we can update the

master key (MK) α before any new user joins. Similar to the process of delivering

the message M , we can deliver gα′/β to all users. Upon gα′/β, each user updates α as

follows: g(α+r)/β · gα′/β = g(α+α′+r)/β. In this way, α is updated as (α + α′) securely.

Member revocation can be realized in the same way except that we now update MK

α to all users but those to be revoked.

72

5.1.4 Performance Evaluation

This section presents our evaluation results for the proposed scheme in terms of

computation and communication loads as well as the storage load. We will present

both numerical results and the experimental results. Finally, we give a brief discus-

sion as well as the comparison between our proposed scheme and existing work. In

the following part of this section, we assume the total number of attributes is n. We

denote one scalar multiplication on the elliptic curve by an EXP , and one point

addition operation by a MUL.

1. Numerical Results

Computation Load on the Authority The authority is responsible for execu-

tion of three algorithms: Setup, KeyGen, and Encryption. The main computation

load of the algorithm Setup is caused by the calculation of hi,0 and hi,1, which

involves 2n EXP operations in total. The algorithm KeyGen is responsible for

computing the secret key SK. The main computation load is caused by the calcu-

lation of {Di = hr
i,X̄i
}∀i∈Zn . It accounts for n EXP operations. KeyGen consumes

(n + 3) EXP operations in total as the secret key components D,D′, and D′′ each

accounts for one EXP . The main computation load of the algorithm Encryption

comes from items {Ci = (gsi , Ci,0, Ci,1)}∀i∈Zn which represent 3n EXP operations9.

In total the number of EXP operations required by Encryption is (3n + 3) since

Č and Ĉ consume 1 and 2 EXP operations respectively. In addition, Encryption

requires one one-way hash operation. The bilinear pairing operation required by

the item C̃ can be ignored since we can pre-compute e(g, g)α. We do not count the

integer field operations into our computation load because they account for a trivial

9Note that since the authority knows the master secret key MK, she can first calculate the
exponents and then compute Ci,j , j = 0|1, by one EXP operation. We present the calculation of
Ci,j by two EXP ’s and one MUL in the algorithm just for clear description of our scheme. It is
the similar case for gs′ .

73

MUL EXP pairing
Setup 10 0 2n 0
KeyGen10 0 n+3 0
Encryption11 0 3n+3 0
Decryption11 n 0 n+4

Table 5.2: Summary of cryptographic operations

part as compared to operations over elliptic curves.

Computation Load for Users Computation load on the user side mainly

caused by the Decryption operation. According to our scheme description, following

operations are required to decrypt a ciphertext: (2n + 3) pairings and one hash. In

most cases, a pairing operation is more expensive than an EXP operation or a MUL

operation. Therefore, it is desirable to minimize the number of pairing operations.

For this purpose, we can modify our decryption algorithm a little bit. We show this

by expanding the calculation of F in Step 2 of Decryption:

F =
n−1∏

i=0

Fi

=
n−1∏

i=0

e(Di, g
si)e(Ci,Xi

, D′)/BXi

= e(
n−1∏

i=0

Ci,Xi
, D′) ·

n−1∏

i=0

(e(Di, g
si)/BXi

)

(5.7)

Instead of computing e(Ci,Xi
, D′) for each attribute as shown in Step 1, users

can first multiply all Ci,Xi
for all i in Zn, and then apply one pairing between D′

and the product of the multiplication as is shown in Eq. (7). This revision saves

(n− 1) pairings and causes n MUL operations on the user side. The computation

load of Decryption algorithm now becomes (n+4) pairings, n MUL operations and

10Operations performed by the authority.
11Operations performed by users.

74

one hash. We do not take into count the computation of dividing BXi
’s as they are

trivial as compared to operations on elliptic curves. Table 5.2 concludes the main

cryptographic operations required by our design12.

Communication Load Our ciphertext is composed of four parts: C̃, Č, {Ĉj}j=0,1,

{Ci}∀ i∈Zn . Each Ci has three parts: gsi , Ci,0, Ci,1. Therefore, the ciphertext contains

(3n + 3) G0 and 1 GT group elements in total.

Storage Load for Users The main storage load of each user is for the secret

key SK which represents (n + 3) G0 group elements in total.

2. Experimental Results

In our experiment, we implement our algorithms based on the Pairing-Based

Crypto (PBC) library [96]. We test our program on Ubuntu 8.04 with Intel Pentium

D 3.40GHz CPU.

The Choice of Elliptic Curves In our experiment, we test on three types of

elliptic curves: supersingular curves (type A), MNT curves (type D), and type F

curves as is named in [96]. Type A curves enable fast pairing, while type D and

type F curves require short group element. In particular, type F curves provides

1920-bit RSA security with only 160-bit group element. For type D curves, we test

on two kinds of curves, namely d159 and d201. The detailed description of these

curves can be found in [96].

To understand how the choice of elliptic curves affects our ciphertext size, it’s

necessary to discuss two kinds of groups characterized by bilinear maps: symmetric

bilinear groups and asymmetric bilinear groups. The bilinear map in the former

case has the form: e : G0 ×G0 → GT , while the latter has the form: e : G1 ×G2 →
GT , G1 6= G2. Type A curves are characterized by having symmetric bilinear groups.

12Hash operations are not counted in the table since they just cause a negligible computational
overhead

75

Type D and type F curves are characterized by having asymmetric bilinear groups.

For fast pairing, we usually choose elliptic curves from symmetric bilinear groups

with small embedding degrees. For example, type A curves have embedding degree

of 2 and base field size of G0 is 512 bits. On the other hand, for short group size, we

usually choose elliptic curves from asymmetric bilinear groups with high embedding

degrees. For example, type F curves have embedding degree of 12. This turns out

that the base field size of G1 is just 160 bits. The embedding degree of type D curves

is 6. The base field size of G1 is just 170 bits for 1020-bit RSA security.

Ciphertext Size Our design uses symmetric bilinear groups by default. There-

fore, the ciphertext size is 512(3n + 4) bits in the case of type A curves as both G0

and GT can be represented by 512 bits. To achieve short ciphertext size, we can

easily modify our design by using asymmetric bilinear groups. After this revision

the ciphertext would just contain the following group elements: (2n + 3) G1, n G2,

and 1 GT . Table 5.3 gives a summary of our ciphertext size under the selected

curves. As shown in Table 5.3, type A curves (supersingular) exhibits the longest

ciphertext while type F curves provides the shortest ciphertext.

type A type d159 type d201 type F
512(3n+4) 159(5n+6) 201(5n+6) 160(4n+9)

Table 5.3: Ciphertext sizes (bits) for different elliptic curves

Computation Load In our experiment, we run our algorithms over elliptic

curves of type A (SS), d159, d201, and type F respectively. The number of attributes

is chosen to be 4, 8, 16, 32, 64, 128, and 256. The experiment results are shown

in Fig.5.1(a)-Fig.5.1(d). From these figures we can see that the computation load

of our scheme is linear to the number of attributes, which verifies our numerical

analysis results in Table 5.2. As is analyzed in Table 5.2, computation overhead of

algorithm Setup, KeyGen, and Encryption is dominated by scalar multiplication

76

4 8 16 32 64 128 256
10

2

10
3

10
4

Number of Attributes

S
et

up
 T

im
e

(m
s)

SS
MNT:D201
MNT:D159
F

(a) Setup

4 8 16 32 64 128 256
10

1

10
2

10
3

10
4

Number of Attributes

K
ey

 G
en

er
at

io
n

T
im

e
(m

s)

SS
MNT:D201
MNT:D159
F

(b) KeyGen

4 8 16 32 64 128 256
10

1

10
2

10
3

10
4

Number of Attributes

E
nc

ry
pt

io
n

T
im

e
(m

s)

SS
MNT:D201
MNT:D159
F

(c) Encryption

4 8 16 32 64 128 256
10

1

10
2

10
3

10
4

10
5

Number of Attributes

D
ec

ry
pt

io
n

T
im

e
(m

s)

SS
MNT:D201
MNT:D159
F

(d) Decryption

Figure 5.1: Experiment results on computation load.

operations on elliptic curves. Therefore, the elliptic curves with small base field size

are more efficient than others. This is verified by Fig.5.1(a)-Fig.5.1(c) which show

that type F curves are the most efficient. Type A (SS) curves are the least efficient

as is shown in Fig.5.1(a) and Fig.5.1(b). In Fig.5.1(c), however, type A (SS) curves

outperform type d201 curves and exhibit comparable encryption efficiency with d159

curves. This is because Encryption algorithm also involves n scalar multiplication

operations on group G2. The base field size of G2 in the case of type F, d159, type A,

and d201 are 320 bits, 477 bits, 512 bits, and 603 bits respectively. As the base field

size of G2 is much larger than that of G1, these n scalar multiplication operations

dominate the computation load of Encryption algorithm. Fig. 5.1(d) shows that

type A (SS) curves have the best decryption performance while type F curves are

77

the worst. This coincides with our previous analysis.

Specifically, from these figures we can see that, in the case of 256 attributes our

Encrytion algorithm takes about 0.7 seconds under type F curves and 1 second

under type D and F curves. Our Decryption algorithm takes less than 2 second for

type A curves in the case of 256 attributes. In the case of 64 attributes, Decryption

takes about 0.3 seconds for type A curves and 1 second for type D curves.

3. Discussion and Comparison

From above numerical and experimental results, we can see that our scheme

exhibits an acceptable computation load if the number of attributes are carefully

chosen. Actually, the computation overhead for both ECC and bilinear pairing op-

erations can be further reduced to the magnitude of µs under hardware implemen-

tations [52]. Moreover, as the computing power of processors is increasing rapidly,

computation overload should not be a problem. What actually matters is the com-

munication overload as bandwidth is a limited resource under environments such as

wireless networks. Fortunately, the communication overload of our scheme grows

linearly to the number of attributes only. Since attributes are shared by unlim-

ited number of users, communication overload of our scheme can be well controlled

even in the case of large-scale application scenarios. As a matter of fact, even in

large-scale systems, the number of attributes required could be relatively small. To

evaluate the performance of our scheme, we can compare it with current work. To

the best of our knowledge, the only existing work that addresses the similar issue is

proposed by Barth et al. [45]. In that scheme, identities of the recipients are pro-

tected by encrypting the message using every user’s public key. The computational

load as well as the ciphertext size grow linear to the group size. Assume we are

using 1024 bit RSA, the ciphertext size would be 1024N bits, where N is the total

78

number of users. This represent a huge communication load in large-scale applica-

tions and not applicable for large-scale application scenarios. Moreover, our scheme

also protects the number of the intended users while [45] does not.

5.2 Our Construction under the XDH assump-

tion

This section proposes our construction under the XDH assumption, which is believed

to hold for some MNT elliptic curves. This construction is more efficient than the

previous one.

5.2.1 Scheme Description

Instead of building a CP-ABE scheme from scratch we construct our privacy-preserving

CP-ABE by enhancing Cheung’s construction [9]. In this work, we also follow the

same definition of notation as [9]. For completeness, we present them as follows:

The set of attributes are defined as N := 1, . . . , n for some natural number n. At-

tribute i and their negations ¬i are referred to as literals. Let I denote the set of

attributes that are needed for decryption. The scheme considers access structures

that consist of a single AND gate whose inputs are literals, denoted by
∧

i∈I i, where

every i is a literal (i.e., i or ¬i).

SETUP. This algorithm selects bilinear groups G1 and G2 of prime order p with

generator g1 and g2 respectively. A bilinear map e : G1 × G2 → GT is defined

on them. Next, it chooses random exponents y, t1, . . . , t2n ∈ Zp. The public key is

79

published as:

PK = (e, g1, g2, Y, T1, . . . , T2n)

where Y = e(g1, g2)
y, ∀i ∈ Z2n : Ti = gti

1 . The master secret key is MK =

(y, t1, . . . , t2n).

In our construction, each attribution only has two occurrences: positive and

negative. don′t care element is discarded, while it is a key element in the original

construction.

ENCRYPT. Given a message M ∈ GT and an AND gate W =
∧

i∈I i, the

ciphertext is output as CT = (C̃, Ĉ, {Ci,0, Ci,1|i ∈ N}), where C̃ = M · Y s, Ĉ = gs,

and s is a random number in Zp.

For each i ∈ I, Ci,0 and Ci,1 are computed as follows.

• if i = i, Ci,0 = T s
i , Ci,1 = T x

n+i.

• if i = ¬i, Ci,0 = T x
i , Ci,1 = T s

n+i.

x is a random number in Zp.

For each i /∈ I, Ci,0 = T s
i and Ci,1 = T s

n+i.

KEYGEN. Let S denote the input attribute set. Every i /∈ S is considered a

negative attribute. The secret key is defined as SK = (D̂, {Di|i ∈ N}), where

D̂ = gy−r
2 , r =

∑n
i=1 ri, ri is randomly selected from Zp. For each i ∈ N , Di = g

ri
ti
2 if

i ∈ S; otherwise, Di = g
ri

tn+i

2 .

DECRYPT. Suppose the input ciphertext is of form CT = (C̃, Ĉ, {Ci,0, Ci,1|i ∈
N}). Let SK = (D̂, {Di|i ∈ N}). For each i ∈ N , if the user’s attribute is positive,

80

then

Fi = e(Ci,0, Di) = e(gti·s
1 , g

ri
ti
2 = e(g1, g2)

ri·s)

If the user’s attribute is negative, then

Fi = e(Ci,1, Di) = e(g
tn+i·s
1 , g

ri
tn+i

2 = e(g1, g2)
ri·s)

Decrypt finishes as follows: M = C̃
Y s = C̃

e(g1,g2)y·s , where

e(g1, g2)
y·s = e(gs

1, g
y−r
2) · e(g1, g2)

r·s = e(Ĉ, D̂) ·
n∏

i=1

Fi.

Above equations demonstrate how an intended user can decrypt the ciphertext.

If the user is not the intended recipient, there is at least one attribute for which the

user gets Fi with the form e(g1, g2)
ri·x. Therefore, she can not calculate e(g1, g2)

y·s

as shown in the above equation.

5.2.2 Scheme Analysis

Ciphertext in our construction does not include the access policy. In decrypt al-

gorithm, the user uses all her attributes to decrypt the ciphertext. If the user’s

ith attribute is positive while Ci,0 has the form T x
i , this user can not decrypt the

ciphertext. However, because the user can not distinguish between T x
i and T s

i ac-

cording to XDH assumption, she is not able to know which attributes are desired

by the encryptor. Therefore, she can not derive any information about the access

policy. For the same reason, an intended user only knows if she can decrypt the

ciphertext while not knowing which attributes grant her the access. Therefore, the

access policy is hidden to all the users.

81

5.3 Summary

In this chapter, we addressed an important problem of privacy-preserving construc-

tion of ABE. We proposed two privacy-enhanced CP-ABE schemes in which data

access structures are well protected from both the untrusted servers and all the

users even under powerful attacks, e.g., colluding attacks. Numerical and exper-

imental results show that our scheme is suitable for large-scale applications since

its complexity is just linear to the number of attributes rather than the number

of users. Our proposed schemes are secure under the generic group model and the

XDH assumptions respectively.

82

Chapter 6

Secure Data Sharing with ABE in

Cloud Computing

Cloud Computing is a promising next-generation IT architecture which provides

elastic and unlimited resources, including storage, as services to cloud users. In

Cloud Computing cloud users and cloud service providers are almost certain to be

from different trust domains. It turns out that on one hand sensitive data should

be encrypted before uploading to cloud servers; on the other hand, a secure user-

enforced data access control mechanism must be provided before cloud users have

the liberty to outsource sensitive data to the cloud for storage. Similar to any

untrusted storage case, we can resolve the issue using a cryptographic-based data

access control mechanism as discussed in Chapter 1. In doing so, we need to address

challenge issues such as fine-grained access control with scalability, user dynamics

and etc. In addition to these, another main challenge pertained to Cloud Computing

is system efficiency. In Cloud Computing, Cloud users (including both data owners

and users13) could access the system via various low-end devices such as mobile

13Here users refer to data consumers.

83

phones, which do not have much computation power. Therefore, the proposed access

control mechanism should be efficient enough in the sense that the computation load

addressed on both the data owner and data consumers should be affordable to these

low-end devices.

Keeping these challenges in mind, in this chapter we propose a cryptographic-

based data access control mechanism for Cloud Computing with ABE. In this work,

we address the issue of user revocation by applying our technique in Chapter 3 to

Cloud Computing. By introducing a dummy attribute into the system, we enable

users to delegate most data decryption operations to cloud servers and reduce the

computation load on users to a constant complexity. We also greatly reduce the com-

putation load on cloud servers through using the technique of lazy re-encryption [14].

Compared to previous work [11, 14, 29, 30], our scheme provides better scalability

when providing fine-grained data access control since the complexity of most system

operations in our scheme is just linear to the number of attributes rather than the

number of users/data files.

6.1 Models and Assumptions

6.1.1 System Models

Similar with [31], we assume that the system is composed of the following parties:

Cloud Users, Cloud Servers, and maybe Third Party Auditor. Cloud users include

both the data owner and data consumers. The data owner stores his encrypted data

files on Cloud Servers either for sharing or for personal use. To access data files

shared by the data owner, data consumers need to download them from the Cloud

Servers and then decrypt. Cloud users, be it the data owner or data consumers, will

not be always online. They come online just on the necessity basis. For simplicity, we

84

assume that the only access privilege for data consumers is data file read. Extending

our proposed scheme to support data file writing is trivial by asking the data writer

to sign the new file on each update as [29] does. As we did in previous chapters,

in this chapter we also call data consumers by users for brevity. Cloud Servers are

always online and operated by Cloud Service Provider (CSP). They are assumed to

have abundant storage capacity and computation power. The Third Party Auditor,

if any, is an online party which is used for auditing every file access event. In

addition, we also assume that the data owner can not only store data files but

also run his own code on Cloud Servers to manage his data files. This assumption

coincides with the unified ontology of cloud computing which is recently proposed

by Youseff et al. [32].

6.1.2 Security Models

In this work, we just consider Honest but Curious Cloud Servers as [11] does. That

is, Cloud Servers will follow our proposed protocol in general, but try to find out

as much secret information as possible based on their inputs. More specifically, we

assume Cloud Servers are more interested in contents of data files and user access

privilege information than other secret information. Cloud Servers might collude

with a small number of malicious users for the purpose of harvesting the data file

contents when it is highly beneficial. Communication channel between Clients and

Cloud Servers are assumed to be secured under existing security protocols such as

SSL. Users would try to access data files either within or out of the scope of their

access privileges. To achieve this goal, unauthorized users may work independently

or cooperatively. In addition, each party is preloaded with a public/private key pair

and the public key can be easily obtained by other parties when necessary.

85

6.1.3 Design Goals

Our main design goal is to help the data owner enforce fine-grained access control

over data in large-scale data centers outsourced to Cloud Servers. In terms of fine-

grained access control, we want to enable the data owner to enforce a unique access

structure on each user whenever necessary, which precisely designates the type/set

of files that the user is allowed to access. We also want to prevent Cloud Servers

from learning either the plaintexts of data files or user access privilege information.

In addition, the proposed scheme should be able to support user dynamics and

achieve security goals such as user accountability. All these security goals should be

achieved efficiently in the sense that the computation load should be affordable to

Cloud users with low-end portable devices.

6.2 Our Proposed Scheme

6.2.1 Main Idea

In order to achieve secure, scalable and fine-grained data sharing on outsourced

data in the cloud, we utilize and uniquely combine the following three advanced

cryptograhphic techniques: KP-ABE, Proxy Re-Encryption (PRE) and lazy re-

encryption. More specifically, we associate each data file with a set of attributes,

and assign each user an expressive access structure which is defined over these at-

tributes. To enforce this kind of access control, we utilize KP-ABE to escort data

encryption keys of data files. Such a construction enables us to immediately enjoy

fine-grainedness of access control. However, this construction, if deployed alone,

would introduce heavy computation overhead and cumbersome online burden to-

wards the data owner, as he is in charge of all the operations of data/user manage-

86

Owner Cloud servers

Outs
ourc

e en
cryp

ted f
ile

Access

Illness: diabetes

Hospital: A

Race: asian

…...

Dummy attribute

dummy attributeAND

AND

OR

Race: asian

Hospital:AIlliness:diabetes

Attributes of a file

user

access

structure

User

Race: white

Figure 6.1: An example case in the healthcare scenario

ment. Specifically, such an issue is mainly caused by the operation of user revocation,

which inevitabily requires the data owner to re-encrypt all the data files accessible

to the leaving user, or even needs the data owner to stay online to update secret

keys for users. To resolve this challenging issue and make the construction suitable

for the cloud computing, we apply our technique in Chapter 3 and uniquely combine

PRE with KP-ABE to enable the data owner to delegate most of the computation-

intensive operations to Cloud Servers without disclosing the underlying plaintexts.

In order for saving the computation load on users, we enable users to delegate most

computation operations for decryption to cloud servers through the use of a dummy

attribute. Such a construction allows both the data owner and users to participate

in the system with a minimal overhead in terms computation effort and online time,

and fits well into the cloud environment. For further reducing the computation

overhead on Cloud Servers and thus saving the data owner’s investment, we take

advantage of the lazy re-encryption technique and allow Cloud Servers to “aggre-

gate” computation tasks of multiple system operations. Notably, the computation

complexity on Cloud Servers is just proportional to the number of system attributes

rather than the number of users or data files in the system. Scalability and efficiency

is thus achieved. In addition, user accountability can also be achieved by using our

technique in Chapter 4.

87

6.2.2 Definition and Notation

In our scheme, each data file is assigned a set of attributes which are meaningful

and necessary for access control. Different data files can have a subset of overlapped

attributes. Each attribute is associated with a version number for the purpose of

attribute update as we will discuss later. Cloud Servers keep an attribute history

list AHL which records the version evolution history of each attribute and PRE

keys used. In addition to these meaningful attributes, we also define one dummy

attribute, denoted by symbol AttD for the purpose of key management as well as

computation delegation. AttD is required to be included in every data file’s attribute

set and will never be updated. The access structure of each user is implemented by

an access tree. Interior nodes of the access tree are threshold gates. Leaf nodes of

the access tree are associated with data file attributes. For the purpose of key man-

agement and computation delegation, we require the root node to be an AND gate

(i.e., n-of-n threshold gate) with one child being the leaf node which is associated

with the dummy attribute, and the other child node being any threshold gate. The

dummy attribute will not be attached to any other node in the access tree. Fig.6.1

illustrates our definitions by an example. In addition, Cloud Servers also keep a

user list UL which records IDs of all the valid users in the system. Fig.6.2 gives the

description of notation to be used in our scheme.

6.2.3 Scheme Description

We present our proposed scheme in two levels: System Level and Algorithm Level.

At system level, we are interested in the following high level operations: System

Setup, File Creation, User Grant, and User Revocation, File Access, File Deletion,

and the interaction between involved parties. At algorithm level, we focus on the

88

Notation Description
PK, MK system public key and master key
Ti public key component for attribute i
ti master key component for attribute i
SK user secret key
ski user secret key component for attribute i
Ei ciphertext component for attribute i
I attribute set assigned to a data file
DEK symmetric data encryption key of a data file
P user access structure
LP set of attributes attached to leaf nodes of P
AttD the dummy attribute
UL the system user list
AHLi attribute history list for attribute i

rk
(k)
i proxy re-key to update attribute i

from version k − 1 to version k
δO,X the data owner’s signature on message X

Figure 6.2: Notation used in our scheme description

mathematical implementation of algorithms that are invoked by system level oper-

ations.

1. System Level Operations

System level operations in our proposed scheme are designed as follows.

System Setup In this operation, the data owner chooses a security parameter κ

and calls the algorithm level interface ASetup(κ), which outputs the system public

parameter PK and the system master key MK. The data owner then signs each

component of PK and sends PK along with these signatures to Cloud Servers.

File Creation Before uploading a file to Cloud Servers, the data owner processes

the data file as follows.

• select a unique ID for this data file;

• randomly select a symmetric data encryption key DEK
R← K, where K is the

89

key space, and encrypt the data file using DEK;

• define a set of attribute I for the data file and encrypt DEK with I using

KP-ABE, i.e., (Ẽ, {Ei}i∈I) ← AEncrypt(I,DEK,PK).

header︷ ︸︸ ︷ body︷ ︸︸ ︷
ID I, Ẽ, {Ei}i∈I {DataFile}DEK

Figure 6.3: Format of a data file stored on the cloud

Finally, each data file is stored on the cloud in the format as is shown in Fig.6.3.

User Grant When a new user wants to join the system, the data owner needs to

assign an access structure and the corresponding secret key to this user as follows.

• assign the new user a unique identity w and an access structure P ;

• generate a secret key SK for w, i.e., SK ← AKeyGen(P,MK);

• encrypt the tuple (P, SK, PK, δO,(P,SK,PK)) with user w’s public key, denoting

the ciphertext by C;

• send the tuple (T, C, δO,(T,C)) to Cloud Servers, where T denotes the tuple

(w, {j, skj}j∈LP \AttD), and LP represents the leaf nodes on the access structure

P . The tuple T contains all the secret key components in SK but the one for

the dummy attribute AttD.

On receiving the tuple (T, C, δO,(T,C)), Cloud Servers processes as follows.

• verify δO,(T,C) and proceed if correct;

• store T in the system user list UL;

• forward C to the user.

90

// to revoke user v
// stage 1: attribute update.

The Data Owner Cloud Servers
1. D ← AMinimalSet(P), where P remove v from the system user

is v’s access structure; list UL;
2. for each attribute i in D for each attribute i ∈ D

(t′i, T
′
i , rk

(k)
i)← AUpdateAtt(i,MK);

AT−−→ store (i, T ′
i , δO,(i,T ′i));

3. AT = (v, D, {i, T ′
i , δO,(i,T ′i), rk

(k)
i }i∈D). add rk

(k)
i to i’s history list AHLi.

// stage 2: data file and key update.
Cloud Servers User(u)

1. on receiving RQ, proceed if u ∈ UL;
2. get the tuple (u, {j, skj}j∈LP \AttD); 1. generate data file access request

RQ;

for each attribute j ∈ LP\AttD
RQ←−− 2. wait for the response from Cloud

sk′j ← AUpdateSK (j, skj, AHLj); Servers;
for each requested file f in RQ 3. on receiving RP , verify each

for each attribute k ∈ If
RP−−→ δO,(j,T ′j) and sk′j; proceed

if all correct;
E ′

k ← AUpdateAtt4File(k, Ek, AHLk); 4. replace each skj in SK with sk′j;
3. RP 5. decrypt each file in FL with SK.

= ({j, sk′j, T ′
j , δO,(j,T ′j)}j∈LP \AttD , FL).

Figure 6.4: Description of the process of user revocation

On receiving C, the user first decrypts it with his private key. Then he verifies

the signature δO,(P,SK,PK). If correct, he accepts (P, SK, PK) as his access structure,

secret key, and the system public key.

As described above, Cloud Servers store all the secret key components of SK

except for the one corresponding to the dummy attribute AttD. Such a design al-

lows Cloud Servers to update these secret key components during user revocation

as we will describe soon. As there still exists one undisclosed secret key component

(the one for AttD), Cloud Servers can not use these known ones to correctly de-

crypt ciphertexts. Actually, these disclosed secret key components, if given to any

unauthorized user, do not give him any extra advantage in decryption as we will

91

discuss in our security analysis. For the same reason, with these secret key com-

ponents Cloud Servers can even help users execute most bilinear pairing operations

pertained to data decryption as we will discuss.

User Revocation We start with the intuition of the user revocation operation as

follows. Whenever there is a user to be revoked, the data owner first determines a

minimal set of attributes without which the leaving user’s access structure will never

be satisfied. Next, he updates these attributes by redefining their corresponding

system master key components in MK. Public key components of all these updated

attributes in PK are redefined accordingly. Then, he updates user secret keys

accordingly for all the users except for the one to be revoked. Finally, DEKs of

affected data files are re-encrypted with the latest version of PK. The main issue

with this intuitive scheme is that it would introduce a heavy computation overhead

for the data owner to re-encrypt data files and might require the data owner to be

always online to provide secret key update service for users. To resolve this issue, we

apply our technique in Chapter 3 and combine the technique of proxy re-encryption

with KP-ABE to delegate tasks of data file re-encryption and user secret key update

to Cloud Servers. More specifically, we divide the user revocation scheme into two

stages as is shown in Fig.6.4.

In the first stage, the data owner determines the minimal set of attributes, re-

defines MK and PK for involved attributes, and generates the corresponding PRE

keys. He then sends the user’s ID, the minimal attribute set, the PRE keys, the

updated public key components, along with his signatures on these components to

Cloud Servers, and can go off-line again. Cloud Servers, on receiving this message

from the data owner, remove the revoked user from the system user list UL, store

the updated public key components as well as the owner’s signatures on them, and

record the PRE key of the latest version in the attribute history list AHL for each

92

updated attribute. AHL of each attribute is a list used to record the version evo-

lution history of this attribute as well as the PRE keys used as shown in figure 6.5.

Every attribute has its own AHL which is represented by the corresponding column

in figure 6.5. With AHL, Cloud Servers are able to compute a single PRE key that

enables them to update the attribute from any historical version to the latest ver-

sion. This property allows Cloud Servers to update user secret keys and data files in

the “lazy” way as follows. Once a user revocation event occurs, Cloud Servers just

record information submitted by the data owner as is previously discussed. Only

if there is a file data access request from a user, do Cloud Servers check the at-

tribute version information and when necessary re-encrypt the requested files and

update the requesting user’s secret key. This statistically saves a lot of computation

overhead since Cloud Servers are able to “aggregate” multiple update/re-encryption

operations into one if there is no data access request occurring across multiple suc-

cessive user revocation events.

Version # attr 1 attr 2 · · · attr n

k rk
(k)
1 rk

(k)
2 · · · rk(k)

n

k − 1 rk
(k−1)
1 rk

(k−1)
2 · · · rk(k−1)

n

· · · · · · · · · · · · · · ·
k −W rk

(k−W)
1 rk

(k−W)
2 · · · rk(k−W)

n

Figure 6.5: Attribute History Lists (AHLs)

One issue is how many versions should be recorded in the AHLs. In this work,

we leave this number as a system parameter, denoted by W . In practice, each

re-key in AHLs could be several hundred bits, e.g., 160 bits. The total storage

complexity for AHLs also depends on the number of attributes in the system. In

Cloud Computing, storage would not be an issue and the system has the ability to

record a large number of versions. More importantly, as the version numbers are

93

ordered, query over this table should be very efficient.

File Access This is also the second stage of user revocation. In this operation,

Cloud Servers respond user request on data file access, and update user secret keys

and re-encrypt requested data files if necessary. As is depicted in Fig. 6.4, Cloud

Servers first verify if the requesting user is a valid system user in UL. If true,

they update this user’s secret key components to the latest version and re-encrypt

the DEKs of requested data files using the latest version of PK. Notably, Cloud

Servers will not perform update/re-encryption if secret key components/data files

are already of the latest version. Finally, Cloud Servers send updated secret key

components as well as ciphertexts of the requested data files to the user. On receiving

the response from Cloud Servers, the user first verifies if the claimed version of each

attribute is really newer than the current version he knows. For this purpose, he

needs to verify the data owner’s signatures on the attribute information (including

the version information) and the corresponding public key components, i.e., tuples

of the form (j, T ′
j) in Fig. 6.4. If correct, the user further verifies if each secret

key component returned by Cloud Servers is correctly computed. He verifies this by

computing a bilinear pairing between sk′j and T ′
j and comparing the result with that

between the old skj and Tj that he possesses. If verification succeeds, he replaces

each skj of his secret key with sk′j and update Tj with T ′
j . Finally, he decrypts data

files by first calling ADecrypt(P, SK, E) to decrypt DEK’s and then decrypting

data files using DEK’s.

In the last step of the above process, the user can also choose to delegate the

major part of data decryption operation ADecrypt(P, SK, E) to cloud servers. This

is because in KP-ABE, data decryption mainly involves following steps: 1) select

a set of attributes from the header of the ciphertext (cf. figure 6.3.) that satisfy

the user’s access structure; 2) do bilinear pairing between the ciphertext component

94

Ei and secret key component ski for each attribute i in the selected attribute set,

and compute a blind factor with pairing results; 3) cancel the blind factor in the

ciphertext component Ẽ and recover DEK. In the decryption process, step 2)

represents the most computation-intensive part since a number of bilinear pairing

operations are needed, and the number is related to the complexity of the user access

structure. In our scheme, cloud servers possesses all the user secret key components

except for the one for the dummy attribute AttD. This makes it possible for the

cloud servers to do the bilinear pairing operations in step 2) on behalf of the user.

After having obtained the pairing results from the cloud servers, the user just need

to do another bilinear pairing for the dummy attribute AttD, compute the blind

factor, and recover DEK following step 3). If the user would like to disclose his

access structure to cloud servers, the later can even help the user compute the

blind factor. It turns out that the user just needs to perform three operations: one

bilinear pairing for the dummy attribute and two multiplications over an integer

field (one for computing the blind factor and the other for recovering DEK). Such

a computation task can be efficiently executed on contemporary portable devices

such as mobile phones.

File Deletion This operation can only be performed at the request of the data

owner. To delete a file, the data owner sends the file’s unique ID along with his sig-

nature on this ID to Cloud Servers. If verification of the owner’s signature returns

true, Cloud Servers erase the data file from the storage space.

2. Algorithm level operations

Algorithm level operations include eight algorithms: ASetup, AEncrypt, AKeyGen,

ADecrypt, AUpdateAtt, AUpdateSK, AUpdateAtt4File, and AMinimalSet. As

the first four algorithms are just the same as Setup, Encryption, Key Generation,

95

and Decryption of the standard KP-ABE respectively, we focus on our implemen-

tation of the last four algorithms. Fig.6.6 depicts two of the four algorithms.

AUpdateAtt(i,MK)
// assume current version of attribute i is k − 1;

randomly pick t′i
R← Zp;

compute T ′
i ← gt′i , and rk

(k)
i ← t′i

ti
;

output t′i, T ′
i , and rk

(k)
i .

AUpdateAtt4File(i, Ei, AHLi)
if i has the latest version, exit;
search AHLi and locate the old version of i;
// assume the old version of attribute i is j
// and its latest version is k.

rk
(j)→(k)
i ← rk

(j+1)
i · rk(j+2)

i · · · rk(k)
i =

t
(k)
i

t
(j)
i

;

compute E
(k)
i ← (Ei)

rk
(j)→(k)
i = g(t

(k)
i)s;

output E
(k)
i .

Figure 6.6: Pseudo-code of algorithm level algorithms

AUpdateAtt This algorithm updates an attribute to a new version by redefin-

ing its system master key and public key component. It also outputs a proxy re-

encryption key between the old version and the new version of the attribute.

AUpdateAtt4File This algorithm translates the ciphertext component of an at-

tribute i in the header of a data file from an old version into the latest version. It

first checks the attribute history list of this attribute and locates the position of the

old version. Then it multiplies all the PRE keys between the old version and the

latest version and obtains a single PRE key. Finally it apply this single PRE key

to the ciphertext component Ei and returns E
(k)
i which coincides with the latest

definition of attribute i.

AUpdateSK This algorithm translates the secret key component of attribute i in

the user secret key SK from an old version into the latest version. Its implementation

is similar to AUpdateAtt4File except that, in the last step it applies (rk
(j)→(k)
i)−1 to

96

SKi instead of rk
(j)→(k)
i . This is because t

(j)
i

13 is the denominator of the exponent

part of SKi while in Ei it is a numerator.

AMinimalSet This algorithm determines a minimal set of attributes without

which an access tree will never be satisfied. For this purpose, it constructs the

conjunctive normal form (CNF) of the access tree, and returns attributes in the

shortest clause of the CNF formula as the minimal attribute set.

6.2.4 Discussion

In our proposed scheme, we exploit the technique of hybrid encryption to protect

data files, i.e., we encrypt data files using symmetric DEKs and encrypt DEKs

with KP-ABE. Using KP-ABE, we are able to enjoy fine-grained data access con-

trol and efficient operations such as file creation/deletion and new user grant. To

resolve the challenging issue of user revocation, we combine the technique of proxy

re-encryption with KP-ABE and delegate most of the burdensome computational

task to Cloud Servers. We achieve this by letting Cloud Servers keep a partial copy

of each user’s secret key, i.e., secret key components of all but one (dummy) at-

tributes. When the data owner redefines a certain set of attributes for the purpose

of user revocation, he also generates corresponding proxy re-encryption keys and

sends them to Cloud Servers. Cloud Servers, given these proxy re-encryption keys,

can update user secret key components and re-encrypt data files accordingly without

knowing the underlying plaintexts of data files. This enhancement releases the data

owner from the possible huge computation overhead on user revocation. The data

owner also does not need to always stay online since Cloud Servers will take over

the burdensome task after having obtained the PRE keys. To further save compu-

tation overhead of Cloud Servers on user revocation, we use the technique of lazy

13The superscript (j) means ti is defined for attribute i of version j.

97

re-encryption and enable Cloud Servers to “aggregate” multiple successive secret

key update/file re-encryption operations into one, and thus statistically save the

computation overhead. Moreover, we reduce the computation load on user side in

terms of data decryption to a constant complexity by letting them securely delegate

most bilinear pairing operations in data decryption to cloud servers.

6.3 Analysis of Our Proposed Scheme

6.3.1 Security Analysis

We first analyze security properties of our proposed scheme, starting with the fol-

lowing immediately available properties.

Fine-grainedness of Access Control In our proposed scheme, the data owner

is able to define and enforce expressive and flexible access structure for each user.

Specifically, the access structure of each user is defined as a logic formula over data

file attributes, and is able to represent any desired data file set.

User Secret Key Accountability This property can be immediately achieved

by using the enhanced construction of KP-ABE in Chapter 4.

Data Confidentiality We analyze data confidentiality of our proposed scheme

by comparing it with an intuitive scheme in which data files are encrypted using

symmetric DEKs, and DEKs are direclty encrypted using standard KP-ABE. In

this intuitive scheme just ciphertexts of data files are given to Cloud Servers. As-

suming the symmetric key algorithm is secure, e.g., using standard symmtric key

algorithm such as AES, security of this intuitive scheme is merely relied on the

security of KP-ABE. Actually, the standard KP-ABE is provably secure under the

attribute-based Selective-Set model [12] given the Decisional Bilinear Diffie-Hellman

(DBDH) problem is hard. Therefore, the intuitive scheme is secure under the same

98

model. Our goal is to show that our proposed scheme is as secure as the intuitive

scheme. As is compared to the intuitive scheme, our scheme discloses the following

extra information to Cloud Servers: a partial set of user secret key components

(except for the one for the dummy attribute which is required for each decryption),

and the proxy re-encryption keys. Based on this observation, we sketch the security

proof of our proposed scheme using a series of games as follows.

Game 0: This is the security game of the intuitive scheme.

Game 1: The difference between this game and Game 0 is that, in this game

more than one (MK, PK) pairs are defined, and the adversary is given the PK’s

as well as the secret keys for each access structure he submits. In addition, the

adversary is also given the proxy re-encryption keys (between any two (MK, PK)

pairs).

Game 2: This game is for our proposed scheme. The only difference between this

game and Game 1 is that, in this game the partial set of user secret key components

are disclosed to the adversary.

Lemma 6.3.1 The advantage of the adversary in Game 1 is the same as that in

Game 0.

Proof: Our first goal is to show that, if there is a polynomial time algorithm A
that wins the semantic security game of Game 1 with non-negligible advantage,

we can use it to build a polynomial time algorithm B to win the semantic secu-

rity game of Game 0, i.e., the game under the attribute-based Selective-Set model.

In the semantic security game, the adversary submits two equal length challenge

message m0 and m1. The challenger flips a random coin b ← {0, 1} and encrypts

mb. The challenge cihpertext E is then given to the adversary. The adversary is

asked to output his guess b′ of the random coin b. If b′ = b the adversary wins.

99

During this game, the adversary is given public parameters and allowed to query

many user secret keys except for the one for the challenge ciphertext. Assum-

ing the algorithm A (i.e., the adversary) can win the semantic security game, i.e.,

b ← A(EA, {PKi}1≤i≤k, {SKj}1≤j≤qS
, {rk}), with non-negligible advantage, where

{PKi} and {SKj} denotes the set of all PK’s and the set of all the secret keys given

to A respectively, {rk} representing the set of all the proxy re-encryption keys, qS

denoting the number of secret key queries, and k representing the number of PK’s,

A polynomial time algorithm B can be built as is shown in Fig.6.7. Therefore, the

advantage of the adversary in Game 1 is not higher than that in Game 0. However,

the advantage of the adversary in Game 1 can not be lower than that in Game 0

since the adversary is given more information in Game 1 than in Game 0. Therefore,

the advantages in the two games are the same.

B(EB, PK, {SK ′
j}1≤j≤qS

)
assume PK = (Y, T1, T2, · · · , TN);

EB = (I, Ẽ, {Ej}j∈I);
SK ′

j = {skj,i}i∈L for all j ∈ {1, · · · , qS};
for u from 1 to k:

for v from 1 to N :

random choose ruv
R← Zp;

if u > 1, rku−1↔u =
r(u−1)v

ruv
;

add rku−1↔u to {rk};
PKu = (Y, T ru1

1 , T ru2
2 , · · · , T ruN

N);

EA ← (I, Ẽ, {Eruj

j }j∈I), where u
R← {1, · · · , k} ;

SKj = {(skj,i)
1

rui }i∈L, u is the same as above;
b′ ← A(EA, {PKi}1≤i≤k, {SKj}1≤j≤qS

, {rk}).
Figure 6.7: Construction of algorithm B from A

Lemma 6.3.2 The advantage of the adversary in Game 2 is the same as that in

Game 1.

Proof: As is described, the extra information disclosed to the adversary in Game 2

100

are the partial user secret keys. These partial user secret keys are actually equivalent

to the secret keys queried by the adversary in Game 1. Therefore, the view of the

adversary in the two games are the same. This proves this lemma.

According to the above two lemmas, we can conclude that our proposed scheme

is as secure as the intuitive scheme, which is provably secure. This proves data

confidentiality of our proposed scheme, even under collusion attacks between Cloud

Servers and malicious users.

6.3.2 Performance Analysis

This section numerically evaluates the performance of our proposed scheme in terms

of the computation overhead introduced by each operation as well as the ciphertext

size.

Computation Complexity We analyze the computation complexity for the

following six operations: system setup, new file creation, file deletion, new user

grant, user revocation, and file access.

System Setup In this operation, the data owner needs to define underlying bi-

linear groups, and generate PK and MK. For KP-ABE, the main computation

overhead for the generation of PK and MK is introduced by the N group multipli-

cation operations on G1.

New File Creation The main computation overhead of this operation is the en-

cryption of the data file using the symmetric DEK as well as the encryption of

the DEK using KP-ABE. The complexity of the former depends on the size of the

underlying data file and inevitable for any cryptographic method. The computation

overhead for the latter consists of |I| multiplication operations on G1 and 1 multi-

plication operation on G2, where I denotes the attribute set I of the data file. All

these operations are for the data owner.

101

File Deletion This operation just involves the data owner and Cloud Servers.

The former needs to compute one signature and the latter verifies this signature.

New User Grant This operation is executed interactively by the data owner,

Cloud Servers, and the user. The computation overhead for the data owner is

mainly composed of the generation of the user secret key and encryption of the user

secret key using the user’s public key. The former accounts for |L| multiplication

operations on G1, where L denotes the set of leaf nodes of the access tree. The

latter accounts for one PKC operation, e.g., RSA encryption. The main overhead

for Cloud Servers is one signature verification. The user needs to do two PKC

operations, one for data decryption and the other for signature verification.

User Revocation This operation is composed of two stages. The second stage

can actually be amortized as the file access operation. Here we just counts the op-

eration overhead for the first stage. That for the second stage will be included in

the file access operation. The first stage occurs between the data owner and Cloud

Servers. The computation overhead for the data owner is caused by the execution

of AMinimalSet and AUpdateAtt as well as the generation of his signatures for

the public key components. The complexity of algorithm AMinimalSet is actually

mainly contributed by the CNF conversion operation which can be efficiently real-

ized by existing algorithms such as [33] (with the complexity linear to the size of the

access structure). Assuming the size of the minimal set returned by AMinimalSet

is D, D ≤ N , the computation overhead for AUpdateAtt is mainly contributed by

D multiplication operations on G1. In addition, the data owner also needs to com-

pute D signatures on public key components. The computation overhead on Cloud

Servers in this stage is negligible. When counting the complexity of user revoca-

tion, we use N instead of the size of the access structure since in practical scenarios

AMinimalSet is very efficient if we limit the size of access structure (without af-

102

fecting system scalability), but each signature or multiplication operation on G1 is

expensive.

File Access This operation occurs between Cloud Servers and the user. For Cloud

Servers, the main computation overhead is caused by the execution of algorithm

AUpdateSK and algorithm AUpdateAtt4File. In the worst case, the algorithm

AUpdateSK would be called |L| − 1 times, which represents |L| − 1 multiplication

operations on G1. Each execution of the algorithm AUpdateAtt4File accounts for

one multiplication operation on G1. In the worst case, Cloud Servers need to call

AUpdateAtt4File N times per file access. Our lazy re-encryption solution will

greatly reduce the average system-wide call times of these two algorithms from

statistical point of view. File decryption needs |L| bilinear pairing in the worst case.

Fig.6.8 summarizes the computation complexity of our proposed scheme.

Operation Complexity
File Creation O(|I|)
File Deletion O(1)
User Grant O(|L|)
User Revocation O(N)
File Access O(max(|L|, N))

Figure 6.8: Complexity of our proposed scheme

Ciphertext Size As depicted in Section 6.2.3, the ciphertext is composed of an

ID, a header, and a body. The body is just the data block. The header for each

data file is composed of an attribute set I, one group element on G2, and |I| group

elements on G1.

103

6.3.3 Related Work

Existing work close to ours can be found in the areas of “shared cryptographic file

systems” and “access control of outsourced data”.

In [14], Kallahalla et al proposed Plutus as a cryptographic file system to secure

file storage on untrusted servers. Plutus groups a set of files with similar sharing

attributes as a file-group and associates each file-group with a symmetric lockbox-

key. Each file is encrypted using a unique file-blcok key which is further encrypted

with the lockbox-key of the file-group to which the file belongs. If the owner wants

to share a file-group, he just delivers the corresponding lockbox-key to users. As the

complexity of key management is proportional to the total number of file-groups,

Plutus is not suitable for the case of fine-grained access control in which the number

of possible “file-groups” could be huge.

In [29], Goh et al proposed SiRiUS which is layered over existing file systems such

as NFS but provides end-to-end security. For the purpose of access control, SiRiUS

attaches each file with a meta data file that contains the file’s access control list

(ACL), each entry of which is the encryption of the file’s file encryption key (FEK)

using the public key of an authorized user. The extension version of SiRiUS uses

NNL broadcast encryption algorithm [34] to encrypt the FEK of each file instead of

encrypting it with each individual user’s public key. As the complexity of the user

revocation solution in NNL is proportional to the number of revoked users, SiRiUS

has the same complexity in terms of each meta data file’s size and the encryption

overhead, and thus is less scalable.

Ateniese et al [30] proposed a secure distributed storage scheme based on proxy

re-encryption. Specifically, the data owner encrypts blocks of content with sym-

metric content keys. The content keys are all encrypted with a master public key,

which can only be decrypted by the master private key kept by the data owner. The

104

data owner uses his master private key and user’s public key to generate proxy re-

encryption keys, with which the semi-trusted server can then convert the ciphertext

into that for a specific granted user and fulfill the task of access control enforcement.

The main issue with this scheme is that collusion between a malicious server and

any single malicious user would expose decryption keys of all the encrypted data and

compromise data security of the system completely. User secret key accountability

is neither supported.

In [11], Vimercati et al proposed a solution for securing data storage on un-

trusted servers based on key derivation methods [35]. In this proposed scheme, each

file is encrypted with a symmetric key and each user is assigned a secret key. To

grant the access privilege for a user, the owner creates corresponding public tokens

from which, together with his secret key, the user is able to derive decryption keys

of desired files. The owner then transmits these public tokens to the semi-trusted

server and delegates the task of token distribution to it. Just given these public

tokens, the server is not able to derive the decryption key of any file. This solution

introduces a minimal number of secret key per user and a minimal number of en-

cryption key for each file. However, the complexity of operations of file creation and

user grant/revocation is linear to the number of users, which makes the scheme less

scalable. User access privilege accountability is also not supported.

6.3.4 Discussion

According to the above analysis, we can see that our proposed scheme is able to

realize the desired security goals, i.e., fine-grained access control, data confidentiality,

and user secret key accountability. The goal of scalability is also achieved since the

complexity for each operation of our proposed scheme, as is shown in Fig. 6.8, is

independent to the number of users and that of data files in the system. Therefore,

105

our proposed scheme can serve as a promising candidate for data access control in

the emerging cloud computing environment. On the contrary, existing access control

schemes in related areas, when applied to the cloud computing environment, have

various limitations in terms of system scalability, fine-grainedness of access policies,

and adequate protection over data confidentiality.

6.4 Summary

This chapter aims at fine-grained data access control in cloud computing. One

challenge in this context is to achieve fine-grainedness, data confidentiality, and

scalability simultaneously, which is not well supported by current work. In this

work we propose a scheme to achieve this goal by exploiting KP-ABE and uniquely

combining it with techniques of proxy re-encryption and lazy re-encryption. Our

proposed scheme can enable both the data owner and users to delegate most of

computation overhead to powerful cloud servers. User secret key accountability can

also be achieved. Formal security proofs show that our proposed scheme is secure

under standard cryptographic models.

106

Chapter 7

Secure Data Sharing with ABE in

Wireless Sensor Networks

This chapter addresses the issue of secure data sharing for distributed data storage

in Wireless Sensor Networks (WSNs) [59–61]. In WSNs, storing data at local sensor

nodes or at designated in-network nodes greatly saves the network-wide communi-

cation load and has a lot of benefits such as energy-efficiency [65–70, 85]. However,

unattended wireless sensor nodes are very likely subject to strong attacks such as

physical compromise. In this sense a storage node in WSNs can be viewed as an

untrusted storage since the owner of the WSN may have concerns on data security

in mission-critical applications if data are stored without proper protection. A se-

cure data storage and retrieval scheme is required for distributed data storage in

WSNs. When previous works [71–82] focus on data confidentiality and integrity

protection or communication security, the issue of fine-grained data access control

in WSNs is seldom addressed. In this chapter we address this issue and provides a

cryptographic-based access control mechanism with ABE. The main challenge in this

work is to make the expensive ABE operations affordable to resource-constrained

107

sensor nodes. We resolve this issue by dividing the lifetime of sensor nodes into

phases and then distribute the underlying mathematical operations in ABE over

these phases. To minimize the communication and computation load on sensor

nodes in case of user revocation, we revise an existing ABE scheme and makes the

user revocation complexity on sensor nodes constant. Formal security proof and

experimental results shows that our proposed solution is provably secure and af-

fordable to real sensor nodes. To the best of our knowledge, our work is de facto

the first that provides a secure mechanism for distributed fine-grained data access

control in WSNs.

7.1 Models and Assumptions

7.1.1 Network Model

In this work, we consider a wireless sensor network composed of a network con-

troller which is a trusted party, a large number of sensor nodes, and many users.

Throughout this chapter, we will denote the network controller with the symbol T .

Symbol U and N are used to represent the universe of the users and the sensor

nodes respectively. Both users and sensor nodes have their unique IDs. Symbol

Ui will be used to denote user i, and Nj to represent sensor node j. The trusted

party T can be online or off-line. It comes online merely on necessity basis, e.g., in

the case of intruders detected. Each sensor could be a high-end sensor node such

as iMote2 which has greater processing capability and a larger memory than con-

ventional sensor nodes. Sensor data could be stored locally or at some designated

in-network locations [68–70,85]. As is conventionally assumed, we consider each user

Ui to have sufficient computational resources to efficiently support expensive cryp-

tographic operations such as bilinear map. In addition, we assume there is a loose

108

time synchronization among the sensor nodes, and the lifetime of the network is

further divided into phases based on the time synchronization. Such an assumption

can also be found in previous works such as [83].

7.1.2 Adversary Model

This work considers attackers whose main goal is to learn about the contents of

sensor data that they are not authorized to. The adversaries could be either ex-

ternal intruders or unauthorized network users. Due to lack of physical protection,

sensor nodes are usually vulnerable to strong attacks. In particular, we consider the

adversary with both passive and active capabilities, which can (1)eavesdrop all the

communication traffics in the WSN, and (2) compromise and control a small number

of sensor nodes. In addition, (3)unauthorized users may collude to compromise the

encrypted data.

7.1.3 Security Requirements

For the purpose of securing distributed data storage in WSNs, the main goal of this

work is to protect contents of sensor data from being learned by attackers, including

external intruders and unauthorized network users. With respect to data access

control in WSNs, we recognize the following unique but not necessarily complete

security requirements.

Fine-grained Data Access Control: In many application scenarios, especially

mission-critical cases, disclosure of sensitive data should be well controlled such

that different users many have access privileges over different types of data. For this

purpose, we need to define and enforce a flexible access policy for each individual

user based on the user’s role in the system. In particular, the access policy should

be able to define a unique set of data that the user is authorized to access, and must

109

be enforced via a cryptographic method since sensor nodes are vulnerable to strong

attacks like physical compromise.

Collusion Resilience: As described by our adversary model, unauthorized users

may cooperate for the purpose of learning about the contents of sensitive data. This

requires our data access control scheme to be resilient to collusion attacks in the

sense that the collaboration of unauthorized users will not give them additional

advantages over what they can directly obtain from executing attacks individually.

Sensor Compromise Resistance: Due to lack of compromise-resistant hardware,

a small number of sensor nodes could be physically compromised by the adversary

in hostile environments. Now that the adversary can always obtain the sensor data

generated by a sensor node after it is compromised, we should at least secure sensor

data such that, (1) compromising the sensor node does not disclose the sensor data

generated before the sensor is compromised, and (2) compromising one sensor node

does not give the adversary any assistance to obtain sensor data generated by other

sensor nodes.

Backward Secrecy: User management is an important functionality required by

most application scenarios. In particular, the system should be able to handle user

revocation in the case of user leaving request or malicious behavior detected. To

support such a functionality, the data access control mechanism should guarantee

that the revoked users are not able to access the sensor data generated after they

are revoked.

7.2 Our Proposed Scheme

This section presents our data access control scheme for distributed data storage in

WSNs. We first introduce our access control strategy. Next, we give an overview of

110

our proposed scheme. Then, we present the detailed description of our basic scheme,

which is followed by an advanced design.

7.2.1 Access Control Strategy

For the purpose of achieving fine-grained data access control in WSNs, we first

explore some inherent natures of WSNs. In general, the deployments of most WSNs

are aimed at collecting certain types of data for specific application(s). Therefore,

we are able to specify individual sensors (and hence the data collected by them)

through a set of predefined attributes. For example, in the battlefield, sensor nodes

are usually deployed to collect military information in certain geographic location.

Each sensor node may be responsible for collecting specific types of data such as

vibration, smoke, so on and so forth. Sensor nodes may also have their owners, i.e.,

persons or units who are in charge of them. In particular, some nodes may be jointly

owned by different units. Hence, we may specify sensor nodes using these attributes

such as {location = village, data type = (vibration, smoke), owner = (explosion

experts, officers, scouts)}. This further enables us to specify data access privileges

of users based on these attributes. In the above example, we may designate the

access structure of a user as “(location is village) AND (type is vibration)”, which

allows the users to obtain vibration data within the village area. We may also

define more sophisticated access structures such as “(location is village) AND (type

is vibration OR smoke) AND (at least owned by 2 of the following: explosion experts,

officers, scouts)”. In this case, the user can only access vibration and smoke data

collected within the village area. In addition, the last condition implicitly requires

the user to belong to at least two of the three designated groups. To enforce these

access structures, we predefine a public key component for each of the attributes,

and encrypt sensor data with public key components of the corresponding attributes

111

AND

OR

2-of-3location: village

type: vibration type: smoke

 scouts

officers

explosion experts

Figure 7.1: An example access structure in the battlefield scenario

such that only the users with “satisfiable” access structures14 are able to decrypt.

Having discussed the intuitive idea of our data access control strategy, we further

present it more formally as follows. In our proposed scheme, we associate each sensor

node (and hence its collected data) with a set of attributes, for each of which we

define a public key component. Each user is assigned an access structure, which

is implemented via an access tree and embedded in the user’s secret key. Every

leaf node of the access tree is labelled with an attribute and the interior nodes

are defined as threshold gates15. This kind of definition of user access structure is

able to represent very expressive logic expressions over attributes, and thus specify

data access privileges of users in the fine-grained manner. Actually, we are able to

represent any general (monotone or non-monotone) access structures if we define

the NOT of each attribute as a separate attribute, which in turn will double the

number of attributes in our system. Fig 7.1 illustrates the aforementioned access

structure in the battlefield scenario.

Formally, in this work we will denote the universe of all the sensor attributes in

a WSN by a symbol I. The set of attributes owned by each single sensor node is

denoted by a symbol Ii, where i is the sensor node ID. We have I =
⋃
∀i∈N Ii. Let

k = max∀i∈N |Ii|. k will be a system parameter used by our scheme. The access

14That is to say, the logic expression represented by the access structure returns TRUE over the
data attributes.

15A t-of-n threshold gate outputs TRUE if and only if at least t out of the n inputs are TRUE.
Two extreme examples are AND gates (n-of-n) and OR gates (1-of-n).

112

structure is generally denoted by P .

7.2.2 Scheme Overview

In our basic scheme, each sensor node is preloaded with a set of attributes as well as

the public key PK. Each user is assigned an access structure and the corresponding

secret key SK. As mentioned in section 7.1.1, the lifetime of the sensor network

is divided into phases, each of which has the same time duration. Based on this,

we further define each n consecutive phases as a stage, where n < k and k =

max∀i∈N |Ii| is a system parameter. Therefore, the lifetime of the sensor network can

also be represented by a series of consecutive stages, numbering as 1, 2, · · · ,m, where

m is a system parameter. Sensor nodes encrypt sensed data using a symmetric-key

algorithm, e.g., AES. Over each phase every sensor node updates its data encryption

key once in the way that the data encryption keys during one stage form a one-way

key chain. The key update algorithm could be any standard one-way hash function

such as SHA-1. We call the first key on this key chain by the master key, denoted

by K. The master key of each stage is always generated during its preceding stage,

and encrypted under the preloaded attributes. Upon request for sensor data, the

sensor node responds with the encrypted master key as well as the ciphertext of the

sensor data. If the user is an intended receiver, he is able to decrypt the master

key and derive the data encryption keys for phases of his interest, and thus decrypt

the sensor data. Based on the basic scheme, our advanced scheme goes one step

further by providing the functionality of user revocation, which is demanded by

most WSN application scenarios. In the advanced scheme, T is able to revoke any

user via broadcasting a user revocation message to all the users and all the sensor

nodes respectively. In particular, the user revocation message for the sensor nodes

contains merely one group element of GT .

113

7.2.3 The Basic Scheme

The construction of our basic scheme based on KP-ABE [12] and the one-way key

chain is as follows.

1. System Initialization

On initialization, T executes the following steps:

a) Select two multiplicative cyclic groups G1 and GT of prime order p as well as

a bilinear map e : G1 × G1 → GT . Let g be the generator of G1.

b) Choose a number ti uniformly at random from Zp for each attribute i ∈ I,

and y randomly from Zp. Output the public key as follows:

PK = 〈G1, g, Y = e(g, g)y, T1 = gt1 , · · · , T|I| = gt|I|〉

The master secret key is MK = (y, t1, · · · , t|I|).

c) Choose a secure one-way hash function, denoted as h(·). Pre-load the following

information to each sensor node Ni:

T → Ni : Ii, h(·), PK

d) For each user Uj, T generates an access structure P and computes his secret

key SK as follows. Starting from the root node r of P and in the top-down

manner, construct a random polynomial qx of degree dx + 1 using Lagrange

interpolation for each node x in P , where dx is the threshold value of node

x. For each non-root node x in P , set qx(0) = qparent(x)(index(x)), where

parent(x) is the parent of x and index(x) is the unique index number of x

114

given by its parent. In particular, set qr(0) = y. SK is output as follows

SK = 〈{Di = g
qi(0)

ti }i∈L〉

where L denotes the set of leaf nodes in P . Then, Uj is pre-loaded with the

following information

T → Uj : P , SK, h(·), PK

2. Master Key Encryption

During each stage v ∈ [1,m], Ni generates a new master key for stage v + 1 and

encrypts it as follows:

a) Select a number s uniquely at random from Zp.

b) On each phase of stage v, calculate one item Ei = T s
i for attribute i ∈ Ii.

After |Ii| phases, |Ii| ≤ k, Ni has the complete set {Ei = T s
i }i∈Ii

.

c) Randomly select a number K ∈ K as the master key of the key chain, where K
denotes the key space. Then, compute E ′ = KY s. Finally, store the ciphertext

as follows:

Ev+1 = 〈v + 1, Ii, KY s, {Ei = T s
i }i∈Ii

〉

where Ev+1 represents the encrypted master key for the (v + 1)th stage.

3. Data Storage

Ni encrypts and stores the sensor data generated in the current phase, say phase

t ∈ [1, n] of stage v ∈ [1,m], as follows:

115

a) Calculate the data encryption key Kt = h(Kt−1). In particular, we set K0 =

K.

b) Encrypt the sensor data, denoted by D, with current data encryption key

Kt. Then, store the item 〈v, t, {D}Kt〉, where {D}Kt represents the encrypted

sensor data.

c) Erase Kt−1 from the memory.

For each sensor node, all the data encryption keys used during one stage form a

one-way key chain. The sensor node just keeps the latest data encryption key in its

memory, while erasing all the previous ones.

4. Data Access

Assume user Uj is requesting for sensor data generated by sensor node Ni during

phase t of stage v. Ni responds the data query request with the following message:

Ni → Uj : 〈Ev, {D}Kt〉

On receiving the response from Ni, Uj executes the following steps to obtain the

sensor data:

a) Decrypt the master key K of stage v from Ev. The decryption process starts

from the leaf nodes and in the bottom-up manner. First, Uj computes the

value Fi for each leaf node i in P as follows.

Fi =

e(Di, Ei) = e(g, g)sqi(0), if i ∈ Ii ;

⊥, otherwise.

Then, it proceeds in the recursive way from the second last layer as follows:

for node x which is a dx-of-n gate, if more than n − dx children returns ⊥,

116

Fx = ⊥. Otherwise,

Fx =
∏

i∈Sx

F
δi(0)
i =

∏

i∈Sx

e(g, g)sqi(0)δi(0) = e(g, g)sqx(0)

where Sx denotes the set of x’s children and δi(0) is the Lagrange coefficient

which can be calculated by the user himself. If P “accepts” Ii, Uj will finally

obtain e(g, g)sqr(0) = e(g, g)sy and thus decrypt the master key K. Otherwise,

the decryption algorithm returns ⊥.

b) If the decryption algorithm returns ⊥, terminate. Otherwise, Uj calculates the

data encryption Kt from K by Kt = ht(K), and finally decrypts the sensor

data with Kt.

In this basic scheme, we assign each sensor node a set of attributes and each

user an access structure. Sensor data are encrypted under the attributes such that

only the users with “satisfiable” access structures are able to decrypt. As the access

structure is very expressive, we are able to precisely control the access privilege

of each user, and thus enjoy fine-grained data access control. The access policies

in the basic scheme are actually enforced by using KP-ABE [12]. To alleviate the

computation overload, we divide the lifetime of sensor nodes into stages and phases.

On each stage a master key is generated to serve as the “seed” for the data encryption

keys of the underlying phases. For the purpose of access control, we just need to

encrypt the master key of each stage under the attribute-based encryption algorithm.

Sensor data are encrypted using symmetric-key encryption such as AES which is very

efficient. As master keys are generated at a relative low frequency, we are able to

distribute the computation overload of attribute-based encryption into each phase

and thus make the expensive operations affordable to the sensor nodes.

117

5. User Revocation

Another fundamental functionality of WSNs is user management. In particular,

we stress that the network operator should be able to revoke the user’s access priv-

ilege when necessary. In our basic scheme, we can use the following approaches to

revoke users from the system: one approach is to define some time attributes [2,18],

and embed an expiration date to each user’s access structure based on the time at-

tributes. Sensor nodes can then associate a time stamp to each ciphertext using the

time attributes. If sensor nodes always associate the current time stamp to cipher-

texts, users will be automatically revoked after their designated expiration dates.

Another approach for user revocation is to define some “identity attributes” [13],

e.g., defining a binary attribute for each bit of user identity, and associate the corre-

sponding identity attributes to each user’s access structure. Sensor nodes can then

associate any intended user list with each ciphertext using the “identity attributes”.

To revoke a user, sensor nodes can encrypt data using a selected set of “identity

attributes” which exclude the revoked user’s identity. The advantage of the two

approaches is that they do not involve extra communication with users. However,

the limitation of them is also obvious. For the first approach, users can only be

revoked at a pre-defined time. It does not support user revocation on the fly. The

second approach is “stateful”, i.e., every ciphertext (and hence the sensor nodes)

needs to remember all the revoked users in the history. The ciphertext size would

keep increasing as more and more random users are revoked, which ends up with a

heavy computation and communication overhead on each sensor node after several

rounds of user revocation. To resolve this issue, in this work we propose to update

secret keys of all the users but the one(s) to be revoked. More specifically, we will

update a common master key component which is embedded into every user’s secret

key as we will discuss in detail. The benefits of this key update method can be

118

summarized as follows. First, this approach is “stateless” and sensor nodes do not

need to “remember” any revoked user in the history. Second, the user revocation

process does not introduce too much communication or computation overhead on

each sensor node. Actually, each sensor node just needs to update one of its pub-

lic key components which can be efficiently achieved by broadcasting the common

public key component to all the sensor nodes. Consequently, the affect of user revo-

cation on each sensor node is minimal. The main issue with the proposed solution,

however, is that it needs every user to communicate with the authority via unicast

to update his secret key. To resolve this issue, we revise the original KP-ABE con-

struction so that we can update secret keys for all non-revoked users by broadcasting

a common element to them, which can be efficiently realized by existing broadcast

encryption techniques. We also prove that our revision to KP-ABE has the same

security strength as the original construction in terms of semantic security of data.

7.2.4 The Advanced Scheme

The basic idea of our advanced user revocation solution is to separate the master

secret key y from the user access structure in the user secret key SK. Update of

user secret keys can thus be realized by updating the embedded secret y which is

common to every user’s secret key. As a result, we can update user secret keys via

broadcasting the incremental of y while excluding the leaving user from the recipient

list. Based on this general idea, we present our advanced scheme as follows. For

brevity, we just present the parts that need to be changed as compared to our basic

scheme.

1. System Initialization

T executes the following steps.

a) The same as step a) of 1) in the basic scheme.

119

b) In addition to the elements generated by step b) of 1) in the basic scheme, T
selects a number β uniquely at random from Zp. The public key PK and the

master secret key MK are then output as follows.

PK = 〈G1, g, Y, {Ti = gti}i∈I , gβ〉

MK = 〈y, t1, · · · , t|I|, β〉

c) The same as step c) of 1) in the basic scheme.

d) Sensor node Ni is pre-loaded with the following

T → Ni : Ii, h(·), PK

e) The process of key generation is similar to step d) of 1) in the basic scheme.

T outputs the user secret key SK as follows.

SK = 〈g y−θ
β , {Di = g

qi(0)

ti }i∈L〉

Compared to the basic scheme, this algorithm introduces a new element g
y−θ

β

into SK, where θ = qr(0) is randomly selected from Zp, and qr denotes the

polynomial for the root node r in P . Uj is then preloaded with 〈P , SK, h(·), PK〉.

2. Master Key Encryption

Similar to 2) in the basic scheme. The advanced scheme introduces a new element

gβs into the ciphertext as follows:

Ev+1 = 〈v + 1, Ii, KY s, {Ei = T s
i }i∈Ii

, gβs〉

120

3. Data Storage The same as 3) in the basic scheme.

4. Data Access

This part is the same as 4) in the basic scheme except for step a).

a) The decryption process is similar to that in the basic scheme. When the

data attributes satisfy the user’s access structure P , the user obtains e(g, g)θs.

Then, he decrypts the message as follows.

M =
Me(g, g)ys

e(g
y−θ

β , gβs)e(g, g)θs

In this advanced scheme, T is able to update the master secret key y embedded in

the user secret key SK by broadcasting g
∆y
β to the users, where ∆y is the incremental

of y. With the above enhancement, we can present our user revocation scheme as

follows.

5. User Revocation

To revoke a user Uj, T needs to update the master secret key y for the sensor

nodes as well as the remaining users. The process can be illustrated as follows.

T : y′ ← Zp, ∆y ← y′ − y, Y ′ ← e(g, g)y′ , g
∆y
β

T → N : Y ′

T → U\Uj : g
∆y
β

First, T chooses a random number y′ ∈ Zp as the new value of the master secret

key y. The incremental is set as ∆y = y′−y. Then, it calculates the new public key

Y ′ = e(g, g)y′ and the group element g
∆y
β . Finally, T broadcasts Y ′ to all the sensor

nodes and g
∆y
β to all the users excluding the one to be revoked. Upon receiving the

master secret key update message, each sensor node simply replaces the public key

121

Y with Y ′16. The master key for the next stage will be encrypted under the new

public key. Each user updates his secret key as follows: g
y−θ

β g
∆
β = g

y′−θ
β . The master

secret key y is thus updated as y′. In this user revocation scheme, one challenging

issue is to selectively broadcast g
∆y
β such that all but the leaving users are able to

receive it. Fortunately, there are plenty of off-the-shelf selectively broadcast schemes

available for different application scenarios. [34] is able to broadcast any n−r out of

n users with ciphertext size of O(r) and private key size of O(log2n), which is further

reduced to O(logn) by [86]. This scheme is suitable for application scenarios where

the number of revoked users each time is small. In [46], Boneh et al. proposed

a scheme which is able to broadcast to arbitrary subset of users with constant

ciphertext size (only two group elements). This scheme is extremely suitable for

bandwidth-critical applications. One drawback of this basic scheme of [46] is that

the public key size is of O(n). To balance the size between the public key and

the ciphertext, a revised scheme is presented in which both the ciphertext and the

public key are of size O(
√

n). In [48], Cheung et al. proposed a collusion-resistant

broadcast encryption scheme based on flat table scheme [56] and attribute-based

encrytpion [2]. Both the ciphertext and the user secret key are of size O(logn).

In [13], Yu et al. further improved [48] by supporting receiver anonymity. [48]

and [13] are suitable for scenarios in which the system wants to revoke users of

some common attributes, or the number of revoked users each time is small. In

our proposed scheme, we do not designate any particular selective broadcast scheme

for user secret key update. The system designer can pick an appropriate broadcast

scheme from the above candidates according to the requirement of the actual system.

6. Further Enhancement

16Note that, the new public key Y ′ should be signed by the authority so that the sensor nodes
can verify its authenticity. The signature scheme can be off-the-shelf algorithms such as ECDSA.
For brevity, we do not explicitly include the signature in our proposed scheme.

122

In the above user revocation scheme, g
∆y
β is an update message common to all

non-revoked users, which opens the door for a non-revoked user to collude with

revoked users and help them decrypt the data. In [4], Boldyreva et al. proposed

a user revocation scheme for IBE and KP-ABE in which user collusion attacks are

well addressed. The proposed scheme is built on top of the construction of Fuzzy

IBE [19] and the binary tree data structure. More specifically, it introduces a time

attribute and use it in the encryption of each message. The root node of each user’s

access tree is an AND gate with one child being the time attribute and the other

being the root node of ordinary access structure. When a user is to be revoked,

the system administrator generates key updates on the time attribute using the

binary tree, each leaf node of which is associated to one user. Since new messages

will be encrypted with the updated time attribute, users didn’t receive the key

updates will not be able to decrypt. In this scheme, the complexity of encryption

and decryption is comparable to that of current KP-ABE [12]. The complexity of

user revocation in terms of message size and computation overhead is O(rlog(n
r
))

when 1 < r ≤ n/2, or O(n − r) when n/2 < r < n, where r is the total number of

revoked users and n is the total number of users. It should be noted that, we can

also use this revocable KP-ABE in our scheme for achieving fine-grained data access

control. One significant advantage of using the revocable KP-ABE is its enhanced

security against user collusion. However, the complexity of user revocation is linear

to the number of revoked users which could raise concerns in large scale systems

when that number is approaching n/2. In our proposed user revocation solution,

the system designer is free to choose a broadcast scheme. For example, he/she can

use [46] which has the constant ciphertext size if communication overhead is of the

most importance. However, security level is reduced in this solution. We treat the

above issue as a trade-off between efficiency and security, and leave the choice to

123

the system deployer.

7.2.5 Discussions

1. Change of Sensor Attributes

Conventionally the set of attributes of each sensor node does not change through-

out the node’s lifetime, or we can make this assumption as it is enough for many

application scenarios. Nevertheless, there are still some cases in which the attributes

of sensor nodes would change. For example, in some dynamic environments such as

battlefields, the location of a portion of sensor nodes might be adjusted frequently.

In this case, it is desirable to change the location attributes for the involved sensor

nodes while not affecting the others. To achieve this goal, we just need to load the

involved sensor nodes with the new attribute lists as well as the corresponding public

key components. This can be easily realized in our proposed scheme as long as the

involved sensor nodes are convinced of the authenticity of the update, which can

be realized without any difficulty by attaching the network controller’s signature to

the update.

2. Support for Concealed Data Aggregation

In-network aggregation of data has been put forward as an important paradigm

for wireless sensor networks which enables in-network consolidation of redundant

data and thus saves energy [87]. In practical settings, it is often desired to pro-

vide in-network data aggregation while guaranteeing data confidentiality for privacy

concerns. The concept of Concealed Data Aggregation (CDA) [88] was proposed to

address this issue. With CDA, the intermediate nodes are able to aggregate data

by performing the aggregation operations on incoming ciphertexts without knowing

the data encryption keys nor the plaintext. To realize CDA, sensing nodes should

encrypt data using certain encryption transformation, a.k.a. privacy homomorphism

124

(PH). A survey on existing PH schemes, including symmetric and asymmetric ones,

can be found in [89]. We stress that our proposed scheme can seamlessly inte-

grate existing symmetric PH schemes and thus realize CDA. To justify this, we

take [90] as an example and show how that PH scheme is integrated with our pro-

posed scheme. At a high level the PH scheme in [90] has the property as follows.

Given two messages m1 and m2, and their respective encryption keys k1 and k2, if

c1 = Enc(m1, k1) and c2 = Enc(m2, k2), then c1 + c2 = Enc(m1 + m2, k1 + k2) and

Dec(c1 + c2, k1 + k2) = m1 + m2. This property still holds for the case of more than

two messages and can be used to compute statistical values, e.g., mean, variance

and standard deviation, of sensed data. Intuitively, we can integrate this PH scheme

into our proposed scheme in the following way: First, let each sensing node encrypt

the sensed data with its data encryption key ki and encrypt ki (actually its seed)

under its attributes. This process is basically the same as that of our proposed

scheme. Then, upon data query every sensing node sends both the ciphertext of

the sensed data and that of ki to its upstream aggregating node. The intermediate

aggregating nodes, after having collected all the downstream data, do the aggre-

gation operations on the ciphertexts of data while keeping ciphertexts of the data

encryption keys intact. Subsequently, they transmit the aggregated ciphertext of

data along with the ciphertexts of data encryption keys to their respective upstream

aggregating nodes. The above process is recursively executed until it reaches the

user. The user, on receiving the ciphertexts, first recovers the data encryption keys

if his access structure satisfies with the sets of attributes of all the sensing nodes.

Then he does the same aggregation operations over the recovered data encryption

keys as all the aggregating nodes did to compose a “aggregated” data encryption key

of the final data ciphertext and decrypt the aggregated value of data. The drawback

of this intuitive solution is that the ciphertexts of the data encryption keys could

125

be a heavy communication overhead. This is because the size of such a ciphertext

grows linear with the number of attributes of the sensing node and each intermedi-

ate aggregating node should forward these ciphertexts of all its downstream sensing

nodes. To alleviate this overhead, we can enforce our access control strategy only

on few designated upstream aggregating nodes. In this way the downstream sensing

nodes just need to encrypt sensed data with their data encryption keys. These des-

ignated upstream aggregating nodes fulfill our access control strategy by encrypting

the “aggregated” data encryption keys under certain set of attributes. One issue

underlying this method is that the aggregating nodes should distribute data encryp-

tion keys to all its downstream sensing nodes, which can be resolved using existing

key distribution methods [91].

7.3 Scheme Evaluation

This section evaluates our proposed scheme in terms of security and performance

aspects.

7.3.1 Security Analysis

We evaluate the security of our work by analyzing the its fulfillment of the security

requirements described in section 7.1.

Fine-grained Data Access Control: To provide fine-grained data access control,

the proposed scheme should provide a strategy that is able to define and enforce com-

plex access policies for sensor data of various types or security levels. In FDAC, the

access structure embedded in each user’s secret key is able to represent complicated

predicates such as disjunctive normal form (DNF), conjunctive normal form (CNF),

126

and threshold gates. The combination of these predicates are able to represent so-

phisticated access structures. In fact, our scheme is able to support non-monotonic

(general) access structures if we define the NOT of each attribute as a separate

attribute, which in turn will double the number of attributes in our system. To en-

force our access control strategy, we encrypt the master key of the key chain in each

stage under a set of attributes. Without the master key, the adversary is not able to

derive the data encryption keys due to the one-wayness of the key chain, which can

be guaranteed by choosing a secure one-way hash function such as SHA-1. In our

basic scheme, the master key is actually encrypted under the standard key-policy

attribute-based encryption (KP-ABE) scheme [12] which is provably secure. Our

advanced scheme, to achieve efficient user revocation, makes some enhancement to

the standard KP-ABE when encrypting the master key. The enhanced KP-ABE is

provably secure under the Decisional Bilinear Diffie-Hellman (DBDH) assumption.

(A formal security proof is available in our journal paper [119]). This turns out that

the adversary is not able to decrypt the master key unless he owns the intended

access structure. Therefore, our proposed scheme is able to control the disclosure of

sensor data so that only authorized users are able to access.

Collusion Resilience: To compromise sensor data, the main task of the colluding

users is to decrypt the master key of the target data if the one-wayness of the un-

derlying one-way has function, e.g., SHA-1, is guaranteed. Since the master key is

encrypted under our enhanced scheme, we have to prove that it is collusion-resistant.

Intuitively, we can sketch the collusion-resistance of our enhanced scheme as follows.

Recall that the master key is encrypted in the form of Ke(g, g)ys. The user has to

cancel e(g, g)ys to recover K. To compose e(g, g)ys, the only way is to execute the

following: e(g
y−r

β , gβs) = e(g, g)ys/e(g, g)rs. To extract e(g, g)ys, the user should

127

compute e(g, g)rs. Actually, for each user, r is randomly and independently selected

from Zp. The secret key from one unauthorized user does not give the other user

any help in terms of computing e(g, g)rs. Actually, in our security proof the security

definition (cf. our journal paper []) implies collusion resistance. As our scheme is

provably secure under this security definition, collusion resistance is also guaranteed.

Sensor Compromise Resistance: To meet this security requirement, we should

achieve two security goals: (1) compromising the sensor node does not disclose the

sensor data generated before the sensor is compromised, and (2) compromising one

sensor node does not give the adversary any advantage to obtain data generated by

other sensor nodes. We can show the fulfillment of our scheme with respect to these

two security goals as follows: (1) In our scheme, each sensor node just keeps the

current data encryption key in the memory, while erasing all the previously used

keys. Because of the one-wayness of the key chain, the compromiser is not able

to derive the previously keys from the current key. (2) is easy to prove since each

sensor node encrypts data independently.

Backward Secrecy: As is described in the previous section, our advanced scheme

is able to update the master key y for legitimate users while excluding those to be

revoked. Since the new sensor data will be encrypted under the latest master key,

the revoked users are not able to decrypt. One problem in our scheme is, the user

revocation instruction will not take effort until a new stage starts. Such a delay

occurs because it would take one stage for each sensor node to encrypt the master

key under the attributes. This delay may differ for different systems. For example,

if a system defines 30 phases as a stage and each phase lasts 1 second, the delay will

be at the most half a minute. Generally, if a system has a stage with less phases

128

and each phase takes less time, e.g., each sensor node is assigned a smaller number

of attributes or has a more powerful computational capability, the delay can be

shorter. In practical applications, we leave this delay as a system parameter, and

the system designer can adjust this parameter by changing the number of attributes

assigned to each sensor node or using a different type of sensor nodes.

In addition to the security goals listed above, there are also some other security

requirements such as data integrity and authenticity, which are desired by conven-

tional WSN applications. In fact, security requirements such as message integrity

can be easily supported in our scheme with minor modifications using existing off-

the-shelf techniques. A challenging orthogonal issue would be data authenticity

which requires sensing nodes to provide proofs of data authenticity to users. Some

current work such as [92, 93] has provided salient solutions to this problem. As the

main focuses of this work is fine-grained data access control, we do not explicitly

address all those security problems.

7.3.2 Performance Evaluation

This section evaluates the performance of our proposed scheme in terms of com-

putation and communication overheads. In our scheme, sensor data are generated

and encrypted by sensor nodes, and retrieved and decrypted by users. As sensor

nodes are usually resource constrained, they may not be able to execute expensive

cryptographic primitives efficiently and thus become the bottleneck of the scheme.

For this reason, our evaluation focuses on the performance of sensor nodes. In the

following section, we first discuss the numeric results in terms of computation and

communication overheads for sensor nodes. Then, we present our implementation

results on real sensors.

129

1. Numeric Result

In our proposed scheme, each sensor node is responsible for the following opera-

tions in each stage: (1) generate the master key and encrypt it using our enhanced

KP-ABE, (2) derive the data encryption keys based on the master key, and (3)

encrypt sensor data using the data encryption keys. These operations are further

distributed to each phase. Specifically, if we choose elliptic curves as the underly-

ing bilinear group, in each phase the sensor node needs to execute at the most one

scalar multiplication on elliptic curves, one one-way hash, and one symmetric key

data encryption. Table 7.1 lists all these operations.

Table 7.1: Computation load on each sensor node
Scalar Mul Hash Data Encryption

Each Stage |Ii| +1 n n
Each Phase 1 or 0 1 1

On each data retrieval request, the sensor node responds with 〈Ev, {D}Kt〉 for

sensor data of phase t in stage v, where Ev contains |Ii| + 1 group elements on G1

and one on GT , and {D}Kt is the data payload. On user revocation, T only needs

to broadcast one group element of GT to all the sensor nodes. The communication

overload for each sensor node is shown in Table 7.2.

Table 7.2: Communication load
Data Retrieval User Revocation

(|Ii| +1) G1 + 1GT + data payload 1GT

2. Implementation

In our implementation, we choose Tmote Sky and iMote2 as the target platforms.

We use SHA-1 as the one-way hash function and AES (supported by CC2420 Radio

module of the motes) as the the data encryption algorithm. Our implementation

shows that it takes about 0.06ms for SHA-1 to execute one hash operation and

130

0.4ms for AES to encrypt 64 bytes data. Our implementation also shows that one

scalar multiplication takes several seconds in the worst case. The scalar multiplica-

tion operation is thus the bottleneck of the sensor performance. To optimize this

operation, one key issue is to find appropriate parameters for the elliptic curve.

In past years, many works have efficiently implemented Elliptic Curve Cryptog-

raphy (ECC) on various sensor platforms. In these works, elliptic curves are ususally

chosen according to standards such as NIST [94] and SECG [95], which enable most

of the optimization methods. Although these elliptic curves serve perfectly for secu-

rity schemes such as ECDH, ECDSA, et al, they are not pairing-friendly, i.e., they

can not be used as bilinear groups. In FDAC, however, the elliptic curve is required

to be pairing-friendly. Most pairing-friendly elliptic curves studied by current work

fall into two categories, namely Supersingular (SS) curves and MNT curves. In the

case of SS curves, the two elliptic groups G1 and G2 (cf. Section 2.2) could be the

same. For MNT curves, G1 and G2 are different. To choose an appropriate elliptic

curve, several factors should be taken into account as follows. Let l be the group

size of the elliptic curve and k be its embedding degree. To achieve a comparable

security strength of 1024-bit RSA, we should have lk to be larger than 1024, or at

least close to 1024. Given the security level, a higher k results in a shorter group size.

Therefore, choosing a high embedding degree for the elliptic curve in our scheme

may result in not only a short ciphertext, but also an efficient scalar multiplications

on each sensor. However, the embedding degree k of the elliptic curve can not be

arbitrarily large. Choosing an appropriate embedding degree for the elliptic curve

is actually another research area. According to the benchmark of Pairing-Based

Crypto (PBC) library [96], elliptic curves with l = 512 and k = 2 results in the

fastest bilinear pairing as compared to those with k > 2 for SS curves. The case is

on the opposite for MNT curves. According to our testing of the PBC library on

131

Linux platform with an Intel Pentium D 3.0GHz CPU, SS curves with l = 512 and

k = 2 (type a curves in PBC) take about 6ms to execute a pairing, while MNT

curves with l = 159 and k = 6(type d curves in PBC) take about 14ms (Actually,

on the user side of our solution decryption time is linear to the number of pairings).

Although both results are acceptable to users, MNT curves imply a much shorter

ciphertext as well as key size to sensor nodes. More importantly, scalar multipli-

cation over 512-bit curves may not be supported by low-end sensor nodes such as

Tmote Sky because it consumes too much RAM. For these reasons, we believe MNT

curves with high embedding degrees are suitable for our proposed scheme.

In our implementation, the elliptic curve is a MNT curve over Fq with embedding

degree of 6, where q is a 159-bit prime number. The curve has the form y2 =

x3 + ax + b. Our implementation is based on the TinyECC library [97] with curve

specific optimization disabled since the group size q is not a Mersenne prime. Our

result shows that iMote2 consumes about 35ms to execute a scalar multiplication

when working at 416MHz, 69ms at 208MHz, and 139ms at 104MHz. Tmote Sky

consumes 4.1s. For the 512-bit SS curve, iMote2 consumes 170ms at 416MHz,

341ms at 208MHz, and 682ms at 104MHz. Tmote Sky does not have enough RAM

to support 512-bit SS curve. Tab.3 to Tab.5 summarize the above implementation

results.

Table 7.3: One-phase computation load on iMote2 (MNT curves)
One Scalar Multiplication

SHA-1 AES
104MHz 208MHz 416MHz

0.06ms 0.4ms 139ms 69ms 35ms

Table 7.4: One-phase computation load on iMote2 (SS curves)
One Scalar Multiplication

SHA-1 AES
104MHz 208MHz 416MHz

0.06ms 0.4ms 682ms 341ms 170ms

132

Table 7.5: One-phase computation load on Tmote Sky
One Scalar Multiplication

SHA-1 AES
MNT Curves SS Curves

0.07ms 0.4ms 4.1s N/A

We can estimate energy consumption of one phase using the equation W =

U × I × t, where U is the voltage, I is the current draw, and t is the execution time

for one phase. According to the date sheet of each platform [98, 99], the current

draw for TMote Sky is 1.8mA and the voltage can be chosen as 3v. The iMote2 data

sheet [98] just gives the current draw for running at 104MHz with radio on, which

is 66mA. To be conservative, we use this value in our computation. The voltage

of iMote2 can be chosen as 0.95v. Based on the execution time we measured, the

energy consumption on the iMote2 platform (running at 104MHz) for one phase

is 8.74mJ in case of MNT curves and 42.79mJ in case of SS curves. The energy

consumption on the TMote Sky platform for one phase is 24.68mJ (for MNT curves

only).

7.4 Summary

In this chapter, we discussed a novel yet important issue of fine-grained data access

control for distributed storage in WSNs. To address the problem, we proposed a

scheme in which each sensor node is assigned a set of attributes, and each user

is assigned an access structure which designates the access capability of the user.

The sensor data is encrypted under the attributes such that only the users with the

intended access structure are able to decrypt. As the access structure is extremely

expressive, we are able to control data access precisely, and thus achieve fine-grained

access control. Moreover, our proposed scheme is able to provide security assurance

such as resilience to user colluding and sensor compromising attacks as well as user

133

revocability. We also showed that the proposed scheme is able to support attribute

change of sensor nodes and seamlessly integrate existing PH schemes to realize

concealed data aggregation. Our experiment shows that the system complexity in

our proposed scheme is reasonable in practical scenarios, especially for high-end

sensor nodes.

134

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we addressed an important issue of secure data sharing on

untrusted storage. We investigated the challenges pertained to this problem and

proposed to exploit a novel PKC Attribute-Based Encryption (ABE) to provide

cryptographically enforced data access control. With ABE, we are able to enjoy

fine-grained access control. However, there are still several open security issues in

state-of-the-art constructions of ABE. Toward providing a full-fledged cryptographic

basis for secure data sharing on untrusted storage, we proposed three security-

enhancing solutions for ABE: The first enhancement we made is to provide efficient

user revocation in ABE. In this work, we particularly considered practical appli-

cation scenarios in which semi-trustable proxy servers are available. With this as-

sumption we uniquely combined the proxy re-encryption technique with ABE and

enabled the authority to delegate most laborious tasks to proxy servers. Such a

enhancement places minimal load on authority when revoking users. Our proposed

scheme is provably secure against chosen ciphertext attacks. In our second enhance-

135

ment to ABE, we addressed key abuse attacks and proposed an abuse free KP-ABE

(AFKP-ABE) scheme. (An abuse free CP-ABE (AFCP-ABE) scheme can also be

built in the same way.) To defend against the key abuse attacks, we introduce

hidden attributes in the system with which the tracing algorithm can identify any

single pirate or partial colluding users. Our design enables black boxing tracing

and does not require the well-formness of the user secret key. The complexity of

AFKP-ABE in terms of ciphertext size and user secret keys size is just O(logN),

where N is the total number of users. Our scheme is provably secure under DBDH

assumption and D-Linear assumption. Our third enhancement is to provide better

privacy preservation for ABE in terms of access policy information protection. In

particular, we focused on CP-ABE and proposed two privacy-preserving CP-ABE

schemes, in which data access structures are well protected from both the untrusted

servers and all the users even under powerful attacks, e.g., colluding attacks. Nu-

merical and experimental results show that our scheme is suitable for large-scale

applications since its overhead is just linear to the number of attributes rather than

the number of users.

With ABE and our enhancement schemes, we presented our solutions for secure

data sharing for two specific application scenarios – Cloud Computing and Wireless

Sensor Networks. For Cloud Computing, we proposed a scheme that provides fine-

grained data access control for data owners in large-scale data centers outsourced

to cloud. In doing so, we combined our enhanced ABE schemes with techniques

such as dummy attribute and lazy re-encryption, and made it possible for both

the data owner and users to delegate most computation-intensive operations to

powerful cloud servers. Notably, our scheme can support resource-restrained cloud

users such as mobile phones. Formal security proofs show that our proposed scheme

is secure under standard cryptographic models. For Wireless Sensor Networks, we

136

proposed a fine-grained data access control scheme for distributed storage in WSNs.

In our proposed scheme, each sensor node is assigned a set of attributes, and each

user is assigned an access structure which designates the access capability of the

user. Sensitive sensor data is encrypted with the attributes using ABE public keys

and just allows users with the intended access structure to decrypt. In this way,

confidentiality of sensitive data is protected even if the sensor node is compromised

since the adversary can not obtain the data decryption key via reading the sensor

memory. As user access structure can be extremely expressive, fine-grained access

control is supported. In our proposed scheme, we revised a current ABE scheme to

minimize the computation load on sensor nodes in case of user revocation. We also

showed that our proposed scheme is able to support attribute change of sensor nodes

and seamlessly integrate existing PH schemes to realize concealed data aggregation.

Our experiment shows that the system load is affordable to contemporary sensor

nodes.

8.2 Future Work

We identify three directions for future work for secure data sharing on untrusted

storage as follows.

Decentralized Access Control In this dissertation, there is one cryptosystem

in each data application and the data owner acts as the only authority in every

cryptosystem. Users should possess a separate set of secret keys for each cryptosys-

tem. In large-scale systems, it is desirable to provide decentralized access control in

the sense that on one hand we enable users to access multiple cryptosystems using

one set of secret keys, and on the other hand we allow the existence of multiple au-

thorities in an application as well as encryption of data using public keys assigned

137

by multiple authorities. The concept of decentralized ABE [106] provides the cryp-

tographic basis for this solution. However, existing schemes for decentralized ABE

have various limitations in terms of the expressiveness of the access policy and etc.

It is necessary to conduct further research to enhance decentralized ABE and hence

provide decentralized data access control for untrusted storage.

Operation on Encrypted Data When encryption provides data confidential-

ity, it also greatly limits the flexibility of data operation. To address this issue,

we need to combine ABE with cryptographic primitives such as searchable encryp-

tion [120–124], private information retrieval [125] and homomorphic encryption [126]

to enable computations on encrypted data without decrypting. Moreover, as limi-

tations in terms of data operations supported and efficiency still exist in these cryp-

tographic primitives, another interesting future work would be taking into account

information theoretic techniques from the areas such as database privacy.

Combining with Secure Computation In this dissertation, we occasionally

assumed the servers to be honest-but-curious. In practical systems, it would be ben-

eficial to remove this assumption to provide a stronger level of security protection.

In order for doing so, one interesting future work would be integrating techniques

from trusted computing [127] into the data access control mechanism.

138

Bibliography

[1] J. Anderson. Computer Security Technology Planning Study. Air
Force Electronic Systems Division, Report ESD-TR-73-51, 1972.
http://seclab.cs.ucdavis.edu/projects/history/.

[2] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-Based
Encryption. In Proc. of SP’07, Washington, DC, USA, 2007.

[3] M. Blaze, G. Bleumer, and M. Strauss. Divertible Protocols and Atomic Proxy
Cryptography. In Proc. of EUROCRYPT ’98, Espoo, Finland, 1998.

[4] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based Encryption with Effi-
cient Revocation. In Proc. of CCS’08, Alexandria, Virginia, USA, 2008.

[5] D. Boneh and M. Franklin. Identity-Based Encryption from The Weil Pairing.
In Proc. of CRYPTO’01, Santa Barbara, California, USA, 2001.

[6] S. Yu, K. Ren, W. Lou, and J. Li. Defending Against Key Abuse Attacks
in KP-ABE Enabled Broadcast Systems. In Proc. of Securecomm’09, Athens,
Greece, 2009.

[7] R. Canetti, S. Halevi, and J. Katz. Chosen Ciphertext Security from Identity
Based Encryption. In Proc. of EUROCRYPT’04, Interlaken, Switzerland, 2004.

[8] R. Canetti and S. Hohenberger. Chosen-Ciphertext Secure Proxy Re-
Encryption. In Proc. of CCS’07, New York, NY, USA, 2007.

[9] L. Cheung and C. Newport. Provably Secure Ciphertext Policy ABE. In Proc.
of CCS’07, New York, NY, USA, 2007.

[10] R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy
Re-encryption without Pairings. In Proc. of CANS’08, Berlin, Heidelberg, 2008.

[11] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Over-encryption: Management of Access Control Evolution on Outsourced
Data. In Proc. of VLDB’07, Vienna, Austria, 2007.

139

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption for
Fine-grained Access Control of Encrypted Data. In Proc. of CCS’06, Alexan-
dria, Virginia, USA, 2006.

[13] S. Yu, K. Ren, and W. Lou. Attribute-Based On-Demand Multicast Group
Setup with Membership Anonymity. In Proc. of SecureComm’08, Istanbul,
Turkey, 2008.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scal-
able Secure File Sharing on Untrusted Storage. In Proc. of FAST’03, Berkeley,
California, USA, 2003.

[15] J. Li, K. Ren, B. Zhu, and Z. Wan. Privacy-Aware Attribute-Based Encryption
with User Accountability. In Proc. of ISC’09, Pisa, Italy, 2009.

[16] X. Liang, Z. Cao, H. Lin, and J. Shao. Attribute Based Proxy Re-encryption
with Delegating Capabilities. In Proc. of ASIACCS’09, Sydney, Australia, 2009.

[17] S. Yu, K. Ren, and W. Lou. Attribute-Based Content Distribution with Hidden
Policy. In Proc. of NPSEC’08, Orlando, Florida, USA, 2008.

[18] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure Atrribute-Based
Systems. In Proc. of CCS’06, New York, NY, USA, 2006.

[19] A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In Proc. of EURO-
CRYPT’05, Aarhus, Denmark, 2005.

[20] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” University of California, Berkeley,
Tech. Rep. USB-EECS-2009-28, Feb 2009.

[21] Amazon Web Services (AWS), Online at http://aws. amazon.com.

[22] Google App Engine, Online at http://code.google.com/appengine/.

[23] Microsoft Azure, http://www.microsoft.com/azure/.

[24] 104th United States Congress, “Health Insurance Portabil-
ity and Accountability Act of 1996 (HIPPA),” Online at
http://aspe.hhs.gov/admnsimp/pl104191.htm, 1996, last access: July 16,
2009.

[25] H. Harney, A. Colgrove, and P. D. McDaniel, “Principles of policy in secure
groups,” in Proc. of NDSS’01, 2001.

[26] P. D. McDaniel and A. Prakash, “Methods and limitations of security policy
reconciliation,” in Proc. of SP’02, 2002.

140

[27] T. Yu and M. Winslett, “A unified scheme for resource protection in automated
trust negotiation,” in Proc. of SP’03, 2003.

[28] J. Li, N. Li, and W. H. Winsborough, “Automated trust negotiation using
cryptographic credentials,” in Proc. of CCS’05, 2005.

[29] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing remote
untrusted storage,” in Proc. of NDSS’03, 2003.

[30] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-
encryption schemes with applications to secure distributed storage,” in Proc.
of NDSS’05, 2005.

[31] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiabil-
ity and data dynamics for storage security in cloud computing,” in Proc. of
ESORICS ’09, 2009.

[32] L. Youseff, M. Butrico, and D. D. Silva, “Toward a unified ontology of cloud
computing,” in Proc. of GCE’08, 2008.

[33] D. Sheridan, “The optimality of a fast CNF conversion and its use with SAT,”
in Proc. of SAT’04, 2004.

[34] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing schemes for
stateless receivers,” in Proc. of CRYPTO’01, 2001.

[35] M. Atallah, K. Frikken, and M. Blanton, “Dynamic and efficient key manage-
ment for access hierarchies,” in Proc. of CCS’05, 2005.

[36] B. Chor, A. Fiat, and M. Naor, “Tracing traitors,” in CRYPTO’94. London,
UK: Springer-Verlag, 1994, pp. 257–270.

[37] D. Boneh and M. K. Franklin, “An efficient public key traitor tracing scheme,”
in CRYPTO’99. London, UK: Springer-Verlag, 1999, pp. 338–353.

[38] A. Kiayias and M. Yung, “Traitor tracing with constant transmission rate,” in
EUROCRYPT’02. London, UK: Springer-Verlag, 2002, pp. 450–465.

[39] D. Boneh, A. Sahai, and BrentWaters, “Fully collusion resistant traitor tracing
with short ciphertexts and private keys,” in EUROCRYPT’06. London, UK:
Springer-Verlag, 2006.

[40] T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based encryption with par-
tially hidden encryptor-specified access structures,” in ACNS’08. LNCS 5037,
2008, pp. 111–129.

[41] A. Kapadia, P. Tsang, and S. Smith, “Attribute-based publishing with hidden
credentials and hidden policies,” in NDSS’07. LNCS 5037, 2007, pp. 179–192.

141

[42] J. Katz, A. Sahai, and B.Waters, “Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products,” in Eurocrypt’08. LNCS
4965, 2008, pp. 146–162.

[43] J. Li, K. Ren, and K. Kim, “A2be: Accountable attribute-based encryption for
abuse free access control,” Cryptology ePrint Archive, Report 2009/118, 2009,
http://eprint.iacr.org.

[44] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
CRYPTO’04. LNCS 3152, 2004, pp. 41–55.

[45] A. Barth, D. Boneh, and B. Waters. Privacy in encrypted content distribution
using private broadcast encryption. In Financial Cryptography ’06, pages 52–
64, 2006.

[46] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. CRYPTO ’05, pages 258–275, 2005.

[47] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key management
for secure lnternet multicast using boolean function minimization techniques.
INFOCOM ’99, pages 689–698 vol. 2, 1999.

[48] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport. Collusion-resistant group
key management using attribute-based encryption. Cryptology ePrint Archive,
Report 2007/161, 2007.

[49] C.D.M. Cordeiro, H. Gossain, and D.P. Agrawal. Multicast over wireless mobile
ad hoc networks: Present and future directions. IEEE Network, 17:52–59, 2003.

[50] A. Fiat and M. Naor. Broadcast encryption. In CRYPTO ’93, pages 480–491,
1994.

[51] C. Grosch. Framework for anonymity in ip-multicast environments. GLOBE-
COM ’00., pages 365–369 vol. 1, 2000.

[52] M. Keller, T. Kerins, and W. Marnane. FPGA implementation of a GF(24m)
multiplier for use in pairing based cryptosystems. Field Programmable Logic
and Applications, pages 594–597, 2005.

[53] NIST. Secure hash standard. Federal Information Processing Standard, FIPS-
180-1, April,1995.

[54] A. Pfitzmann and M. K. Anonymity, unobservability, and pseudeonymity −
a proposal for terminology. In International workshop on Designing privacy
enhancing technologies, pages 1–9, 2001.

[55] V. Upkar. Multicast over wireless networks. Commun. ACM, 45(12):31–37,
2002.

142

[56] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The versakey
framework: versatile group key management. Selected Areas in Communica-
tions, IEEE Journal on, 17(9):1614–1631, Sep. 1999.

[57] N. Weiler. Secure anonymous group infrastructure for common and future
internet applications. ACSAC 2001. Proceedings 17th Annual, pages 401–410,
2001.

[58] S. Yu, K. Ren, and W. Lou, “FDAC: Toward fine-grained distributed data
access control in wireless sensor networks,” in IEEE INFOCOM’09, Brazil,
Apr. 2009.

[59] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: Re-
search challenges,” Ad Hoc Networks Journal (Elsevier), vol. 2, no. 4, pp. 351–
367, Oct. 2004.

[60] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–116, Aug. 2002.

[61] C.-Y. Chong and S. P. Kumar, “Sensor networks: Evolution, opportunities,
and challenges,” Proc. of IEEE, Aug 2003.

[62] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat
monitoring: Application driver for wireless communications technology,” in
ACM SIGCOMM Workshop Data Comm. Latin America and the Caribbean,
Costa Rica, Apr. 2001.

[63] D. Estrin, D. Culler, and K. Pister, “Connecting the physical world with per-
vasive networks,” IEEE Percasive Computing, Jan-Mar 2002.

[64] B. Thuraisingham, “Secure sensor information management and mining,” Sig-
nal Processing Magazine, IEEE, vol. 21, no. 3, pp. 14–19, May 2004.

[65] A. Banerjee, A. Mitra, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki, and
D. Gunopulos, “Rise co-s : High performance sensor storage and co-processing
architecture,” in SECON’05, Santa Clara, California, 2005.

[66] A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki, and
D. Gunopulos, “High-performance low power sensor platforms featuring giga-
byte scale storage,” in MobiQuitous’05, San Diego, CA, 2005.

[67] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Capsule: An energy-
optimized object storage system for memory-constrained sensor devices,” in
ACM Sensys, November 2006.

[68] D. Zeinalipour-Yazti, V. Kalogeraki, D. Gunopulos, A. Mitra, A. Banerjee,
and W. Najjar, “Towards in-situ data storage in sensor databases,” in PCI’05,
LNCS 3746, Volos, Greece, 2005, pp. 36–46.

143

[69] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,
“GHT: A geographic hash table for data-centric storage,” in WSNA’02, Sep.
2002.

[70] J. Newsome and D. Song, “GEM:graph embedding for routing and data-centric
storage in sensor networkswithout geographic information,” in SenSys’03, Nov.
2003.

[71] J. Girao, D.Westhoff, E. Mykletun, and T. Araki, “Tinypeds: Tiny persis-
tent encrypted data storage in asynchronous wireless sensor networks,” Ad Hoc
Networks, Elsevier, vol. 5, no. 7, p. 1073C1089, 2007.

[72] R. D. Pietro, L. V. Mancini, C. Soriente, A. Spognardi, and G. Tsudik, “Catch
me (if you can): Data survival in unattended sensor networks,” in IEEE Per-
Com’08, Mar. 2008.

[73] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and secure sensor data
storage with dynamic integrity assurance,” in IEEE INFOCOM’09, Brazil, Apr.
2009.

[74] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “LHAP: A lightweight hop-by-hop au-
thentication protocol for ad-hoc networks,” in ICDCSW’03, Providence, Rhode
Island, USA, May 2003.

[75] F. Ye, H. Luo, S. Lu, and L. Zhang, “Stastical en-route filtering of injected
false data in sensor networks,” in IEEE INFOCOM’04, Hong Kong, China,
Mar. 2004.

[76] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for
sensor networks,” in IEEE S& P’03, Oakland, CA, May 2003.

[77] M. Shao, S. Zhu, W. Zhang, and G. Cao, “pDCS: Security and Privacy Support
for Data-Centric Sensor Networks,” IEEE Transactions on Mobile Computing,
vol. 8, no. 8, pp. 1023–1038, 2009.

[78] R. D. Pietro, L. Mancini, C. Soriente, A. Spognardi, and G. Tsudik, “Playing
hide-and-seek with a focused mobile adversary in unattended wireless sensor
networks,” Ad Hoc Networks, vol. 7, no. 8, pp. 1463–1475, 2009.

[79] W. Zhang, H. Song, S. Zhu, and G. Cao, “Least Privilege and Privilege De-
privation: Towards Tolerating Mobile Sink Compromises in Wireless Sensor
Networks,” ACM Transactions on Sensor Networks, vol. 4-4, Nov. 2008.

[80] H. Wang and Q. Li, “Distributed User Access Control in Sensor Networks,” in
IEEE DCOSS, Jun. 2006.

144

[81] H. Wang, B. Sheng, C. C. Tan, and Q. Li, “Comparing Symmetric-key and
Public-key based Schemes in Sensor Networks: A Case Study for User Access
Control,” in IEEE ICDCS, Jun. 2008.

[82] C. C. Tan, H. Wang, S. Zhong, and Q. Li, “Body Sensor Network Security: An
Identity-Based Cryptography Approach,” in ACM WiSec, Mar.-Apr. 2008.

[83] N. Subramanian, C. Yang, and W. Zhang, “Securing distributed data storage
and retrieval in sensor networks,” in Pervasive and Mobile Computing Journal
(Special Issue for PerCom 2007), November 2007.

[84] M. Albrecht, C. Gentry, S. Halevi, and J. Katz, “Attacking cryptographic
schemes based on ”perturbation polynomials”,” in Cryptology ePrint Archive
Report 2009/098, 2009.

[85] B. Karp and H. Kung, “GPSR: greedy perimeter stateless routing for wireless
networks,” in Mobicom’00, Aug 2000.

[86] M. Goodrich, J. Sun, and R. Tamassia, “Efficient tree-based revocation in
groups of low-state devices,” in Advances in Crytology CRYPTO’04, 2004.

[87] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggrega-
tion in wireless sensor networks,” in In International Workshop on Distributed
Event-Based Sytems, Austria, Jul. 2002.

[88] J. Girao, D. Westhoff, and M. Schneider, “CDA: concealed data aggregation for
reverse multicast traffic in wireless sensor networks,” in IEEE ICC’05, Korea,
May. 2005.

[89] S. Peter, D. Westhoff, and C. Castelluccia, “A survey on the encryption of
convergecast-traffic with in-network processing,” IEEE Transactions on De-
pendable and Secure Computing, 2009.

[90] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of en-
crypted data in wireless sensor networks,” in IEEE MobiQuitous’05, Jul. 2005.

[91] S. A. Camtepe and B. Yener, Key distribution mechanisms for wireless sensor
networks: a survey, Rensselaer Polytechnic Inst., Comput. Sci. Dept., Troy,
NY, Tech. Rep. TR-05-07, 2005.

[92] K. Ren, W. Lou, and Y. Zhang, “LEDS: Providing location-aware end-to-end
data security in wireless sensor networks,” in IEEE INFOCOM’06, Barcelona,
Spain, Apr. 2006, pp. 1–12.

[93] ——, “Multi-user broadcast authentication in wireless sensor networks,” in
IEEE SECON’07, Jun. 2007.

145

[94] National Institute of Standards and Technology. Recommended elliptic curves
for federal government use, August 1999.

[95] Certicom Research. Standards for efficient cryptography C
SEC 2: Recommended elliptic curve domain parameters.
http://www.secg.org/collateral/sec2 final.pdf, September 2000.

[96] PBC Library. http://crypto.stanford.edu/pbc/times.html.

[97] TinyECC Library.
http://discovery.csc.ncsu.edu/software/TinyECC/index.html.

[98] Imote2: High-performance wireless sensor network node.
http://www.xbow.com/Products/Product pdf files/Wireless pdf/Imote2
Datasheet.pdf.

[99] TelosB mote platform. http://www.xbow.com/Products/Product pdf files/
Wireless pdf/TelosB Datasheet.pdf.

[100] ACL. http://en.wikipedia.org/wiki/Access control list

[101] H. M. Levy, “Capability-Based Computer Systems”, Digital Equipment Cor-
poration 1984. ISBN 0-932376-22-3.

[102] NIST. “Role Based Access Control (RBAC) and Role Based Security”.
http://csrc.nist.gov/groups/SNS/rbac/

[103] R. Ostrovsky, A. Sahai, and B. Waters. “Attribute-based encryption with
non-monotonic access structures”. In Proc. of CCS’06, New York, NY, 2007.

[104] M. Chase. “Multi-authority attribute based encryption”. In Proc. of TCC’07,
Amsterdam, Netherlands, 2007.

[105] H. Lin, Z. Cao, X. Liang and J. Shao. “Secure threshold multi author-
ity attribute based encryption without a central authority”, In Proc. of IN-
DOCRYPT’08 , Kharagpur, India, 2008.

[106] A. Lewko and B. Waters, “Decentralizing Attribute-Based Encryption”,
http://eprint.iacr.org/2010/351.

[107] B. Waters, “Ciphertext-Policy Attribute-Based Encryption: An Expressive,
Efficient, and Provably Secure Realization”, http://eprint.iacr.org/2008/290.

[108] V. Goyal, A. Jain, O. Pandey and A. Sahai, “Bounded Ciphertext-Policy
Attribute based Encryption”, In Proc. of ICALP’08, Reykjavik, Iceland, 2008

146

[109] M. J. Hinek, S. Jiang, R. Safavi-Naini, and S. F. Shahan-
dashti, “Attribute-Based Encryption with Key Cloning Protection”,
http://eprint.iacr.org/2008/478

[110] Jin Li, Qian Wang, Cong Wang, and Kui Ren, “Enhancing Attribute-based
Encryption with Attribute Hierarchy,” In Proc. of ChinaCom’09, Xi’an, China,
2009.

[111] A. Kapadia , P. Tsang, and S. W. Smith, “Attribute-Based Publishing with
Hidden Credentials and Hidden Policies,” In Proc. of NDSS’07, San Diego, CA,
2007.

[112] L. Ballard, M. Green, B. Medeiros, F. Monrose. “Correlation-Resistant Stor-
age via Keyword-Searchable Encryption”. http://eprint.iacr.org/2005/417

[113] A. Miyaji, M. Nakabayashi, and S. Takano. “New explicit conditions of
elliptic curve traces for FR-reduction”. IEICE Trans. Fundamentals, E84-
A(5):1234C43, May 2001.

[114] D. Boneh, B. Lynn, and H. Shacham. “Short signatures from the Weil pairing”.
In Proc. of Asiacrypt’01, Gold Coast, Australia, 2001.

[115] D. R. Stinson. “Cryptography: Theory and Practice”, CRC Press, 2002

[116] D. Boneh, “The Decision DiffieCHellman Problem”, In Proc. of ANTS’98,
Portland, Oregon, 1998.

[117] W. Diffie and M. Hellman. “New directions in cryptography”. IEEE Transac-
tions on Information Theory, IT No.2(6):644C654, November 1976.

[118] D. Boneh, C. Gentry, B. Lynn and H. Shacham, “Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps”, In Proc. of Eurocrypt’03, Warsaw,
Poland, 2003.

[119] S. Yu, K. Ren, and W. Lou, “FDAC: Toward Fine-Grained Dis-
tributed Data Access Control in Wireless Sensor Networks,” IEEE
Transactions on Parallel and Distributed Systems, 16 Jun. 2010.
http://doi.ieeecomputersociety.org/10.1109/TPDS.2010.130

[120] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. “Public Key
Encryption with Keyword Search”. In Proc. of EUROCRYPT’04 , 2004.

[121] D. Boneh and B. Waters. “Conjunctive, Subset, and Range Queries on En-
crypted Data”. In Proc. of TCC’07, Amsterdam, Netherlands, 2007.

[122] E. Shen, E. Shi, and B. Waters. “Predicate Privacy in Encryption Systems”.
In Proc. of TCC’09, San Francisco, CA, 2009.

147

[123] E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig. “Multi-Dimensional
Range Query over Encrypted Data”. In Proc. of SP’07, Oakland, CA, 2007.

[124] D. Song, D. Wagner, and A. Perrig. “Practical Techniques for Searches on
Encrypted Data”. In Proc. of SP’00, Oakland, CA, 2000.

[125] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. “Private Information
Retrieval”. J. ACM, 45, 6 (1998), 965-981.

[126] C. Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In Proc. of
STOC’09, Bethesda, Maryland, 2009.

[127] Trusted Computing Group. http://www.trustedcomputinggroup.org/

148

	Worcester Polytechnic Institute
	Digital WPI
	2010-07-13

	Data Sharing on Untrusted Storage with Attribute-Based Encryption
	Shucheng Yu
	Repository Citation

	tmp.1530275769.pdf.bS0cY

