987 research outputs found

    Proceedings of the 2005 IJCAI Workshop on AI and Autonomic Communications

    Get PDF

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Feature Space Augmentation: Improving Prediction Accuracy of Classical Problems in Cognitive Science and Computer Vison

    Get PDF
    The prediction accuracy in many classical problems across multiple domains has seen a rise since computational tools such as multi-layer neural nets and complex machine learning algorithms have become widely accessible to the research community. In this research, we take a step back and examine the feature space in two problems from very different domains. We show that novel augmentation to the feature space yields higher performance. Emotion Recognition in Adults from a Control Group: The objective is to quantify the emotional state of an individual at any time using data collected by wearable sensors. We define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and neutral and their respective levels at any time. The generated model predicts an individual’s dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each emotional state and anxiety. We present an iterative learning framework that alters the feature space uniquely to an individual’s emotion perception, and predicts the emotional state using the individual specific feature space. Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of existing image recognition by leveraging text features from the images. As humans, we perceive objects using colors, dimensions, geometry and any textual information we can gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the textual information. This study develops and tests an approach that trains a classifier on a hybrid text based feature space that has comparable accuracy to the state of the art CNN’s while being significantly inexpensive computationally. Moreover, when combined with CNN’S the approach yields a statistically significant boost in accuracy. Both models are validated using cross validation and holdout validation, and are evaluated against the state of the art

    Driving Big Data – Integration and Synchronization of Data Sources for Artificial Intelligence Applications with the Example of Truck Driver Work Stress and Strain Analysis

    Get PDF
    This paper contributes to the issue of big data analysis and data quality with the specific field of time synchronization. As a highly relevant use case, big data analysis of work stress and strain factors for driving professions is outlined. Drivers experience work stress and strain due to trends like traffic congestion, time pressure or worsening work conditions. Although a large professional group with 2.5 million (US) and 3.5 million (EU) truck drivers, scientific analysis of work stress and strain factors is scarce. Driver shortage is growing into a large-scale economic and societal challenge, especially for small businesses. Empirical investigations require big data approaches with sources like physiological and truck, traffic, weather, planning or accident data. For such challenges, accurate data is required, especially regarding time synchronization. Awareness among researchers and practitioners is key and first solution approaches are provided, connecting to many further Machine Learning and big data applications

    Cyber-Physical Systems and Smart Cities in India: Opportunities, Issues, and Challenges

    Get PDF
    A large section of the population around the globe is migrating towards urban settlements. Nations are working toward smart city projects to provide a better wellbeing for the inhabitants. Cyber-physical systems are at the core of the smart city setups. They are used in almost every system component within a smart city ecosystem. This paper attempts to discuss the key components and issues involved in transforming conventional cities into smart cities with a special focus on cyber-physical systems in the Indian context. The paper primarily focuses on the infrastructural facilities and technical knowhow to smartly convert classical cities that were built haphazardly due to overpopulation and ill planning into smart cities. It further discusses cyber-physical systems as a core component of smart city setups, highlighting the related security issues. The opportunities for businesses, governments, inhabitants, and other stakeholders in a smart city ecosystem in the Indian context are also discussed. Finally, it highlights the issues and challenges concerning technical, financial, and other social and infrastructural bottlenecks in the way of realizing smart city concepts along with future research directions

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area
    • …
    corecore