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Abstract: A large section of the population around the globe is migrating towards urban settlements.
Nations are working toward smart city projects to provide a better wellbeing for the inhabitants.
Cyber-physical systems are at the core of the smart city setups. They are used in almost every system
component within a smart city ecosystem. This paper attempts to discuss the key components
and issues involved in transforming conventional cities into smart cities with a special focus on
cyber-physical systems in the Indian context. The paper primarily focuses on the infrastructural
facilities and technical knowhow to smartly convert classical cities that were built haphazardly due
to overpopulation and ill planning into smart cities. It further discusses cyber-physical systems as
a core component of smart city setups, highlighting the related security issues. The opportunities
for businesses, governments, inhabitants, and other stakeholders in a smart city ecosystem in the
Indian context are also discussed. Finally, it highlights the issues and challenges concerning technical,
financial, and other social and infrastructural bottlenecks in the way of realizing smart city concepts
along with future research directions.

Keywords: CPS; smart cities; smart governance; smart economy; security

1. Introduction

There is no universal definition of a smart city [1]. Different regions connote its mean-
ing differently. Every country has its own conceptualization of a smart city. It varies from
country to country, city to city, and place to place [2]. Every country has their own set of
requirements and abilities and thus has a different viewpoint and willingness to reform,
which affects the migration from classical city setups to urban smart city settlements [3]. In
this paper, we aim to give an overview of the smart city setups along with the opportunities,
issues, and challenges associated with their successful implementation. With the rapid
migration of inhabitants towards urban settlements, governments and policymakers face
huge challenges [4]. A typical smart city setup involves facilities equipped with smart and
state-of-the-art technology which includes smart transportation, smart energy, smart edu-
cation, smart healthcare, smart sanitation and waste management, and smart governance,
etc. [5]. In the present era of technological advancements, almost everything is converging
into digitalization. In the same manner, the word “smart” is being applied everywhere and
in every field [6]. With the rapid growth in the economy, the role of digitalization is highly
critical to upgrade infrastructural support including physical, societal and institutional.
This transformation is seen as a probable solution to several inherent and obvious city
problems since it focuses on smart governance, smart IT and Communication, smart envi-
ronment, smart buildings, smart businesses, and smart transportation, etc. [7]. Information
Communication Technology (ICT) is considered the backbone of any smart city initiative;
in the absence of ICT, imagining a smart city is baseless and will fail [8]. Smart city core
infrastructural support systems such as sensor networks, IoT and wireless devices, and
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well-equipped data centers, etc., constitute vital infrastructural mechanisms that provide
the key enabling services to the smart city. Smart cities are certainly the future habitat of
citizens around the globe; hence, it will be a great infrastructural asset for them. Smart
city projects can be thought of as an area of opportunity for all stakeholders, especially for
the infrastructural companies as well as developers [9]. In large countries such as India,
demographics and diversity pose great challenges as well as opportunities. Naturally,
smart city projects will attract high investment and a network of state-of-the-art technology
that will create environmentally sustainable solutions, smooth operational efficiencies, and
better civic amenities for urban populations and citizens.

The rest of the paper is organized as follows. Section 2 discusses the concept of
cyber-physical systems in the context of smart cities and the underlying security threats.
Section 3 highlights the enabling technologies for smart city setups. Section 4 provides the
opportunities, issues, and challenges associated with the successful realization of smart
city ecosystems. The final Section 5 provides the discussion and conclusion.

1.1. Key Action Areas of Smart City

A typical smart city consists of several key focus areas which need to be analyzed to
provide holistic planning and designing. Figure 1 shows the key action areas of a typical
smart city.
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1.1.1. Smart Economy

A smart economy relates to stimulating innovation as well as technological creativity
based on scientific research, which cares for a smart environment and superior technology
with an aim for attaining economic superiority and prosperity [10]. It further provides
independence to a nation and creates equal economic opportunities for all stakeholders
including inhabitants, governments, service providers, and other businesses, etc. [11–14].

1.1.2. Smart Governance

Smart governance constitutes performing governance through digital means, a city
where public services use digital platforms, e.g., wi-fi and other ICT-based online services.
All the policies and projects are implemented, tracked, and maintained using digital
technologies to maintain transparency, tracking, and security. Smart governance also
provides flexibility in terms of dynamic updating of policies and regulations based on
realtime data from the citizens in the form of feedback, suggestions, polls, etc. Smart
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governance follows the “citizen first” model of working where data-driven decisions are
made to improve governance and involve greater participation by the citizens [15–18].

1.1.3. Smart Environment

A smart environment is an environment with miniature sensors embedded in it, which
continuously collect data on the subjects and their surroundings for providing bettering
realtime insights into different atmospheric and other environmental parameters such as
temperature, pressure, humidity, and other impurities present in the air, water, and soil. A
smart environment is an essential part of any smart city. Such an environment promotes
the use of ICT for taking automated self-corrective measures when the threshold limit of
any parameter is exceeded [19–23]. The monitoring of the environment can be achieved
through specialized CPS made for the purpose [24,25]. The specifically designed CPS
makes use of the data collected through the IoT devices to perform analytics and make
data-driven decisions according to the current needs [26].

1.1.4. Smart Mobility

Smart mobility aims to automate classical transportation management through the
use of sensors embedded in traffic signals, street lights, zebra crossings, etc. The concept
of smart mobility ensures smooth traffic management and dynamic handling of traffic
congestions, providing safe, secured, and free passage to emergency services, including
ambulances, police vehicles, government vehicles, etc. Optimal routes are identified
and conveyed for effective management and mobility of the masses. Smart mobility
ensures pollution-free, environmentally-friendly, and congestion-free mobility leading to
an effective means of sustainability in travel and transportation. CPS can be effectively
used in smart mobility solutions to provide fault-tolerant and robust transportation across
the smart city [27–29].

1.1.5. Smart Population

A smart population includes citizens participating in the development of the nation
including various initiatives of the government in an environmentally-friendly, secure, and
privacy-preserved manner. There should not be any bias, digital divide, or other forms of
inequality concerning age, race, caste, or creed. CPS can be used to build intelligent and
smart communities. The data collected and shared between different stakeholders through
the CPS can be used to provide deeper insights into the real challenges and issues faced by
the inhabitants [30–32].

1.1.6. Smart Living Environment

The concept regarding a smart living environment is related to good health and a
hygienic environment. CPS can aid in the development of automated smart living spaces
where the errors of the system or networks are mitigated automatically based on self-
learning through AI/ML algorithms. These smart spaces are self-reliant and can scale as
and when required to accommodate more and more entities. Since every aspect is largely
automated, it is easier to identify and diagnose a fault, track the progress, as well as trace
the system logs to identify any irregularities [33–35].

Apart from these, there are other areas that are of utmost importance to smart cities.
These include smart energy and smart manufacturing. Smart energy systems aim to
provide a clean source of energy to the users with minimum or no negative impact on the
environment [36–38]. These include energy from renewable sources such as solar, etc. Smart
manufacturing refers to adopting ICT for automation of all aspects in the manufacturing
domain [39,40].

1.2. Major Contributions

The following are the major contributions of this paper.
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• Comprehensive analysis of the CPS, highlighting its working mechanism, application
areas, opportunities, issues, and challenges in its realization.

• Highlighting the advancements in CPS from an Indian perspective.
• Identifying the role of various enabling technologies in a smart city with regard to

cyber-physical systems.

1.3. Smart Cities-Indian Perspective

The concept of smart cities in India poses several different kinds of issues and chal-
lenges. The size of the nation and the diverse population make India a unique case for
smart city setups. Most of the existing cities are unplanned and have several issues of
waterlogging, sanitation, proper water supply, etc. Tackling all these issues is a very chal-
lenging task. In a typical smart city architecture, cities are divided into different areas for
better governance, administrative, and utility purposes, and each one keeps its service
outlets [41]. The Indian government initiated the mission of smart city development in
2015 (https://smartcities.gov.in/. Accessed on: 12 September 2021). Initially, 20 cities
were selected for the mission through an open competition. The core aim of the mission
was to provide an underlying infrastructure and quality of life to the inhabitants of the
city through sustainable, cost-effective, efficient, and environment-friendly measures. The
development was planned by identifying key areas within the city limits and, in parallel, fo-
cusing on each selected area of development (http://mohua.gov.in/#skip. Accessed on: 14
September 2021). Figure 2 gives an overview of India’s commitment to smart city initiatives
(https://smartnet.niua.org/mis/drupal/scm.php. Accessed on: 17 September 2021).
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2. Cyber-Physical Systems (CPS) in Smart Cities

Cyber-physical systems (CPS) were introduced in the year 2006 by Ellen Gill. The
concept was based on the combination of cyber (computation and communication) and
physical components (devices, gadgets, and systems) that can use smart computation tech-
niques to interact with real-world objects [42]. Figure 3 shows the architectural components
of a CPS [43–46].

https://smartcities.gov.in/
http://mohua.gov.in/#skip
https://smartnet.niua.org/mis/drupal/scm.php


Sensors 2021, 21, 7714 5 of 25

Sensors 2021, 21, 7714 5 of 25 
 

 

physical components (devices, gadgets, and systems) that can use smart computation 
techniques to interact with real-world objects [42]. Figure 3 shows the architectural com-
ponents of a CPS [43–46]. 

 
Figure 3. Architectural components of Cyber Physical Systems (CPS). 

• Actuator 
The role of an actuator in a typical CPS is to convert the control command into me-

chanical work. The actuators may be susceptible to hacking where the illegitimate hackers 
can take control of the actuator device to alter the mechanical work being carried out. This 
may include locking/unlocking doors, starting, stopping, or changing the speed of clinical 
wearables, etc. Actuators are the actual controlling mechanism behind the CPS. Since 
there are multiple resources and services to be controlled, the choice of selecting an opti-
mal actuator plays an important role. There are several actuator-selection approaches as 
discussed in [47,48]. 
• Data Management 

This module is responsible for managing the data that are being sensed by the sensors 
embedded in the different IoT devices in the CPS. This may include data cleaning, pre-
processing, data standardization, normalization, etc. Effective management of data gen-
erated from sensors is highly crucial for extracting value and taking optimal decisions 
based on that data. Several data management issues that need to be resolved include se-
lection of appropriate data management systems, data cleaning, and removing data out-
liers (if any), and security of data at rest and in transit. Apart from these issues, the choice 
of data management systems also depends upon the type of activity and application 
[49,50]. 
• Sensors and Sensing Module 

This module is responsible for sensing the data about the subject and its surround-
ings. The sensed data are transferred to the data management unit through the internet 
gateways. Wireless sensors networks (WSN) are the backbone of any CPS. The collection 
of multiple sensors in the WSN works in synchronization to integrate and perform the 
task of sensing the data. The data thus collected contain much deeper insights that were 
not possible with individual sensing capabilities [51,52]. Furthermore, optimal dynamic 
network topologies can be adopted to place the sensors at appropriate positions within 

Figure 3. Architectural components of Cyber Physical Systems (CPS).

• Actuator

The role of an actuator in a typical CPS is to convert the control command into
mechanical work. The actuators may be susceptible to hacking where the illegitimate
hackers can take control of the actuator device to alter the mechanical work being carried
out. This may include locking/unlocking doors, starting, stopping, or changing the speed
of clinical wearables, etc. Actuators are the actual controlling mechanism behind the CPS.
Since there are multiple resources and services to be controlled, the choice of selecting an
optimal actuator plays an important role. There are several actuator-selection approaches
as discussed in [47,48].

• Data Management

This module is responsible for managing the data that are being sensed by the sensors
embedded in the different IoT devices in the CPS. This may include data cleaning, prepro-
cessing, data standardization, normalization, etc. Effective management of data generated
from sensors is highly crucial for extracting value and taking optimal decisions based
on that data. Several data management issues that need to be resolved include selection
of appropriate data management systems, data cleaning, and removing data outliers (if
any), and security of data at rest and in transit. Apart from these issues, the choice of data
management systems also depends upon the type of activity and application [49,50].

• Sensors and Sensing Module

This module is responsible for sensing the data about the subject and its surroundings.
The sensed data are transferred to the data management unit through the internet gateways.
Wireless sensors networks (WSN) are the backbone of any CPS. The collection of multiple
sensors in the WSN works in synchronization to integrate and perform the task of sensing
the data. The data thus collected contain much deeper insights that were not possible with
individual sensing capabilities [51,52]. Furthermore, optimal dynamic network topologies
can be adopted to place the sensors at appropriate positions within the CPS ecosystem to
cater to the needs of changing subjects and their surroundings. The concept of relay nodes
is also adopted to provide multihop communication reducing the energy required for data
transmission [53].

• Network and Communication
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This module consists of communication protocols for establishing the connection
among different entities within the CPS. This module governs all the communication
including routing, rerouting, error handling, acknowledgments, etc. Several state-of-
the-art approaches can be adopted for managing the communications within the CPS
ecosystem. With a wide variety of diverse devices connected in a typical CPS, there are
several issues and challenges, which include device schemas, data capturing formats,
communication protocols, energy efficiency, etc. [54–56]. To overcome these issues several
robust approaches have been proposed in the literature. In addition, SDN and NFV
technology can also be adopted to control network communication more flexibly and
optimally. SDN and NFV approaches provide a software-based controlling of the network
parameters including congestion control, route management, placement of relay nodes,
number and types of network hops, etc. [57,58].

• Data Storage Module

This module contains cloud and edge-based storage services where the sensed and
cleansed data finally reside. It also includes cached data and metadata records. A typical
CPS generates huge volumes of rapidly expanding big data. This massive amount of data
needs specialized tools and techniques for storage and management. Several big data
storage and management approaches, for example, Hadoop, Casandra, HDInsight, NoSQL,
etc., can be used. It is generally considered appropriate to partition the data into smaller
portions and store it in a distributed manner with an optimal number of copies to provide
better control and immediate availability as and when required [59,60]. In [61], the authors
proposed a large-scale framework for realtime monitoring in CPS. They used industrial
CPS as a use-case to evaluate the effectiveness of the proposed approach.

2.1. Working of CPS

A typical CPS system tends to integrate physical components with the computational
components present in cyberspace through a network. Once a successful connection
is established, the physical processes can be controlled and managed through software
programs. CPS provides abstraction by modeling the dynamics of physical processes with
the help of software. This automated controlling of physical processes is improved by
providing feedbacks through data generated by different connected entities within the
CPS. As shown in Figure 4, a typical CPS can be considered as an embedded system with
computations, communications, and control capabilities. In a transportation management
CPS, the realtime data of the traffic conditions are captured through sensors embedded
in the roads, traffic signals, footpaths, sign boards, etc. The number of vehicles passing
through the footpaths or at a stationary position can be measured through the pressure
measuring sensor chips embedded in the footpaths. Similarly, inductive loop detectors
sensors are used to detect the number of vehicles arriving at any point on the road. The
acoustic and ultrasonic sensors are used to measure pressure and sound waves produced
through the friction between vehicle tires and roads lanes for identifying the speed and
lane detection. These data are then fed into the CPS system to take dynamic decisions for
updating traffic signals, enforcing speed limits, giving free passage to emergency services
vehicles (if any). In addition, the duration of the signals is also managed dynamically based
on the traffic conditions to manage the smooth flow of vehicles without congestion. Apart
from the sensors embedded on the roadside signals, footpaths, and signboards, the users (as
an entity of the CPS) also share data about realtime traffic conditions and alternative routes
with the system to provide optimal management of traffic. Möller and Vakilzadian [28]
discussed the different components of CPS for smart transportation. They showcased the
importance of vehicle-to-vehicle communication, realtime feedback for traffic conditions,
and the integration of information from different entities. Kukkala et al. [62] provided a
survey of advanced driver assistance systems (ADAS). They described different hardware-
based sensors and corresponding software used in ADAS highlighting the pros and cons
of each. In similar ways, the environmental cyber-physical systems (ECPS) are designed to
monitor the ecological conditions of the subject and its surroundings. The subject can be
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any indoor unit (house, factory, building, etc.) and the surroundings include all the nearby
outdoor areas of the subject. Criado et al. in [63] proposed a web socket-based approach
for the integration of various heterogeneous components in a smart home environment to
ensure interoperability and seamless connectivity. Through the help of smart dust (minute
sensors based microelectromechanical systems) the different parameters of the environment
such as light, temperature, pressure, humidity, composition of gases, magnetism, and
chemicals, etc., can be sensed and detected [64]. Smart dust works on the principle of
IEEE 802.11 b/g standards for wireless communications [65]. Different kinds of sensors
such as trace metal sensors, radio isotopic sensors, compound detection sensors, etc., are
used to detect the presence of environmental pollutants in the air, water, or soil [23,66].
The data collected from such sensors are processed and analyzed to take appropriate
countermeasures. Similarly, motion detection sensors and temperature sensors are used
in indoor units to control the different devices and appliances based on user preference
and conveniences. This may include automatic controlling of AC units, turning off/on the
lights, fans, and other appliances, with respect to user availability and preferences.
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To explain the working of cyber physical systems, we use the example of the healthcare
domain. The Medical CPS (MCPS) can collect and process data from the clinical and
wearable sensors worn by the patients. The biosensors have the potential to sense the critical
physiological parameters of the patient and send them to the computing and analytics
unit for further processing. There are multiple advantages of biosensors, which include
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noninvasive delivery of drugs (in the form of smart pills) and sensing of blood glucose
parameters. Hussain and Park [67] proposed a portable EMG-based gait monitoring system.
They further identified the effectiveness of myoelectric biomarkers for the classification
of stroke-impaired muscular activity. Similarly, there are several other wearable devices
such as EMG, ECG, and EEG devices, and sensors such as blood flow sensors and chemical
sensors for identifying chemical concentration, PH value, and glucose concentration in
the blood. Force sensors are used in kidney dialysis devices. The biosensors are used to
sense enzymes, antibodies, and other microbes within the human body. Petropoulos et al.
in [68] discussed an IMU-enabled posture monitor for identifying the wrong sitting posture
through motion sensors attached to the back of the users. These devices and sensors are
used in the medical CPS to provide valuable information about the condition of the patients.
With medical CPS, the sensed data are cleaned, standardized, and finally forwarded to the
processing and analytics unit to perform analysis. The type of processing depends upon
the services required. For example, for realtime requests and queries, the data need to
be processed as close to the source (of data generation) as possible. It is vital to provide
an immediate response for the requested services. Further, processing the data close to
the source reduces network latency and communication bottlenecks, if any. To do so,
the MCPS uses an edge computing paradigm in which the sensed data are processed at
the edge of the network to provide realtime or near realtime services [69]. Similarly, for
non-immediate requests and services, the processing is completed on the cloud. Since
moving the sensed data to the cloud is a bandwidth-hungry process, optimal routing
and congestion controlling mechanisms are needed to reduce the time of data transfer.
Wang et al. in [70] proposed an edge computing-based approach for mitigating coupling
issues in CPS. The different wearable point-of-care devices, which are also equipped with
miniature sensors are used to provide monitoring and analysis on the go or at homes as
well [71–75]. Figure 5 shows a typical medical CPS.

A medical CPS as a whole consists of several components which include sensing,
analysis, security, storage, and management. Each of these units has its specific functionality.
The data collected from the patients in some cases are highly sensitive and thus must be
protected from any kind of theft or hacking. To do so, the medical CPS makes use of
different cryptographic techniques to encrypt the data before sending them across the
network. Casalino et al. in [76], proposed the concept of fuzzy inference systems in
telehealth for critical disease care. Similarly, there are several data management and storage
techniques employed within the CPS, which provide optimal data storage and fetching as
and when required by the care providers.

With the advancement in technologies including IoT, WSN, big data, and enhance-
ment of computational capabilities, the concept of CPS is widely implemented across
multiple domains. The applications of CPS can be found in diverse areas such as aerospace,
healthcare, energy, transportation, manufacturing, etc. [77–81]. Smart city ecosystems can
be viewed as a large-scale CPS implementation that facilitates the cooperation between
various computational, communication, and physical aspects and also helps to provide
a better quality of life. These CPS are an integration of components of different natures,
which aim to control, manage, and monitor a physical process and also adapt to the changes
based on the feedback. A CPS can be thought of as a driver of the smart city services having
the capability to completely transform the way of life of the inhabitants. A CPS may be
used to collect and share data about realtime traffic conditions, health conditions of the
patients, environmental phenomenon, land-use planning, air/water/soil quality, structural
health of buildings, roads, and other structures such as bridges, rail tracks, monuments, etc.
Since it involves a complex integration of multiple miniature devices (sensors, actuators,
and ICs) and larger devices (mobile phones, servers, and clouds), securing such systems is
a very challenging task. There are always chances of data leakage and or security breaches
from one or the other vulnerable systems or devices. Therefore, it is of utmost importance
to implement granular and layered security mechanisms for such types of complex CPS.
MFA can greatly help in providing an extra layer of security to the CPS, but we need to
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make sure that implementing this extra layer of security is not an overhead and does not
increase latency, thus compromising the primary aim of the CPS systems. Table 1 provides
the applications of CPS in different domains.
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Table 1. Application areas of CPS.

S. No Smart City Component Application Ref

1 Manufacturing
The manufacturing process can be automated to
optimize the productivity of goods and enhance
the delivery of services.

[82,83]

2 Healthcare

Smart Healthcare systems are designed for
realtime monitoring of patients and support
remote healthcare services using semiautomatic
medical devices.

[76,84–87]

3 Transportation

A smart transportation system in a smart city
uses embedded sensors for realtime information
sharing and processing for traffic management.
Advanced sensing, communication, control, and
computations enable the efficient working of
autonomous vehicles.

[88–92]

4 Energy

The integration of cyber and physical systems
helps to provide a reliable, safe, and secure
supply of energy and led to the development of
smart grids.

[93,94]

5 Infrastructure

The use of sensors in buildings helps to
minimize the overall cost of functioning by
optimizing the processes based on the data
analysis and feedback mechanism.

[95,96]
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Table 1. Cont.

S. No Smart City Component Application Ref

6 Agriculture

Regular monitoring of environmental conditions
helps to improve agricultural production. Using
IoT and sensor technologies helps to implement
smart water management, soil monitoring, and
efficient supply chains.

[97–99]

7 Education

CPS implementation into conventional
education systems can help to develop smart
learning environments where all entities can
share information and data.

[100–109]

8 Business
The integration of smart techniques to enhance
and automate business processes has led to the
development of Industry 4.0.

[110–115]

9 Environment
monitoring

CPS implementation in geographical areas such
as rivers, forests, etc., can be used for remote
monitoring and quick response systems. The
process of monitoring can be completed using
minimal energy and no human intervention in
the circumstances of natural and manmade
disasters.

[116,117]

10 Security

The information collected from various sensors
and other connected devices can be processed for
fast decision making and enhancing security and
privacy in a smart city ecosystem.

[118–124]

11 Smart homes

Smart homes are one of the most widely adopted
applications of CPS. The various components of
a regular household such as a security camera,
electronic devices, home assistants, etc., are
connected to automate the various processes.

[125–130]

2.2. Security Threats in CPS with Respect to Smart Cities

Smart cities incorporate a broad range of cyber-physical systems (CPSs) to boost their
efficiency by minimizing expenses and resources. These CPSs, such as smart healthcare,
smart transportation, and smart grids, interact with the residents in an active, coordinated,
and reliable manner, thereby strengthening the public infrastructure and lowering the
living costs [131]. The incorporation of CPSs in smart cities aims to enhance transport,
infrastructure, healthcare, safety, and other utilities, but these enhancements result in
an elevated risk and susceptibility [132]. Moreover, linking additional devices to the
current CPSs introduces additional security threats. The rapid use of CPSs in critical
frameworks such as medical equipment and defense puts human lives at serious risk,
owing to cyberattacks. In the context of smart cities, some of the security threats prevalent
in CPSs are given below [130–133]

• The deployment of ICT-based smart vehicles enables malicious individuals to gain con-
trol of the automobile, endangering the lives of the driver and other passengers [131]
The attacker might ask for a ransom to release control of the automobile. Similarly,
hackers may encrypt important files on a CPS-connected device and ask the owner for
a ransom to grant access (ransomware).

• The lack of security updates in CPS linked devices, together with device miscon-
figuration and the prevalent use of default passwords and settings, as well as the
absence of encrypted communication between devices, also presents a serious security
loophole. Similarly, poor credentials threaten the security of both the user and their
business, as cybercriminals can set up remote sessions to track them. These intruders
can identify a user’s physical location by using IP addresses or GPS modules of the
CPS devices [130–132].
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• In a smart city, the prevalence of “actuators” that regulate the physical skeleton (filters,
heating components, faucets, filters, etc.) renders the city vulnerable to physical
damage if the systems are compromised [132,133].

• Artificial intelligence applications in CPSs are susceptible to data manipulation attacks
where cybercriminals can steal sensitive information to generate superficially legit-
imate input to mislead the algorithm. These attacks could be driven by financial or
political rivalry, powered by the tremendous expansion of built-in computing capacity.

• Hackers could seize control of CPS linked devices and use them to disrupt business
activities, use them as spam email servers, or turn them into botnets for carrying out
DDoS (Distributed Denial of Service) attacks. Individuals with malice can access all
smart appliances such as televisions, cameras, and refrigerators, and transform them
into attack carriers.

Emerging technologies such as software-determined networks (SDN), blockchain, and
game theory have surfaced as promising solutions to alleviate the threats described above.
Additionally, it is crucial that the vulnerabilities stemming from deployment settings and
implemented technologies be addressed at the initial stages of design and individual
security roles be defined for cybersecurity staff and administration in a smart city. Table 2
provides the summary of security attacks and their corresponding mitigation measures
adopted in recent literature.

Table 2. Security Attacks in CPS.

S.No Ref Focus Area Threats Mitigation

1 [134]
Context-Aware CPS security.
Provided the notion of
context-awareness in CPS.

False data injection, DoS attacks

Different categories of context
concerning CPS were identified
and a corresponding security
mechanism was proposed

2 [135] CPS in operational technology Near realtime cyber attacks
Trap-based monitoring systems
were proposed using a big data
fusion model

3 [136] CPS for smart grid Malicious adversaries
STREAM approach for
improving integrity and
availability

4 [137] CPS for healthcare Data theft, impersonation, user
profiling attacks, etc.

Cognitive cybersecurity
framework using AI

5 [138] WSN in CPS Internal and external threats
in WSN

Several mitigation approaches
were discussed along with a
comparison among them

6 [139] Cross-domain CPS security DoS and DDoS attacks,
hacking, etc.

A security analysis framework
was proposed identifying both
discrete and continuous signal
information flow in cross
domain CPS

7 [140] CPS for pervasive health
monitoring systems BAN attacks PSKA and CAAC mechanisms

were proposed

8 [141] Securing big data in CPS Identified various big data
security issues

Discussed various security
mechanisms for big data
security using Weibull
distribution.

9 [142] Security of sensors in CPS False data injection,
spoofing, etc.

Discussed sensor attacks on
edge and point of positions.
Proposed classification of
different kinds of attacks on
sensors.

10 [143] CPS for industrial processes Deception attacks, DoS
attacks, etc.

The concept of intrusion
tolerance was proposed to
secure industrial control
systems.
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2.3. Current Developments in CPS in India

With the massive population and area of coverage, the Indian subcontinent poses its
unique challenges. The administration in India is keenly focused on realizing the true po-
tential of CPS. Many flagship programs are being organized which have invited academia
and research institutions across the country to work on the development of interdisciplinary
CPS (https://serbonline.in/ICPS/HomePage. Accessed on 15 September 2021). The na-
tional mission on ICPS is focused primarily on the development of cyber-physical systems
to solve country-specific problems through the development of embedded systems using
IoT for smart homes and services, promote entrepreneurship, social inclusion, etc. (https:
//nmicps.gov.in/Home/ICPSNMHOME/HomeNM. Accessed on 18 September 2021) One
of the premier institutions in India IIT Guwahati launched Intelligent CPS for developing in-
digenous technologies (https://timesofindia.indiatimes.com/gadgets-news/iit-guwahati-
launches-centre-for-intelligent-cyber-physical-systems/articleshow/86295156.cms. Ac-
cessed on 17 September 2021). Apart from these, there are several other initiatives started
in India for developing state-of-the-art solutions for tackling societal issues and problems
utilizing the concept of CPS.

3. Role of Technology in Smart Cities

In a smart city, technological literacy or knowledge is a significant factor for bringing
intelligence to the city entities and services. This concept not only provides smart services to
its citizens but also plays a pivotal role in good governance, as it provides inputs/feedbacks
to the government [144]. Thus, it can be concluded that all these things cannot be achieved
without technical support and facilities [145]. Another important technology that is highly
significant for a smart city setup is two-way communication. It enables the interaction
among different entities of the smart city ecosystem. Keeping the city’s requirements,
the government can plan and build that city in line with the citizen’s needs. ICT, acting
as synergic resources for a dynamic communication system between the citizens and
the government enables government agencies to have very clear analytical views of the
demand pattern of the citizens. ICT also helps in the collective intelligence (CI) that can
be established for the optimization of resources with the support of analytics and deep
learning [146].

3.1. Internet of Things

Internet of things (IoT) may be termed as the veins of the smart city as it is present in
all entities of the smart city ecosystem and connects each dot (node), as every device of the
smart city is required to be interconnected [146–148]. Such arrangements make it possible
for the devices to connect and communicate amongst themselves and make decisions for
the efficient management of the smart city services. Almost all smart cities are based on
IoT for deciding and acting.

3.2. ICT and Sensors

It is imperative to have proper knowhow of the underlying technology for smart
city development. Modern-day technologies such as IoT, deep and machine learning,
geospatial, ICT, sensors, etc., are all needed for a comprehensive smart city experience [149].
Undoubtedly, ICT technology is a thread that can channel all data from every entity and
stakeholders including utilities, waste management, better healthcare, etc., to surveil or
monitor to provide improved services [150–152].

3.3. Artificial Intelligence

Artificial intelligence is considered the most important technology for smart city
setups. With the ability to perform automated, data-dependent, precise, and human-
independent decisions, AI systems are widely used in smart city ecosystems [153]. The var-
ious services of security surveillance, traffic management, healthcare, and governance, etc.,
are all being improved with the help of AI technology [154,155].

https://serbonline.in/ICPS/HomePage
https://nmicps.gov.in/Home/ICPSNMHOME/HomeNM
https://nmicps.gov.in/Home/ICPSNMHOME/HomeNM
https://timesofindia.indiatimes.com/gadgets-news/iit-guwahati-launches-centre-for-intelligent-cyber-physical-systems/articleshow/86295156.cms
https://timesofindia.indiatimes.com/gadgets-news/iit-guwahati-launches-centre-for-intelligent-cyber-physical-systems/articleshow/86295156.cms
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3.4. Blockchain Technology

Blockchain technology is applied in several domains including healthcare, supply
chain, resource management, tracking and tracing, identification and authentication, etc.
In the smart city ecosystem, blockchain technology can be used to provide improved
authentication of entities, users, and services [156–164].

3.5. 5G and SDN Technology

The advancement in 5G technology has opened a new horizon of opportunities for
the smart city ecosystem. Bandwidth-hungry tasks can be more easily carried out seam-
lessly through the use of 5G networks. 5G technology further provides better connectivity
and faster data transmissions needed for realtime or near realtime applications and ser-
vices [165–167]. The ability to control and manage the network dynamically through SDN
provides flexibility in terms of improving the scalability and dynamic routing and rerouting
of data packets in case of any hindrances in the network [168–170].

3.6. Deep Learning

Deep learning approaches provide deeper insights into the system and its components
making it easier to take better and informed data-driven decisions. The unparalleled data
analyzing capabilities of deep learning technology aid in the pre-identification of any errors
or future conditions of the systems and their components to provide predictive analysis
and maintenance of the faulty components [171–173].

4. Opportunities, Issues and Challenges in Smart Cities

This section provides the various opportunities, issues, and challenges associated with
the realization of smart city initiatives [4–7,79,83,132–136,157–168].

4.1. Opportunities

Since India is a very large country in terms of area as well as population, there
are several opportunities for stakeholders in smart city initiatives. Since there are large
cities needing to be developed, there is consequently a large amount of work involved in
the planning, development, and maintenance. The cost of such projects will be huge as
already shown in Figure 5. Moreover, such projects will create job opportunities for several
classes including skilled and unskilled laborers. Apart from this, many manufacturing and
building construction opportunities will be created for medium and small-scale industries,
apart from the MNCs. The development of smart cities serves two purposes. Firstly, it
promotes reduction in resource usage, and secondly, it reduces resource wastage. Figure 6
highlights some of the opportunities of smart city initiatives [4,9,77–81,174].

4.1.1. Businesses and Manufacturing

With the large-scale adoption of smart city projects, MSME businesses are bound to
grow. Raw materials, spare parts, construction materials, operational and maintenance
infrastructure, etc., will provide new business opportunities for all small or large market
players alike [174,175].

4.1.2. Jobs

The massive setups will require a large workforce at all levels for the completion of
smart city projects. Skilled, semi-skilled, and unskilled labor will be required, and thus a
large job market will be created with the large-scale adoption of smart city projects [176,177].

4.1.3. Innovations

With sustainability at the core of smart city initiatives, legacy approaches will be replaced
by new and innovative approaches and mechanisms for performing tasks. Thus, it will
promote and boost innovative capabilities. The Government of India is already aware of
this fact and therefore massive national level open challenges and competitions are arranged
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where they are inviting innovative solutions for the grassroots problems faced by the society,
for example, Smart India Hackathon (https://www.aicte-india.org/Initiatives/smart-india-
hackathon. Accessed on 29 October 2021), Atal Innovation Mission (https://aim.gov.in/.
Accessed on 29 October 2021), Drug Discovery Hackathon (https://www.mygov.in/task/
drug-discovery-hackathon-2020/. Accessed on 29 October 2021), etc.
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4.1.4. Startups

There are several issues and challenges that exist in classical city setups. For all
such issues and challenges, the concept of startups has emerged in recent years in India.
These startups identify the grassroots level basic problems of the society and provide
innovative solutions to such problems. Smart city initiatives will surely boost the startup
culture as there will be several intrinsic and extrinsic problems associated with such
massive ecosystems, which may be hidden initially but may arise as the concept matures.
Therefore, startups will be focused on solving such issues for providing better services
to the inhabitants. The government is also focusing on promoting startup culture with
several flagship initiatives, for example, Startup India (https://www.startupindia.gov.in/
Accessed on 30 October 2021), etc.

4.1.5. Optimal Utilization of Resources

One of the most crucial opportunities that smart city initiatives bring is the optimal
utilization of resources. With intelligent and smart data-driven measures, city resources
can be optimally utilized by the inhabitants and it can further promote a reduction in the
wastage of valuable resources, for example, smart water meters can reduce water wastage,
the smart grid can reduce electricity consumption, etc. [178,179].

4.1.6. Promotes Sustainability

The prime aim of smart city initiatives is to promote sustainability in every aspect.
The data-driven mechanisms for different purposes through sustainable means are the key
driving forces for attaining overall sustainability [180,181].

https://www.aicte-india.org/Initiatives/smart-india-hackathon
https://www.aicte-india.org/Initiatives/smart-india-hackathon
https://aim.gov.in/
https://www.mygov.in/task/drug-discovery-hackathon-2020/
https://www.mygov.in/task/drug-discovery-hackathon-2020/
https://www.startupindia.gov.in/
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4.2. Issues and Challenges

There exist very unique issues and challenges in the development of smart city ini-
tiatives. They are broadly classified into five categories namely technical, socioeconomic,
environmental, societal, and ethical, as detailed in Figure 7 [144–149,157–164].
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4.2.1. Technical Issues

These issues comprise a lack of infrastructure, scarcity of technical knowhow, privacy,
and security issues [4,77–81,133,134,144,157,164,165,172–178,181–188].

Lack of Infrastructure

The smart city ecosystem is heavily dependent upon a state-of-the-art infrastructure
consisting of sophisticated network devices, sensors, IoT devices, heavy-duty servers,
security devices, etc. These devices are not readily available or they are too expensive
for some nations who have to search for more economical alternatives. The architectural
scalability must pertain to the smart city so that processing of data and also analytics
requirements could be increased. The critical system cannot afford downtime as it needs
high availability.

Scarcity of Technical Knowhow

There is an acute shortage of skilled labor to handle the complex underlying systems
of the smart city ecosystem. The available workforce is not well-versed in the technical
knowhow of the new devices and thus cannot effectively handle those devices.

Privacy and Security

Privacy and security are the two most important issues associated with smart city
initiates. Since all the data are available in digital form and stored on the cloud (mostly),
its privacy and security are always questionable when a third party is involved. Several
approaches have been proposed in the recent literature to mitigate the security issues in
CPS within smart cities [52,60,119,122,124,129,131–143].

Interoperability

The majority of IoT manufacturers focus on providing immediate services to their
users rather than focusing on other internal details including security, interoperability, etc.
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These IoT devices are generally proprietary devices and lack interoperability, which limits
their use [187,188].

Unstructured Data

The vast amount of data generated through ubiquitously available sensors is usually
unstructured, which makes it very hard to handle effectively. Different data cleaning
and structuring techniques are required to preprocess the data before feeding them to
the decision-making unit. Since the services and functionalities of typical smart cities are
data-dependent, the veracity and trustworthiness of the data are highly vital [189].

Absence of Unified Standards

To the best of our knowledge, there are no unified standards available for handling
sensors and IoT devices deployed in CPS. The lack of unified standards makes it difficult
to provide seamless integration and communication among various participating entities
of the CPS systems in smart cities.

4.2.2. Socioeconomic Issues

These issues comprise budgetary constraints and rigid policies in place to implement
smart city initiatives.

Budget Constraints

Several smaller nations are not able to bear the costs involved in setting up smart city
ecosystems and thus are not able to start the initiatives. There are several situations where
nations have started initiatives but have to keep the project on hold due to lack of funds.

Rigid Policies

Legacy policies of nations are also considered a hindrance to smart city initiatives.
The lack of a single-window clearance system, rigid governance, and regulatory norms are
inherent issues that need to be tackled to provide a flexible and open system of clearance
for such innovative projects.

4.2.3. Social Issues

In a country like India, which is so diverse in terms of religion, color, caste, and
creed, social issues are one of the most prominent factors influencing the decisions of the
authorities and citizens alike. Dense population, conventional mindset, illiteracy, and
digital divide are the prime factors that hinder smart city projects in this context.

Social Divide and Mindset

The conventional mindset and social divide also hinder the widespread adoption
of smart city initiatives. Generally, older people are reluctant to adopt new technologies
because of the fear of data theft or lack of technological knowhow.

High Implementation Costs

The implementation cost of smart city initiatives is usually very high. This is a serious
issue that prevents smaller nations from readily adopting these initiatives. The CPS systems
are highly costly and sophisticated and require expert handling and management.

Lack of Skilled Labor

There is a scarcity of skilled labor capable of handling the sophisticated CPS systems
within the smart city ecosystems. Since every CPS is made up of thousands and millions of
IoT devices and sensors, it becomes very difficult to manage them effectively without the
help of trained professionals.
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4.2.4. Environmental Challenges

There are several hazardous effects of technology such as carbon emissions, e-waste,
etc. These are termed as “environmental challenges”. Research is ongoing across the
globe to study the negative effects of technologies such as 5G and 6G, in terms of E-waste
generation, carbon emissions, etc. [190]. Other environmental challenges include natural
calamities such as earthquakes, floods, lightning, snowfall, draughts, etc.

4.2.5. Societal Issues

These issues pertain to common citizens, which include technological acceptance,
public health, lack of knowledge about the existing policies, schemes, and regulations, and
lack of trust among citizens.

4.2.6. Ethical Issues

These issues are usually ignored by the majority of policymakers. However, in recent
years, ethical issues have been an emerging topic of research. With the adoption of automa-
tion in several service domains issues of unconscious gender bias, transparency, rights of
the machine, fixing responsibility in case of any mistakes, etc., are hard to identify and
mitigate. Other ethical challenges include fear of job loss, unequal distribution of wealth
among the stakeholders, dependency on machines, etc. From the smart city perspective,
ethical issues play a vital role in governance [191,192]. Self-awareness and education about
the pros and cons of technology must be considered while using smart city services.

5. Conclusions and Discussion

The concept of a smart city has gained ground in recent years across the globe. It is
most likely that it will continue in the future. Modern-day smart technologies are providing
solutions such as saving money, maintaining a sustainable environment by reducing
carbon emission, reducing capital and operational costs, promoting better wellbeing and
livelihoods, etc. Rapid and unprecedented urbanization severely posed traffic congestion.
Consequently, air pollution became a big problem for cities. Transportation and traffic
snarls led to another major issue in the transportation system. However, it is hoped
that it may be eliminated by succinctly applying the principles of smart city concepts.
Smart infrastructure responds intelligently to changes in its environment, including user
demands and other infrastructure to achieve better and improved performance. The data-
driven approach of smart cities provides exemplary benefits in all spheres of life for the
inhabitants. “Data”, being the nerve center, means governments must collaborate and
coordinate with start-ups and entrepreneurs to obtain effective collaborative outcomes
which can be a win-win situation for all stakeholders. It is quite obvious that smart city
networks are based on execution, not just planning. It is not an exaggeration that smart
city projects can only be achieved when we intersect them with the basic infrastructure.
The concept of a smart city has many benefits to its stakeholders if it is a data-driven,
robust, dynamic, scalable, and responsive ecosystem. If we have an effective channel of
communication, it would automatically connect each stakeholder for improved connectivity
and synchronization. Cyber-physical systems being the building blocks of any smart city
ecosystem, extensive research is being carried out around the globe to improve their
performance, associated security, and privacy issues and improve the maintenance and
lifetime of the systems. In recent years, India has also focused on realizing the adoption of
CPS in different domains within the smart city framework for the improved management of
services with optimal utilization of resources and sustainability as a prime focus. Extensive
research and initiatives are being started to take up the challenge.

The enabling technologies facilitate an effective and cost-effective mechanism, thus,
applying all the available technologies at our disposal, we can make robust networks of
infrastructure and services making an excellent smart city ecosystem to provide better well-
being and sustainable livelihoods for the inhabitants. Future research must be focused on
the security and ethical aspects of these CPS for their widespread adoption in mainstream
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city developments. One of the latest technologies slowly coming into the mainstream is
the passwordless authentication approach where the users are not required to memorize a
username or password, and the authentication takes place with the help of some hardware
keys, biometrics, or login tokens, etc. It will be interesting to see its application in the CPS
domain as well.
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