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Abstract 

This paper contributes to the issue of Big Data analysis and data quality with the specific 
field of time synchronization. As a highly relevant use case, Big Data analysis of work stress 
and strain factors for driving professions is outlined. Drivers experience work stress and 
strain due to trends like traffic congestion, time pressure or worsening work conditions. 
Although a large professional group with 2.5 million (US) and 3.5 million (EU) truck 
drivers, scientific analysis of work stress and strain factors is scarce. Driver shortage is 
growing into a large-scale economic and societal challenge, especially for small businesses. 
Empirical investigations require Big Data approaches with sources like physiological and 
truck, traffic, weather, planning or accident data. For such challenges, accurate data is 
required, especially regarding time synchronization. Awareness among researchers and 
practitioners is key and first solution approaches are provided, connecting to many further 
Machine Learning and Big Data applications. 

Keywords: Data integration, data synchronization, truck driving, work stress and strain 
analysis, Big Data analysis, Lab Streaming Layer, Artificial Intelligence  
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Introduction  

As applications of Artificial Intelligence (AI) and Machine Learning (ML)1 are dubbed data-driven 
applications, the emphasis on the importance of data – and thus data collection – is immanent. A multitude 
of very different data sources must be integrated for a meaningful analysis, which in turn requires 
development teams to take several aspects into account (Moraru et al. 2010). Mistakes during data 
collection typically cannot be corrected afterwards and will most likely invalidate the results. Even worse, 
if data collection mistakes remain undetected, they may cause unreliable results that cannot be trusted or 
replicated, which is in general an arising problem with AI (Morabit, Desaulniers and Lodi 2021). Hutson 
(2018) discusses the natural randomness of AI training runs with regard to replicating AI results, but we 
argue that mistakes made during data collection can yield similar problems.  

While, especially in Software Engineering, attempts have been made to structure the development of AI 
applications and thus gain a hold on complexity (Amershi et al. 2019; Hesenius et al. 2019; Sundararaman, 
Buy and Kshemkalyani 2005), they typically assume that data has already been collected and thus offer 
little insight into how to structure data collection efforts (Frontoni et al. 2022; Georgieva et al. 2022). 
Especially for critical application domains such as medical applications, where data is the foundation for 
diagnoses with a potentially large impact on patient wellbeing – see (Kühnisch et al. 2022; McLennan et al. 
2022; Urbina and Ekins 2022) –, dedicated efforts to ensure data collection quality are required. Therefore, 
data preparation, integration, and synchronization are major issues when developing AI applications, 
especially as development teams may encounter initially ”hidden problems” when debugging issues and 
investigating unwanted application behavior. In many cases, collected data cannot be “adjusted” after 
development or after deployment, emphasizing the need for proper engineering in early project phases, 
including the notion of integrating data sources outside the focal organization. In this paper, we discuss 
major challenges for data integration and synchronization from different sources: 

• problems arising from variances in timekeeping, 
• problems connected to network latencies, 
• problems due to diverse data collection and storage location concepts and applications and 
• problems induced by different data levels and standards. 

Big Data analytics and the Internet of Things (IoT) are popular research areas where time synchronization 
of data is of high importance (Calyam et al. 2016; Tirado-Andrés, Rozas and Araujo 2019; Yigitler, Badihi 
and Jäntti 2020). However, in our view, many Big Data and data analytics frameworks in the information 
systems (IS) domain do not sufficiently consider the setup of complex (potentially hardware-based) data 
collection processes. For instance, practical methodologies like CRISP-DM (Wirth and Hipp 2000) and 
Knowledge-Discovery in Databases (KDD) (Fayyad, Piatetsky-Shapiro and Smyth 1996) typically deal with 
pre-existing data. Similarly, for rather high-level data analytics frameworks from the IS domain, the topic 
of time synchronization appears to be underrepresented (e.g., frameworks in Phillips-Wren et al. (2015) or 
Kühl et al. (2021)). However, as time synchronization issues may become apparent when combining 
multiple data sources, addressing this topic holistically and at an early stage in the data analysis process 
(i.e., before collecting the data) is beneficial.  

We contribute to solving these challenges with the analysis of typical hurdles and topics in data integration 
and synchronization for a Big Data and AI. We review existing literature and summarize solutions focusing 
on resolving synchronization issues. In addition, we develop a draft scheme for the identification and 
handling of such issues as a generalized model for application development. This model can serve as a 
building block that can be used in conjunction with existing Big Data frameworks especially for use cases 
relating to sensor networks and the Internet of Things. A major goal is to raise awareness of potential 
problems and to provide guidance to other researchers and developers engaging in data collection as a 
foundation for components using AI techniques. This paper is geared towards scientists and practitioners 
who aim to combine multiple data sources that need to be synchronized based on their temporal properties. 
As a hands-on example, we report from our ongoing work in identifying causes for mental stress and strain 
with truck drivers, where we had to cope with a variety of challenges during data collection that we will 

                                                             
1  For the sake of brevity, we consider ML and AI to be synonyms, although technically ML is just a particular subset 

of AI. However, ML is the predominant and most common AI-technique currently in use. 
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discuss in detail. The paper is structured as follows: Section two outlines the state of the art regarding data 
integration and synchronization. Section three is presenting a data integration and synchronization model 
draft. The specific data integration problem setting for the use case of analysing truck driver stress and 
strain is outlined in section four, discussing the technical and process options connected to that use case to 
derive general application principles. This is discussed in section five as core contribution by integrating 
further references and case application insights into an elaborate and generalized model draft regarding 
data integration and synchronization issues in the context of AI applications. Limitations and an outlook 
towards further research complete the final section.  

Conceptual Background 

Data collection mistakes may cause an AI to yield unreliable results that cannot be trusted or replicated 
(Morabit, Desaulniers and Lodi 2021). Dorst et al. (2021) showed that even minor synchronization errors 
in data collection might have negative influences on ML algorithms. Especially when the trained model is 
planned to be used for other setups than the one the training data is gathered synchronization becomes 
mandatory for both the training data and the live setup. Time synchronization issues were also found to be 
problematic in non-AI systems such as inertial navigation systems (Skog and Handel 2008) or LAN-based 
digital substations (Son, Chang and Kang 2019). This highlights the need for synchronizing data, leading to 
a first assessment of the general synchronization approaches that can be used in a specific setup (Brahmi 
et al. 2013; Youn 2013). In general, there are different approaches to synchronize data sources: 

• Synchronizing internal clocks of sensor devices: If the clocks of all sensor devices are synchronized, 
correct timestamps can be assigned to all sensor data before storage in a central system or database.  

• Synchronizing data at central system considering known message delay: If the delay between event 
occurrence and final data storage in a central system is known, the final timestamp of the central 
system can be used, corrected by the delay. 

• Synchronizing after data collection: Regardless of timestamps obtained while collecting data, 
different data sources may be synchronized through events leaving identifiable traces in all data 
sources, e.g., as described by Fridman et al. (2016). 

• Sensor device calibration as a means to achieve one of the three other approaches: Devices may be 
calibrated, e.g., by exposing sensors to an external stimulus at a known time. 

For a more detailed technical viewpoint, general synchronization strategies and algorithms as listed above 
can be found in extant literature such as Sundararaman, Buy and Kshemkalyani (2005) or Olson (2010). 
The choice of synchronization approach and hardware is also related to the causes of synchronization 
errors. Existing literature such as (Ping 2003) or (Sivrikaya and Yener 2004) provide an overview of 
common contributors to message delay like sender delay, transmit time, and receiver delay, which may be 
a contributing factor to time synchronization issues. Understanding where and how delays occur may help 
in assessing if and how synchronization errors arise. If sensors are synchronized based on analogue or 
digital stimulus sent to all sensors simultaneously, one decision refers to the timing of marker impulses. 
Two strategies exist (Brahmi et al. 2013): (a) generating stimulus in periodic time intervals or (b) generating 
stimulus at significant points of time e.g., at the very beginning and ending of a measurement. In both cases, 
data is time synchronized during post-processing by shifting the time series until all markers overlap.  

In general, time synchronization is a well-known issue in distributed systems. As local clocks may exhibit 
offsets and drifts (Sivrikaya and Yener 2004), local system times alone cannot be compared for most use 
cases. In the past, several approaches have been proposed, both for synchronizing clocks and for 
determining the causal order of events (Sundararaman, Buy and Kshemkalyani 2005). A relatively simple 
approach for synchronizing clocks is the algorithm proposed by Cristian (1989) where a timestamp is 
requested from a central server and corrected by half the round-trip-time. Another approach is Berkeley’s 
algorithm which aims to set the clocks of all systems to the average time of systems which have a timestamp 
within a specified deviation (Gusella and Zatti 1989). In the Internet, a similar concept to Cristian’s 
algorithm is commonly used, the Network Time Protocol (NTP) (Mills 1991). However, in presence of a 
message delay, a perfect synchronization of local clocks is impossible (Lundelius and Lynch 1984). 
Therefore, in some distributed systems, the notion of causal ordering is used instead which guarantees the 
temporal relation between specific sets of events. For this purpose, Lamport (1978) used the concept of 
logical timestamps where each event is assigned a logical time. This concept has been extended, for 
example, in the form of vector clocks (Baldoni and Raynal 2002; Liskov and Ladin 1986). In extending the 
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NTP concept, Precision Time Protocol (PTP) was conceived according to IEEE Standard 1588-2008 (IEEE 
2008): The PTP is a protocol designed to synchronize system times in small networks and aims to achieve 
as high precision as possible. It is based on a master-slave approach, where one specific client is defined as 
the master (also referred to as the “Grandmaster Clock”) that broadcasts its system time to all other clocks 
for synchronization. PTP-connected systems and subnets can be dynamically reconfigured: If a clock loses 
contact to the Grandmaster Clock but can still connect to any other (slave) clock in the network, the 
intermediate clock can serve as a (temporary) master for the cut-off clock. Neagoe, Cristea and Banica 
(2006) compare PTP and NTP for general architecture and protocol design, stating that PTP allows for a 
synchronization performance on the sub-microseconds level, while NTP on milliseconds-level (both with 
regard to local area networks). However, they deem NTP more robust with regard to synchronization errors.  

One solution for time synchronization of data is the open-source software Lab Streaming Layer (LSL: 
https://github.com/sccn/labstreaminglayer). Coming from neurobiological research, the protocol allows 
synchronizing data streams of sensor devices which are connected to the same network infrastructure. By 
sending continuous requests to all connected devices and measuring the delay between message and 
response, time shifts can be identified, and measurements can be temporal re-aligned. The LSL concept 
differentiates between two roles: (1) the data provider with a stream outlet and (2) the data consumer with 
a stream inlet. Providers are typically medical instruments or sensors making measurement data available. 
Consumers act upon the incoming data e.g., by writing the data to disk or by visualizing the data streams. 
To use the LSL, a dedicated software library must be integrated into all participating hardware or software 
components. This requirement becomes problematic when using closed-source systems like consumer-
grade pulse sensors or embedded control software in a truck. Data in the LSL network is transmitted using 
the basic network protocols TCP and UDP. Artoni, Galeasso and Micera (2019) compared the jitter and 
delays of real-time synchronization during measurement as done by the LSL with a more conventional 
approach which used a wired synchronization channel and their results emphasize that LSL captured data 
streams quality is comparable to a classic acquisition setting. In another work, Artoni et al. (2017) identified 
four strategies for synchronization approaches with analog or digital pulses via a dedicated Transistor-
Transistor-Logic (TTL) port as alternatives to live LSL alignment. Previous applications of LSL can be found 
in brain-computer-interaction (BCI) (Wang et al. 2017), human-computer-interaction (HCI) in general 
(Rozado, Niu and Lochner 2017), muscle-computer-interaction (MuCi) (Karolus et al. 2018; Karolus et al. 
2020; Kilian et al. 2021), virtual and augmented reality applications (AR/VR) (Kosuru et al. 2019; Ostrin, 
Frey and Cauchard 2018; Stepanova et al. 2020; Wang et al. 2021a) and neurobiological experimentation 
(Manjunatha et al. 2020; Mendonca and Abreu 2019). Blum et al. (2021) developed an android app making 
step count, accelerometer or environmental light conditions sensor data available via LSL. 

Concept Model Data Integration 

Before considering technical solutions, a detailed understanding of the individual goals and restrictions of 
the data collection with respect to time synchronization needs to be developed. Therefore, based on existing 
literature and an expert workshop conducted in mid-March 2022 with 17 participants, we created the 
conceptual framework depicted in Figure 1 below. This framework should serve as a starting point to help 
scientists and practitioners assess their data collection regarding time synchronization and make an 
informed choice on sensor appliances, synchronization approaches, and hardware setup.  

First, researchers and practitioners should consider if the problem of temporal synchronization is appli-
cable to their use case. Many data collection processes do not face the issue of temporal synchronization as 
data sets are either matched based on other properties (e.g., geolocation, or user identifiers) or because they 
simply require a granularity where no mismatch is expected as slightly differing clock times are no issue 
(e.g., based on date or hour). Furthermore, multiple and complex data types may be collected using a single 
device (e.g., smartphone) so that no network delay is expected and data is timestamped based on the 
common device time as reference.  

Second, it is important to achieve a good understanding of the general requirements and constraints that 
are not related to time synchronization. Researchers should be aware of the different data sources and 
associated needs regarding data quality and granularity. For example, aspects such as required data 
accuracy and precision may be relevant determinants for the choice of sensor appliances. Apart from 
requirements directly relating to data, typical other constraints for sensors can be found in literature 
relating to IoT, such as budget (Aygün and Cagri Gungor 2011), size (Maksimovic, Vujovic and Perisic 2015), 
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energy consumption (Lin et al. 2010), and reliability (Castaño et al. 2019). For many data collection 
processes, low cost approaches have been established such as the usage of smartphones or wearables. For 
example, in driving data collection, smartphone apps can often be used as an alternative to built-in and 
specialized equipment (Bethge et al. 2021; Engelbrecht et al. 2015; Mantouka et al. 2021). This is also the 
case for medical data (Esco, Flatt and Nakamura 2017; Hernando et al. 2018). Moreover, specialized sensor 
appliances may be required, e.g., because of the desired accuracy and resolution of sensor data. In this case, 
the adaptability of devices may be limited, thereby reducing the availability of some mitigation strategies 
regarding time synchronization issues. In other cases, data may stem from an external source with limited 
control and knowledge regarding data collection and possible synchronization errors. Once general 
requirements are known, the question arises what consequences imperfect synchronization has for the 
researcher’s use case, i.e., how resilient the data analysis processes are to misaligned data. For instance, if 
time synchronization issues are uniform among all data, for example, in case of a fixed delay, no adverse 
impact on ML may occur. In other cases, ML models may be adversely affected, even by small time shifts 
(Dorst et al. 2021). This helps to develop an understanding of the threshold and magnitude of possible 
synchronization errors required for the use case. Depending on the maximum acceptable error, the choice 
of hardware and synchronization approaches will vary. Besides, the data analysis focus may also influence 
the criticality of time shifts. If single moments in time are of interest, the synchronization requirement may 
be more demanding compared to an analysis of a longer period where slightly shifted start and end may 
have a minor impact on pattern detection.  

Third, researchers should identify, on a high level, which requirements exist specifically for solving time 
synchronization—apart from the acceptable magnitude of errors. These constraints can be of technical 
or non-technical nature and are strongly interlinked with the general requirements for data collection. 
Typically, one constraint lies in the monetary budget and whether data synchronization requires specialized 
equipment. Additionally, there may be other high-level requirements for time synchronization that limit 
the choice of solutions. These requirements call for sensible trade-offs and may comprise aspects like 
accuracy, scalability, efficiency, robustness, security, lifetime, cost and size (Puttnies et al. 2020; Sivrikaya 
and Yener 2004). These aspects are also related to the physical setup of data collection devices (e.g., factory 
or vehicle) and the future accessibility of the system. We think that the importance of these aspects also 
depends on the goals and lifetime of the sensor setup, i.e., long-lasting IoT sensor networks versus small-
scale experimental data collection. 

 

Figure 1. High-level Framework for Solving Time Synchronization Issues  
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Application Case: Stress and Strain Analysis for Driving Professions 

The use case presented here is intended to serve as an example of such data synchronization issues to 
illustrate the benefits. Drivers as a professional group are susceptible to a high level of work-related 
pressure and unhealthy working conditions (Hege et al. 2019; Hill and Boyle 2007; Onninen et al. 2021). 
Nevertheless, in spite of the central backbone role in transportation and economic systems around the 
globe, empirical research regarding the impacting factors of driver stress and strain is scarce. This is all the 
more astonishing as these themes are not only relevant for truck drivers themselves or the business 
environment via global supply chains, but also affect general security issues in public traffic (Cai et al. 2021; 
Ge et al. 2014; Han and Zhao 2020). Stress in general has been subject to numerous studies (Fischer, Reuter 
and Riedl 2021; Järvelin-Pasanen, Sinikallio and Tarvainen 2018; Öz, Özkan and Lajunen 2010; Rastgoo et 
al. 2019; Rowden et al. 2011; Taelman et al. 2011; Thielmann, Pohl and Böckelmann 2021) and several 
attempts have been made to measure stress levels, e.g. Bleichner and Emkes (2020) or Bleichner and 
Debener (2017). While these approaches indicate the existence of stress, they cannot be used to determine 
the causes directly: Determining the causes requires the analysis of additional data sources to introduce 
meaningful context factors, e.g., weather, traffic, health, or work status. With about 2.5 million truck drivers 
in the US and 3.5 million in the European Union, the segment of driving professions is one of the largest in 
most economies – but still, this professions also sports the most prominent shortages in worker supply and 
the highest levels of safety issues at the same time (Santos and Lu 2016; Sartori, Smet and Vanden Berghe 
2021; Sekkay et al. 2021).  

Consequently, research has concentrated on safety issues connected to driver stress and strain as well as 
other factors (Shattell et al. 2010; Useche, Ortiz and Cendales 2017; Wang et al. 2021b). But yet, a 
comprehensive approach regarding the integration of different data sources from vehicles, drivers and 
external factors and sources is missing. This is largely due to the fact of a demanding challenge of data 
integration and synchronization. Individual data sources like for example electroencephalography (EEG) 
or other physiological parameters are available (Reiser, Wascher and Arnau 2019; Wascher et al. 2021). But 
they are hardly to access in a common approach with for example data from the vehicles themselves – 
although there is also ample supply of data. In the working world, people find themselves in a socio-
technical system. Each person is exposed to various influencing factors that are processed individually. 
These factors can result from social conditions, technical influences, environmental influences and also 
from individual conditions. For this reason, an extensive survey of various objective and subjective data is 
implemented in the use case, as well as the inclusion of environmental influences and environmental data 
(see Figure 2, Table 1). Methods and possibilities of data integration presented can also be used in other 
contexts to answer job-specific questions. It is conceivable to record the stress experienced by nursing staff 
during the execution of their respective tasks or to optimize workflows in delivery processes.  

 

Figure 2. Data Structure Use Case 

As part of the objective surveys, an electrocardiogram (ECG), heart rate variability (HRV) and electro-
encephalography (EEG), among others, will be performed. Furthermore, saliva samples are taken here to 
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determine cortisol levels and attention tests are performed. As part of the subjective measurements, various 
questionnaires are administered on social demographics, impulsivity, and chronotype. In addition, data 
from vehicles will be included in the analyses and publicly available data such as traffic situations, weather 
conditions, routing information and other information about the time and special events during the tour 
will be considered. The collected data will be processed and analyzed by AI with a focus on stress and strain. 
In the context of prognostics and health management, this should ideally identify and minimize 
unfavourable situations. Table 1 shows the collected data. 

Data Description 

EEG Stress can be categorized as a human body response to mental, physical and emotional stimuli (Katmah et al. 2021). 
Indicators of stress can be quantified objectively using biosignals and markers, like the brain activation (Hou et al. 
2015). EEG provides a direct non-invasive measurement and record the brain’s electrical activity (Saidatul et al. 2011). 
This technique has the key advantage of high time resolution, with the possibility to continuously monitor brain states 
including e.g. human mental workload (Glatz et al. 2017), emotions (Liu and Sourina 2014) and stress levels (Sulaiman 
et al. 2012). EEG features in the time-domain, frequency-domain and synchronicity-domain can be used to detect and 
assess human stress levels. Time-domain features capture temporal information using the amplitude. With a focus on 
mental demand significant correlations between levels of psychological stress and EEG power have been shown (Seo 
and Lee 2010). Frequency-domain features are obtained from the frequency bands, such as delta (0.5-4 Hz), theta (4-
8 Hz), alpha (8-13 Hz), beta (14-30 Hz) and gamma (30-50 Hz) (Gill and Singh 2021). For example, psychological stress 
is positively correlated with beta EEG power at anterior temporal lobe (Seo and Lee 2010). For collecting this data, we 
apply an ear EEG, which can be worn on the head of the drivers during the entire tour without any problems.  

ECG and 
HRV 

If a person enters a stressful situation, the brain and the cardiovascular system react to it. The cardiovascular system is 
controlled by the autonomic nervous system (ANS) and this is controlled by the brain (Kaur et al. 2015). Underlying 
the ANS are two subsystems with opposing roles. The Sympathetic Nervous System (SNS), which responds during 
tension, and the Parasympathetic Nervous System (PNS), which responds during relaxation (Londhe and Atulkar 2018; 
Taelman et al. 2011). Depending on how well or poorly the heart can respond to incoming stimuli from the ANS, HRV 
varies (Acharya et al. 2006). From a meta-analysis, HRV is an objective measure in measuring stress and strain (Kim 
et al. 2018). This marker was even able to show differences in the types of stress, namely whether it was physical or 
mental or a combination of both (Taelman et al. 2011). Further, HRV has been shown to be associated with specific 
cortical regions that are relevant in the assessment of stress (Thayer et al. 2012). The suitability of HRV as a marker of 
occupational stress has also been demonstrated (Järvelin-Pasanen, Sinikallio and Tarvainen 2018). The interaction of 
occupational stress and lower activation of the PNS could also be demonstrated, supporting the quality of the marker  
(Clays et al. 2011; Collins and Karasek 2010). HRV thus reflects the collaboration of the heart and brain and thus 
represents a neuro-cardiac function (Londhe and Atulkar 2018). Therefore, we measure HRV of drivers during tours. 

Cortisol During a stressful event, the steroid hormone cortisol is released (Aguilar Cordero et al. 2014). Due to the fact that it is 
a steroid, the hormone can be measured in all body fluids, including saliva (Smyth et al. 2013). Cortisol is one of the 
best-known hormones in stress measurement because it responds directly to stress and strain (Clow and Hamer 2010). 
In healthy individuals, however, cortisol levels are subject to certain fluctuations (Edwards et al. 2001), and for this 
reason we collect a saliva sample on several occasions. It has been shown that the release of cortisol is a reliable stress 
marker (Aguilar Cordero et al. 2014), it might even be a better indicator than heart rate and HRV (Nomura et al. 2009). 

Attention Another indicator to be considered is attention. When attention is heightened, the mental state shows increased 
alertness and receptivity. These are factors that are controlled both volitionally and involuntarily (Matthews et al. 
2000). In the process, selection is made as to what information is important and what is not important to the organism 
(Broadbent 1958.). When attention is heightened, the overall responsiveness of the individual also increases. Stress 
triggers a reaction of the cognitive system in the sense that it increases attention for the brief moment by filtering out 
mainly unimportant information (Schaub 2012). In relation to the considered group of professional drivers, the 
decreasing attention with the duration of the working time might lead to wrong behaviour, which causes accidents. 

Subjective 
data 

Unpleasant situations – including social circumstances – can be reflected individually on a physical and on a psycho-
logical level (Evers 2009). The terms stress and strain can be combined in a so-called stress-strain concept (Romert 
and Rutenfanz 1975). This states in the work-scientific sense that stresses are factors that act on people from the outside. 
These can be of a physical, mental or psychosocial nature. Strain is then the effect of the stresses on an individual. The 
relationship between stress and strain is influenced by situational and personal factors, but also by subjective 
perception. This means that identical stressors can result in different strain levels for different people and that stressors 
of different types and severity can also result in the same strain level. For this reason, questions like family 
circumstances, housing situation, level of education, occupation and working conditions are recorded. 

Chrono-
type 

The effects of stress are very diverse. Among other things, one reaction to perceived stress can be fatigue (Borbély and 
Achermann 1992). However, it has also been shown that circadian rhythm disturbances are a factor in increased 
daytime sleepiness (Laube et al. 2015). Sleepiness can be induced by monotonous tasks such as, in this context, long 
vehicle journeys (Hartmann 1980). For this reason, the group of professional drivers is particularly affected by the risk 
of daytime sleepiness. There have been a large number of accidents on highways caused by excessive sleepiness. 
Individuals who work shifts in which their own circadian rhythm is opposite often suffer from increased sleepiness 
because their bodies are normally attuned to sleep (Monk and Buysse 2013). This working against one’s circadian 
rhythm represent a temporal stressor. Should these phases accumulate, sleepiness assumes an increased magnitude 
(Münch, Cajochen and Wirz-Justice 2005). The central nervous activation pattern decreases, lowering conscious 
control. 
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Impul-
sivity 

A literature review examined the relationship between aggressive behaviour and problem driving. Both clinical and 
nonclinical studies were included. The characteristic of impulsivity was also considered. A study was able to confirm 
the relationship (Witthöft, Hofmann and Petermann 2011). A study by Raio et al. (2013) was able to show that under 
stressful situations, emotion regulation could not take place as well as in a control condition. This is probably because 
the prefrontal cortex and an intact executive function, i.e., action control and behavioural control, must be functional 
in cognitive regulation and these are damaged under stressful conditions. This dysregulation of the prefrontal cortex 
and thus of executive functions is caused on the one hand by biological factors and on the other hand by the 
environment. 

Operating 
data 

There are a number of factors that can trigger stress reactions in professional drivers from a technical background. In 
1980, Hartmann was already able to point out a number of factors (Hartmann 1980). He was able to show, for example, 
that driving in city traffic exerts a higher stress on drivers than driving on the highway. This is due to the acceleration 
and braking processes, the numerous risky situations and the presence of a flood of environmental stimuli. For this 
reason, vehicle data will also be included in the analyses. 

Environ-
mental 
data 

Environmental factors are those factors which can be influenced by the drivers and those which cannot be influenced. 
An example of a factor that can be influenced is temperature. Extreme temperatures are perceived as a burden by the 
group of professional drivers, but they can regulate this themselves as long as the technology works (Plänitz 1983). 
Moreover, there are also factors which cannot be influenced. These include, for example, weather conditions, which can 
only be reacted to to a limited extent, and the traffic situation, which can also be influenced only to a limited extent. In 
their 2002 study, Ellinghaus and Steinbrecher (2002) were able to show that slippery roads are perceived as unpleasant 
by 94% of professional drivers, followed by fog with 90%. Traffic conditions also showed extreme stress: 56% of drivers 
perceive dense traffic as very stressful, half of them find traffic jams unpleasant. 

Table 1. Indicator Data for Driver Stress Analysis 

In the research project case addressed, an implementation in six steps is planned (see Figure 3). The process 
of implementation is shown schematically in the following diagram. The study begins by obtaining consent 
from the drivers to participate. In the second stage, a large data set consisting of qualitative and quantitative 
data is collected, including both objective and subjective measurements. An online questionnaire will be 
conducted in which the items demographics, education, family situation, housing situation, work activity, 
and current sleep will be highlighted. Subsequently, the questions from the Morningness-Eveningness-
Questionnaire are asked in a German translation (D-MEQ) (Griefahn et al. 2001) to assess the subjective 
circadian phasing of the drivers – the chronotype. Following is Barratt’s impulsivity scale (Patton, Stanford 
and Barratt 1995). This is the most widely used scale for self-assessment of one’s impulsivity (Stanford et 
al. 2009). In order to consider or exclude health influences or influences due to the use of alcohol, 
medication, drugs, etc., questions about health are asked. After that, the collection of objective data begins. 
In order to measure the attention of the drivers before starting to drive, the Frankfurt Attention Inventory 
(FAIR-2) in a revised version is used (Moosbrugger and Oehlschlägel 2011; Petermann 2011). Subsequently, 
the first saliva sample is taken by salivette to determine the cortisol content before the shift. Afterwards, 
the measuring instruments are put on to record the physiological and neurological reactions during the 
journey. The drivers start their tours and give a saliva sample again in the middle of the driving time. In 
addition, special incidents during the tour are documented by the drivers themselves, what helps to identify 
possible causes of fluctuations and interruptions in signal quality. After a tour, the fourth step of the 
procedure begins, a third saliva sample is taken and a further attention test is performed. 

 

Figure 3. Data Acquisition Process (Use Case Example) 

Using our model for decision support, we can now choose an appropriate data synchronization strategy. 
First, we assessed the criticality of temporal synchronization for our data collection. As we use physiological 
and neurological measurement devices working with high sampling rates (250-500 Hz), synchronization 
becomes necessary for useful data analysis. As we use several independent devices, we cannot rely on 
already synchronized internal device clocks. Nevertheless, medical devices should maintain standards 



 Driving Big Data 
  

 Forty-Third International Conference on Information Systems, Copenhagen 2022
 9 

regarding minimal internal clock drift i.e., differences of less milliseconds or seconds for a whole day. Beside 
the medical instruments, we gather further data from smartwatch and smartphone including GPS and 
driving data as well as measures of activity like the step count or body rotation. The medical devices are 
closed systems and we cannot implement additional time synchronization interfaces on the device e.g., for 
the NTP. Smartwatches allow the installation of custom apps but the programming interfaces available to 
developers offer only limited access e.g., to low-level network protocols as UDP/IP or TCP/IP. Nevertheless, 
as smartwatches measure several aspects at once, these data series are already internally time synchronized 
as the same device clock was used. Thereby, the requirement in our setting is to temporally synchronize all 
used devices assuming correct intra-device alignment (see Figure 4). 

 

Figure 4. Measurement Setup Architecture 

The next question in our decision support model is about consequences of imperfect synchronization. The 
internal clock drift of medical devices is assumed to be neglectable. The smartwatch acquires GPS signals 
that are coupled with high accuracy timestamps. Smartphones use the highly precise cellular network clock 
as point of reference. Therefore, we assume a low internal clock drift over the day. We want to measure 
comprehensive working days between 8 and 12 hours. Thereby, the relevant clock drift is only half or a third 
of the complete day drift and post-acquisition time shifting might be acceptable. As not all devices offer the 
streaming capabilities, we cannot make use of live time synchronization during the data collection using 
protocols as the LSL. Nevertheless, no network latencies must be considered as potential sources of 
inaccuracy. Our analysis focuses on the identification of factors for stress and strain of professional drivers. 
As pointed out before, stress is a phenomenon that typically remains for a longer period and so we are 
interested in time spans and no precise moments in time. Nevertheless, to map the start point of stress to 
the driver’s context, the timing requirement is assumed to be less seconds. Our decision model supports in 
choosing an appropriate time synchronization strategy for the data collection. We measure data in a field 
setting and as driving is a safety-critical task, the measurement devices must not influence the driver during 
his work. Devices shall work without any cables as they might hinder the driver. Besides, we want to 
measure a time span of 8 to 12 hours and so, the battery life of the devices must be saved. We cannot assume 
that drivers change or charge batteries by their own. In addition, permanent data streaming over a wireless 
network of all involved devices might be no option for this setting due to the battery demand. As many 
drivers are required to load and unload their trucks manually, the measurement devices must be robust and 
shock insensitive. For our setting, we decide for a pre-post-stimulus synchronization strategy combined 
with live time synchronization using the LSL. The stimulus strategy fits best for devices with a low internal 
clock drift, constraints regarding battery and closed system as well as accuracy requirements on the level of 
seconds and time span analysis. The stimulus itself will be either digital or analogue. The time 
synchronization takes place after the measurements ends: the unsynchronized data streams are shifted 
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until their marker positions match. To minimize the synchronization efforts, we utilize the LSL for as much 
data sources as possible. EEG data is acquired in a smartphone app, streamed into the LSL and synchro-
nized with time marker data as well as smartphone sensor data. Although these sources origin from one 
smartphone device, using the LSL provides the flexibility, e.g., to generate marker data on a different device 
or integrate further sensor data sources like an eye tracker. For the data architecture, the smartphone clock 
is used as reference as this device is the source for several data streams and we assume that the GPS or 
cellular network-based clock is sufficiently precise. All other data sources are aligned to this reference clock.   

Contributions, Limitations and Outlook 

Conceptual Contributions 

This paper makes a theoretical contribution by serving as an extension to existing data analytics frameworks 
from the IS domain focusing on time synchronization as part of the data acquisition, e.g. (Phillips-Wren et 
al. 2015). The objective is to raise awareness for time synchronization issues regarding sensor-based data 
collection. We contribute by providing a topic overview regarding time synchronization and by deriving a 
high-level concept model serving as a starting point for researchers and practitioners unfamiliar with the 
issue. Furthermore, we apply and refine this concept model by considering a specific use case for time 
synchronization: truck driver work stress and strain analysis. From a conceptual point of view, our research 
relates to well-established models in data science (Shafique and Qaiser 2014) like Cross-Industry Standard 
Process for Data Mining CRISP-DM (Wirth and Hipp 2000) and Knowledge Discovery in Databases KDD 
(Fayyad, Piatetsky-Shapiro and Smyth 1996). However, these models are often applied based on pre-exis-
ting data (Wiemer, Drowatzky and Ihlenfeldt 2019). In the practice-oriented CRISP-DM, the initial data 
acquisition is not a focal part and is hidden in a “data understanding” step and the “database” in the center, 
leading to researchers extending the model (Martinez-Plumed et al. 2021). There are also specific models 
for sensor-based data such as Automated PRE-Processing for Data Mining APREP-DM (Nagashima and 
Kato 2019). For data requiring temporal synchronization, we argue that dealing with issues a-priori is 
crucial for fully realizing the potential of data analysis in the case of sensor-based data. Figure 5 provides 
an extended concept draft for data integration and synchronization issues in big data and AI analyses: While 
applying our framework to the drivers use case, we gathered multiple learnings. The data collection from 
various devices required an iterative refinement of the setup architecture. In our case, the data set consisted 
of many different time formats with varying precision and points of reference (see red notes in Figure 5).  

 

Figure 5. Data Synchronization Issues Concept 
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Generally, time formats can either use an absolute or relative point of reference. Absolute time might be the 
wall clock time or in case of UNIX timestamps, the seconds from 1970-01-01. Relative timestamps were 
used inside the LSL and referenced the recording device uptime which was reset after a device restart due 
to low energy. Without proper data inspection or preventive time synchronization strategies like pre-post 
stimulus (see the red note at “Marker Sync App” in Figure 5), these inconsistent timestamps might hinder 
data analysis. Another factor in time synchronization is the used time format. Some devices have explicit 
time zone information included while others require manual insertion. This fact might become problematic 
e.g., during changes to daylight saving time in summer or truck rides crossing time zones. Precision of time 
formats might also complicate proper data handling. Our medical devices captured data 500 times a second, 
while weather data was only captured few times an hour. It must be judged per data type if a single data 
point only counts for the capturing time itself or also fits for a time span. Gathering the driving direction 
every 10 seconds might be handled different than traffic density due to their varying change frequency. 
Regarding our measurement architecture, the portability requirement of the devices became more 
demanding than initially assumed. During truck unloading, the EEG wireless connection to the acquisition 
tablet disconnected several times without automatic reconnection and the data set became unusable. We 
extracted three learnings: early observations of a typical driver’s workday would have influenced the setup 
from the very beginning. Second, data measurements in everyday settings set high requirements on 
reliability, and failure-tolerance and the acquisition software should be hardened to handle e.g., 
disconnections. Our last learning refers to the portability requirement. If the tested subjects cannot be 
observed during their whole workday, fitness tracker might give valuable insights on the activity level and 
the required setup flexibility. In different scenarios, the overarching quality requirement might be changed: 
collecting data in smart cities might require less portability and energy efficiency but more scalability to 
handle vast amounts of collecting devices. Nevertheless, issues like heterogeneous time formats and 
sampling rates or differing internal device clocks are likely to occur in every scenario. 

Application Contributions 

The drafted data integration and synchronization framework could be applied to other use cases aiming at 
synchronizing different data, especially in a Big Data and AI application context. This could refer either to 
a transfer of measuring stress and strain in different work settings – with complex and diverse data source 
structures as in the described use case of truck drivers. Specifically, for truck drivers, a smartphone 
application could integrate all data and provide individual suggestions, e.g. to make a break, based on the 
analysis of the Big Data approach described and then subsequently working with smaller datasets. In a 
larger transfer perspective, the detailed data sources approach could be used to develop chatbots for work 
environment support, similarly requiring the analysis of a diversity of relevant data sources. For the 
continuation of the operations and logistics context presented herein, Big Data analytics and AI tools could 
be developed to manage and coordinate processes in networks on a large and complex supply chain scale. 
Regarding generalizability, the findings presented are expected to further support research in contexts of 
medical applications to ensure data quality and else, such as security management (e.g., traffic safety or 
societal security) and disaster management in crises with crucial relevance of data time synchronization. 

Limitations and Outlook 

An important limitation must be considered: AI development requires an experimental approach, meaning 
that one cannot state before training whether results will be achieved as intended. While ensuring data 
quality as described is an important step towards functioning AI-models, still no guarantee can be given 
that a trained model will perform as desired. However, we argue that considering all discussed aspects will 
yield a deeper understanding of the underlying data and thus support development efforts. For the same 
reasons, developers face a dilemma: While a dedicated data collection requires effort, it cannot be 
determined in advance how strong the effect of, e.g., network latencies during data collection on the trained 
model will be. Maybe the desired patterns in the data are strong enough to train robust algorithms. Thus, a 
dedicated weighing of options is required regarding the resulting costs, i.e., whether collecting new data in 
case model training fails is easier than going through all the effort to ensure data validity. We see this as a 
limitation to our approach, because answering this question depends on application specifics that – from 
our current experiences – cannot be generalized. Nevertheless, we think that our proposed approach can 
support developers by creating awareness for potential problems and thus improve development efforts.  
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Furthermore, our approach is based on recent literature and the set of sensors we use for acquiring data. 
We cannot exclude that other hardware (other sensors or the same sensors from different vendors) will 
require some adaptations or will introduce new aspects. This study set out to explore the work-related stress 
and strain that truck drivers experience in their daily lives. We argue that to understand the root causes of 
stress better, we need to access additional data sources. The arising challenge of data integration and 
synchronization among different data sources is pertinent to understanding causal relationships. Based on 
a detailed account of integration synchronization challenges, we introduce the concept of lab streaming 
layers and derive at a high-level framework for solving time synchronization issues in data collection. We 
adopt this framework to a real-world case with stress and strain analyses of truck drivers, leading to a 
revised data integration and synchronization framework. This allows researchers and practitioners alike to 
address integration and synchronization issues. The framework provides a solid ground for AI-based Big 
Data endeavours and a valid contribution to better understand stress and its root causes. This framework 
can inform multiple stakeholders and levels, from driving assistant systems to work-related optimizations 
in different fields and industries.  
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