11 research outputs found

    Synchronous design of avionic applications based on model refinements

    Get PDF
    International audienceIn this article, we address the design of avionic applications based on an approach, which relies on model refinement. This study is done within the synchronous framework, which has solid mathematical foundations enabling formal methods for specification, verification and analysis, transformations, etc. In the proposed approach, we first consider a functional description of a given application using the SIGNAL language. This description is independent of a specific implementation platform. Then, some transformations that fully preserve the semantics of manipulated SIGNAL programs are applied to the description such that a representation reflecting an integrated modular avionics architecture results

    The SIGNAL Approach to the Design of System Architectures

    Get PDF
    International audienceModeling plays a central role in system engineering. It significantly reduces costs and efforts in the design by providing developers with means for cheaper and more relevant experimentations. So, design choices can be assessed earlier. The use of a formalism, such as the synchronous language SIGNAL which relies on solid mathematical foundations for the modeling, allows validation. This is the aim of the methodology defined for the design of embedded systems where emphasis is put on formal techniques for verification, analysis, and code generation. This paper mainly focuses on the modeling of architecture components using SIGNAL. For illustration, we consider the modeling of a bounded FIFO queue, which is intended to be used for communication protocols. We bring out the capabilities of SIGNAL to allow specifications in an elegant way, and we check few elementary properties on the resulting model for correctness

    The Signal Synchronous Multiclock Approach to the Design of Distributed Embedded System

    Get PDF
    International audienceThis paper presents the design of distributed embedded systems using the synchronous multiclock model of the Signal language. It proposes a methodology that ensures a correct-by-construction functional implementation of these systems from high-level models. It shows the capability of the synchronous approach to apply formal techniques and tools that guarantee the reliability of the designed systems. Such a capability is necessary and highly worthy when dealing with safety-critical systems. The proposed methodology is demonstrated through a case study consisting of a simple avionic application, which aims to pragmatically help the reader to understand the manipulated formal concepts, and to apply them easily in order to solve system correctness issues encountered in practice. The application functionality is first modeled as well as its distribution on a generic hardware architecture. This relies on the endochrony and endo-isochrony properties of Signal specifications, defined previously. The considered architectures include asynchronous communication mechanisms, which are also modeled in Signal and proved to achieve message exchanges correctly. Furthermore, the synchronizability of the different parts in the resulting system is addressed after its deployment on a specific execution platform with multirate clocks. After all these steps, a distributed code can be automatically generated

    Towards a verified compiler prototype for the synchronous language SIGNAL

    Get PDF
    International audienceSIGNAL belongs to the synchronous languages family which are widely used in the design of safety-critical real-time systems such as avionics, space systems, and nuclear power plants. This paper reports a compiler prototype for SIGNAL. Compared with the existing SIGNAL compiler, we propose a new intermediate representation (named S-CGA, a variant of clocked guarded actions), to integrate more synchronous programs into our compiler prototype in the future. The front-end of the compiler, i.e., the translation from SIGNAL to S-CGA, is presented. As well, the proof of semantics preservation is mechanized in the theorem prover Coq. Moreover, we present the back-end of the compiler, including sequential code generation and multithreaded code generation with time-predictable properties. With the rising importance of multi-core processors in safety-critical embedded systems or cyber-physical systems (CPS), there is a growing need for model-driven generation of multithreaded code and thus mapping on multi-core. We propose a time-predictable multi-core architecture model in architecture analysis and design language (AADL), and map the multi-threaded code to this model

    Modelling Statecharts and Activitycharts as Signal equations

    Get PDF
    International audienceThe languages for modeling reactive systems are of different styles, like the imperative, state-based ones and the declarative, data-flow ones. They are adapted to different application domains. This paper, through the example of the languages Statecharts and Signal, shows a way to give a model of an imperative specification (Statecharts) in a declarative, equational one (Signal). This model constitutes a formal model of the Statemate semantics of Statecharts, upon which formal analysis techniques can be applied. Being a transformation from an imperative to a declarative structure, it involves the definition of generic models for the explicit management of state (in the case of control as well as of data). In order to obtain a structural construction of the model, a hierarchical and modular organization is proposed, including proper management and propagation of control along the hierarchy. The results presented here cover the essential features of Statecharts as well as of another language of Statemate: Activitycharts. As a translation, it makes multiformalism specification possible, and provides support for the integrated operation of the languages. The motivation lies also in the perspective of gaining access to the various formal analysis and implementation tools of the synchronous technology, using the DC exchange format, as in the Sacres programming environment

    The synchronous languages 12 years later

    Full text link

    Applying patterns in embedded systems design for managing quality attributes and their trade-offs

    Get PDF

    Applying patterns in embedded systems design for managing quality attributes and their trade-offs

    Get PDF
    Embedded systems comprise one of the most important types of software-intensive systems, as they are pervasive and used in daily life more than any other type, e.g., in cars or in electrical appliances. When these systems operate under hard constraints, the violation of which can lead to catastrophic events, the system is classified as a critical embedded system (CES). The quality attributes related to these hard constraints are named critical quality attributes (CQAs). For example, the performance of the software for cruise-control or self-driving in a car are critical as they can potentially relate to harming human lives. Despite the growing body of knowledge on engineering CESs, there is still a lack of approaches that can support its design, while managing CQAs and their trade-offs with noncritical ones (e.g., maintainability and reusability). To address this gap, the state-of-research and practice on designing CES and managing quality trade-offs were explored, approaches to improve its design identified, and the merit of these approaches empirically investigated. When designing software, one common approach is to organize its components according to well-known structures, named design patterns. However, these patterns may be avoided in some classes of systems such as CES, as they are sometimes associated with the detriment of CQAs. In short, the findings reported in the thesis suggest that, when applicable, design patterns can promote CQAs while supporting the management of trade-offs. The thesis also reports on a phenomena, namely pattern grime, and factors that can influence the extent of the observed benefits

    A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    Get PDF
    The rising sophistication of cyber threats as well as the improvement of physical computer network properties present increasing challenges to contemporary Intrusion Detection (ID) techniques. To respond to these challenges, a multi agent system (MAS) coupled with flow-based ID techniques may effectively complement traditional ID systems. This paper develops: 1) a scalable software architecture for a new, self-organized, multi agent, flow-based ID system; and 2) a network simulation environment suitable for evaluating implementations of this MAS architecture and for other research purposes. Self-organization is achieved via 1) a reputation system that influences agent mobility in the search for effective vantage points in the network; and 2) multi objective evolutionary algorithms that seek effective operational parameter values. This paper illustrates, through quantitative and qualitative evaluation, 1) the conditions for which the reputation system provides a significant benefit; and 2) essential functionality of a complex network simulation environment supporting a broad range of malicious activity scenarios. These results establish an optimistic outlook for further research in flow-based multi agent systems for ID in computer networks
    corecore