

 University of Groningen

Applying patterns in embedded systems design for managing quality attributes and their
trade-offs
Feitosa, Daniel

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Feitosa, D. (2019). Applying patterns in embedded systems design for managing quality attributes and their
trade-offs. [Groningen]: University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-11-2019

https://www.rug.nl/research/portal/en/publications/applying-patterns-in-embedded-systems-design-for-managing-quality-attributes-and-their-tradeoffs(7b918b36-d36f-42cd-87b8-9eeed217a45d).html

Applying Patterns in Embedded
Systems Design for managing
Quality Attributes and their

Trade-offs

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. E. Sterken
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Friday 25 January 2019 at 11.00 hours

by

Daniel Feitosa
born on 6 January 1988

in Salvador, Brazil

Supervisors
Prof. P. Avgeriou
Prof. E. Y. Nakagawa

Co-supervisor
Dr. A. Ampatzoglou

Assessment committee
Prof. Y.G. Guéhéneuc
Prof. C. Izurieta
Prof. A.C. Telea

The research reported in this thesis has been conducted in the Software Engi-
neering and Architecture group of the Bernoulli Institute for Mathematics, Compu-
ter Science and Artificial Intelligence of the University of Groningen, The Nether-
lands. The research work was financially supported by the Brazilian and Dutch
agencies Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES)
and Netherlands Universities’ Foundation for International Cooperation (NUFFIC),
under grant number 034/12, Conselho Nacional de Desenvolviment Cientı́fico e
Tecnológico (CNPq), under grant number 204607/2013-2, and Instituto Nacional
de Ciência e Tecnologia em Sistemas Embarcados Crı́ticos (INCT-SEC), under grant
numbers 573963/2008-8 and 2008/57870-9.

Cover details: The geometric forms on the front and back side of the cover refer to
two different implementations of similar features of a robotic face. This is an ana-
logy to the possibility of having different instantiations of one same design pattern,
which may express different levels of one or more quality attributes. The curve deli-
neated by a dark shade of red is an analogy to measurements quality levels in a time
series. Finally, the font used in the cover is named Roboto, by Christian Robertson.

Apllying patterns in embedded systems design for managing quality attributes and
their trade-offs
Daniel Feitosa

ISBN: 978-94-034-1375-4 (printed version)
ISBN: 978-94-034-1374-7 (electronic version)

Abstract

Embedded systems comprise one of the most important types of software-intensive
systems, as they are pervasive and used in daily life more than any other type, e.g.,
in cars or in electrical appliances. When these systems operate under hard cons-
traints, the violation of which can lead to catastrophic events, the system is classified
as a critical embedded system (CES). The quality attributes related to these hard
constraints are named critical quality attributes. For example, the performance
and security of the software for cruise-control, automatic braking, or self-driving in
a car are critical as they can potentially relate to harming human lives.

Despite the growing body of knowledge on engineering CESs, there is still a
lack of approaches that can support the design of CES, while managing critical qua-
lity attributes and their trade-offs with noncritical ones. To address this gap, this
dissertation explored the state of research and practice on designing CES and ma-
naging quality trade-offs, identified approaches to improve the design of CES with
regards to managing quality attributes and their trade-offs, and empirically investi-
gated the merit of these approaches.

To investigate the state-of-practice, we explored the actual trade-offs between
quality attributes (both critical and noncritical) in real systems. The results showed
that trade-offs favor certain critical quality attributes against noncritical ones (e.g.,
security for extendibility) or other critical quality attributes (e.g., correctness for per-
formance). In addition, these trade-offs between critical and noncritical quality at-
tributes are more recurrent in the domain of CESs. These observations suggest that
certain trade-offs are systemic (i.e., recurrent in the system) and may have great
impact on the level of quality attributes. Therefore, it is of paramount importance
to investigate approaches that can tackle both critical and noncritical qualities and
support managing the trade-offs between them.

To explore the state-of-research, we conducted a systematic mapping study

(SMS) to explore approaches that had been proposed and used for CES design.
Results of the SMS showed that multiple approaches have been proposed, focu-
sing on a variety of specific challenges posed by different types of CESs. Evidence
suggests that CESs have been growing both in terms of size and complexity. In
addition, noncritical features, such as GPS and infotainment subsystems, are also
being integrated, sometimes sharing resources (e.g., communication medium) with
critical features, which leads to a new class of challenges related to these mixed le-
vels of criticality. To tackle issues arising from this growth, several solutions (e.g.,
component-based approaches and software patterns) focus on improving design-
time quality attributes, such as reusability and maintainability, while guaranteeing
critical quality attributes. These findings provide further evidence on the necessity
of addressing both critical and noncritical quality attributes during CES design.

After understanding the problem through the state of research and practice, the
goal was to identify potential solutions that would support the management of
trade-offs between QAs. Among the approaches identified during the SMS, some
studies suggest using software patterns during CES design. Although literature
shows that software patterns may affect different quality attributes, these effects
have not been extensively explored empirically, especially regarding the correlation
between critical and noncritical qualities. Due to their potential to support mana-
ging quality attributes, we decided to focus the PhD project to the use of software
patterns, in particular GoF design patterns. For that, we conducted two empirical
studies (case studies) to investigate how GoF design pattern affects three of the most
common critical quality attributes, namely security, correctness, and performance.

In the first case study, five popular and non-trivial open-source software projects
were considered to investigate the correlation between the application of GoF design
patterns and the three quality attributes, which are assessed through static analysis.
The results suggest that classes not participating in any pattern are correlated with
lower quality levels. However, classes participating in patterns with more complex
structure and pattern roles that are more change-prone are also more likely to be
associated with lower quality levels. In the second study, dynamic analysis was
exploited to assess and investigate one aspect of performance, namely energy effici-
ency, which has gained notorious attention from both practitioners and researchers
in the last years. The results suggest that although a pattern solution tends to con-
sume more energy than a non-pattern solution, certain design-time properties of a
pattern instance (e.g., number of message calls, or method size) have considerable
impact on their effect. In particular, results showed that large methods and/or me-
thods with high number of method invocations were correlated with higher energy
efficiency.

The results of both case studies suggest that design patterns are potential solu-

tions for managing quality attributes. However, their impact on quality attributes
is not uniform and, therefore, it is highly important to understand parameters that
may affect it. One dominant parameter is the pattern instantiation. Similarly to how
the design of a system may decay in comparison to its original architecture, design
pattern instances can drift from their original implementation as the software evol-
ves and additional functionality is added. This phenomenon is known as pattern
grime, and understanding its consequences to the results observed in the aforemen-
tioned studies is vital for getting a comprehensive picture of the benefits and impair-
ments of applying GoF patterns in CES development. For that, we conducted two
case studies to investigate how pattern grime evolves and the relationship between
its accumulation and levels of the three critical quality attributes addressed in this
dissertation.

The first case study investigated the extent of the relationships between the ac-
cumulation of grime in pattern instances and various related factors: (a) projects, (b)
pattern types, (c) developers, and (d) the structural characteristics of the pattern par-
ticipating classes. The results suggest that pattern grime tends to increase linearly,
and that it is likely independent of project but dependent of pattern type and de-
veloper. The second case study focused on examining the correlation between three
forms of pattern grime (organizational, modular, and class) and the levels of perfor-
mance, security and correctness. The results suggest that pattern grime is related
to the depreciation of the three quality attributes in pattern instances. However, no
strong evidence is observed on organizational grime. Furthermore, developers ac-
cumulate grime at different rates, and higher rates are mostly associated with lower
quality levels. Finally, particular patterns, e.g., Factory Method, are associated with
higher amounts of grime and lower quality levels.

Samenvatting

Geı̈ntegreerde systemen zijn een van de meest belangrijke soorten software-
intensieve systemen, omdat ze meer dan andere type systemen, gebruikt worden in
vele aspecten van het dagelijks leven, bijvoorbeeld in auto’s of elektrische appara-
ten. Wanneer deze systemen onder strenge restricties functioneren, d.w.z. restricties
van dusdanig strenge aard dat schending van de restricties tot catastrofale gebeurte-
nissen kan leiden, wordt het geı̈ntegreerde systeem geclassificeerd als een kritieke
toepassing (ofwel CES: Critical Embedded System). De kwaliteitsattributen die gere-
lateerd zijn aan de restricties worden kritieke kwaliteitsattributen genoemd. Pres-
tatie en veiligheid zijn bijvoorbeeld kritieke kwaliteitsattributen van software voor
onder andere cruisecontrol, automatische remsystemen of zelfrijdende autosyste-
men aangezien het falen van deze systemen mensenlevens in gevaar kan brengen.

Ondanks de toenemende kennis op het gebied van CES engineering, is er nog
een gebrek aan benaderingen die het ontwerp van CES ondersteunen en tegelijker-
tijd de kritieke kwaliteitsattributen en diens wisselwerking met niet-kritieke kwa-
liteitsattributen kunnen beheren. Om tegemoet te komen aan deze behoefte wer-
den in dit proefschrift de stand van het onderzoek en de praktijk in CES-ontwerp,
en het beheer van wisselwerkingen tussen kwaliteitsattributen bestudeerd. Voorts
werden er benaderingen geı̈dentificeerd ter verbetering van het CES-ontwerp en
het beheer van de wisselwerking tussen kwaliteitsattributen. De voordelen van de
geı̈dentificeerde benaderingen werden onderzocht middels empirisch onderzoek.

Om de stand van de praktijk te onderzoeken, hebben we de daadwerkelijke wis-
selwerkingen tussen kwaliteitsattributen (zowel kritieke als niet-kritieke) in reële
systemen bestudeerd. De resultaten toonden dat bepaalde kritieke kwaliteitsattribu-
ten in wisselwerkingen geprefreerd worden boven niet-kritieke kwaliteitsattributen
(bijvoorbeeld veiligheid boven uitbreidbaarheid). Daarnaast zijn deze afwegingen
tussen kritieke en niet-kritieke kwaliteitsattributen meer terugkerend in het domein

van kritieke toepassingen. Deze waarnemingen suggereren dat bepaalde compro-
missen stelselmatig zijn, d.w.z. dat ze wederkerend zijn in het systeem en grote
invloed kunnen hebben op het niveau van kwaliteitsattributen. Daarom is het van
het grootste belang om benaderingen te onderzoeken die zowel kritieke als niet-
kritieke kwaliteitsattributen aankunnen en het beheer van de wisselwerking tussen
beide ondersteunen.

Om de stand van onderzoek te bestuderen hebben we een systematic mapping
study (SMS) uitgevoerd om voorgestelde en gebruikte benaderingen voor CES-
ontwerp te onderzoeken. De resultaten van de SMS toonden dat meerdere bena-
deringen zijn voorgesteld, gericht op een verscheidenheid aan de specificieke uitda-
gingen die verschillende soorten CES bieden. Onderzoeksresultaten suggereren dat
CES zijn gegroeid in termen van zowel grootte als complexiteit. Daarnaast worden
niet-kritieke functies, zoals GPS en infotainment subsystemen, ook geı̈ntegreerd,
waarbij systeemelementen (bijvoorbeeld het communicatiemedium) gedeeld wor-
den met kritieke functies. Dit leidt tot nieuwe uitdagingen op het gebied van de
verschillen in kritieke niveaus van functies. Er zijn verscheidene oplossingen die
uitkomst bieden aan de uitdagingen die voortkomen uit deze ontwikkeling. Deze
oplossingen (zoals op componenten gebaseerde benaderingen en softwarepatronen)
richten zich op verbetering van kwaliteitsattributen op het gebied van ontwerp en
tijd, zoals herbruikbaarheid en onderhoud, terwijl ze kritieke kwaliteitsattributen
garanderen. Deze bevindingen onderschrijven de noodzakelijkheid van het bestu-
deren van kritieke en niet-kritieke kwaliteitsattributen tijdens CES-ontwerp.

Na bestudering van de stand van praktijk en onderzoek omtrent het probleem,
was het doel om potentiële oplossingen te identificeren die het beheer van wis-
selwerkingen tussen kwaliteitsattributen zouden kunnen ondersteunen. Uit de
SMS waren benaderingen voortgekomen die het gebruik van softwarepatronen tij-
den CES-ontwerp voorschreven. Hoewel de literatuur aantoont dat softwarepatro-
nen mogelijk verschillende kwaliteitsattributen beı̈nvloeden, zijn deze effecten, met
name op het gebied van de correlatie tussen kritieke en niet-kritieke kwaliteitsat-
tributen, niet extensief empirisch onderzocht. Omdat softwarepatronen potentie
bieden in het ondersteunen van het beheer van kwakliteitsattributen, hebben wij
besloten het proefschrift te richten op het gebruik van softwarepatronen, en GoF
ontwerppatronen in het bijzonder. Hiervoor hebben wij twee empirische studies
(casussen) uitgevoerd om te onderzoeken welke invloed GoF ontwerppatronen uit-
oefenen op drie veelvoorkomende kritieke kwaliteitsattributen: veiligheid, correct-
heid en prestatie.

In de eerste casus werden vijf populaire en non-triviale open-source software
projecten geselecteerd om de correlatie te onderzoeken tussen de toepassing van
GoF ontwerppatronen en de drie kwaliteitsattributen, die beoordeeld worden door

statische analyse. De resultaten suggereren dat klassen die geen deel uitmaken van
patronen gecorreleerd zijn met lagere kwaliteitsniveau’s. In de tweede casus werd
dynamische analyse gebruikt om een aspect van prestatie te bestuderen en beoorde-
len, namelijk energie-efficiëntie. Dit aspect heeft recentelijk veel aandacht gekregen
van zowel onderzoekers als praktijkdeskundigen. Over het algemeeen verbruikt
een oplossing op basis van patronen meer energie dan een oplossing die niet ge-
baseerd is op patronen. De resultaten suggereren echter dat bepaalde ontwerptijd
eigenschappen van een patrooninstantie, bijvoorbeeld het aantal berichtoproepen of
de omvang van de methode, een substantiële invloed hebben op het effect van een
op patronen gebaseerde oplossing. De resultaten toonden met name aan dat grote
methodes en/of methodes met een hoog aantal methode aanroepen gecorreleerd
waren aan hogere energie-efficiëntie.

De resultaten van beide casussen suggereren dat ontwerppatronen uitkomst bie-
den voor het beheer van kwaliteitsattributen. De uitwerking van ontwerppatronen
op kwaliteitsattributen is echter niet uniform, derhalve is begrip van de parame-
ters die de uitwerking kunnen beı̈nvloeden uiterst belangrijk. Een belangrijke pa-
rameter is de instantiëring van het patroon. Evenzo een systeemontwerp mogelijk
verslechtert in vergelijking met zijn originele architectuur, kunnen instanties van
ontwerppatronen langzaam gaan afwijken van hun oorspronkelijke implementatie
terwijl de software evolueert en aanvullende functionaliteiten toegevoegd worden.
Dit fenomeen staat bekend ’pattern grime’ en heeft consequenties voor de resulta-
ten in de eerder genoemde studies. Derhalve is begrip van dit fenomeen essentieel
om een volledig beeld van de voordelen en beperkingen van toepassing van GoF
pattronen in CES ontwikkeling te schetsen.

In de eerste casus onderzochten we de relatie tussen de opbouw van pattern
grime in patrooninstanties en verscheidene gerelateerde factoren: (a) projecten, (b)
patroontypes, (c) ontwikkelaars, en (d) structurele kenmerken van de patroondeel-
nemende klassen. De resultaten suggereren dat pattern grime vaak lineair toeneemt
en waarschijnlijk onafhankelijk is van de factor project, maar juist afhankelijk is van
patroontype en ontwikkelaar. De tweede casus was gericht op het bestuderen van
de correlatie tussen drie soorten pattern grime (organisatorisch, modulair en klasse)
en de prestatie-, veiligheids-, en correctheidsniveaus. De resultaten suggereren dat
pattern grime gerelateerd is aan de waardevermindering van de drie kwaliteitsat-
tributen in patrooninstanties. Er is echter geen sterk bewijs waargenomen in or-
ganisatorische pattern grime. Bovendien verzamelen ontwikkelaars pattern grime in
verschillende tempo’s en hogere snelheden worden veelal geassocieerd met lagere
kwaliteitsniveaus. Tot slot worden bepaalde patronen, zoals Factory Method, geas-
socieerd met grotere hoeveelheden pattern grime en lagere kwaliteitsniveaus.

Contents

Abstract

Samenvatting

List of Figures vi

List of Tables viii

Acknowledgements xi

1 Introduction 1
1.1 Critical Embedded Systems . 1
1.2 Software Quality . 2
1.3 Design Patterns . 3
1.4 Research Design . 4

1.4.1 Problem Statement . 5
1.4.2 Design Science Framework . 6
1.4.3 Problem Decomposition . 8
1.4.4 Empirical Research Methodology 12

1.5 Overview of the Dissertation . 14

2 Investigating Quality Trade-offs in Open Source Critical Embedded Sys-
tems 17
2.1 Introduction . 17
2.2 Related Work . 19

2.2.1 Quality Trade-offs in Embedded Systems 20
2.2.2 Quality Analysis through Evolution 20

i

Contents

2.2.3 Overview of Related Work . 21
2.3 Case Study Design . 22

2.3.1 Objectives and Research Questions 22
2.3.2 Case Selection and Unit of Analysis 23
2.3.3 Variables . 24
2.3.4 Collection Procedure and Pre-processing 26
2.3.5 Data Analysis . 28

2.4 Results . 30
2.5 Discussion . 33

2.5.1 Trade-offs in CES Domain . 33
2.5.2 Comparison of the Two Groups 34
2.5.3 Implications for Practitioners and Researchers 36

2.6 Threats to Validity . 36
2.7 Conclusions . 38

3 Design Approaches for Critical Embedded System: A Systematic Mapping
Study 39
3.1 Introduction . 39
3.2 Related Work . 40

3.2.1 Development Processes . 40
3.2.2 Verification and Validation . 41
3.2.3 Software Architecture . 42
3.2.4 Comparative Analysis . 43

3.3 Review Methodology . 43
3.3.1 Research Scope . 44
3.3.2 Search Strategy . 45
3.3.3 Study Selection . 46
3.3.4 Keywording . 48
3.3.5 Data Extraction and Mapping 48

3.4 Results . 49
3.4.1 Demographic Overview . 50
3.4.2 Design Approaches . 52
3.4.3 Application Domains . 57
3.4.4 Quality Attributes . 59
3.4.5 Tools . 61
3.4.6 Evidence Type . 63

3.5 Discussion . 65
3.5.1 Relationship between Quality Attributes 65
3.5.2 Domain-Specific Research for CES 68

ii

Contents

3.5.3 Relationships among Approaches, Tools, and Languages . . . 69
3.5.4 Implications to Researchers and Practitioners 71

3.6 Threats to Validity . 72
3.7 Conclusions . 73

4 What can Violations of Good Practices tell about the Relationship between
GoF Patterns and Runtime Quality Attributes? 75
4.1 Introduction . 75
4.2 Related Work . 79

4.2.1 Design Patterns and Correctness 79
4.2.2 Design Patterns and Performance 80
4.2.3 Design Patterns and Security 82
4.2.4 Overview of Related Work . 82

4.3 Case Study Design . 83
4.3.1 Objectives and Research Questions 84
4.3.2 Case Selection and Unit of Analysis 86
4.3.3 Variables . 87
4.3.4 Collection Procedure and Pre-processing 91
4.3.5 Data Analysis . 94

4.4 Results . 95
4.4.1 Comparison between SPP, PPC, and NPP classes (RQ1) 96
4.4.2 Comparison between pattern categories RQ2 99
4.4.3 Comparison between patterns (RQ3) 100
4.4.4 Comparison between pattern roles (RQ4) 103

4.5 Discussion . 105
4.5.1 Interpretation of results . 105
4.5.2 Implications for practitioners and researchers 109

4.6 Threats to Validity . 110
4.7 Conclusion . 112

5 Investigating the Effect of Design Patterns on Energy Consumption 113
5.1 Introduction . 113
5.2 Related work . 116
5.3 Design Patterns and Alternatives . 119

5.3.1 State/Strategy . 120
5.3.2 State/Strategy Alternative . 121
5.3.3 Template Method . 123
5.3.4 Template Method Alternative 123

5.4 Experimental Planning . 125

iii

Contents

5.4.1 Objectives, Research Questions, and Hypotheses 125
5.4.2 Design Type and Experimental Units 126
5.4.3 Variables and Instrumentation 128
5.4.4 Analysis Procedure . 132

5.5 Execution . 133
5.5.1 Data Collection . 134
5.5.2 Validation of the Collected Data 135

5.6 Analysis . 136
5.6.1 Descriptive Statistics . 137
5.6.2 RQ1: Template Method . 138
5.6.3 RQ2: State/Strategy . 140
5.6.4 RQ3: Influence of Source Code Parameters 141

5.7 Discussion . 145
5.7.1 Interpretation of Results . 145
5.7.2 Implications to Researchers and Practitioners 147

5.8 Threats to Validity . 149
5.9 Conclusions . 151

6 The Evolution of Design Pattern Grime: An Industrial Case Study 153
6.1 Introduction . 153
6.2 Related Work . 155
6.3 Study Design . 156

6.3.1 Objectives and Research Questions 156
6.3.2 Case Selection, Unit of Analysis, and Subjects 157
6.3.3 Variables and Data Collection 157
6.3.4 Analysis Procedure . 159

6.4 Results . 160
6.4.1 RQ1 - Accumulation of Grime 161
6.4.2 RQ2 - Structural Characteristics and Pattern Grime 165

6.5 Discussion . 166
6.5.1 Interpretation of Results . 166
6.5.2 Implications to Researchers and Practitioners 168

6.6 Threats to Validity . 169
6.7 Conclusion . 170

7 Correlating Pattern Grime and Quality Attributes 171
7.1 Introduction . 171
7.2 Related Work . 173

7.2.1 Design Patterns Grime and Quality Attributes 173

iv

Contents

7.2.2 Comparison to State of Research 174
7.3 Study Design . 175

7.3.1 Objectives and Research Questions 175
7.3.2 Case Selection and Units of Analysis 176
7.3.3 Variables and Data Collection 177
7.3.4 Analysis Procedure . 180

7.4 Results . 180
7.4.1 RQ1 - Grime and Quality Attributes 182
7.4.2 RQ2 - Analysis of Factors . 184

7.5 Discussion . 189
7.5.1 Interpretation of Results . 190
7.5.2 Implications to Researchers and Practitioners 193

7.6 Threats to Validity . 195
7.7 Conclusions . 196

8 Conclusions and Future Work 199
8.1 Research Questions and Contributions 199
8.2 Future Work . 203

8.2.1 Pattern Recommendation System 203
8.2.2 Scope of Studies . 204
8.2.3 Exploration of Other Patterns 204
8.2.4 Exploration of Quality Attributes 205
8.2.5 Pattern Grime and Beyond . 205

Appendix A 207
A.1 Supplementary Material to Chapter 3 207

Appendix B 237
B.1 Supplementary Tables to Chapter 4 . 237

Bibliography 243

v

List of Figures

1.1 Design science framework, adapted from Wieringa (2014) 7
1.2 Problem decomposition overview . 9

2.1 Example of trade-off analysis within the final dataset 28
2.2 Trade-offs in CES domain . 31
2.3 Trade-offs in non-CES domain . 32
2.4 Comparison between CES and non-CES groups 33

3.1 Study selection . 47
3.2 Number of filtered studies per year, per type of paper 51
3.3 Box-plot of venues based on (a) number of studies and (b) citations

per paper per year . 51
3.4 Classification scheme . 54
3.5 Number of studies, per year, containing approaches from each category 55
3.6 Number of studies per application domain, per year 58
3.7 Number of studies tackling quality attributes, per year 60
3.8 Classification of studies based on quality attribute, purpose, and ap-

plication domain . 61
3.9 Number of studies per type of evidence, per year 64
3.10 Classification of studies based on evidence type, purpose, and appli-

cation domain . 65
3.11 Distribution of studies according to type of evidence and application

domain . 68
3.12 Screenshot of the concept map interactive interface 70
3.13 Part of the concept map surrounding AADL 71

vi

List of Figures

4.1 Relationship between pattern participation type and QAs 98
4.2 Relationship between pattern categories and QAs 100
4.3 Relationship between patterns and QAs 102
4.4 Relationship between meta-roles and QAs 104

5.1 UML model of State (on the left) and Strategy (on the right) patterns 121
5.2 UML model of the Template Method pattern 123
5.3 Comparison of the Template Method pattern (on the left) against its

alternative (on the right) . 124
5.4 Visual comparison of the energy consumption for Template Method 139
5.5 Visual comparison of the energy consumption for State/Strategy . . 140
5.6 Hierarchical clustering of Template Method units of analysis 142
5.7 Hierarchical clustering of State/Strategy units of analysis 145

6.1 Accumulation of grime per project for each grime metric 162

7.1 Correlation between grime metrics (cg-*, mg-*, og-*) and quality at-
tributes . 183

7.2 Correlation between grime metrics (cg-*, mg-*, og-*) and quality at-
tributes indicators (*-viol) for individual projects (P*) 186

7.3 Correlation between grime metrics (cg-*, mg-*, og-*) and quality at-
tributes indicators (*-viol) for individual patterns (AC, FM, Si, and SS) 190

7.4 Correlation between grime metrics (cg-*, mg-*, og-*) and quality at-
tributes indicators (*-viol) for individual developers (D*) 192

vii

List of Tables

1.1 Overview of research methodology . 12
1.2 Overview of dissertation . 14

2.1 Overview of related work . 22
2.2 Projects considered in the case study 24
2.3 List of collected variables . 27
2.4 Mapping of RQs to variables, steps, and presentation 30

3.1 Comparison between related work and our study 44
3.2 Extracted variables . 49
3.3 Mapping of variables to RQs . 50
3.4 Classification of included studies by type of activity and nature . . . 56
3.5 Classification of primary studies by domain and purpose 59
3.6 Summary of identified tools . 62
3.7 Highlighted languages . 63
3.8 Highlighted tools . 63
3.9 Grouping and mapping of critical quality attributes 66

4.1 Overview of related work . 83
4.2 Projects considered in the case study 87
4.3 Frequency of pattern occurrences based on SSA and SSA+ 90
4.4 Mapping of pattern roles to meta-roles 93
4.5 List of collected variables . 93
4.6 Mapping of RQs to variables, steps, and presentation 96
4.7 Descriptive statistics of the data subset for RQ1 97
4.8 Statistically significant results from the investigation of RQ1 98

viii

List of Tables

4.9 Descriptive statistics of the data subset for RQ2 99
4.10 Statistically significant results from the investigation of RQ2 100
4.11 Descriptive statistics of the data subset for RQ3 101
4.12 Statistically significant results from the investigation of RQ3 103
4.13 Descriptive statistics of the data subset for RQ4 105
4.14 Statistically significant results from the investigation of RQ4 106
4.15 Comparable observations between static and dynamic analyses . . . 108

5.1 Overview of related work . 119
5.2 List of collected variables . 129
5.3 Descriptive of identified pattern occurrences and pattern-related

methods . 134
5.4 Pearson correlation test for validating estimated measurements from

PowerAPI and Jalen . 137
5.5 Descriptive statics of numeric variables for the Template Method pat-

tern (pattern = Template Method) . 138
5.6 Descriptive statics of numeric variables for the State/Strategy pattern

(pattern = State/Strategy) . 138
5.7 Mann-Whitney test for comparing clusters 143
5.8 Mann-Whitney test for comparing most energy efficient solutions . . 144

6.1 List of collected variables . 160
6.2 Amount of grime accumulated per commit 161
6.3 Linear regression of pattern grime accumulation per project 163
6.4 Amount of grime accumulated per pattern 164
6.5 Average amount of grime accumulated per developer 165
6.6 Correlation between grime and structural metrics 166

7.1 Comparison with related work . 175
7.2 List of recorded variables . 177
7.3 Summary of dataset . 181
7.4 Descriptive statistics per commit . 182
7.5 Descriptive statistics per project . 185
7.6 Descriptive statistics per pattern . 188
7.7 Descriptive statistics per developer . 189
7.8 Most recurrent violations . 194

8.1 Contributions of the PhD dissertation 200
B.2 Top three most recurrent violations per class type 237
B.3 Top three most recurrent violations per pattern category 238

ix

B.4 Top three most recurrent violations per pattern 239
B.5 Top three most recurrent violations per meta-role 240
B.6 Average number of violations per version per KLOC 241

x

Acknowledgements

Moving from Brazil to Groningen was an exciting moment, as so many things in my
life were about to change. Throughout these past years, I got to work on challenging
and interesting topics, meet new friends and colleagues, and share so many expe-
riences. At the end of this journey, I am glad to realize that the excitement never
really faded away.

First, I want to express my deepest gratitude to my supervisors Paris Avgeriou,
Elisa Y. Nakagawa and Apostolos Ampatzoglou. I grew scientifically, academically
and personally thanks to you. I read once that every PhD supervision is unique,
as the different personalities of supervisor and student naturally leads to differ-
ent styles of interaction and decision-making processes altogether. From a student
perspective, I can say that my relationship with each one of you was unique, and
equally nurturing nevertheless. It was a privilege to learn from you, with you, and
to share so many experiences. Your wisdom and kindness will continue to be a
source of inspiration to me.

I would like to thank the members of the assessment committee, the professors
Alexander C. Telea, Yann-Gaël Guéhéneuc and Clemente Izurieta, for their valuable
reviews. It was reassuring to read your comments and insightful suggestions.

It was a great pleasure to be part of the Software Engineering and Architecture
group. The high level and diversity of the research conducted within the group led
to countless, enriching discussions. Not to mention the great scientific effort put
into brainstorming about “the next big thing” and on-the-fly protocols to investi-
gate daily-life assumptions empirically; the gatherings, especially the BBQs, were
priceless.

The work and academic environments were always pleasant and fueled with
knowledge. For that, I want to first thank the great scientists and colleagues Nicolai
Petkov, Alexander Chatzigeorgiou, Michael Wilkinson, Michael Biehl, George Az-
zopardi, Vasilios Andrikopoulos, Dimka Karastoyanova, Mircea Lungu, Tijs van der
Storm, and Andrej Zwitter. I am also grateful for my collaborations with colleagues

xi

and students, which culminated in part of the work presented in this thesis. Thank
you, Katia R. Felizardo, Frank J. Affonso, Hugo Andrade and Rutger Alders.

In a playful way, I often got asked: ”Why would you leave Brazil? Don’t you
miss the weather, food, etc? Don’t you miss ‘home’?” Although I miss some things
every now and then, I feel fortunate to recognize that I never really missed home;
because so many places felt just as gezellig.

I want to thank my PhD colleagues and friends, my international family. Among
Brazilians, Chinese, Cypriots, Dutch, Germans, Greeks, Italians, Iranians, Irish, Mal-
tese, Mexicans, Romanians, Russians, and Spaniards, I experienced that nationality
is quite a fun topic but hardly a descriptor of who one really is. Rafael and Danilo,
thank you for hosting us during the first couple of weeks. The transition to living
abroad would not had been as smooth nor fun without you guys. Bas, Marc and
Mark, thank you for the great time while starting to learn and experience the Dutch
life & culture. In between university, student house and nights out, thank you for
sharing your knowledge, enthusiasm and silly thoughts: Sofia & Paschalis, Nicola
& Arianna, Ugo & Tiziana, Laura (Robles and Fiorini), Manuel & Kitty, Astone &
Jiapan, Estefan’ia, Sara, Niki & Amar, Dimitra, Emilia & Thomas, Octavio & Emilia,
George & Charmaine, Andreas, Christian, Zengyang, Areti, Elvira, Chen, George,
Darius, Anja, Héctor, Jie, Amaranta, Indira and Donna. In one way or another, my
days were more lively because of you.

I want to express my gratitude to my friend, Kitty de Vries, for the great help cre-
ating the samenvatting of this thesis, and providing my much requested (and mirth-
ful) receipt, which I almost added as an appendix. Most important, I want to thank
you and Manuel for introducing those who would become my Dutch family: Ralf,
Sander, Raymond, Frederique, Robert, Graz(iela), Rianne, Rafael and Rachel. Thank
you all for the fellowship and for helping navigating the ‘intricacies’ of the Dutch
culture.

Visiting home and having a good rest is important to re-energize and boost pro-
ductivity, but traveling to Brazil for holidays and vacations was not so straightfor-
ward. In between summer breaks, Christmas and long weekends, I want to thank
Θεία Nana & Θείoς Kostis, Θεία Tania & Θείoς Giorgos, Γιαγιά Sofia & Παππoύ

Vasilis, Zia Margherita & Zio Ignazio, for having us as if we were part of your own
family. For the great times in Greece, I also want to thank Sofia, Dafini, Hlektra,
Nopi, Argyro, Thanasis, Pavlos, Nikos, Michalis, and Dimitris.

Despite the geographical distance, Brazil did not feel so far after all. Living to-
gether during the college time was precious (and hilarious), but seeing that dis-
tance did not change a thing is indescribable. Big (Diego), Chato (Guilherme) &
Simone, Cirilo (Marcos), Garça (Luı́s) & Larissa, Gueixa (Mario) & Paula, Leza (Lu-
cas), May(ara), Mi(chele) & Anton, Neve (Alfredo), Paquito (Mauricio), Piriguete

xii

(Gabriel), Tia (Santiago), and Zero Dois (Eder), thank you for making the prologue
of my scientific career one of the most memorable periods of my life.

To my paranymphs, Sabrina and Antonios, I want to thank you for being a con-
stant throughout these past years, from scientific discussions to silly (though Coper-
nican) chats. Sis, you were one of my first friends. Many of the traits that I appreciate
in myself, I developed thanks to you. Antoni, you are one of the first friends that I
made abroad and one of the nicest persons that I know.

To my wife, Renata, I leave one of the warmest thankful wishes. We got together
not too long before we moved to Groningen and the PhD trajectory overlapped
largely with the beginning of our journey. Living this moment with you, the way
we did, was embellishing. Your kindness was encouraging, your endurance was
inspiring, and your companionship was key to be were I am right now. I want to
extended this gratitude to my in-laws, Sebastião, Elizabeth and Bruna, who were
utterly lovable despite the distance.

To my gezin, Mom (Marciana), Leon Fagner, Sabrina and Bruno, I want to thank
you for the unconditional love and support. I grew up seeing the world through
your eyes, and it was breathtaking, troubles and all. For a long time, we lived spread
around the country; now, around countries. Yet, somehow, meeting you or even
talking to you is all it takes to transport me back, live all those memories again,
and get back in time for some new ones. Mom, thank you for making everything
possible, your strength is unmatched.

At last, I want to leave a testament of my love and gratitude for someone that,
unfortunately, will not be able to read nor listen these words. I have shared so little
time with you, but that was enough to ignite my passion and respect for learning
and science. Most of my memories are of you explaining simple things, how and
why they worked, how and why they were relevant. However, I would not realize
it all until you passed away and Mom wisely said: “The most important thing that
your father left to you was a lesson: to value knowledge and learning”. Thank you,
Joaquim Duarte Feitosa. Thank you; Dad.

Daniel Feitosa
Groningen

January 4, 2018

xiii

Chapter 1

Introduction

This chapter elaborates on the main concepts of this PhD project, so as to de-
scribe the context of the study and the research design. Section 1.1 focus on the

application domain, i.e., critical embedded systems, whereas Sections 1.2 and 1.3
focus on the main software engineering aspects that are being covered, i.e., software
quality and patterns, respectively. Section 1.4 provides an overview of the problem
statement that motivated this work, how the solution is decomposed into smaller
parts, and the research methods that have been used in the project. Finally, Section
1.5 describes the organization of the remainder of this dissertation.

1.1 Critical Embedded Systems

Embedded systems (ES) have limited resources (e.g., processing power, memory)
and are tailored to provide a particular functionality (Heath, 2002). However, the
notion of a “limited resource” has changed drastically since ES emerged in the 1960s.
More specifically, systems have become more powerful in terms of hardware, while
the range of applications in which they can be used, has grown substantially.

Moreover, because ES are designed to be compact and efficient, they can be
very attractive to industrial applications. Especially during the recent decades,
we have witnessed the widespread industrial adoption of ES, which, on the one
hand can reliably meet non-functional requirements (e.g., performance, reliability),
while on the other hand demand less effort for their design and development. The
range of applications increased and ES became ever more ubiquitous in daily life,
to an extent that they are recognized as a strategic sector; as such both industrial
and academic institutions devote great effort in developing expertise in this field
(Helmerich et al., 2005; Ollila et al., 2004; Pétrissans et al., 2012; Thompson et al.,
2017a). Currently, ES are widespread in all main industrial sectors (e.g., manufac-
turing, automotive, healthcare, rail and aerospace industries) and innovations such
the Internet of Things is showing that ES are growing to become the main channel
for information processing (Marwedel, 2011; Thompson et al., 2017b).

Critical Embedded Systems (CES) are a type of ES in which runtime errors can

2 1. Introduction

potentially be catastrophic, causing serious damage to the environment or to hu-
man lives, or non-recoverable material and financial losses (Aguiar et al., 2010;
Medikonda and Panchumarthy, 2009). CES are among the most significant types
of software-intensive systems, since they are extremely pervasive in modern soci-
ety, being used from cars, to power plants and health appliances (Marwedel, 2011;
Thompson et al., 2017b).

Engineering CES is particularly challenging since it needs to guarantee the sat-
isfaction of various critical qualities such as security and safety. Although these
challenges are being continuously addressed by research efforts, the problem space
continuously broadens as the applicability of CES expands. Furthermore, with the
continuous improvement of embedded hardware, the overall performance of the
system also improves, which drives technological innovation around ES. The added
complexity to CES gives way to new kinds of design challenges in CES projects, such
as continuous integration and continuous delivery (Haghighatkhah et al., 2017; Pel-
liccione et al., 2017). Therefore achieving the desired qualities in CES becomes a
moving target with an ever-expanding design space.

This dissertation aims at supporting the design process of CESs, by focusing on
important quality requirements. The emphasis on software quality is essential to the
success of any software-intensive system and the driver of the system design process
(Bass et al., 2012). Achieving the correct functionality is imperative; but it does not
guarantee that the system expresses the desired quality, which is often the reason for
redesign activities (Bass et al., 2012). The next section elaborates further on software
quality, and the types of quality attributes that are of paramount importance for the
domain of CES.

1.2 Software Quality

During the design process, satisfying the functional requirements is not the most
difficult part; one can get them right sooner or later. But meeting the non-functional
requirements, i.e. the quality attributes, is much more challenging (Bass et al., 2012;
Suryn, 2014). Quality is not only the determinant factor of the success of a system,
but it often dictates its redesigning. However, stakeholders may perceive and ex-
plain differently what the quality of a product entails, while quality attributes are
notoriously difficult to express in a SMART1 way.

The previous section hints towards the fact that functionality and quality are
orthogonal. For example, a mobile phone may be able to successfully make a call
but users may be dissatisfied because of its performance or usability. The differ-

1Specific, Measurable, Assignable, Realistic, Time-related

1.3. Design Patterns 3

ent aspects that qualify a product became known as quality attributes, and several
models were devised to define and organize them, e.g., McCall’s (McCall, 1977),
Boehm’s, (Boehm and In, 1996), Dromey’s (Dromey, 1995), FURPS (Grady, 1992),
and ISO/IEC 25010 (ISO/IEC, 2011); including efforts directed to particular do-
mains, such as ES (Miyashiro et al., 2015; Oliveira et al., 2013; Tamrabet et al., 2018).
These efforts have led to conceptualizing quality attributes through quality scenar-
ios, which are key to estimating, monitoring and improving quality of the designed
product (Bass et al., 2012).

In the domain of CES, the satisfaction of multiple quality constraints must be
guaranteed, which may be achieved through the design of a sound architecture and
its validation against the necessary quality attributes. However, this is far from triv-
ial, as it entails complex trade-offs. To a large extent, it concerns safeguarding the
levels of critical against other noncritical qualities (Ampatzoglou, Gkortzis, Char-
alampidou and Avgeriou, 2013; Linares-Vásquez et al., 2014). As mentioned in the
previous section, if a system fails to satisfy critical quality attributes, it may lead
to catastrophic failures. Typical examples of critical quality attributes are perfor-
mance, security and reliability. But noncritical quality attributes are becoming more
and more high-priority in CES, especially design-time qualities like maintainability,
reusability and testability.

Literature reports on various approaches and practices in the domain of CES
seeking to satisfy critical quality attributes while also supporting noncritical ones
that are often found in more complex CES (Bass et al., 2012; Suryn, 2014). One such
prominent approach is software patterns, a well-known design practice address-
ing functional requirements while also considering the impact on quality attributes.
The next section elaborates on the most prevalent kind of software patterns, namely
design patterns, which is fundamental to this dissertation.

1.3 Design Patterns

Software patterns compile the collective experience of skilled practitioners and re-
searchers on designing software systems. They piece together best practices and
common solutions to recurring problems (Buschmann et al., 2007; Gamma et al.,
1995), and have proven to be timeless and invaluable to industry. Since their
inception, communities were built around them (e.g., Pattern Languages of Pro-
grams conference series and transactions) and a variety of patterns and collections
of patterns were devised on various fields and applications domains, e.g., object-
orientated design (Gamma et al., 1995), architecture (Buschmann et al., 2007), secu-
rity (Fernandez-Buglioni, 2013).

4 1. Introduction

Design patterns is the most well-known type of software patterns that was in-
troduced in 1995 by Gamma et al. (1995), known as the Gang of Four (GoF). Their
seminal book describes a catalog of 23 patterns, which became to be known as the
GoF patterns. These patterns address common problems on object-oriented (OO)
design and can be categorized according to the scope of the solution (i.e., class vs.
object) or the purpose of the pattern (i.e., creational, structural or behavioral). GoF
patterns were originally intended to be problem-solving mechanisms. However,
their usefulness extended far beyond that, also serving for knowledge sharing and
communication, as well as quality assessment and improvement (Hsueh et al., 2008;
Zhang and Budgen, 2012).

The influence of design patterns on quality attributes is of great interest to both
researchers and practitioners (Ampatzoglou, Charalampidou and Stamelos, 2013b;
Bafandeh Mayvan et al., 2017). This interest stems from the fact that GoF patterns
are widespread in software development and their instances may comprise a sig-
nificant part of the systems: from 15% to 65% of the classes (Ampatzoglou et al.,
2015; Khomh et al., 2009). However, the state of research suggests that the effect of
patterns on software quality is not uniform, and depends on a number of param-
eters (Ampatzoglou, Charalampidou and Stamelos, 2013b). Moreover, research on
the effect of GoF patterns on quality attributes that are vital to CES, such as security
and performance, is fairly limited (Bafandeh Mayvan et al., 2017). In other words,
there is very little guidance for CES researchers in using GoF patterns regarding
their effect on critical and noncritical quality attributes.

This dissertation explores design patterns as the main practice to improve the
design of CES through investigating their relationship with quality attributes rele-
vant to the design of CES. The next section elaborates on the research design of this
dissertation, describing the problem statement and how it is addressed through the
work carried out in the PhD project.

1.4 Research Design

The research project reported in this dissertation originates from a main problem,
which is presented in Section 1.4.1. To identify and plan the research activities that
were necessary to address this problem, we adopted the Design Science framework
as defined by Wieringa (2014), which is described in Section 1.4.2. The breakdown
of the research design and the research process are detailed in Section 1.4.3. The last
section describes how the research activities are reported in the remainder of this
dissertation.

1.4. Research Design 5

1.4.1 Problem Statement

Design errors in CES can potentially be catastrophic, in terms of causing serious
damage to the environment or to human lives, or non-recoverable material and fi-
nancial losses (Aguiar et al., 2010; Bate, 2008). Due to the criticality of such systems,
the satisfaction of multiple quality constraints must be guaranteed, which is far from
trivial. Consequently, the activity of quality assurance in CES mostly focuses on
safeguarding the levels of critical quality attributes (Ampatzoglou, Gkortzis, Char-
alampidou and Avgeriou, 2013; Linares-Vásquez et al., 2014).

Although critical quality attributes are of paramount importance for the devel-
opment of such systems, the decision-making process during the design of CES
is not limited to them. Noncritical quality attributes such as maintainability and
reusability may also be of priority to the software architects and act as key drivers
for CES development. In fact, due to pressing business goals, noncritical quality
attributes are becoming as important as critical ones. For example, in the near fu-
ture, the automotive industry expects to deliver software updates on a daily basis.
In such situations, reusability and maintainability of the software may become as
important as its security and safety in order to enable this frequent updating. This
further aggravates the problem of designing CES: not only is guaranteeing critical
qualities very challenging, but noncritical qualities also need to be accommodated
during design, while trade-offs between critical and noncritical qualities are partic-
ularly problematic.

In light of the aforementioned challenges, the main problem addressed in this
dissertation is stated as follows:

Despite the growing body of knowledge for engineering CESs, their design process
is still challenging. This is especially true due to their complexity, and hard require-
ments regarding critical quality attributes. Furthermore, it usually involves complex
trade-offs for both critical and noncritical quality attributes. However, we currently
lack practices that can support the design of CES while managing quality attributes
and their trade-offs.

There are two main consequences if this problem is not addressed. First, there
is a greater chance of creating a design solution that is not optimal for the system
under design, as it might not reflect the desired levels of quality. An inappropriate
solution at the design stage will lead to the introduction of more problems dur-
ing implementation through a cascading effect, when it becomes considerably more
expensive to solve those problems. Second, the evolution of the system becomes
more challenging. In particular, it can be harder to control the effect of changes on
the quality of the system, since mechanisms for facilitating software evolution (e.g.,

6 1. Introduction

conforming to design principles or patterns, avoiding design smells) might have
been ignored or overlooked during the initial phases of CES development. For ex-
ample, local changes may cause ripple effects to the rest of the system, causing a
kind of domino effect every time a change is initiated. In short, maintenance and
evolution activities, which are essential in future CES applications, can suffer greatly
from poor design. Consequently, tasks as feature addition and bug fixing can show
to be very costly, and this cost will accumulate until it becomes prohibitive for the
development organization.

1.4.2 Design Science Framework

Design Science is a framework for strategizing research on information systems and
software engineering domains. It was introduced by March and Smith (1995) which
focused on developing or improving technological solutions for the benefit of stake-
holders, who in turn define the scope of the research project. The envisioned frame-
work was proposed for the domain of information systems but was sufficiently gen-
eral to be employed in other disciplines, as it revolves around the idea of “design-
ing things for specific purposes”. In particular, the framework was later refined
by Wieringa (2014) to also suit software engineering research. The “thing” being
designed is referred to by Wieringa as an artifact and can be anything used in soft-
ware and information systems, such as architectures, methods, and algorithms. The
“purpose” lies in the context of activities performed for software and information
systems, such as design and maintenance.

The core elements of Wieringa’s version of the Design Science framework are
depicted in Figure 1.1. There are two sources of information for the project, namely
social context and knowledge context. The purpose and constraints (e.g., budget) for
the artifact to be designed are provided by the social context, which encompasses
the stakeholders’ concerns. The theories, scientific knowledge, and existing de-
signs (e.g., measurement tools) that are relevant to the problem being solved are
provided by the knowledge context. In short, the social context drives the design activ-
ities, whereas the knowledge context steers the activities, in the sense that the existing
knowledge shows what has to be synthesized (e.g., questions to be answered and
tools to be created). By the end of the research project, the main object of interest
for the stakeholders, the artifact, is transferred to the social context, but also to the
knowledge context. The former benefits from the tailor-made solution, and the latter
benefits from the added knowledge. In addition, all other knowledge generated in
the process (e.g., answers to research questions) is also transferred to the knowledge
context.

To use the available information to design the requested artifact, the framework

1.4. Research Design 7

Figure 1.1: Design science framework, adapted from Wieringa (2014)

provides two main problem-solving mechanisms, namely design cycle and empirical
cycle. The former aims at solving design problems, such as the main goal of the re-
search project, and encompasses three activities: problem investigation, treatment
design/identification, and treatment validation. To create solutions, not all infor-
mation is explicitly available in the knowledge context and is queried in the form
of knowledge questions, which are answered in an empirical cycle. In contrast to design
problems, knowledge questions do not generate an artifact, but are essential nonethe-
less. The empirical cycle is proxy to well-known empirical methods, such as case
studies, experiments and surveys, and thus its activities vary according to the ques-
tion being asked.

Design science projects are iterative, alternating between two states: design, to
solve design problems; and investigation, to answer knowledge questions. Therefore,
design and empirical cycles are seamlessly nested to develop the artifact that was
initially requested. Design cycles naturally raise knowledge questions (e.g., about
available treatments or their validation), and for those without an answer in the
knowledge context, an empirical cycle is performed. Conversely, such a cycle may
require certain artifacts (e.g., measurement tools, classification schemes), which will
lead to a design cycle if not available.

The workflow addressed in the framework is well-suited to strategize long-term
research as PhD projects. In particular, it facilitates the decomposition of a problem

8 1. Introduction

into design problems that lead to new design problems or knowledge questions in
an iterative manger; it thus supports the design of research questions and activi-
ties performed along the course of the PhD project. The initial design problem (i.e.,
stated in the problem statement — see Section 1.4.1) naturally leads to knowledge
questions, which may in turn lead to new knowledge questions or new design prob-
lems.

1.4.3 Problem Decomposition

The decomposition of the problem addressed in this dissertation, is depicted in Fig-
ure 1.2. The problem statement describes the main challenge of the PhD, i.e., to
identify or provide design practices that can support the design of CES while safe-
guarding quality attributes and managing their trade-offs. The gray boxes represent
knowledge questions that were derived based on the Design Science Framework;
these knowledge questions correspond to the research questions of this dissertation
and are numbered as RQx (or RQx.y in case of a decomposed research question).
White boxes represent empirical cycles, i.e., scientific studies proposed to answer
the knowledge questions and that are reported in the individual chapters of this dis-
sertation. Moreover, thick, white arrows denote sequence, single-line arrows denote
decomposition, and dashed arrows denote answers to research questions (obtained
through an empirical cycle). Finally, dashed straight lines denote the separation be-
tween the three main parts of the work executed in the PhD: first, we explore the
problem space through both state-of-the-practice and state-of-the-art studies; sec-
ond, we study GoF patterns as one promising solution to support CES design; third,
we extend the study of GoF patterns during software maintenance and evolution.

As a first step towards addressing the problem statement, we looked into the
current state-of-the-practice by investigating the trade-offs between QAs (both criti-
cal and noncritical) in practice (RQ1). Particularly we observed existing embedded
systems through a case study, in order to investigate trade-offs in CES: (a) between
critical QAs; (b) between noncritical QAs; and (c) between critical and noncritical
QAs. In addition, we compared the results with quality trade-offs in other domains
to explore potential similarities and differences. With this study we aim at charac-
terizing the domain of CES with respect to quality attributes trade-offs, in order to
explore relevant CES design practices that can support such trade-offs. The main
outcome of this study is that indeed CES design places more emphasis on qual-
ity trade-offs compared to other application domains, and that the level of runtime
qualities is non-negotiable, compared to design-time ones.

Having obtained knowledge of the state-of-the-practice, we moved on to RQ2
where we explored the state-of-the-art on how CES are currently designed. In partic-

1.4. Research Design 9

Figure 1.2: Problem decomposition overview

ular, we investigated systematically the quality attributes of interest in CES develop-
ment and made an initial exploration on design approaches and practices that could
be useful for safeguarding both runtime and design-time qualities. Understanding
existing design approaches and practices is of paramount importance as they may,
to some extent, be reusable, either in terms of ideas or even tools. The adoption of

10 1. Introduction

new design approaches and practices may also be facilitated if stakeholders are al-
ready acquainted with a related existing approach, thus reducing the learning curve.
To answer this question, a systematic mapping study (SMS) was conducted to ex-
plore approaches and practices that have been proposed and used for CES design.
Several design approaches and practices were analyzed in terms of their merits but
also challenges, while we paid special attention to practices, principles and ideas
that can be reused.

Among the design approaches and practices identified during the SMS, the prac-
tice of using software patterns during CES design seems to be one of the most
promising in terms of managing quality attributes. The description of software pat-
terns includes known consequences on the quality attributes (and well documented
in the literature) and can be used to assess the overall impact of a design on quality
attributes. Thus, we decided to explore the practice of applying software patterns in
CES design, in particular GoF design patterns. On the one hand, current evidence
shows that the effect of GoF pattern on noncritical quality attributes has been fairly
investigated, and that it is not uniform. Various criteria (e.g., design characteristics)
may influence the effect. On the other hand, there is a lack of evidence on how
these patterns affect critical quality attributes. This leads to the next question to be
answered (RQ3), i.e. to investigate the influence of design patterns on critical QAs
in order to identify the extent of the effects.

As a first step in investigating how GoF design patterns affect critical quality
attributes, we selected three such common qualities, namely, performance, correct-
ness, and security. Consequently, we conducted a case study (RQ3.a) to assess the
relationship between the presence of GoF design patterns and the level of these three
quality attributes. In particular, we seek to explore how design pattern instances are
correlated with violations of good coding practices associated to correctness, per-
formance and security. The study considers approximately 13,000 classes retrieved
from five nontrivial open-source projects, from which the violations are collected
via static analysis. To fully investigate the underlying relationship, the classes are
analyzed with regard to: (a) their participation in pattern occurrences, (b) the pat-
tern category (c) the pattern in which they participate, and (d) their role within the
pattern occurrence. This allows understanding in depth the details of the impact of
patterns on critical qualities.

As a second step in our investigation, we conducted a second study (RQ3.b),
which aims at investigating the impact of GoF patterns on one performance indi-
cator that has recently attracted the attention of both researchers and practitioners,
i.e., energy consumption. This study considers pattern-participating methods (i.e.,
those that play a role within the pattern) and compares their energy consumption to
the consumption of functionally equivalent alternative (non-pattern) solutions. The

1.4. Research Design 11

comparison is performed on 169 methods of two GoF patterns (namely State/Strat-
egy and Template Method), retrieved from two well-known open source projects.
This study also allowed us to use dynamic analysis as a complementary way to the
static analysis performed for RQ3.a, in order to explore whether the results would
be aligned (triangulation of data collection methods).

The answers to RQ3 suggest that the practice of applying design patterns is a
promising solution to safeguard quality attributes in CES development as the ef-
fect of GoF patterns on critical quality attributes is controlled and deterministic; the
right use of GoF patterns can help CES designers to strengthen the critical qual-
ity attributes in their systems. However, similarly to any other design artifact, de-
sign pattern instances tent to drift from their original implementation, as the soft-
ware evolves and additional functionalities are added; this phenomenon is known
as “pattern grime” (Izurieta and Bieman, 2013). Pattern grime results in degraded
patterns instances that no longer hold the intended impact on critical quality at-
tributes. Hence, the next question (RQ4) focuses on the potential undesired effects
of pattern grime. In particular, we explored the extent to which pattern grime can
influence the impact of GoF patterns on critical quality attributes, thereby diminish-
ing the benefits of applying the patterns in the first place (as observed for RQ3). The
investigation for this knowledge question is two-fold.

The first step (RQ4.a) is to investigate the accumulation of pattern grime along
system evolution. As pattern grime has been pointed out as one recurrent reason for
the decay of GoF pattern instances, this study seeks to examine the existence of re-
lations between the accumulation of grime in pattern instances and various related
factors. In particular, it considers: (a) projects, (b) pattern types, (c) developers, and
(d) the structural characteristics of the pattern-participating classes. For that, the
study comprises the analysis of five industrial projects, implemented by 16 devel-
opers that provide a total of 2,349 pattern instances from eight different GoF design
patterns.

The second step (RQ4.b) is to investigate how the accumulation of pattern grime
is related to levels of the three critical quality attributes that were studied for RQ3.a,
i.e. performance, security, correctness. To ease the analysis for answering this RQ,
this study is a follow-up for the previous one. The same industrial software systems
are considered in the investigation. The study seeks to correlate the accumulation
of pattern grime with the accumulation of violations of coding practices (regarding
each quality attribute) in pattern-participant classes. Moreover, it also seeks to an-
alyze factors that might influence the observed correlations, in particular, projects,
pattern types, and developers.

12 1. Introduction

1.4.4 Empirical Research Methodology

The previous section broke down the problem statement addressed in this disser-
tation into knowledge questions. Each knowledge question is answered by follow-
ing one or more empirical cycles, each corresponding to an empirical study con-
ducted during the PhD. The empirical studies were designed based on the practices
of evidence-based software engineering (EBSE), a paradigm advocated in the sem-
inal work by Kitchenham et al. (2004). The approaches proposed in EBSE branch
out from the more mature field of evidence-based medicine and have shown to be
reliable research tools in improving software engineering research and practice.

Table 1.1 presents the research method used in each empirical study designed
to answer the research questions posed in the PhD. The table also provides the ref-
erence to the section of the dissertation in which the design of the corresponding
empirical study is presented. In the following, we describe these empirical methods
and the context in which they were applied in the PhD.

Table 1.1: Overview of research methodology

Code Knowledge Question Empirical method Described in

RQ1
Are there trade-offs when dealing with qual-
ity attributes in CES? Case study Section 2.3

RQ2 How are CES designed? Systematic mapping study Section 3.3

RQ3.a
How do patterns deal with runtime quality
attributes?

Case study Section 4.3

RQ3.b
How do patterns influence energy consump-
tion?

Controlled experiment Section 5.4

RQ4.a How does pattern grime evolves? Case study Section 6.3

RQ4.b
How is pattern grime related to runtime
quality attributes? Case study Section 7.3

Systematic Mapping Study (SMSs) and Systematic Literature Reviews (SLRs) have
been broadly adopted as systematic research methods to aggregate knowledge
(Kitchenham et al., 2004; Petersen et al., 2008). Both methods provide a system-
atic approach to reduce bias in reviewing a series of primary studies related to a
common topic. Regarding the differences, SLRs are focused on the in-depth review
of primary studies, allowing for synthesis of knowledge based on the findings in the
investigated studies. SLRs demand considerable effort to review individual primary
studies in depth and, thus, are more suitable to relatively narrow topics, where the
amount of primary studies is manageable. Conversely, SMSs are focused on creat-
ing an overview of a certain topic, understanding how the knowledge is organized

1.4. Research Design 13

from the point of view of several facets. Such goals allow for reviews of a larger
scale, e.g., an entire field of knowledge, in which the reviewing effort is distributed
among a plethora of primary studies. In the PhD project an SMS was applied to out-
line the state of the art on design approaches for CES in a broad sense, also characterizing
the research effort in terms of application domain, addressed quality attributes, tooling, and
maturity level.

Controlled Experiment are empirical methods for studying phenomena under a
controlled environment (Wohlin et al., 2012). This method requires isolation of the
phenomenon under study but allows for precise manipulation of the subjects. By
systematically reducing the confounding factors, experiments are suitable for in-
vestigating cause-effect relationships between different treatments, i.e., particular
behavior of the isolated phenomenon. The assignment of treatments to subjects can
vary depending on the number of factors (i.e., variables) and treatments (i.e., val-
ues) being studied. A common configuration has one factor with two treatments,
for which the design can be completely randomized or crossover. In the former, the
two treatments are randomly assigned to the subjects, whereas in the later, all sub-
jects receive both treatments. In the PhD project a controlled experiment was designed
to investigate the extent to which GoF patterns can influence the energy consumption in
nontrivial software. For that, a crossover design was selected to compare two treatments: a
design solution using GoF patterns and an alternative (non-pattern) design solution.

Case study is an empirical approach that provides the means to understanding a
particular phenomenon in context (Runeson et al., 2012). Compared to other empir-
ical approaches such as controlled experiments, surveys and action research, case
studies allow for investigating a phenomenon in its environment (i.e., context) with
considerably reduced to no interaction with the object of study. Case studies are
more suitable to examining relationships and do not primarily aim at establishing
causality. According to the actual purpose at hand, case studies can be exploratory if
theory is induced by identifying patterns in the observations (i.e., inductive empiri-
cal research) or explanatory if a theory is confirmed or rejected through observations
(i.e., deductive empirical research). They are also classified as holistic if the case is
studied as a whole (i.e., unity of analysis is the case), or embedded if each case con-
tains multiple units of analysis. This empirical approach was broadly used in the PhD: to
understand the problem space with regards to trade-offs between quality attributes in CES;
to investigate in-depth the relationship between GoF patterns and critical quality attributes;
and to study the limitations of GoF patterns with regards to pattern grime.

14 1. Introduction

1.5 Overview of the Dissertation

Chapters 2-7 are based on scientific work that has already been published in peer-
reviewed venues. Each piece of work aims at answering one of the research ques-
tions presented in Section 1.4 and are described in the following paragraphs. Fi-
nally, Chapter 8 concludes this dissertation, summarizing the results obtained from
all scientific work, recapping the answers to the research questions, and discussing
opportunities of future work.

The scientific work presented in this dissertation is divided into three parts as
presented in Table 1.2. The first part, comprised by Chapters 2 and 3, elaborates
in the problem space exploration. Chapters 4 and 5 cover the second part, which
focuses on exploring GoF patterns alongside development as a solution to support
managing quality attributes in CES development. The last part, consists of Chapters
6 and 7, which investigate the benefits of applying GoF patterns alongside software
evolution, and explore the limitations with respect to one key factor, namely pattern
grime.

Table 1.2: Overview of dissertation

Research Question Chapter

Part 1: Problem Space Exploration

RQ1: Are there trade-offs when dealing with quality attributes in CES? Chapter 2

RQ2: How are CES designed? Chapter 3

Part 2: GoF Patterns in Development

RQ3.a: How do patterns deal with runtime quality attributes? Chapter 4

RQ3.b: How do patterns deal with energy consumption? Chapter 5

Part 3: GoF Patterns alongside Evolution

RQ4.a: How does pattern grime evolves? Chapter 6

RQ4.b: How is pattern grime related to runtime quality attributes? Chapter 7

Chapter 2 is based on a study that explores the interplay between quality at-
tributes in CES. It is based on a peer-reviewed conference paper in the proceedings
of the 11th International ACM SIGSOFT Conference on the Quality of Software Ar-
chitectures (Feitosa et al., 2015). The study aimed at researching and discussing po-
tential trade-offs between critical and noncritical quality attributes. I was the lead
author, designing and executing the study. The co-authors participated in the data
collection and analysis, as well as contributed to the revision of the published paper.

Chapter 3 reports on a peer-reviewed chapter published in the book “ENASE

1.5. Overview of the Dissertation 15

2017: Evaluation of Novel Approaches to Software Engineering” (Feitosa, Ampat-
zoglou, Avgeriou, Affonso, Andrade, Felizardo and Nakagawa, 2018). This work
comprises a systematic mapping study (SMS) investigating design approaches that
are suitable for CES, analyzing them with regards to addressed critical quality at-
tributes, application domain, provided tooling and type of evidence. I was the lead
author in this publication, responsible for designing, orchestrating, and conducting
the study. The co-authors contributed to the study design, supported one or more
steps of the SMS, and reviewed the report.

Chapter 4 reports on a work accepted for peer-reviewed journal publication in
Information and Software Technology (Feitosa, Ampatzoglou, Avgeriou, Chatzige-
orgiou and Nakagawa, 2018). It describes a case study conducted to investigate the
correlation between the presence of GoF patterns and critical quality attributes as
assessed through static analysis of source code. I was the lead author, and the work
division was similar to that in the aforementioned study. In addition, I was the
designer and lead developer of the tool SSAP, used in the study.

Chapter 5 reports on a controlled experiment to investigate the influence of GoF
design patterns on energy consumption. It is based on a peer-reviewed journal
publication in the Journal Software: Evolution and Process (Feitosa, Alders, Am-
patzoglou, Avgeriou and Nakagawa, 2017). The chapter provides evidence on the
benefits of GoF patterns to energy consumption when used under appropriate cir-
cumstances. I was the lead author, designing the study and performing the analysis
of the data, which was collected by a co-author under my supervision. The other
co-authors assisted in the study execution and reviewing of the manuscript.

Chapter 6 is based on a peer-reviewed conference paper in the proceedings of the
18th International Conference on Product-Focused Software Process Improvement
(Feitosa, Avgeriou, Ampatzoglou and Nakagawa, 2017b). It describes an industrial
case study to investigate the limitations of the benefits provided by the use of GoF
design patterns. In particular, this study aims at identifying how pattern grime (i.e.,
a form of design pattern deterioration) accumulates and how it correlates to levels of
design-time quality attributes. I was the lead author, coordinating all activities from
study design to reporting. I was also responsible for the development of spoon-
pttgrime, a tool used in the study. The co-authors assisted all steps of the study and
reviewed the manuscript.

Chapter 7 is the final piece of scientific work presented in this dissertation. It
is based on a peer-reviewed journal publication in IEEE Access (Feitosa, Ampat-
zoglou, Avgeriou and Nakagawa, 2018) and presents another industrial case study,
which complements the previous one by focusing on examining the correlation be-
tween the accumulation of pattern grime and levels of critical quality attributes as
measured by static analysis of source code. I was the lead author and the work di-

16 1. Introduction

vision is similar to that in the previous study. This chapter finalizes the collection
of evidence to answer the research questions posed in the problem decomposition,
leading to the final chapter of this dissertation.

Based on:

Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou, and Elisa Y. Nakagawa, (2015) “Investigating
Quality Trade-offs in Open Source Critical Embedded Systems,” in Proceedings of the 11th International
ACM SIGSOFT Conference on the Quality of Software Architectures (QoSA ’15), Montreal, Canada, pp.
113–122, DOI:10.1145/2737182.2737190

Chapter 2

Investigating Quality Trade-offs in Open
Source Critical Embedded Systems

Abstract

During the development of Critical Embedded Systems (CES), quality attributes
that are critical for them (e.g., correctness, security, etc.) must be guaranteed.
However, this often leads to complex quality trade-offs, since noncritical quali-
ties (e.g., reusability, understandability, etc.) may be compromised. In this chap-
ter, we aim at empirically investigating the existence of quality trade-offs, on
the implemented architecture, among versions of open source CESs, and com-
pare them with those of systems from other application domains. The results
of the study suggest that in CES, noncritical quality attributes are usually com-
promised in favor of critical quality attributes. On the contrary, we have not ob-
served compromises of critical qualities in favor of noncritical ones in either CES
or other application domains. Furthermore, quality trade-offs are more frequent
among critical quality attributes, compared to trade-offs among noncritical qual-
ity attributes. Our study has implications for both practitioners when making
trade-offs in practice, as well as researchers that investigate quality trade-offs.

2.1 Introduction

Critical Embedded Systems (CESs) are among the most significant types of software-
intensive systems, since they are extremely pervasive in modern society, being used
from cars to power plants (Marwedel, 2010). CESs are embedded systems in which
design errors can potentially be catastrophic (Bate, 2008), in terms of causing seri-
ous damage to the environment or to human lives, or non-recoverable material and
financial losses (Aguiar et al., 2010). Due to the criticality of such systems, the satis-
faction of multiple quality constraints must be guaranteed, which is far from trivial,
as it entails complex trade-offs: compared to other application domains, in CES such

18 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

trade-offs to a large extent concern safeguarding the levels of critical against other
noncritical qualities (Ampatzoglou, Gkortzis, Charalampidou and Avgeriou, 2013;
Linares-Vásquez et al., 2014). As critical quality attributes (QAs), we characterize
those that can cause catastrophic failures, as mentioned before, and usually concern
performance, security and reliability.

Trade-offs occur because almost every design decision has the potential to posi-
tively affect some QAs and negatively affect others. For example, solutions that aim
at enhancing security might, as a side effect, harm the performance of the system.
Resolving a QA trade-off is a complex process, as it touches upon multiple design
decisions. If a trade-off is not resolved well, it can lead to poor satisfaction of QAs,
or an overkill in their satisfaction (Barney et al., 2012). Understanding the nature of
such trade-offs is of paramount importance to guide practitioners in making optimal
trade-offs, and researchers in facilitating the practitioners in their job.

Until now, trade-offs between quality attributes have not received sufficient em-
pirical investigation (Barney et al., 2012) in real-life systems, but have mostly been
addressed at a theoretical level. Specifically, we lack empirical evidence on the types
of trade-offs performed in the domain of CES, and how exactly these trade-offs dif-
fer from other application domains. The goal of this study is to provide such evi-
dence, by examining trade-offs in the implementation of real-life systems for both CES and
other domains. Although QA trade-off analysis is usually investigated at the archi-
tecture design level, we work at the architecture implementation level (i.e., source
code) for two reasons. First, the implemented architecture (derived from the source
code) may deviate from the intended (as designed) architecture, in a phenomenon
known as architectural drift (Perry and Wolf, 1992). But we want to study the quality
trade-offs as they exist in real systems, not as they may have been intended during
design. Therefore, as a side-effect of this decision, we emphasize that in this study
both intentional and unintentional trade-offs are being considered without distinc-
tion between them. Second, the availability of source code is much greater than
the availability of architecture design documentation (especially with information
about quality trade-offs) in both open-source systems (OSS) and commercial sys-
tems.

Thus, in this study, we aim at exploring:

(goal - a) the existence of quality trade-offs in the implemented architecture of CES,
by investigating their source code; and

(goal - b) whether trade-offs differ between CES and systems of other application
domains.

In order to explore the existence of quality trade-offs from source code, we need
to use methods, such as static analysis, to explore the evolution of quality attributes

2.2. Related Work 19

(i.e., changes in the levels of quality across successive versions), since no documen-
tation regarding quality trade-offs is available at the source code level. In this sense,
trade-offs refer to cases where changes in source code correlate with the improve-
ment of one quality attribute and deterioration of a second. As aforementioned,
this means that we extract both intentional and unintentional trade-offs, thus being
inclusive rather than exclusive.

To accomplish the aforementioned goals, we performed an embedded multiple-
case study on multiple versions of twenty one OSS projects (Runeson et al., 2012).
We considered three critical QAs namely, correctness, performance and security, as
well as six noncritical QAs namely, reusability, understandability, functionality, ex-
tendibility, effectiveness and flexibility, which are all interpreted as defined in the
SQuaRE quality model (ISO/IEC, 2011). We selected these QAs as they are rele-
vant to both practitioners and researchers, and there is a lack of studies investigat-
ing trade-offs between them. The results of the study suggest the existence of QAs
trade-offs in the CES domain, as well as in other domains, and highlight differences
between them.

The remainder of this chapter is organized as follows: related work is presented
in Section 2.2, along with a discussion of the main contributions of this study. In
Section 2.3, we present the design of the case study. In Sections 2.4 and 2.5 we
present the results and discuss the most important findings respectively. In Section
2.6, we report on the identified threats to validity and actions taken to mitigate them.
Finally, in Section 2.7 we conclude the chapter.

2.2 Related Work

In this section we present related work that discusses software quality attributes. In
the software engineering literature, QAs can be characterized based on many clas-
sifications (e.g., Bourque and Fairley (2014) and Kitchenham and Pfleeger (1996));
however, since our work is focused on the domain of CES, we decided to simply
classify them as either critical or noncritical. We organize this section by first pre-
senting studies on the domain of embedded systems (Section 2.2.1) and next on the
evolution of software qualities in general (Section 2.2.2)1 , as trade-offs are inherent
in evolution. When presenting related work, we emphasize (in bold italic) the num-
ber of cases considered in the studies, as well as the tackled QAs. This information
will be further summarized and compared with the main points of advancement of
our work (Section 2.2.3). Most of the related work discussed in this section is based

1We note that the presentation of related work on software evolution is indicative, since the amount
of research on this domain is too large to include in this chapter

20 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

on a mapping study on software quality trade-offs by Barney et al. (2012).

2.2.1 Quality Trade-offs in Embedded Systems

Concerning the interplay between QAs in the domain of embedded systems, Del
Rosso presents an architectural approach for improving the performance of soft-
ware products derived from a product family for real-time embedded systems, and
its possible implications to maintainability (Del Rosso, 2008). To validate his ap-
proach, he conducts two cases studies on assessing the performance: (a) of one
specific product line; and (b) on four scenarios involving derived products during
product line evolution (the addition of new features). The first study involved one
case, while the second involved four cases. The performance is measured by run-
time metrics related to memory allocation, and the author discusses the trade-offs with
maintainability. The results suggest that, by analyzing the commonalities and dif-
ferences among derived products, one can extract bottlenecks and problems in core
architecture (e.g., God class).

In a similar context, Oliveira et al. (2008) investigate the relationship between
noncritical quality attributes, measured by metrics obtained from source code, and
performance, measured by physical metrics (i.e., memory, time, and energy) obtained
from runtime monitoring. The explored quality attributes are the following: com-
plexity, coupling, cohesion, extendibility/reuse, and population/size. The study
comprises a case study involving the evaluation of four alternative designs of an ex-
ample system, in which measurements are collected for each design solution, show-
ing potential trade-offs between the aforementioned metrics, and supporting the
decision-making regarding the selection of a design solution. Results indicate the
existence of trade-offs between quality and physical metrics, as well as the fact that
quality metrics can provide information regarding high-level QAs, guiding the de-
sign solution selection at early stages, which might lead to significant gain in phys-
ical characteristics latter on. A main difference of this work, compared to ours, is
that we are investigating the relationship between QAs within the evolution of the
software, rather than trade-offs among possible designs from the solution space.

2.2.2 Quality Analysis through Evolution

Concerning the investigation of quality attributes through source code evolution;
Buyens et al. (2009) present an analysis of the interaction, on three cases, between
security, measured by two metrics, and maintainability, measured by two metrics
as well. Each security metric is based on one security principle, namely Least Priv-
ilege (the metric is the number of violations) and Attack Surface (the metric is the

2.2. Related Work 21

estimation of the attackers’ effort). Whereas, the two maintainability metrics are:
Coupling between Components, and Components Instability. The metrics are measured
while applying modification in the implementation of each security principle (i.e.,
changing the involved components), causing changes in the system. Results of this
study indicate that: (a) transformations are more effective when applied jointly, and
(b) trade-offs exist between security metrics, and between security and maintain-
ability QAs.

Additionally, Barros et al. (2014) characterize the evolution of one open source
project (Apache Ant) in terms of size, changeability, cohesion, and coupling QAs,
through an exploratory study. A main point of discussion is regarding the investi-
gation of the high cohesion and low coupling principle. The results suggest that the
original design was “lost” throughout the evolution of the system, while architec-
tural optimization is hard, leading to a more complex to maintain resulting design.

Finally, Penta et al. (2009) study security in software systems by investigating the
life-span of vulnerabilities among software versions. The authors define vulnerabil-
ity as “any instance of an error in the specification, development, or configuration of
software such that its execution can violate the security policy” (Penta et al., 2009).
Di Penta et al. investigate a total of 14 vulnerabilities, organized into four categories:
input validation, memory safety, race/control flow condition, and other. To investigate the
evolution of these vulnerabilities, they perform a case study on three open source
software projects. Results indicate that: (a) vulnerabilities tend to be removed from
the source code (between 56% and 93%), (b) functions with security issues tend to
be replaced, and (c) new functionality tends to introduce new vulnerabilities.

2.2.3 Overview of Related Work

The main differences of this study compared to the related work are summarized
in Table 2.1. Specifically, we present the differences in: (a) the studied application
domains, (b) the studied QAs, and (c) the size of the performed case studies. There-
fore, the main contributions of this study with respect to the research state-of-the-art
are:

c1: it compares trade-offs that appear in CESs with other application domains. To
the best of our knowledge, this is the first study that presents empirical evi-
dence on this matter; and

c2: it investigates the interplay among nine QAs. To the best of our knowledge, this
is the most inclusive study of this type in terms of investigated QAs.

22 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

Table 2.1: Overview of related work

#ref App. Domain QA #cases

CES Others #critical #noncritical CES Others

(Del Rosso, 2008) 3 7 1 1 4 N/A
(Oliveira et al., 2008) 3 7 1 5 4 N/A
(Buyens et al., 2009) 7 3 1 1 N/A 3
(Barros et al., 2014) 7 3 0 4 N/A 1
(Penta et al., 2009) 7 3 1 1 N/A 3
this 3 3 3 6 4 17

2.3 Case Study Design

This section describes the case study protocol, which was designed according to the
guidelines of Runeson et al. (2012), and is reported based on the Linear Analytic
Structure (Runeson et al., 2012).

2.3.1 Objectives and Research Questions

The goal of this study is described using the Goal-Question-Metrics (GQM) ap-
proach (van Solingen et al., 2002), as follows: “analyze open source software for the
purpose of understanding quality attributes trade-offs with respect to the application do-
main of CES and others from the point of view of software developers in the context
of Open Source projects”. Based on the goal of this study, we defined the following
research questions:

RQ1: Are there trade-offs between quality attributes of CES?

RQ1.1: Are there trade-offs between noncritical quality attributes?

RQ1.2: Are there trade-offs between critical quality attributes?

RQ1.3: Are there trade-offs between critical and noncritical quality attributes?

RQ1.4: Are trade-offs between pairs of quality attributes bi-directional?

RQ1 aims at investigating goal-a, i.e., investigating the existence of quality trade-
offs. In order to further investigate the nature of such trade-offs (RQ1), we employ
the QA classification into critical and noncritical attributes and explore interactions
between them (RQ1.1 - RQ1.3). Intuitively, we would expect that quality trade-offs
in CES would be different among critical and noncritical qualities categories. Sub-
sequently, it is relevant to explore whether trade-offs between QAs occur on both
directions, i.e., if the improvement of a certain QA “causes” another to decrease,

2.3. Case Study Design 23

does the vice-versa phenomenon occur? (RQ1.4). Such information is important to
investigate scenarios in which QAs must be balanced.

RQ2: What is the difference in quality attributes trade-offs among CES and non-CES
domains?

RQ2.1: Are there similar trade-offs among CES and non-CES domains?

RQ2.2: Are there different trade-offs among CES and non-CES domains?

Since one of the most prevalent characteristics of the CES domain is the distinc-
tion between critical and noncritical qualities, it is interesting to compare it to other
domains (regarding the same QAs), in order to see how this distinction is reflected
in quality trade-offs (RQ2). Therefore, it is important to identify similar trade-offs
among CES and other domains (RQ2.1), as well as the differences in trade-offs be-
tween QAs (RQ2.2).

2.3.2 Case Selection and Unit of Analysis

This study is an embedded multiple-case study, in which each case is represented
by one project. As unit of analysis we refer to changes in the quality attributes be-
tween subsequent versions of any project. In order to select appropriate cases for
our study we needed to retrieve successive versions of OSS projects of two different
groups: CES projects, and non-CES projects. The projects used in our analysis were
required: (a) to be written in Java, due to limitations of the used tools (see Section
2.3.4), (b) to have an adequate number of versions for evolution analysis, and (c) not
to be considered as “toy examples”. The selected projects, accompanied by some
additional information, are presented in Table 2.2. We clarify that although the se-
lected CESs do not provide high-level end-user functionalities (e.g., move a robot),
they are high-quality systems (more specifically, virtual machines) tailored for CES.
Therefore, they are subject to the same, or stricter, (critical) constraints when com-
pared to applications running on top of the virtual machine.

In order to ensure that the sample of non-CES represents a number of differ-
ent application domains, thus avoiding bias from specific non-CES domains, we
have selected systems2 from 10 different domains. Therefore, our dataset contains
four CES and an average of 3.1 systems from each of the 10 different non-CES do-
mains. This means that the number of CES is not comparable to the total number
of non-CES, but it is comparable to the number of systems in each of the different
application domains.

2We collected these systems from https://sourceforge.net, and considered the root from each
category as the domain. Additionally, each system may belong to more than one domain.

https://sourceforge.net

24 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

Table 2.2: Projects considered in the case study

Project Name Starting Year Size** NoV* Group NoV*

Java-SE-Embedded 2010 834k 14

CES 50LeJOS 2000 81k 16
LeJOS-EV3 2013 30k 9
LeJOS-NXJ 2006 52k 11

Art of Illusion 2000 53k 32

Non-CES 572

DrJava 2002 180k 24
FileBot 2007 532k 25
FreeCol 2002 51k 34
FreeMind 2000 28k 34
Hibernate 2001 123k 28
HomePlayer 2005 24k 32
HtmlUnit 2002 27k 26
iText 2000 56k 23
JFreeChart 2000 62k 56
Lightweight-Java-Game-Library 2002 72k 40
MediathekView 2008 17k 41
Mondrian 2001 51k 33
OpenRocket 2009 182k 27
Pixelitor 2009 27k 33
Subsonic 2004 282k 42
TuxGuitar 2005 28k 19

2.3.3 Variables

In order to answer the research questions, we extracted three sets of variables from
each unit of analysis (see Section 2.3.4). The first set comprises data related to project
identification and classification (V1 and V2). The second and third sets comprise
variables for the quantification of critical (V3 – V5) and noncritical (V6 – V11) QAs.
We clarify that in this chapter QAs are assessed based on a set of metrics. To this
end, we selected several metrics that, to the best of our knowledge, are able to quan-
tify the levels of quality. The two sets of metrics, for critical and noncritical QAs
respectively, are presented in detail in the following sections.

Assessment of Critical Quality Attributes

Bugs have been extensively investigated as indicators of quality. More specifically,
Misra and Bhavsar (2003) have explored bugs as indicators for correctness, and Za-
man et al. (2011) have explored bugs as indicators for security and performance.
When using bugs to quantify quality, it is a common practice to classify them into
categories. For example, Zaman et al. (2011) classified bugs according to their effect
on specific QAs (e.g., security and performance). Therefore, to evaluate software
projects with respect to their critical quality attributes, we performed static analysis

2.3. Case Study Design 25

by collecting the amount of several different types of bugs. For that, we used the
tool FindBugs3. FindBugs is capable of detecting vulnerabilities in software by us-
ing bug patterns (Hovemeyer and Pugh, 2004). In this case study, we have chosen
to use FindBugs because it provides:

• adequate performance (with respect to precision) when compared to similar
tools (Hovemeyer and Pugh, 2004; Zheng et al., 2006);

• a collection of over 400 bug patterns; and

• a grouping of these bug patterns in nine high-level categories (i.e., Security,
Correctness, Multithreaded Correctness, Performance, Malicious Code, Bad Prac-
tice, Internationalization, Experimental and Dodgy Code), which can in turn be
mapped into quality attributes.

In this study, in order to evaluate critical quality attributes, we considered the
first five categories (in total 246 bug patterns), as they can be mapped to three crit-
ical QAs: correctness (Correctness and Multithreaded Correctness categories), perfor-
mance (Performance category), and security (Security and Malicious Code categories).
Therefore, the level of quality for the three aforementioned QAs is measured by the
quantity of detected bugs. We clarify that for the correctness and security QAs, the
number of bugs is the sum of the two categories each QA is comprised of. For exam-
ple, security is measured by summing the number of bugs from both Security and
Malicious Code categories. For all QAs a lower number of bugs reflects a higher level
of quality.

Assessment of Noncritical QAs

Regarding the quantification of noncritical quality attributes, we selected to use the
Quality Model for Object-Oriented Design (QMOOD) (Bansiya and Davis, 2002).
QMOOD is a well-known hierarchical quality model that provides an approach for
assessing six high-level quality attributes: reusability, understandability, function-
ality, extendibility, effectiveness, and flexibility (Bansiya and Davis, 2002). These
attributes are quantified based on 11 structural object-oriented design properties:
design size, hierarchies, abstractions, encapsulation, coupling, cohesion, composi-
tion, inheritance, polymorphism, messaging, and complexity (Bansiya and Davis,
2002). The definition for the aforementioned quality attributes and properties, and
the equations to calculate the score of each quality attribute (by using weighted
sum) can be found in the work of Bansiya and Davis (2002). Although the QMOOD
quality model seems rather simplistic in its calculations, weighted sum is the most

3http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/

26 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

classical and, therefore, used approach for combining metrics (Chatzigeorgiou and
Stiakakis, 2013). Additionally, Bansiya and Davis (2002) validated it empirically by
using 13 appraisers, with 2-7 years of experience in commercial software develop-
ment, to evaluate 14 software projects. Their evaluation was compared to the quality
model output, which showed to be significantly correlated. Therefore, we selected
to use QMOOD since it:

• uses simple calculations, which can be easily automated;

• provides clear definitions of low-level properties and direct mapping to qual-
ity attributes; and

• presents a fair amount of quality attributes.

In order to assess the QAs for each project we used Percerons Client4, i.e., a tool
developed in our research group, which automates the assessment of these QAs for
provided Java classes. Percerons is a software engineering platform (Ampatzoglou,
Michou and Stamelos, 2013), created by one of the authors, to facilitate empirical
research in software engineering, by providing: (a) indications of componentizable
parts of source code, (b) quality assessment, and (c) design pattern instances. The
platform has been used for similar reasons by Ampatzoglou, Gkortzis, Charalampi-
dou and Avgeriou (2013), Griffith and Izurieta (2014), and Alhusain et al. (2013).

2.3.4 Collection Procedure and Pre-processing

The data collection phase was a two-step process. First, the QAs assessment vari-
ables were extracted from every unit of analysis, using FindBugs and Percerons Client.
Both tools work on Java binary code, so we provided them with a set of .jar files
(one per version), and recorded the outcome in an initial dataset. For FindBugs, we
used the command line version 3.0.0, for easy reproduction and automation pur-
poses. During execution, we requested maximum effort (i.e., enabling analysis that
increases precision), and reported bugs from all urgency priorities (i.e., from least to
most harmful to the system).

The initial dataset was compiled in a single file for each project, containing all ex-
tracted data (from both tools) for each version. This file comprises a table with the
following fields for each row of data: version, number of correctness bugs, number of
performance bugs, number of security bugs, reusability score, understandability score, func-
tionality score, extendibility score, effectiveness score, and flexibility score. The number
of bugs from each aforementioned QA was obtained by counting the rule viola-
tions with medium and high confidence from Findbugs output. We decided to filter

4http://www.percerons.com/

http://www.percerons.com/

2.3. Case Study Design 27

out the bugs with low confidence level for increasing the precision of the automatic
rule violation identification process. Specifically, we manually analyzed/validated a
sample of 15 bugs per level of confidence (chosen randomly), and we estimated that
the precision for low, medium, and high categories were 26.67%, 60%, and 73.33%
respectively.

Next, the final dataset was created by calculating the difference between two
consecutive versions (δvariable = variablev - variablev-1), for every version v of each
project. This was performed for each estimator (number of bugs or design-time
attribute quality score). Then all data were merged in a single table consisting of
the following fields: project name, type of project (i.e., CES or non-CES), δcorrectness,
δperformance, δsecurity, δreusability, δunderstandability, δfunctionality, δextendibility, δeffectiveness, and
δflexibility. Finally, the values of the δ* variables were classified as improvement cases,
deterioration cases, or neutral cases, based on the sign of the corresponding δ value.

Summarizing, the full list of variables collected from each unit of analysis, to-
gether with their description, is presented in Table 2.3.

Table 2.3: List of collected variables

Variable Description Tool

V1 Software project: the name of the OSS project from which data were extracted. -

V2 Domain Group: project belongs either to CES or non-CES. -

V3
Difference between two versions, in the count of security rule violations: count
of bug pattern instances in “Malicious code vulnerability” and “Security” cate-
gories.

Fi
nd

Bu
gs

V4
Difference between two versions, in the count of “Performance” rule violations:
count of bug pattern instances in “Performance” category.

V5
Difference between two versions, in the count of correctness rule violations:
count of bug patterns in “Correctness” and “Multithread correctness” categories.

V6
Difference between two versions, in the reusability score: the reusability assess-
ment computed as defined by Bansiya and Davis (2002).

Pe
rc

er
on

s
C

lie
ntV7

Difference between two versions, in the flexibility score: the flexibility assess-
ment computed as defined by Bansiya and Davis (2002).

V8
Difference between two versions, in the Understandability score: the under-
standability assessment computed as defined by Bansiya and Davis (2002).

V9
Difference between two versions, in the Functionality score: the functionality
assessment computed as defined by Bansiya and Davis (2002).

V10
Difference between two versions, in the Extendibility score: the extendibility
assessment computed as defined by Bansiya and Davis (2002).

V11
Difference between two versions, in the Effectiveness score: the effectiveness
assessment computed as defined by Bansiya and Davis (2002).

28 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

2.3.5 Data Analysis

During this phase, we analyzed the previously described δ* fields (V3 – V11), in or-
der to identify trade-offs, which will be further used for comparison between CES
and non-CES groups. We clarify that these fields represent assessments of the stud-
ied QAs, and, therefore, when referring to the attributes, we are in practice referring
to their assessments. The analysis of the collected data is split in three steps:

(step 1) Analysis of pairs of QAs: For both groups (CES and non-CES projects),
we have to seek evidence on the existence of trade-offs, in every pair of QAs.
For instance, Figure 2.1 depicts the analysis of qualities V6 vs. V10, for CES.
Therefore, for every pair of QAs, we proceed as follows:

Figure 2.1: Example of trade-off analysis within the final dataset

(step 1.1) Filter improvement cases: As we are looking for cases of occur-
rences of trade-offs, it is important to select only cases in which one of
the two QAs has improved. For this reason, we create two sub-datasets,
each one consisting of the cases having positive scores for the respective
QA. For instance, in Figure 2.1, the two sub-datasets consist of the cases
in which V6 improves (positive values of V6), and the cases in which V10
improves (positive values of V10). This ensures that we are tracking the
cases in which perfective maintenance tasks may have been performed
in order to improve the tracked aspect of the software.

(step 1.2) Calculate statistics of sub-dataset: Each sub-dataset (corresponding
to an improving QA) is analyzed by creating a frequency table for the sec-
ond QA. In the example presented in Figure 2.1, for the sub-dataset com-

2.3. Case Study Design 29

prising cases of improvement of V6, we calculate the frequencies for V10;
and vice-versa. Thus, when exploring each sub-dataset, we calculate the
frequency percentages of the classes of the second QA (i.e., improvement
cases, deterioration cases, stable cases). Next, the improvement cases are
marked as co-evolution, the deterioration cases are marked as trade-offs,
whereas the neutral cases as neutral. For instance, in Figure 2.1, in the
sub-dataset comprising improvement cases of V6, we calculated “V10 -”
(trade-off), “V10 +” (co-evolution), and “V10 0” (neutral).

(step 1.3) Filter evidence: To identify the trade-offs occurring between QAs,
we keep out of the two sub-datasets of step 1.2, only those in which
the percentage of the trade-off cases is higher than the percentage of co-
evolution and neutral. In the example of Figure 2.1, we identify a possible
trade-off at the sub-dataset in which the improvement of V6 affects neg-
atively V10.

(step 2) Synthesis of presentation: In this step we synthesize and graphically rep-
resent the results of step 1, so as to answer the research questions. Two heat
maps are derived from the information on step 1: one depicting the trade-offs
within the CES group (row: improved QAs, columns: affected QAs, intensity:
the frequency of trade-offs); and another showing the comparison of trade-
offs between the two groups (the difference and similarities between CES and
non-CES trade-offs).

(step 3) Comparison of evidence in CES projects: With the data collected and sum-
marized, it is analyzed within the CES group, aiming at comparing the inter-
actions between the QAs in order to answer RQ1 and its sub-questions. For
this step the heat map on CES trade-offs is used.

(step 4) Comparison of evidence from groups: The analysis is now extended to the
non-CES group, aiming, therefore, at comparing all collected data in order to
answer RQ2 and its sub-questions. For this step the heat map on the compari-
son between CES and non-CES groups is used.

Summarizing the procedure for answering the RQs, Table 2.4 presents the map-
ping between each RQ, the used variables, as well as the step of the analysis in which
RQs are answered and the presentation methods that are used.

30 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

Table 2.4: Mapping of RQs to variables, steps, and presentation

Research Questions Used Variables Step Presentation Method

RQ1 V2-V13

3 Heat Map on CES trade-offs
RQ1.2 V2, V8-V13
RQ1.2 V2-V7
RQ1.3 V2-V13
RQ1.4 V2-V13

RQ2 V2-V13
4 Heat Map on comparison between CES

and non-CES
RQ2.1 V2-V13
RQ2.2 V2-V13

2.4 Results

In this section we present the output of the analysis, and answer the research ques-
tions. To answer RQ1 and its sub-questions, we explore the findings obtained from
step 3. In order to visualize the interaction between the QAs, we compiled raw
data5into a heat map (see Figure 2.2). In the heat map of Figure 2.2, each cell repre-
sents the effect of improving one QA (vertical axis) over another (horizontal axis).
The intensity of the heat map (i.e., color darkness – also written inside the cell)
represents the percentage of the cases that constitute valid trade-offs (see step 1.3).
Moreover, the two bold lines in the map divide it into quadrants in order to high-
light the interactions within and between the critical and noncritical groups of QAs.
Hence, the top-left quadrant represents the interactions between critical QAs, the
bottom-right quadrant represents the interactions between noncritical QAs, while
the other two represent the interaction between QAs of the two groups.

Based on Figure 2.2, we are able to answer all sub-questions of RQ1, by con-
firming the existence of trade-offs between QAs (see Section 2.3.5, step 1), and an-
swering affirmatively RQ1.1 - RQ1.3. Consequently, by investigating each quadrant
separately, it’s also possible to point out possible trade-offs between critical QAs
(second quadrant), noncritical QAs (fourth quadrant), and between QAs of the two
groups (first and third quadrants). The findings from exploring RQ1.1 - RQ1.3 is the
existence of trade-offs6 between:

• understandability and the other noncritical QAs (and vice-versa);

• correctness and performance, as well as between security and correctness;

5The raw data and other supplementary material on the collected data during the study is available
at: https://doi.org/10.5281/zenodo.2350387

6We note that, in this study, when reporting trade-offs in the form of “trade-off between QAA and QAB”,
we refer to a compromise in the levels of QAB in favor of an improvement in the levels of QAA.

https://doi.org/10.5281/zenodo.2350387

2.4. Results 31

Figure 2.2: Trade-offs in CES domain

• all critical QAs and extendibility, and between all QAs and understandability;

• performance and reusability;

• reusability and extendibility.

Subsequently we examine whether the interactions between two QAs are bi-
directional (RQ1.4), i.e., if the improvement of one QA negatively affects another
QA, the opposite relationship also holds. To answer this research question, we ex-
amine Figure 2.2 for symmetries. We observe that although we identified some bi-
directional interactions, it is not possible to conclude that all identified trade-offs
between QAs are bi-directional. However, for some pairs of QAs, bi-directional
trade-offs can be identified, i.e., between understandability and the rest of the non-
critical QAs (effectiveness, extendibility, flexibility, functionality, and reusability).
Moreover, we highlight one interesting finding regarding the interactions between
critical and noncritical QAs: although the improvement of some critical QAs nega-
tively affects noncritical QAs, the opposite phenomenon never appears, i.e., in this
study we found no evidence of noncritical QAs negatively affecting critical QAs.

Finally, having examined the trade-offs in the CES domain, we can compare
them with other application domains (RQ2): in what aspects they are similar (RQ2.1),
and the ones in which they differ (RQ2.2). To answer these questions, we created two
heat maps: one akin to that depicted on Figure 2.2 (see Figure 2.3), but considering
data from the non-CES projects, and another representing the difference of the two
heat maps (see Figure 2.4). In Figure 2.4, three different filling patterns (with their
respective colors) represent the possible classifications for the observed trade-offs:

32 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

evident only in the group of CES projects (red background with circles); evident
only in the group of non-CES projects (blue with slanted lines); and evident in both
groups (green background with vertical lines). Based on this figure, we answer af-
firmatively RQ2.1 - RQ2.2, and, additionally, make the following observations:

• Similarities between the two groups of projects: Trade-offs between security and
correctness; between correctness and performance; between all QAs and un-
derstandability; and between understandability and noncritical QAs.

• Trade-offs occurred only in the group of CES projects: between the critical QAs and
extendibility; between reusability and extendibility; and between performance
and reusability.

• Trade-offs occurred only in the group of non-CES projects: between correctness and
security, as well as between performance and security; and between correct-
ness and effectiveness.

Finally, concerning the group of CES projects, the trade-offs occur mostly be-
tween critical QAs and noncritical QAs, which implies that, in the CES domain,
noncritical QAs are more often sacrificed in favor of critical QAs.

Figure 2.3: Trade-offs in non-CES domain

2.5. Discussion 33

Figure 2.4: Comparison between CES and non-CES groups

2.5 Discussion

In this section, we present a discussion of the results, by providing possible inter-
pretations and a comparison against related work (when applicable). We first dis-
cuss the findings from the CES trade-off analysis, and then the comparison between
CES and non-CES. At the end of this section, we discuss possible implications to
researchers and practitioners.

2.5.1 Trade-offs in CES Domain

By exploring the trade-offs in CES, the following observations can be made:

• extendibility is negatively affected by reusability. This is intuitive for CES. In
general, embedded systems provide specific functionalities that are not de-
signed to facilitate future extensions in an object-oriented way (e.g., adding
subclasses, polymorphic methods, etc.). Therefore, the addition of new func-
tionality is expected to be performed by adding methods in existing classes,
making existing methods larger in size, or adding new concrete classes, which
in turn lead to even more decreased extendibility. On the other hand, accord-
ing to Bansiya and Davis (2002), such classes (which offer large amount of
functionalities) are considered more probable to be reused, since they provide
more reuse opportunities, regarding offered functionalities.

• performance negatively affects reusability. One possible explanation is that, in
order to improve the system performance, some solutions (e.g. refactoring of

34 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

class into inner class7) lead to deterioration of aspects that support reusability,
such as cohesion, coupling, and size. Coupling and cohesion are important
assessors of reusability in the sense that they are related to the adaptation time
needed for reusing a specific piece of code. A similar finding can also be drawn
based on the work of Oliveira et al. (2008), who suggest that cohesion and
coupling metrics, that are assessments of reusability, are compromised in favor
of metrics for performance (Bansiya and Davis, 2002).

Although the results of Figure 2.2 suggest that extendibility is negatively affected
by all critical QAs, we believe that this result needs further investigation. Intuitively,
extendibility is compromised by source code growth (Alshammari et al., 2010), and
embedded system development style, as already mentioned. Therefore extendibility
deteriorates during the evolution of CES, but we do not have evidence regarding
the extent that this is connected to bug solving (i.e. improvement of critical QAs).
However, a similar finding is reported by Oliveira et al. (2008), where metrics for
extendibility are compromised in favor of performance.

The rest of the findings are discussed in the next subsection, as they are also
observed in the non-CES group.

2.5.2 Comparison of the Two Groups

On the one hand, in both CES and non-CES, we were able to observe the following:

• noncritical QAs do not affect critical QAs. Improvements on object-oriented
properties (i.e., enhancement in design-time QAs – all noncritical QAs investi-
gated in this study are design-time) are not likely to result in additional source
code vulnerabilities (rule violations – assessment of critical QAs). A possible
explanation is that there is no tension between noncritical and critical QAs.
However, another possibility is that when improving design-time quality at-
tributes, the developers are refactoring the code without changing its external
behavior (extract class, extract method, etc.), which only “moves” rule viola-
tions to other parts of the system, without introducing new ones. In addition
to that, especially concerning CES, this finding is intuitive in the sense that it
was not expected from development teams to compromise a critical QA in a
critical system, in favor of a noncritical one.

• security negatively affects correctness. Fixing security vulnerabilities can lead
to additional errors in the code. For example, in order to fix a vulnerability

7http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_SHOULD_BE_
STATIC

http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_ SHOULD_BE_STATIC
http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_ SHOULD_BE_STATIC

2.5. Discussion 35

related to a field that is not well implemented and should be moved8, one
might do the refactoring as suggested, but forget to initialize the field9.

• correctness negatively affects performance. Coding mistakes are common during
development (e.g., accessing an already freed reference10). Therefore, in order
to solve these bugs, one might use inefficient coding styles (in terms of per-
formance) in order to ensure that the output is the expected (e.g., introducing
extra parameters in a method that ends up being of limited utility11).

On the other hand, by comparing the differences between the two groups, we
identified the following findings:

• Although specific evidence of trade-off was discussed already (in the previous
subsection), we note that the higher frequency of trade-offs between the criti-
cal QAs with noncritical QAs might reflect a higher importance of critical QAs
over noncritical QAs in CES.

• In non-CES, correctness negatively affects effectiveness. While maintaining parts of
source code, it might be the case that more non-object-oriented approaches are
employed, leading to a reduction in system’s effectiveness. We note that effec-
tiveness is quantified by assessing how well the object-orientation paradigm
is employed in the source code (Bansiya and Davis, 2002). For example, in or-
der to solve missed locks12, one might centralize the responsibilities to avoid
forgetting the lock.

• In non-CES, correctness affects all other critical QAs. This might be an indication
that functionalities are not optimally implemented (i.e., implying less attention
to errors or less knowledge on the topic) in other domains, possibly due to a
lack on developers’ skills.

• In non-CES, security is affected by all other critical QAs. Similarly to the previ-
ous finding, code exploitation vulnerabilities appear to be common in other
domains, and could also be explained by lack of skills regarding this issue.

Finally, although the results of Figure 2.4 suggest that understandability is nega-
tively affected by all other QAs and vice-versa, we believe that this result needs further

8http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_PKGPROTECT
9http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNINIT_READ

10http://findbugs.sourceforge.net/bugDescriptions.html#NP_NULL_ON_SOME_PATH
11http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNBOXING_

IMMEDIATELY_REBOXED
12http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SLEEP_WITH_LOCK_

HELD

http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_PKGPROTECT
http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNINIT_READ
http://findbugs.sourceforge.net/bugDescriptions.html#NP_NULL_ON_SOME_PATH
http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNBOXING_IMMEDIATELY_REBOXED
http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNBOXING_IMMEDIATELY_REBOXED
http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SLEEP_WITH_LOCK_HELD
http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SLEEP_WITH_LOCK_HELD

36 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

investigation. Specifically, we observed that understandability is a QA that con-
tinually deteriorates during systems evolution (Penta et al., 2009), because based
on the way it is calculated (Bansiya and Davis, 2002) it is inversely proportional
to the growth of properties such as complexity (measured by number of methods)
and design size (measured by number of classes). On the other hand, in the cases
when understandability is increasing, we observe a negative relationship with the
rest of the noncritical QAs, again because of the way that both understandability
and noncritical-QAs are calculated. Concluding, we believe that the decrease of un-
derstandability in our study is not the result of explicit trade-offs, but simply, the
natural effect of system growth.

2.5.3 Implications for Practitioners and Researchers

Firstly, by investigating our results, architects and software engineers can become
aware of the most probable side-effects that the enhancement of one QA might have
to another, in the sense that some trade-offs may be performed unintentionally. For
example, by making developers aware of the fact that when fixing bugs related to
security, they usually introduce additional bugs related to correctness, would make
them consider possible ways to avoid such side-effects. Similarly, architects can
also benefit from the identified trade-offs, as a source of potential threats to QAs,
enabling them to: (a) monitor the potentially harmed QAs, and (b) identify concrete
QA compromises earlier, so as to employ the necessary countermeasures.

Secondly, the results of the study suggest that CES differ from other application
domains in terms of the actual trade-offs, and in terms of trade-offs between QAs not
being bi-directional. Therefore, we strongly advise both researchers and practition-
ers to: (a) reflect on the direction of trade-offs, when reasoning about the interplay
of QAs (e.g., the improvement of one QA affects another QA negatively, but not
vice-versa), and (b) to take into account the application domain when investigating
trade-offs.

Finally, the results of the study suggest that the outcome of investigating trade-
offs at the level of the implemented architecture are intuitively correct, as they align
with architecting principles. Therefore, we induce researchers to consider source
code artifacts, when exploring trade-offs between QAs.

2.6 Threats to Validity

In this section we present and discuss construct validity, reliability, as well as exter-
nal validity for this study. Internal validity is not applicable, as the study does not
examine causal relations. Construct validity reflects how connected are the object of

2.6. Threats to Validity 37

study and the research questions. The reliability is related to whether the case study
is conducted and presented in such way that others can replicate it with the same
results. Finally, external validity deals with possible threats when generalizing the
findings derived from sample to the entire population.

Concerning construct validity, one threat concerns the correctness of the formu-
lae, proposed by Bansiya and Davis (2002), for assessing the noncritical QAs. How-
ever, as described in the data collection section, the calculation had been validated
through an empirical study involving experienced practitioners. Additionally, re-
garding FindBugs, we acknowledge that the list of bug patterns are by no means
exhaustive, and additional bugs related to the investigated QAs could be used.
However, to the best of our knowledge the used tool is among the most reputed
in the community, and has adequate performance (see Section 2.3.3). Another threat
is that effect size is not considered during the data analysis (Section 2.3.5), i.e., any
positive or negative change in an attribute is considered the same, regardless of its
magnitude. This measure was taken in order to avoid bias from specific projects to
the entire domain.

In order to mitigate reliability, two different researchers were involved in the
data collection, having all outputs double-checked. Furthermore, the same double-
checking procedure happened during the data analysis. Finally, all primitive data
can be reproduced by using the same bug detection tool (FindBugs, v3.0.0), for es-
timating critical QAs, and the QMOOD quality model calculations (Bansiya and
Davis, 2002), for estimating noncritical QAs.

Finally, concerning external validity, we have identified four possible threats to
the validity of our results. Firstly, we investigated a limited number of CESs, due
to unavailability of critical embedded OSS implemented in Java. Thus, the inclu-
sion of more CESs may differentiate the reported results. Additionally, modifica-
tions on the type and/or number of non-CES may slightly differentiate the results
as well. Secondly, all software systems that were investigated are written in Java,
while C/C++ is a more popular language for implementing CES; thus, there is a
possibility that results are different for other object-oriented languages, as well as
for other paradigms. Thirdly, due to the use of FindBugs and QMOOD, the reported
results concern three critical and six noncritical QAs. Therefore, all discussions on
the existence of possible trade-offs between critical and noncritical QAs, cannot be
generalized to other QAs (e.g., reliability, changeability, etc.) without further in-
vestigation. Finally, our results cannot be generalized “as is” to trade-offs in the
intended architecture, because we have analyzed trade-offs from the perspective of
the implemented architecture, i.e. source code (including both intentional and unin-
tentional trade-offs). In order to draw safe conclusions on the intentional trade-offs
the architectural design of a system should be explored. For example, considering

38 2. Investigating Quality Trade-offs in Open Source Critical Embedded Systems

other points of view, such as risk analysis in the intended architecture (Bass et al.,
2008).

2.7 Conclusions

One of the greatest challenges in engineering CESs is to guarantee critical QAs,
which may pose hard constraints. This entails that complex trade-offs need to be
made, either intentionally or unintentionally. In our study, we aimed at empirically
investigating the interplay of QA and existence of quality trade-offs by analyzing
source code through software evolution. For that we explored 9 QAs, measured
from a total of 622 versions, obtained from 21 open source software projects.

Concerning CES, the results of the study imply the existence of possible trade-
offs between critical QAs (correctness, security, and performance), as well as the
fact that noncritical QAs (e.g., reusability, understandability, etc.) are usually com-
promised in favor of critical QAs. However, we have not observed critical QAs
compromised in favor of noncritical QAs, for either CES or other application do-
mains. Finally, we provide evidence on the fact that noncritical QAs are more often
compromised than critical QAs.

This chapter focused on characterizing the domain of CES with respect to QAs
trade-offs, obtaining knowledge on the state-of-the-practice. This study is the first
step into exploring the problem space of the PhD project. To complete the problem
exploration, the next chapter reports on the state-of-the-art on how CES are designed.

Based on:

Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou, Frank J. Affonso, Hugo Andrade, Katia R.
Felizardo and Elisa Y. Nakagawa, (2017) “Design Approaches for Critical Embedded Systems: A Systematic
Mapping Study,” in Evaluation of Novel Approaches to Software Engineering, Springer International
Publishing, pp. 243–274, DOI:10.1007/978-3-319-94135-6 12

Chapter 3

Design Approaches for Critical Embedded
System: A Systematic Mapping Study

Abstract

In the last years the amount of software accommodated within CES has consider-
ably changed. This change means that software design for these systems is also
bounded to hard constraints (e.g., high security and performance). Along the
evolution of CES, the approaches for designing them are also changing rapidly,
so as to fit the specialized needs of CES. Thus, a broad understanding of such ap-
proaches is missing. Therefore, this chapter aims at establishing a fair overview
on CESs design approaches. For that, we conducted a Systematic Mapping Study
(SMS), in which we collected 1,673 papers from five digital libraries, filtered 269
primary studies, and analyzed five facets: design approaches, applications do-
mains, critical quality attributes, tools, and type of evidence. Our findings show
that the body of knowledge is vast and overlaps with other types of systems (e.g.,
real-time or cyber-physical systems). In addition, we have observed that some
critical quality attributes are common among various application domains, as
well as approaches and tools are oftentimes generic to CES.

3.1 Introduction

Engineering CES is particularly challenging, since it needs to guarantee the satisfac-
tion of various critical qualities. One of the key solutions to alleviate this challenge
is to design a sound architecture and validate it against the critical quality attributes.
To this end, multiple approaches have been proposed, solving a variety of specific
design problems. However, the plethora and diversity of available solutions has led
to a difficulty on understanding, applying or even extending and combining such
approaches. Thus, in order to support researchers and practitioners on CES design,
it is important to have a comprehensive understanding of this field.

40 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

To contribute towards a better understanding of design approaches for CES, we
have conducted a systematic mapping study; this is a commonly used approach
for assessing and describing the state of the art in a specific domain or problem
(see Section 3.3 for more details). The contributions of this study are the following:
(a) a classification of the existing approaches to design CES; (b) a list of tools for
supporting existing approaches; (c) a list of domains for which approaches have
been developed and used; (d) a list of the most commonly identified CQAs in the
CES design; and (e) a classification of these approaches, based on the level of their
empirical evidence.

The remainder of this chapter is organized as follows: related work is presented
in Section 3.2, along with a discussion of the main contributions of this study. In
Section 3.3, we present the design of the systematic mapping study. In Sections 3.4
and 3.5 we present the results and discuss the most important findings respectively.
In Section 3.6, we report on the identified threats to validity and actions taken to
mitigate them. Finally, in Section 3.7 we conclude the chapter.

3.2 Related Work

This section describes related Systematic Literature Reviews (SLRs) or Systematic
Mapping Studies (SMSs), also known as secondary studies. To the best of our
knowledge, there are no studies that focus on exactly the same topic as ours, i.e.,
designing of CESs. Thus, we searched for related work such as SMSs and SLRs that
cover the entire software development process of CES, or a specific phase.

3.2.1 Development Processes

We identified two studies that discuss software development processes and are re-
lated to CESs (Cawley et al., 2010; Eklund and Bosch, 2013). Although such pro-
cesses do not focus or limit themselves to the design phase, they do have impact on
the design phase. Cawley et al. (2010) investigated Lean/Agile development pro-
cesses on safety-critical systems, focusing on medical devices. For this purpose, an
SLR based on the guidelines of Kitchenham and Charters (2007) was performed.
The results of the SLR suggest that Lean/Agile methodologies are appropriate for
the development of safety-critical systems, as they support several practices for reg-
ulated safety-critical domains (e.g., traceability and testing). However, the results
also suggest a lack of adoption of Lean/Agile methods in these domains. This is
not surprising as regulated environments typically involve activities that are not
commonly used in these processes. Eklund and Bosch (2013) investigated a holistic

3.2. Related Work 41

model for aligning software development processes with the architecture of embed-
ded software. As part of this study, an SMS on development approaches for embed-
ded systems was performed (based on the guidelines of Kitchenham and Charters
(2007)). The results of the study suggest that there is no single most common ap-
proach (or set of approaches) but, approaches are tailored for specific domains or
products and may have different characteristics (e.g., incorporating agile practices).
Despite the high customization of processes, the authors have been able to iden-
tify some similarities, e.g. activities are often executed sequentially and follow a
V-model- (Karlström and Runeson, 2006) or stage-gate-like (Selim et al., 2012) pro-
cess. In addition, the architectures created from these processes are often focused
on supporting specific quality attributes, which are typically domain-specific (e.g.,
dependability for the space domain). Based on the identified approaches, the au-
thors derived five archetypical developments processes, with their respective char-
acteristics, aiming to support selection or migration between concrete archetypal
development approaches.

3.2.2 Verification and Validation

Not all activities in the verification and validation of critical embedded software
(V&V) are related to its design. However, a significant part concerns the verifica-
tion and validation of design and are, therefore, relevant to the design phase. We
identified two secondary studies that discuss aspects of V&V and are related to CES
(Barbosa et al., 2011), (Elberzhager et al., 2013). Barbosa et al. (2011) investigated
software testing of CESs, checking the compliance level with the standard DO-178B,
for the aviation industry. The aim was to identify primary studies that could be used
to create a methodology for testing of CES. For this purpose, a SLR, based on Dybå
and Dingsøyr (2008), was performed to identify studies that implemented or ap-
plied V&V techniques in the context of CES. The results suggest that four techniques
(functional, structural, mutation and model-based testing) are widely applied for
testing of CES, from which the most recurrent technique is functional testing. In ad-
dition, all testing requirements of DO-178B have been investigated, with “structural
coverage analysis” (e.g., dead code and deactivated code) being the most addressed
requirement, likely due to its inherent complexity. Elberzhager et al. (2013) inves-
tigated quality assurance techniques (i.e., analysis or test approaches) applied to
Matlab Simulink models. These models are used in embedded software design, es-
pecially in critical domains. The aim was to develop an approach able to integrate
different quality assurance techniques. For this purpose, an SMS was performed
based on the guidelines of Petersen et al. (2008), which presented different analysis
and test techniques as well as some combined approaches. The results of the study

42 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

suggest that formal methods, properties checking (e.g., rule-based analysis) and au-
tomatic test generation are the most common approaches for performing quality
assurance for embedded systems. The results also suggest a lack of research on
combining analysis techniques with testing techniques for such models.

3.2.3 Software Architecture

The activity of architecture design for embedded systems was investigated by An-
tonio et al. (2012), which aimed at establishing the state of the art on the topic by
analyzing proposed architectures, available on the literature. For that, a SMS based
on the guidelines of Petersen et al. (2008) was performed. To understand the activity,
various characteristics were collected from the architectures, and used for classify-
ing them. Firstly, the architectures were grouped according to the type of modeling
technique used to design them, namely formal, semi-formal and informal. Next,
further classes were identified based on recurrent characteristics, e.g., level of ab-
straction and whether it is domain-specific. The results of the SMS suggest that
the Architecture Analysis and Design Language (AADL) is the most used formal
modeling approach, whereas UML stands out among the semi-formal and informal
approaches. In addition, the most recurrent characteristic of these architectures is
that they are designed to specific application domains.

Similar to the previous study, Guessi et al. (2012) investigate the modeling of
software architectures for embedded systems. However, this study focuses on ar-
chitecture description languages (ADLs), as well as the concerns (e.g., quality at-
tributes) being addressed and information (e.g., components, events) being repre-
sented in the designed architectures. The investigation was performed via a SLR
based on the guidelines of Kitchenham and Charters (2007). The results suggest
that UML is the most common language, while safety is the concern that is more
often addressed. Despite the variety of approaches that currently exist, the results
also suggest that more attention should be placed on the description of embedded
system architectures. Among the reasons, Guessi et al. (2012) argue that there is a
lack of consensus about the most adequate approach(es) for describing architecture,
as well as whether existing approaches are sufficient for representing the variety of
embedded systems.

Nakagawa et al. (2013) present the state of the art on architecting approaches
for systems of systems1 (SoS), of which CES are among the most common exam-
ples. For that, an SLR based on the guidelines of Kitchenham and Charters (2007)
was performed, investigating the creation, representation, evaluation and evolution

1SoS are integrated solutions comprising operationally independent (nontrivial) systems, which are
orchestrated in order to provide a more complex functionality.

3.3. Review Methodology 43

of these architectures. The results suggest the existence of several approaches, al-
though most of them lack maturity and are neither adequately adapted nor widely
adopted. In addition, several application domains (e.g., avionics and space) and
quality attributes (e.g., security, reliability and performance) are common between
SoS and CES.

3.2.4 Comparative Analysis

After presenting related work, it is important to highlight the differences between
these studies and our work. To illustrate these differences, we compare them w.r.t.
six characteristics (Table 3.1): review type; number of included primary studies;
whether the study focuses on CES or is only indirectly related (i.e., with partial
applicability to CES); whether it considered quality attributes (QA) in the investiga-
tion; whether it considered application domains in the investigation; and the main
topic of the investigation. The review type is an indication of whether the study
presents an overview or a detailed analysis over the main topic (SMS) or it exam-
ines more in-depth research questions (SLR). As presented in Table 3.1, three other
SMSs were performed, although they were focused in different, yet related, topics.
However, these three studies were not focused on CESs, which reinforces the pur-
pose of our study, as it complements existing knowledge. Other important aspects
of our study include the larger body of knowledge that has been investigated (due
to the broader topic of research), as well as the consideration of quality attributes
and application domains in the investigation. CESs are used in a variety of appli-
cation domains and multiple factors affect the decision-making to select or reuse a
design approach. Quality constraints are among the most relevant factors, as also
suggested by related work (Eklund and Bosch, 2013; Guessi et al., 2012; Nakagawa
et al., 2013). Application domains may also play an important role, as each domain
groups a set of common requirements, that are in turn related to specific quality
attributes (Eklund and Bosch, 2013).

3.3 Review Methodology

Systematic Mapping Studies (SMSs) and Systematic Literature Reviews (SLRs) have
been broadly adopted as systematic research methods to aggregate knowledge. As
this study aims to outline the state-of-the-art on design approaches for CES in a
broad sense, we decided to perform an SMS (Petersen et al., 2008). The rest of this
section describes the protocol of our SMS, based on the guidelines of Petersen et al.
(2008).

44 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

Table 3.1: Comparison between related work and our study

Study Review
Type

Number of
studies

Focus on
CES?

Investigated
QAs?

Focus on
Domains

Main topic

(Cawley et al., 2010) SLR 19 Yes No No DV
(Eklund and Bosch, 2013) SMS 23 No Yes Yes DV
(Barbosa et al., 2011) SLR 97 Yes No No V&V
(Elberzhager et al., 2013) SMS 44 No No No V&V
(Antonio et al., 2012) SMS 104 No No No SA
(Guessi et al., 2012) SLR 24 No Yes No SA
(Nakagawa et al., 2013) SLR 60 No Yes Yes SA

Ours SMS 258 Yes Yes Yes design

DP = development process
V&V = verification and validation
SA = software architecture

3.3.1 Research Scope

The goal of this SMS is described using the Goal-Question-Metrics (GQM) approach
(van Solingen et al., 2002), as follows: “analyze existing software engineering lit-
erature for the purpose of characterizing the state of the art with respect to ap-
proaches (e.g., processes, methods and tools) for designing critical embedded sys-
tems from the point of view of researchers and practitioners in the context of
software-intensive systems engineering”. Based on the goal we defined the follow-
ing research questions (RQs):

RQ1: What are the proposed approaches for designing CES?

RQ1.1: Is the nature of these approaches industrial, academic or mixed?

RQ1.2: What is the purpose of the approach?

RQ2: What are the application domains where these approaches are applied?

RQ3: What are the most common critical quality attributes identified in CES de-
sign?

RQ4: What tools have been used to support CES design?

RQ5: What are the types of evidence provided in CES design research?

To achieve the aforementioned goal, we must analyze and present the existing
body of knowledge from different perspectives. The most important outcome of this
SMS is the identification and characterization of the approaches that were created
and/or used to design CES (RQ1). As a first step in characterizing the approaches,
we consider their nature and purpose. Next, we look at the application domain

3.3. Review Methodology 45

(RQ2) which influences CES design as it often imposes a number of constraints. For
example, several application domains are bounded by international standards (e.g.,
DO-178B for aviation). In addition, these constraints commonly aim at defining crit-
ical quality values (e.g., safety); thus, design approaches are often targeting those
values (e.g., fault tree analysis). Therefore, investigating the addressed quality at-
tributes (RQ3) is of paramount importance. Furthermore, multiple tools have been
proposed or tailored to support the design of CES. As the number of CES grows, it is
interesting to investigate how this reflects on the tooling (RQ4), e.g., leading to news
tools and adaptation of existing ones. Finally, it is important to not only classify
the approaches, but also assess their maturity level to inform researchers and prac-
titioners. For that, we analyze the types of evidence provided within the literature
(RQ5).

3.3.2 Search Strategy

Considering the research questions, we defined the search strategy, which comprises
the selection of sources for collecting primary studies, as well as the definition of the
scope for the collection.

Sources Selection

We decided to perform an automated search, as a manual search would be very
time-consuming, thus not allowing us to search as many venues. In addition, by
considering digital libraries (through an automated search) we might also include
venues that otherwise we would not be aware of. The following criteria were
adopted to select search sources (i.e., digital libraries): content update (publications
are regularly updated); availability (full text of the papers is available); quality of re-
sults (accuracy of the results returned by the search); and versatility export (since a
lot of information is returned through the search, a mechanism to export the results
is required). These criteria are also discussed by Dieste et al. (2009). The selected
sources for our SMS are: ACM Digital Library, IEEE Xplore, Science Direct, Springer
Link and Scopus. According to Dybå et al. (2007), the first four digital libraries are
sufficient to conduct SMSs in the context of software engineering. Furthermore,
Scopus was added, since it is considered to be the largest database of abstracts and
citations (Kitchenham and Charters, 2007).

Search Scope

As CESs have been the subject of research for a long time, we decided to not limit
the start of the search period based on date of publication. However, we limit the

46 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

end date of the search period in order to measure influence of the primary studies
(see Section 3.3.5), considering primary studies published up to two years before
the date of collection. We performed the data collection on March of 2015 and, thus,
collected primary studies published up to March of 2013. Moreover, only primary
studies written in English will be processed in this SMS. Due to automated search,
we also defined a search string for filtering the studies to those that can be poten-
tially included in the SMS. As we are interested in approaches for CES design, we se-
lected two main keywords, “Critical Embedded System” and “Approach”, with the
respective related terms. The keywords were chosen to be simple enough to yield
a large number of results and, at the same time, rigorous to cover only the desired
research topic. The final search string is: (“Critical Embedded System” OR “Criti-
cal Embedded Systems” OR “Critical Embedded Software”) AND (“Approach” OR
“Approaches” OR “Method” OR “Methods” OR “Framework” OR “Frameworks”
OR “Technique” OR “Techniques” OR “Process” OR “Processes” OR “Tool” OR
“Tooling” OR “Guideline” OR “Guidelines”).

We clarify that we do not include terms such as “real-time”, “hard real-time”
or “cyber-physical systems”, as they describe a broader range of systems, which
extrapolates the scope of this SMS, and would make the paper selection process
impractical. To validate the search string and, consequently, the papers collected by
the automated search, we performed a manual search in a small number of venues,
similarly to determining a quasi-gold standard as proposed by Zhang and Babar
(2010). We selected the venues for the manual search based on their likelihood to
publish studies on CES design: Real-time Systems journal, Digital Avionics Systems
Conference (DASC), and International Conference on Computer Safety, Reliability,
and Security (SAFECOMP). To filter the primary studies for the quasi-gold standard,
we considered the metadata (i.e., title, keywords and abstract) and full text (when
necessary), resulting in the collection of 23 primary studies. Based on the quasi-
gold standard, we adapted the search string to ensure that all 23 primary studies
were included.

3.3.3 Study Selection

Based on the previously mentioned search strategy, we defined the procedure for
filtering the results of the automated search, selecting the primary studies to be an-
alyzed in the SMS. The study selection comprises the definition of the criteria for
filtering the papers, both inclusion and exclusion criteria, as well as steps for apply-
ing them. We include a primary study if it: (a) proposes an approach to design CESs;
(b) reports on the use of an approach to design CESs; (c) evaluates an approach to
design CESs; or (d) discusses approach(es) to design CESs. A primary study is ex-

3.3. Review Methodology 47

cluded if it is an editorial, position paper, keynote, opinion paper, tutorial, poster
or panel. To promote a common understanding of the selection criteria among the
three involved researchers, we performed a pilot selection on a small subset (50) of
the papers collected from the sources. In this pilot, during a first review round, all
researchers analyzed title, keywords and abstract of all papers and Cohen’s Kappa
was calculated between every pair of researchers (see Figure 3.1). We clarify that no
previous discussion was performed in order to evaluate the inclusion and exclusion
criteria. Next, all researchers and authors discussed the criteria and their interpre-
tation. Main points of this discussion included the boundaries of the design phase,
hardware design and the inclusion of papers that do not propose approaches (e.g.,
use or discussion). Finally, in a second review round, the papers are analyzed again,
but this time also considering introduction and conclusion sections (if necessary),
and a new calculation of Cohen’s Kappa was performed (see Figure 3.1).

Figure 3.1: Study selection

To select the primary studies, we defined a three-step procedure. In every step,
the papers were divided into three sets and three researchers were responsible for
reviewing the papers of two sets. By doing this, we guarantee that every paper was
reviewed by two different people while avoiding all three having to read all papers.
When an inclusion/exclusion decision was conflicting or dubious (e.g., one or both
reviewers were not confident), the case was discussed among all authors. The selec-
tion steps were the following: (1) Initial selection: the search string was customized
and applied to each publication source listed in Section 3.3.2. The string terms were
searched in the title, abstract and keywords of all primary studies available in each
database and search engine. As a result, a set of primary studies possibly related
to the research topic was obtained. Based on this set, the title and the abstract of
each primary study were read and evaluated based on the inclusion and exclusion
criteria. The introduction and the conclusion may also be considered when nec-

48 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

essary; (2) Second selection: each of the previously selected primary studies were
read in full-text and analyzed according to inclusion and exclusion criteria. This
step also included the data extraction, which is discussed in Section 3.3.5; and (3)
Snowballing: the references of the studies selected in step 2 were used to identify
extra literature, for which steps 1 and 2 are repeated.

3.3.4 Keywording

During the first two steps of the selection procedure (see Section 3.3.3), a set of key-
words was collected from each primary study. As proposed by Petersen et al. (2008),
the keywording process occurs in two steps:

Identification of context: While reading the paper, the reviewer identifies any
keywords and concepts that are relevant to describe that particular study. For exam-
ple, words that describe the purpose of the approach, code of standards and names
of quality attributes or tools were collected. During this step, reviewers share top-
ics of keywords (e.g., code of standards) to maintain consistency and optimize the
collection. Differently from Petersen et al. (2008), we extended the searching of key-
words to the whole paper, as some relevant keywords have been identified within
the full text at early stages of the study.

Summarization: The keywords are combined in order to create abstractions that
support understanding the body of knowledge under investigation. Examples of
such abstractions are the topics mentioned in the previous step (e.g., standards). The
abstractions also support identifying categories and create a classification scheme
for the primary studies.

We applied keywording not only to classify the primary studies but also to iden-
tify relevant concepts for all research questions, e.g., purpose of tools, application
domains standards and safety integrity levels (SILs). As a result, we collected 164
keywords, which were used to create a classification scheme (see Section 3.4.2).

3.3.5 Data Extraction and Mapping

During the second selection procedure (see Section 3.3.3), a set of variables were
collected from each primary study to answer the research questions. Similar to se-
lection procedure, the data collection of every paper involved two researchers and
conflicts were discussed among all authors. The extracted variables are described in
Table 3.2.

The mapping between variables and research questions is provided in Table 3.3,
accompanied by the analysis method used on the data. The type of evidence (V14)
evaluates the level of evidence of the proposed approach. For that, we adopted the

3.4. Results 49

classification proposed by Alves et al. (2010) in order to make the assessment more
practical. From weakest to strongest, the classes are: (i) no evidence; (ii) evidence
obtained from demonstration or working out toy examples; (iii) evidence obtained
from expert opinions or observations; (iv) evidence obtained from academic stud-
ies (e.g., controlled lab experiments); (v) evidence obtained from industrial studies
(i.e., studies are done in industrial environments, e.g., causal case studies); and (vi)
evidence obtained from industrial application (i.e., actual use in industry).

Table 3.2: Extracted variables

Variable Description

V1 Author(s)
V2 Year
V3 Title
V4 Source
V5 Venue
V6 Author(s) keywords
V7 Number of citations per year
V8 Type of paper (conference / journal / book)
V9 SMS keywords

V10 Approaches to design CES
V11 Application domain(s)
V12 Critical quality attributes
V13 Nature of the approaches (industrial/academic/mixed)
V14 Tools to support the approaches
V15 Type of evidence used to develop the approach

3.4 Results

In this section, we present the results of the mapping study, highlighting the most
important observations. We note that the complete information from data extraction
is publicly available as part of the supplementary material for this chapter (Feitosa,
Ampatzoglou, Avgeriou, Affonso, Andrade, Felizardo and Nakagawa, 2017). We
clarify that, when necessary, we cite specific primary studies using an “S” (e.g.,
[S134]). The list the primary studies can be found in Appendix A, and we have
made it also available as part of the supplementary material for this study (Feitosa,
Ampatzoglou, Avgeriou, Affonso, Andrade, Felizardo and Nakagawa, 2017).

50 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

Table 3.3: Mapping of variables to RQs

Research
Question

Used
Variables

Analysis Method

RQ1
(Approaches)

V1-V3,
V6, V7,
V9-V10

Descriptive Statistics (sum, average, frequency analyses, etc.).
Classification based on keywording.
Heatmap based on classification and year.
Crosstabs on classification vs. nature.

RQ2
(Application
domains)

V1-V3,
V10, V11

Descriptive Statistics (sum, average, frequency analyses, etc.).
Heatmap based on application domain and year.
Crosstabs on application domain vs. approaches (classification).

RQ3
(Critical quality
attributes)

V1-V3,
V9-V12

Descriptive Statistics (sum, average, frequency analyses, etc.).
Heatmap based on critical quality attribute and year.
Bubble chart on critical quality attribute vs. approaches (classifica-
tion) vs. application domain.
Spearman correlation between critical quality attribute and ap-
proaches (classification), and application domain.

RQ4
(Tools)

V1-V3,
V9, V10,
V14

Descriptive Statistics (sum, average, frequency analyses, etc.).
Classification based on keywording.

RQ5
(Evidence type)

V1-V3,
V9, V10,
V15

Descriptive Statistics (sum, average, frequency analyses, etc.).
Heatmap based on type of evidence and year.
Bubble chart on type of evidence vs. approaches (classification) vs.
application domain.
Spearman correlation between type of evidence and approaches
(classification), and application domain.

3.4.1 Demographic Overview

The distribution of studies, per year, among the different types of publication (con-
ference, journal and book) is depicted in Figure 3.2. We clarify that we collected
studies published up to March of 2013 (see Section 3.3.2), resulting on the observed
smaller number in that year. We notice a linear growth in the number of confer-
ence papers. The number of journal articles experiences a growth as well, but not
as high. We note that conference proceedings published as books were counted as
conferences, explaining the small number of book chapters in the chart.

To investigate further potential reasons for the aforementioned growth, we
looked at the venues and checked whether they focus on CES alone, or have a
broader scope (e.g., embedded systems) and only include CES as one of the topics of
interest. We observed that, although a few venues do focus on CES (e.g., Brazilian
symposium on CES), most of the studies were published in other venues, suggest-
ing a shift or growing interest of the respective (broad) communities towards CES.
In addition, we can try to identify the most relevant venues, by looking at their dis-

3.4. Results 51

tribution according to two metrics: number of included studies (Figure 3.3a), and
number of citations (Figure 3.3b). We chose these metrics, because they reflect dis-
tinct features that may draw the attention of researchers to venues: the size of the
CES community within the venue, and the potential visibility of the study. To in-
vestigate the venues, we analyzed how they are distributed statistically, identifying
the high outliers, which in this case indicate popular venues for CES. We used the
software IBM SPSS Statistics to create the box-plots as well as to identify the outliers,
using the stem-and-leaf diagram.

Figure 3.2: Number of filtered studies per year, per type of paper

(a) (b)

Figure 3.3: Box-plot of venues based on (a) number of studies and (b) citations per paper per
year

On the one hand, Figure 3.3a shows that the vast majority of venues contributed
with one or two papers only, respectively 111 (approx. 70%) and 28 (17.5%). The
analysis suggests that venues that contributed with four papers or more (nine
venues) are exceptional in our dataset. On the other hand, Figure 3.3b shows that
most venues (85%) exhibit a maximum average of four citations per paper per year.

52 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

The analysis of this metric suggests that venues with an average citation rate of
6.2 or more (15 venues in total) are also exceptional. Thus, we identified a set of
22 exceptional venues, which is presented in the supplementary material (Feitosa,
Ampatzoglou, Avgeriou, Affonso, Andrade, Felizardo and Nakagawa, 2017).

3.4.2 Design Approaches

As shown in the previous section we were able to collect a large number of studies.
Therefore, it is infeasible to present all collected approaches here. For that reason,
we decided to present the results as a summary based on the types of approaches
that were found, which are based on a classification scheme (presented below). In
addition, we present some details on the most relevant approaches, i.e., those with
the most citations, identified by using the number of citations according to Google
Scholar. To avoid omitting relatively new papers (i.e. those that did not have enough
time to receive citations), we considered the number of citations per year. In the next
subsections, we elaborate on this classification scheme and results.

Classification Scheme

The design phase in a development lifecycle is often elusive, in the sense that it is
typically hard to determine the boundaries of design with respect to the other life-
cycle phases. In embedded systems development, including systems with harder
constraints such as CES, this is no exception. However, in order to classify the de-
sign approaches, it is necessary to identify the parts of the development lifecycle
that approaches belong to, i.e., their purpose. It is widely accepted that the de-
sign phase includes activities that translate requirements into software/hardware
elements, with their respective responsibilities, excluding the actual implementa-
tion of these elements (source code) (Bass et al., 2012; Marwedel, 2010; Sommerville,
2000). To initialize our classification scheme, we collected the keywords obtained
from the keywording process (see Section 3.3.4) and filtered those that regard the
purpose of approaches. Next, we grouped the keywords by similarity, trying to or-
ganize them in a hierarchical fashion, also creating a generic design flow2. However,
it was not possible to derive such hierarchical organization, as we were not able to
identify or define a flow that was sufficiently generic to accommodate the extracted
approaches. This is due to the high heterogeneity of domains, requirements, and
platforms for which CES are designed (Marwedel, 2010). Therefore, we decided to
organize our keywords based on a simplified design flow proposed by Marwedel
(2010), which is meant to generically represent the design activities of an ES.

2A design flow is the sequence of specific activities (with respective approaches) to design a system.

3.4. Results 53

To create our classification scheme, we successfully mapped the identified key-
words into some elements of the design flow proposed by Marwedel (2010), and as-
sessed whether or not the relationship between the keywords were consistent with
the description of the simplified design flow. By the end of the keyword mapping,
we were able to derive five types of activity representing general purposes, as well
as scope them and their relationships. The final classification scheme is presented in
Figure 3.4, in which rectangles represent each general purpose, and arrows show the
flow of design artifacts. Moreover, smaller rectangles (i.e., Optimization and Test)
represent auxiliary purposes that are special for the design of embedded systems.
The approaches are grouped according to how they modify the system’s design,
rather than based on a logical sequence of activities. In addition, common activities
in embedded system design are also clearly placed within the classification (e.g.,
scheduling is placed within Application mapping). The main characteristic of this
kind of classification is that it is artifact-centric, i.e., the artifacts dictate what activ-
ities may be performed (i.e., what purposes they serve), rather than the other way
around (Marwedel, 2010). The five general purposes are described as follows:

Specification: these activities formalize constraints (e.g., safety requirements) in the
design. They define the scope/boundaries of the design. To draw a parallel,
this type of activity is similar to the analysis in a software architecture design
flow (Hofmeister et al., 2007). Common examples are formal specification lan-
guages, such as Z.

Application mapping: these activities generate new (partial) design information.
A series of mappings are applied in order to refine the design from a more
abstract representation to platform-specific design. In a software architecture
design flow, this type of activity is similar to architecture synthesis (Hofmeis-
ter et al., 2007). Common approaches encompass: mapping of operations to
concurrent tasks; mapping of operations to HW/SW; compilation; or schedul-
ing

Evaluation & Validation: similarly to the evaluation in a software architecture de-
sign flow (Hofmeister et al., 2007), these activities evaluate design elements
w.r.t. the objectives (e.g. provide a proper scheduling of tasks) and validate
a design description against other descriptions. Examples of approaches are
algorithms or analysis frameworks for comparing models that tackle different
quality attributes, as well as simulations.

Optimization: these activities perform design tuning according to stated objectives.
Examples of approaches are HL transformation and energy optimizations.

54 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

Test: these activities include test generation and testability evaluation. They are
included in design iterations if testability issues are already considered during
the design steps. Tests are run after the design phase.

Figure 3.4: Classification scheme

This classification is sufficiently robust for expressing different software, hard-
ware and SW/HW design flows, including prominent ones such as the V-Model
(Bartelt et al., 2010) and the design flow provided with SpecC (Gajski et al., 2000).
Finally, it is important to clarify that approaches may serve several purposes. For ex-
ample, some architecture modeling languages are able to perform both application
mapping and specification.

Summary of Design Approaches

To analyze the extracted approaches, we classified each of them into one or more
of the aforementioned general purposes. In addition, some studies presented entire
design flows and, therefore, we also considered it as a category for the classification.
Figure 3.5 depicts a heat map that shows the number of studies, per year, discussing
approaches from each category.

In this heat map, darker shades of grey represent bigger numbers, which are pre-
sented as well. For example, in 2011, 23 studies that contain approaches for applica-
tion mapping were published. One can notice that most attention has been given to
approaches for Application Mapping and Evaluation & Validation, which is under-
standable because approaches that serve this purpose encompass most of the design
flow of an embedded system. Approaches for Specification of CES design were also
presented in a considerable number of studies. Such interest is explained by the ne-
cessity of unambiguously representing the different aspects of CES (e.g., safety, com-
ponents, security) in a variety of platforms (e.g., time/event-triggered and mixed ar-
chitectures, and communication protocols). Table 3.4 presents the number of studies

3.4. Results 55

Figure 3.5: Number of studies, per year, containing approaches from each category

in each category, grouped by nature (i.e., academic, industrial or mixed). The table
also presents the number of citations per year, for the entire set of studies. By ex-
ploring this table, one can notice that most of the studies were performed in an
academic setting, followed by mixed and industrial settings, respectively; this is
understandable as the included venues are more academic than industrial. In addi-
tion, solutions are normally proposed and explored in academic studies before they
are applied in industry. However, there is one interesting observation to highlight.
The mixed setting does not follow the same trend of the academic and industrial
settings (which are in accordance to Figure 3.5): studies performed in collaboration
between academia and industry were mostly focused on Evaluation & Validation
approaches, rather than Application Mapping, suggesting that the main interest of
academic-industrial collaborations may be for evaluation & validation approaches.
This finding may be partially explained by analyzing the number of citations per
year. This number tends to follow the number of studies in the categories (i.e., more
studies would result in more citations). However, there is one exception to that:
industrial studies have more citations than mixed studies, w.r.t. approaches for Ap-
plication Mapping, possibly due to increased industrial interest. By investigating
the approaches we observed that: (a) almost all studies propose or consider formal
approaches; (b) model-driven and component-based approaches are preferred for
tackling CES problems, specially due to the facilitation of (semi-) automatic verifi-
cation and code generation; and (c) one of the most prominent challenges in design-
ing CES, is the design of systems with mixed-criticality (i.e., critical and noncritical
elements co-existing within the same system). In the following, we present the most
important observations regarding each of the categories.

Multiple design flows have been proposed so far, which is in accordance to the
high heterogeneity of CES. Each design flow aims at tackling specific problems, such
as multi-tasking in multi-periodic synchronization [S206] or reliability-driven de-
sign in CES with mixed criticality [S257]. The most important observation is that
the majority of the design flows didn’t provide a complete lifecycle. They rather

56 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

Table 3.4: Classification of included studies by type of activity and nature

Type of Activity Metric
Nature

Total
Academic Industrial Mixed

Design Flow Number of studies 16 6 6 28
Citations/year 65.05 8.71 18.48 92.25

Specification Number of studies 44 11 16 71
Citations/year 181.84 31.30 39.50 252.64

Application Mapping Number of studies 97 21 32 150
Citations/year 298.42 85.97 72.33 456.72

Evaluation & Validation Number of studies 74 17 36 127
Citations/year 232.66 22.33 73.50 328.49

Optimization Number of studies 11 1 2 14
Citations/year 28.81 0.12 3.19 32.11

Testing Number of studies 7 2 4 13
Citations/year 31.96 2.40 6.83 41.19

described how to tackle the specific issue within the system design. These incom-
plete flows are not surprising because every single CES entails a rather unique set
of requirements that are tackled by combining different approaches. The most rel-
evant studies are a generic design flow (from 1997) that served as inspiration to
other flows [S16] and a safety-oriented and component-based design flow for ve-
hicular systems [S102]. Approaches for design specification consist mostly of (semi-
)formal languages or notations for representing different types of problems, such
as specific forms of scheduling [S117, S225], or classes of constraints (commonly
related to quality attributes such as safety or reliability) [S87, S244]. We highlight
that most studies presenting specification approaches (approx. 80%) also presented
approaches with other purposes (e.g., application mapping or evaluation & vali-
dation). The most relevant studies include the specification of time constraints in
systems with mixed criticality [S225] and formal specification of safety constraints
on higher-level design [S180].

The majority of the studies involve a variety of approaches for Application Map-
ping. Among these studies, approx. 30% proposed architectural approaches, i.e.,
architectures [S35, S94] or approaches for designing architectures (e.g., styles or pat-
terns) [S121, S166]. We highlight that in the context of CES, communication architec-
ture (e.g., time-triggered architecture [S35]) is a more relevant kind of architecture,
due to its relevance on evaluating the hard constraints CES are subject to. In fact,
this relevance is also evident by another common topic: scheduling of tasks/compo-
nents, which corresponds to approx. 21% of the studies. Scheduling poses several
challenges, from guaranteeing of time allocation to specific components, to inte-

3.4. Results 57

gration with other models (e.g., fault-tolerance) to provide more accurate schedul-
ing. Another common topic is software patterns, corresponding to approx. 9% of
the studies, among which, design patterns were the most investigated [S105, S106,
S137, S160, S259], followed by architectural [S121, S201], fault-tolerance [S191] and
process patterns [S240]. As for the remainder of the studies, other scattered topics
can be observed, from which the most recent/recurrent encompass approaches for
modeling components w.r.t. various critical constraints (e.g., safety) and integration
of models. The most relevant studies include the time-triggered architecture [S35],
remote agent architecture [S13], a component-based approach for modeling safety
[S102] and an approach for scheduling of mixed-criticality workload [S164].

Approaches for Evaluation & Validation comprise mostly formal methods for
evaluating specific aspects of the design, such as scheduling of tasks [S51, S140,
S225], fault-tolerance [S151, S192] and safety requirements [S74, S102]. In addition,
there is a growing interest on model-driven approaches and object-oriented design.
Classical approaches for verifying safety and reliability (e.g., fault-tree analysis—
FTA—and failure mode and effects analysis) have been adapted to new design
paradigms. For example, a component-based FTA was proposed in [S128] aiming at
facilitating the certification of systems by reusing certified components. In addition,
exploratory-based evaluation approaches (e.g., prototyping and simulation) are also
broadly explored in order to evaluate designs [S21, S102, S168, and S216]. The most
relevant studies present formal approaches for evaluating reliability and safety [S8,
S225], as well as safety evaluation based on simulation [S102].

Finally, regarding Optimization and Testing approaches, the approaches are
used for the same reason: improving the evaluation & validation of the designed
systems [S51, S186, and S261]. Most of the approaches, including the most relevant
approaches, tackle time constraints [S51, S248] and fault-tolerance issues [S48, S151].

3.4.3 Application Domains

The results on application domains suggest that the most studies (approx. 57%)
report generic approaches, from which approx. 9% showed examples on specific
application domains, e.g., automotive [S149, S257] and avionics [S225, S166]. Figure
3.6 presents the distribution of the studies, per year, according to the application
domains. For comparison purposes, we plot the amount of studies reporting generic
approaches. We note that studies that report approaches for specific domains often
refer to more than one domain, e.g., support the design of avionic and space systems
[S161].

By observing Figure 3.6, we notice that, besides constituting the majority, the
number of studies reporting generic approaches is growing more than for any spe-

58 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

cific domain. This may suggest a trend or intention to work on unified technologies
for developing CES. However, we also notice that the combined number of studies
that focus on specific domains comprise almost half (approx. 48%) of the papers.
Among the specific domains: avionics and automotive present the biggest growth.
On the one hand, avionics is historically among the first application domains of
CES and contains special regulations, which make the interchange of approaches
more difficult. On the other hand, the automotive industry has been going through
a series of technological innovations to provide several new features such as au-
tonomous driving.

Figure 3.6: Number of studies per application domain, per year

To further analyze the influence of application domains on design approaches,
we classified the primary studies according to their purpose. Table 3.5 presents the
distribution of studies in each application domain among the five general purposes.
We note that approaches serving more than one general purpose are counted for
each of them. Based on Table 3.5, we observe that the distribution of studies on the
application domains tend to be similar to the general distribution (Table 3.4). How-
ever, there is an exception for the medical and defense domains, as most studies
report approaches for evaluation & validation rather than for application mapping.
This may be either related to the low number of studies, or suggests a focus on this
type of activity, perhaps motivated by specific industry standards or requirements
of these domains. Another exception is that in the robotics domain the number of
approaches for application mapping is quite higher (almost double) compared to
evaluation & validation. Such disparity may be related to a larger variety of poten-
tial systems designs (large design space), which could result in more possibilities
for mapping elements of the system. The disparity may also be related to a less
regulated application domain that could in turn facilitate new design ideas to be
implemented or experimented with.

3.4. Results 59

Table 3.5: Classification of primary studies by domain and purpose

Domain
Purpose

Design
Flow

Specification Application
Mapping

Evaluation &
Validation

Optimization Test

Automotive 7 11 31 22 2 2

Avionics 7 20 32 30 0 4

Defense 0 1 1 4 0 1

Medical 0 1 1 3 0 0

Railway 3 5 7 7 0 2

Robotics 2 3 13 6 0 1

Space 5 8 13 12 0 3

Generic 13 36 77 61 13 5

3.4.4 Quality Attributes

CES are subject to constraints on critical quality attributes (CQA). In this section, we
report on the CQAs that are tackled within each primary study, using the original
terms of CQAs that are used in the studies (i.e. those terms used by the authors).
Even though some qualities are similar (e.g. dependability, fault-tolerance and re-
liability) we have not tried to merge them. Our goal is not to create a new qual-
ity model, but to simply present how authors express the hard-constraints of CES.
However, we checked whether each term has the same or similar definition among
the authors (e.g., if security is always used to convey the same concerns). We further
discuss the relationship between CQAs and their definition in Section 3.5.1. We note
that each study may tackle one or more CQAs. In Figure 3.7, we present the number
of studies, per year, tackling each critical quality attribute. We excluded two CQAs
from this chart (power constraints and correctness) due to low number of papers (6
and 7, respectively).

By observing Figure 3.7, one can notice that the interest in the different CQAs has
grown in a similar fashion, except for safety, which shows higher growth. Such in-
terest is not surprising, as safety is a very common and challenging concern among
CQAs. In addition, the emergence and/or growth of application domains such as
automotive, home automation, unmanned vehicles (e.g., drones) that are intrinsi-
cally centered on safety, have likely contributed to the observed growth. It is also
relevant to point out that, although less intense, the interest in timeliness and reli-
ability has also grown more than the remaining CQAs. The aforementioned argu-
ments regarding safety, may also explain this observation. For example, the interest
in multi-core platforms, as well as systems with mixed-criticality requires careful

60 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

Timeliness includes timing, and time-behavior
Fault-tolerance includes error-tolerance

Figure 3.7: Number of studies tackling quality attributes, per year

scheduling of tasks, and assurance that no interference between system parts with
different criticality.

To further characterize the primary studies, we investigate them with respect
to purpose and application domain. In Figure 3.8, we present a bubble chart that
depicts the distribution of the studies, based on CQAs (Y axis), with regards to
the general purpose (X axis—left side) and the application domain (X axis—right
side). The size of the bubble represents the number of studies, which is shown in-
side the bubble. On the one hand, the distribution of studies among purposes, for
each CQA, is similar compared to each other as well as compared to the general data
(see Section 3.4.2). To confirm that, we calculated Spearman’s correlation between
every pair of CQA and against the general data. All results were statistically signif-
icant and showed strong correlation (minimum coefficient of 0.899). This suggests
that the distribution of research effort among different purposes is independent of
CQAs. On the other hand, it is possible to observe a variation in the distribution
of studies among application domains. For example, we notice that dependability
displays a higher interest on the automotive domain (i.e., approx. 20% of the papers
tackle this CQA), when compared against the average number of papers on depend-
ability across domains (9%). We further investigated this observation by calculating
the correlation between every pair of CQA, which showed that dependability has a
weaker correlation with other CQAs (e.g., 0.667 with performance). This may sug-
gest that these application domains are characterized by different constraints for the
respective CQAs.

3.4. Results 61

Figure 3.8: Classification of studies based on quality attribute, purpose, and application do-
main

3.4.5 Tools

During the data extraction, we observed that approx. 53% of the papers either pro-
posed or explicitly mentioned the use of specific tools. We also identified several
Reference Technology Platforms (RTPs) (Kacimi et al., 2014), which consist of a set
of approaches (e.g., methods, workflows) and tools providing a generic solution that
can be tailored to various applications. The RTPs extracted in our study are all part
of large projects involving multiple partners from both academia and industry. In
total, we identified 186 tools of different kinds (e.g., CAD, tool suites, etc.) and with
various purposes (e.g., specification, application mapping, etc.). In addition, we no-
ticed that some specification and/or modeling languages are an important part for
many of these tools, e.g., serving as input format and base of the tool, or as exchange
format between different tools. Therefore, we considered it relevant to include these
languages in the results. Due to the number of identified tools, we summarized the
results based on the general purposes presented in Section 3.4.2.

Table 3.6 shows the number of tools identified for each category (i.e., purpose).
Within each category, we were able to define certain subcategories of tools repre-
senting specific purposes. We note that we include RTPs and IDEs (Integrated De-
velopment Environment), into the Design Flow category, as they support entire sets
of activities. We also note that similar to approaches every tool may be classified in

62 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

Table 3.6: Summary of identified tools

Purpose Number of Tools

Design Flow 12
IDE 6
RTP 6

Specification 15
Notation/Specification Language 12
Programming Language 3

Application Mapping 35
CAD 14
Model Transformation 5

Evaluation & Validation 32
Simulation 9
Model checking 9

Optimization 1

Testing 2

more than one category, e.g., a modeling tool that can import and export different
models (i.e., Application Mapping category) as well as analyze them (i.e., Evalu-
ation & Verification category). Furthermore, we note that the number of tools for
subcategories do not necessarily add up to the number of the parent category. On
the one hand, we only present subcategories with at least 3 tools (i.e. there were
more subcategories with only 1 or 2 tools). On the other hand, tools may serve more
than one purpose, which also affects subcategories. For example, SPIN is a verifi-
cation tool with model checking and simulation capabilities, thus, counting for two
subcategories. In the following we provide a brief description and the purpose of
some relevant tools/languages, which we identified based on the number of studies
referring to the tool/language, as well as on the amount of citations these studies
have. More information the tools and languages can be found in the supplemen-
tary material (Feitosa, Ampatzoglou, Avgeriou, Affonso, Andrade, Felizardo and
Nakagawa, 2017).

Summary of Languages

In Table 3.7, we list the top five recurrent languages within the primary studies,
i.e., those discussed by three or more papers. We consider these languages relevant
also due to the amount of citations obtained by the studies that refer to them. We
observed that most languages are mentioned indirectly, i.e. not being the focus of
the paper. For example, the Promela language is recurrent because researchers are
interested in the SPIN verification tool, which defines models in Promela. In addi-

3.4. Results 63

Table 3.7: Highlighted languages

Language Number of Studies Number of citations CES specific

AADL 20 294 Yes

Promela 7 162 No

SystemC 7 51 No

Z 5 153 No

EAST-ADL 3 19 Yes

Table 3.8: Highlighted tools

Tool Number of Studies Number of citations CES specific

Simulink 15 132 No

IPPAAL 8 79 No

DECOS 7 164 Yes

SPIN 7 162 No

NuSMV 4 112 No

tion, most languages are also not specific to CES, although they are heavily used for
this class of systems. Languages (e.g., Z) were created to enable representation of
formal/mathematical constraints, which are common to CES.

Summary of Tools

The top five tools according to the number of studies and citations are presented in
Table 3.8. We observe that most tools are not specific to designing CES. We believe
this is related to the fact that most tools in this list have Evaluation & Validation pur-
poses. Tools from this category, are mainly focused on ensuring the hard constrains
imposed w.r.t. meeting critical quality attributes; such CQAs are not particular to
CES only. Finally, we notice that the tools focused on CES are mostly (a) from the
Application Mapping category (e.g., modeling tools and schedulers), which are spe-
cialized for one or a group of application domains; and (b) RTPs and IDEs, which
are tailored for this class of systems, and normally include some tools that are not
specific to CES (e.g., verification tools).

3.4.6 Evidence Type

To investigate the maturity of the primary studies, we considered the type of ev-
idence they provide. For that, we use the classification proposed by Alves et al.

64 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

(2010), as mentioned in Section 3.3.5. At the lowest level, the primary study does
not provide any evidence, whereas at the highest level, the study provides evidence
from actual use of the approach within an industrial application. In Figure 3.9, we
present the distribution of the primary studies, per year, according to the evidence
type. By observing Figure 3.9, one can notice that the amount of studies that pro-
vide evidence from academic studies has been growing considerably, exhibiting the
highest growth among the six types of evidence. This also reflects the fact that most
primary studies (approx. 55%) are supported by such type of evidence. This re-
sult is understandable, as studies performed in academic settings usually have a
lower threshold to conduct than those performed in industrial settings. In addition,
considering the hard constraints of CES, multiple studies may need to take place
before a mature technology emerges and industrial studies can be performed. In-
terestingly, the second most common type of evidence is industrial studies (approx.
20%), which is one step further according to the classification of Alves et al. (2010),
and may suggest successful transition of a fair number of technologies to industrial
maturity level.

Figure 3.9: Number of studies per type of evidence, per year

Another interesting observation is that most studies are distributed among
higher levels of evidence (academic studies, industrial studies and industrial ap-
plications). This may be, again, a consequence of the hard constraints imposed to
CES, as tackling them would require stronger evidence to support the reported re-
sults. Another complimentary reason may be that embedded systems have been
extensively investigated already, and management of hard constraints is not a new
research topic for this class of system. Therefore, much of the exploratory research
that has been done for embedded systems is now reused to investigate CES. To fur-
ther investigate the evidence type, we classified the studies according to the purpose
that their approaches serve, as well as the application domain. Similar to Figure 3.8,
Figure 3.10 depicts the distribution of the studies, based on evidence type (Y axis),
with respect to the purpose (X axis—left side) and the application domain (X axis—
right side).

3.5. Discussion 65

Figure 3.10: Classification of studies based on evidence type, purpose, and application do-
main

When verifying the distribution according to purpose, we observe that it fol-
lows a similar trend to that of the general data (presented in Section 3.4.2). We
checked this hypothesis by calculating the correlation between each pair of evidence
type, which showed a minimum correlation coefficient of 0.900. Conversely, while
a visual inspection of the distribution according to domain suggests similarities be-
tween evidence types, the statistical correlation reveals minor differences between
types of evidence, with coefficients varying from 0.500 to 0.927. These minor dif-
ferences suggest that the application domain may affect what kind of research is
performed.

3.5 Discussion

3.5.1 Relationship between Quality Attributes

The approaches investigated in this mapping study tackle various CQAs, as pre-
sented in Section 3.4.4. While investigating this research question (RQ3), we
recorded the CQAs as used by the authors, i.e., we neither grouped nor merged any
quality attributes, based on the definition used or implied in the primary studies.
However, it is undeniable that some CQAs are related and, therefore, the identified
quality attributes should be further investigated / synthesized. In this subsection,
we group CQAs that have a similar or related meaning and map them to a qual-

66 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

ity model. For this purpose, we consider: (a) the SQuaRE quality model (ISO/IEC,
2011) which is a well-known quality model adopted by both researchers and practi-
tioners; and (b) the ISO/IEC/IEEE vocabulary for system and software engineering
(ISO/IEC/IEEE, 2010), which is used within SQuaRE and provides additional defi-
nitions. We note that other quality models could be used to map the CQAs and that
we do not assume that SQuaRE is the best model. We selected this model due to our
experience with it and the possibility to fit all our recorded CQAs and observed ter-
minologies. In Table 3.9 we present the CQAs identified in this study (presented in
Section 3.4.4) on the right, and the characteristic (i.e., quality attribute) from SQuaRE
to which they are mapped on the left. We note that SQuaRE presents a set of char-
acteristics (left column of Table 3.9) and sub-characteristics (e.g. sub-characteristics
of Performance Efficiency are Time Behavior, Resource Utilization and Capacity),
which were both used to map CQAs. In addition, a CQA can be directly related if
the terms are equivalent (e.g., safety maps to freedom from risk), or indirectly re-
lated if it is one of the aspects of the main quality attribute (e.g., correctness is a
sub-characteristic of Functional suitability) or if it is related to one of them (e.g., en-
ergy efficiency regards Resource utilization, i.e., sub-characteristic of performance).

Table 3.9: Grouping and mapping of critical quality attributes

CQA from SQuaRE Identified CQA

Functional suitability correctness

Security security

Performance efficiency

performance

energy efficiency

timeliness

Reliability

reliability

fault tolerance
dependability

Freedom from risk safety

Correctness and security are directly mapped, since they similarly referred in the
primary studies. However, the grouping of the remainder CQAs is not as straight-
forward. Performance efficiency is defined as the degree to which functionalities are
delivered within given constraints (ISO/IEC, 2011), i.e., how well the system uses
its resources to accomplish the designed functions. This definition encompasses
the interpretations of performance, energy efficiency, and timeliness among the pri-
mary studies. Fault tolerance is a well-known aspect of reliability and the interpre-

3.5. Discussion 67

tations of the authors meet the definition of the sub-characteristic in SQuaRE (also
named Fault tolerance). Although dependability is commonly addressed as a sepa-
rate quality attribute, we decided to map it to Reliability. Dependability is not part of
SQuaRE but it is explained within the description of reliability. It comprises a more
subjective definition, which is not easily quantifiable, and reflects whether or not a
system can be trusted (ISO/IEC/IEEE, 2010). Due to its subjective definition, de-
pendability is commonly improved through addressing other, more objective, qual-
ity attributes that can contribute to the trustworthiness of the system, in particular,
reliability, maintainability, and availability. By observing the primary studies of our
mapping, it is also clear that dependability is commonly used as proxy to other qual-
ity attributes, in particular, aspects of reliability, such as fault tolerance. Therefore,
since the primary studies exploit dependability mostly as a proxy to reliability, we
decided to group them together. Safety is another subjective CQAs, which is men-
tioned within SQuaRE’s model for quality in use, i.e., how well the product can be
used by specific users (ISO/IEC, 2011). Similar to dependability, safety is commonly
used as a proxy to other quality attributes, although not always the same ones. Par-
ticularly, safety is related to the avoidance of hazardous situations (i.e., that lead
to endangerment of humans, environment or properties), which can originate from
various sources, depending on the system. In our study, we identified connections
between safety and various aspects: security [S215], performance, correctness [S50,
S198] and fault-tolerance [S50, S84]. For example, when using a Time-Triggered Ar-
chitecture (TTA) for communication (instead of an event-triggered one), timeliness
become a safety threat.

In summary, CQAs as defined in primary studies are uniformly understood
(i.e. their definitions are the same or similar across the studies) and that some
can be grouped based on similarity. This culminated into the identification of five
attributes: Functional Suitability, Security, Performance efficiency, Reliability, and
Safety (Freedom from risk). We acknowledge that other CQAs may exist in individ-
ual cases depending on application-specific constraints. However, these five QA are
by far the most recurrent ones. We also noticed that Safety is more abstract, since it
depends on other CQAs. Therefore, is achieved by meeting requirements related to
other CQAs. Furthermore, we note that identifying these CQAs is not always a triv-
ial task as different components in the same systems may pose different constraints,
i.e., may be subject to different kinds of hazards. A common approach to handle
this mixed criticality is the use of integrity levels (ISO/IEC, 2015), which reflect the
degree of compliance within a certain characteristic. Components with different in-
tegrity levels will be subject to different safety checks, which may also reflect the
different concerns of that level. For example, the drive-by-wire feature is subject to
hard reliability checks, while GPS navigation should only be assured to not interfere

68 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

with the critical components. Therefore, it is important to identify and monitor the
CQAs that are tightly related to safety.

3.5.2 Domain-Specific Research for CES

In Sections 4.3 through 4.6, we presented an overview of the primary studies with
respect to application domains, as well as how other facets (e.g., evidence type)
related to domains. In summary, we did not notice major differences across applica-
tion domains regarding which CQAs are the most relevant. This observation might
be an indication that CQA-related challenges in CES are common to all application
domains and have similar relevance. The only difference we observed was that
studies focused on the automotive domain seem more concerned about depend-
ability rather than reliability. However, these two fall under the umbrella quality of
reliability in the SQuaRE model (see Section 3.5.1). Furthermore, we also notice that
domains may influence the kind of research that is performed; for example, most
studies on medical and defense domains focused on approaches for evaluation &
validation rather than application mapping (as the general trend).

The difference between domains becomes clearer when looking at the type of
evidence that studies provide (see Section 3.4.6). We separated the studies into three
groups and verified their distribution among the different types of evidence (see
Figure 3.11). The three groups consist of studies that: (a) focus on a specific do-
main; (b) do not focus on any domain but present an example of application on a
specific domain; and (c) neither focus nor present an example on specific domains.
We notice that application domains become more relevant when a technology is be-
ing transferred to industry, as the two rightmost types of evidence (Industrial Study
and Industrial Application) account mostly for studies that focus on application do-
mains.

Figure 3.11: Distribution of studies according to type of evidence and application domain

It is understandable that studies conducted with industrial partners or in an
industrial setting are focused on specific domains, as companies are by and large

3.5. Discussion 69

interested into applying approaches on certain products, which in turn fall under
specific domains. As expected, generic approaches that solve domain-independent
problems are first validated in academic settings, and subsequently find applica-
tions in industry that in turn customize and validate them in specific application
domains. The opposite is also possible: there are also technologies that initially
emerge as domain-specific solutions and are later applied to other domains. For ex-
ample, the Architecture Analysis and Design Language (AADL) was standardized
by the Society of Automotive Engineers (SAE) with focus on the avionics domain3

and is currently being applied in other CES domains.

3.5.3 Relationships among Approaches, Tools, and Languages

The data analysis in this SMS resulted in the identification of many concepts related
to the research questions, namely approaches, tools, languages, critical quality at-
tributes, and application domains, as well as relationships between them. While we
were able to present and discuss all CQAs and application domains found in the
primary studies (see Sections 4.3, 4.4, 5.1 and 5.2), the amounts of approaches, tools
and languages was too large to present and discuss all concepts and relationships.
To tackle this issue, we created a concept map to help us visualize these approaches,
tools, and languages and identify relevant findings.

The concept map was created as a webpage that features an interactive interface,
which is available4. To avoid loss of information, we also created a text version of
the concept map. The text version and source code of the web version are avail-
able within the supplementary material (Feitosa, Ampatzoglou, Avgeriou, Affonso,
Andrade, Felizardo and Nakagawa, 2017). In Figure 3.12, we show a screenshot
of the concept map and its interface. The concept map consists of a network in
which nodes represent concepts and edges relationships. Each type of concept (i.e.,
approach, tool or language) is represented by an icon for easy identification. The
mouse’s button and wheel can be used to pan and zoom in and out on the network.
Upon clicking on a concept, an information panel is prompted on the right side,
showing: (a) name of the concept, which is a link if a URL (Uniform Resource Loca-
tor) is available (shown by the chain icon next to the name); (b) a brief description
of the concept; (c) the list of purposes, according to our classification scheme; and
(d) a list of relationships (i.e., links) attributed to the concept. The relationship be-
tween concepts can be of two types: “use / is used” (e.g., “Polychrony uses Sigale
to provide specification ... of discrete controllers”), or “is kind of” (e.g., “SystemC is
a subset of C++”).

3Note that SAE does not limit itself to the automotive domain
4http://feitosa-daniel.github.io/sms-ces-design

70 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

Figure 3.12: Screenshot of the concept map interactive interface

The interface also provides a feature to filter concepts based on name, type of
concepts, or purpose. Upon typing on the name field or selecting type of concept or
purpose, the filtered items are highlighted in red (see Figure 3.12). For example, in
the screenshot we typed “sigali” and the tool “Sigali” was automatically highlighted
(the search looks for partial matches and is not case sensitive). After that, we clicked
on the node, which prompted the information panel on the right. Finally, the inter-
face is responsive, i.e., it adapts to different screen sizes (e.g., smartphones), which
improves the usability of the concepts map.

Based on the concept map, we can make several observations. In the following,
we provide one such observation as an example, also explaining how we identified
it. We note that the main purpose of the concept map is to support the investigation
of its concepts by third-parties and, therefore, we encourage the reader to further
analyze it. The Architecture Analysis and Design Language (AADL) appears to be
a rather mature technology. The results of the study showed that AADL is cited in
multiple papers (see Section 3.4.5). In addition, by looking at the concept map we
notice a fair number of related concepts (see Figure 3.13) when compared against the
average of 2.13 edges per node, and we notice that there are related concepts that
serve different purposes: (a) specification, (b) application mapping, and (c) evalua-
tion & validation. In particular, there is a toolset that is able to read AADL models,
tools to evaluate AADL models and a language (EAST-ADL) that is partially de-
rived from AADL.

3.5. Discussion 71

(a) (b) (c)

Figure 3.13: Part of the concept map surrounding AADL

3.5.4 Implications to Researchers and Practitioners

The results and discussion presented in this SMS have potential value for both re-
searchers and practitioners. The information compiled in this study may support
readers that want to get acquainted with the design process of CES or may be inter-
ested in specific outcomes, e.g., identified CQAs and how they are tackled by pri-
mary studies. Researchers can use the information in this SMS to identify work that
is related or that can contribute to theirs, as well as identify opportunities for future
work. For example, researchers interested in a specific application domain have ac-
cess pointers to the existing literature, as well as how studies are distributed within
the domain. We envisage similar learning opportunities to practitioners, through
a more practical perspective. For example, practitioners can investigate a tool that
is being considered for the designing of a new system or investigate the ecosystem
around an approach, i.e., tools and related approaches.

In addition, we specifically aimed at the reuse of the information collected dur-
ing our SMS when we created the concept map, which contains the complete set
of approaches, tools and languages. Based on the information and features pro-
vided by the user interface, we believe that the concept map is valuable to both
practitioners and researchers. Regarding practitioners, it can be used to support the
exploration of problem and solution spaces while designing CESs. For example, us-
ing filters, one is able to search for approaches and or tools that fit the requirements
of the systems (e.g., model-checking of models specified in SIGNAL). Also, if one
has decided for a specific approach or tool, she can also explore related concepts
and identify alternatives or tools that support the approach (e.g., tools that evaluate
Binary Decision Diagrams). Regarding researchers, the concept map helps identi-
fying potential links between different research results. For example, researchers

72 3. Design Approaches for Critical Embedded System: A Systematic Mapping Study

interested into investigating a certain approach can use the concept map to easily
visualize some of the involved approaches and tools that support it. We note that
despite our great effort on collecting and analyzing the selected studies, the concepts
and relationships presented in this map do not present the entire set of approaches,
tools and languages available to design CES. Therefore, we hope that by providing
access to the concept map, we can support others on developing it even further.

3.6 Threats to Validity

Concerning studies identification, the main threat is that the automatic search may
not have been able to collect all relevant primary studies, i.e., the search string was
not as inclusive as necessary or the considered digital libraries did not include all
relevant venues. To mitigate this risk, we defined a gold standard and ensured
that the automatic search returned all papers in the gold standard. In addition, we
included digital libraries of the main publishers in the topic, and Scopus, which in-
dexes papers from additional venues. Another potential threat is that the inclusion
and exclusion criteria may have left relevant studies out of the final set of primary
studies. This was mitigated not only by the usage of the gold standard but also by
having key points of our protocol (e.g., inclusion and exclusion criteria) inspected
by other external researchers with experience in CES. To mitigate risks related to
data collection and analysis, we considered several strategies. The filtering of pa-
pers and data extraction involved at least two researchers on every step, while there
were extensive discussions on topics such as selection criteria and understanding of
CES terminology. In addition, the alignment of researchers involved in these steps
where verified by calculating the Cohen’s kappa coefficient between them. For data
analysis, we applied frequency analysis, cross-tabulation and statistical tests, which
are less prone to researcher bias. However, we acknowledge that our results are lim-
ited to the set of design approaches, CQAs, and application domains that were dis-
cussed in the collected primary studies. Although considering non-peer-reviewed
literature was out of the scope of our SMS, we argue that the digital libraries we
considered, do catalog most of the work relevant to the research of CES design.

Finally, to mitigate replicability threats, the steps of our study were clearly stated
in our protocol and can be reproduced by other researchers. However, we acknowl-
edge that the reproduction of the SMS by other researchers may lead to slight dif-
ferent sets of primary studies due to biases, e.g., when applying the inclusion and
exclusion criteria. We mitigated this threat to some extent by comprehensively doc-
umenting faced challenges and decisions made upon them. Thus, despite some
potential minor differences, we believe that the results and observations would be

3.7. Conclusions 73

predominantly similar in replication studies.

3.7 Conclusions

In this chapter, we presented a Systematic Mapping Study (SMS) on designing Crit-
ical Embedded Systems (CES) that investigated five facets: (a) approaches for de-
signing CES; (b) application domains for which these approaches are developed; (c)
Critical Quality Attributes (CQAs) considered on these approaches; (d) tools used
for designing CES; and (e) type of evidence provided by these approaches. We con-
sidered five digital libraries and collected an initial amount of 1,673 primary studies,
which were then filtered, resulting in 269 selected primary studies. Subsequently,
we extracted and analyzed all data necessary to answer our research questions.

The results of our SMS show that the body of knowledge on designing CES is
vast, and this is partially due to the overlap of knowledge with other classes of sys-
tems such as hard real-time systems. Results also suggest that the CQAs that are
relevant to the design of CES, are common for this whole class of systems, i.e. they
are mostly independent of application domain. The main contributions of our work
are the classification scheme for approaches and tooling, the provided collection of
CQAs and approaches (with associated tools), as well as the webpage that supports
exploring this information. We believe that both researchers and practitioners can
benefit from these contributions, taking advantage of our provided overview of this
vast body of knowledge; they can thus focus on more relevant tasks such as identi-
fication of related and future work, and exploration of problem and solution spaces.

Based on our results and observations we identified several approaches and
practices that could be used to address the main problem of this PhD project and that
have not been thoroughly explored so far. Among these approaches and practices,
software patterns seems to be one of the most promising in terms of managing qual-
ity attributes. The description of software patterns includes known consequences
on the QAs (and well documented in the literature) and can be used to assess the
overall impact of a design on QAs. Thus, we decided to explore the practice of
applying software patterns in CES design, in particular GoF design patterns. This
leads to the next chapter, which reports on the relationship between design patterns
and a subset of CQAs, namely correctness, performance and security. We selected
these CQAs due to their relevance to both practitioners and researchers, and a lack
of studies investigating the relationship between them and GoF design patterns. As
the outcome of such investigation may have great value not only to CES but also to
other domains, the next chapters do not focus only on CES. Moreover, the selected
CQAs are now referred to as runtime quality attributes.

Based on:

Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou, Alexander Chatzigeorgiou and Elisa Y.
Nakagawa, (in press) “What can Violations of Good Practices tell about the Relationship between GoF Patterns
and Run-time Quality Attributes?,” in Information and Software Technology,
DOI:10.1016/j.infsof.2018.07.014

Chapter 4

What can Violations of Good Practices tell
about the Relationship between GoF Patterns
and Runtime Quality Attributes?

Abstract

GoF patterns have been extensively studied with respect to the benefit they
provide as problem-solving, communication and quality improvement mecha-
nisms. The latter has been mostly investigated through empirical studies, but
some aspects of quality (esp. runtime ones) are still under-investigated. In this
chapter, we study if the presence of patterns enforces the conformance to good
coding practices. To achieve this goal, we performed a case study on approxi-
mately 13,000 classes retrieved from five open-source projects. In particular, we
explore the relationship between the presence of GoF design patterns and viola-
tions of good practices related to source code correctness, performance and secu-
rity, via static analysis. The obtained results suggest that classes not participating
in patterns are more probable to violate good coding practices for correctness,
performance and security. In a more fine-grained level of analysis, by focus-
ing on specific patterns, we observed that patterns with more complex structure
(e.g., Decorator) and pattern roles that are more change-prone (e.g., Subclasses)
are more likely to be associated with a higher number of violations (up to 50
times more violations). This finding implies that investing in a well-thought ar-
chitecture based on best practices, such as patterns, is often accompanied with
cleaner code with fewer violations.

4.1 Introduction

Design patterns have been introduced in the software engineering literature by
Gamma et al. (1995) (known as the Gang of Four (GoF)—Gamma, Helm, Johnson,

76
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

and Vlissides), aiming to provide common solutions to recurring problems, while
designing object-oriented (OO) systems. The GoF catalog includes 23 patterns, or-
ganized into three categories (structural, behavioral, and creational), based on their
purpose (Gamma et al., 1995). Since their inception, GoF patterns have been widely
explored by both researchers and practitioners, and are currently considered as a
common practice for software development. In addition to their original purpose
of solving OO design problems (Riaz et al., 2015), their effect on quality attributes
(QAs) has also been widely investigated, according to two mapping studies by
Ampatzoglou, Charalampidou and Stamelos (2013b) and Bafandeh Mayvan et al.
(2017). However, the current state of the research has two main limitations:

• limited number of studies related to runtime qualities. In particular, on the
one hand, several empirical studies have explored the impact of GoF design
patterns on design-time QAs such as modifiability and reusability (see for ex-
ample (Bafandeh Mayvan et al., 2017)). On the other hand, research on the
effect of GoF patterns on runtime QAs, such as security and performance, is
fairly limited (Bafandeh Mayvan et al., 2017). Although GoF patterns are not
originally intended to serve any runtime QA in particular, some indirect ef-
fect, either positive or negative, is to be expected. For instance, developers of-
ten use GoF design patterns as communication mechanisms, which facilitate
the understanding of each other’s code. As a consequence, code smells, such
as Message Chains and Middle Man, can be avoided and, thus, performance
improved, since the number of method calls is decreased.

• runtime qualities have been explored mostly through dynamic analysis. Until
now, the limited work done on studying the effect of GoF patterns on runtime
QAs was performed mostly by using dynamic analysis, i.e., by exploring the
observed effects during the execution of a system. For example, researchers
have used profilers for extracting memory usage or energy consumption data
to investigate performance (e.g., Litke et al. (2007) and Sahin et al. (2012)). An
alternative to dynamic analysis, for investigating the same phenomenon, is the
employment of static analysis. Static analysis is an established method for per-
forming code quality analysis (Ayewah et al., 2008; Ayewah and Pugh, 2010;
Sadowski et al., 2015; Tripathi and Gupta, 2014; Zheng et al., 2006), mostly
because it is based upon an artifact that is always available to quality engi-
neers (i.e., source code). There are also a few research efforts that employed
static analysis for assessing runtime qualities, e.g., (Schilling and Alam, 2008)
for assessing reliability with GERT, (Khalid et al., 2016) for assessing perfor-
mance with FindBugs, (AlBreiki and Mahmoud, 2014; Dı́az and Bermejo, 2013;
Goseva-Popstojanova and Perhinschi, 2015) for assessing security, etc. With

4.1. Introduction 77

static analysis, one would be able to explore the underlying relationship be-
tween GoF patterns and runtime QAs without executing the systems in which
they are instantiated. We believe that statically detecting violations of good
coding practices that affect runtime QAs is complementary to dynamic anal-
ysis, since it promotes the assessment of different artifacts (e.g., violations in-
stead of profilers output) and by using a different approach (static instead of
dynamic analysis). We note that, even if the introduction of design patterns
might not directly aim at removing violations, it may lead to a ‘cleaner’ and
well-designed architecture, accompanied by better coding practices. Never-
theless, not all parts of the architecture can benefit from the introduction of
patterns, as the pattern goal might be irrelevant to the functionality/design of
that part. Design patterns are not a panacea as they cannot solve all design
problems and all design problems cannot be solved by a design pattern.

Motivated by the aforementioned limitations, in this study, we exploit static
analysis to explore whether the application of GoF patterns can be associated to
the existence of violations of good coding practices related to three runtime QAs,
namely, correctness, performance and security, as defined in the SQuaRE quality
model (ISO/IEC, 2011). We note that we consider correctness a runtime QA be-
cause, as performance and security, it is discernible at runtime (Bourque and Fair-
ley, 2014). We selected these QAs as they are highly relevant for both practitioners
and researchers, with considerable literature addressing them. However, there is
a lack of studies investigating them from the proposed perspective, i.e., by using
static analysis to examine the effect of GoF patterns on them.

To estimate the effect of GoF patterns on the aforementioned qualities, we
adopted the same approach used by Sahin et al. (2012) and Gatrell and Coun-
sell (2011), i.e., we compare pattern-participating (PP) parts of the system against
non-pattern-participating (NPP) parts. Similar to Ampatzoglou et al. (2015) and
Aversano et al. (2009), our investigation is performed at class-level to standardize
data collection and source code analysis. Specifically, by working on class-level
we can discriminate between: PP classes—that participate in pattern occurrences—
and NPP classes. Additionally, we further classify PP classes into: single-pattern-
participating (SPP), i.e., those that participate in exactly one pattern occurrence; and
coupled-pattern-participating (CPP), i.e., those that participate in more than one
pattern occurrences. According to the literature (e.g., (Ampatzoglou et al., 2015;
Khomh et al., 2009; McNatt and Bieman, 2001)), these two types of pattern partici-
pation can lead to diverse effects on QAs; therefore, we treat them separately in this
study.

To explore the relationship of GoF patterns with the aforementioned QAs, we
compare quality levels of classes (quantified by the number of violations) measured

78
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

from four different perspectives, serving the sub-goals of this study:

1. Pattern participation: by clustering classes according to their pattern participa-
tion, i.e., NPP, SPP and CPP. As previously mentioned, this perspective allows
us to compare the number of violations concentrated in SPP and CPP elements
against NPP elements.

2. Pattern category: by clustering classes according to the pattern category in
which they participate, i.e., creational, behavioral and structural. This perspec-
tive allows us to investigate whether there are differences in the relationship
of GoF patterns of different categories on QAs.

3. Pattern: by clustering classes according to the pattern in which they participate
(e.g., Singleton, State, Strategy, etc.). This perspective allows finer grained
observations of the relationship of applying GoF patterns and runtime QAs.
It is rather common when investigating GoF patterns, as it represents the unit
of the proposed solutions (i.e., the patterns) and can inform designers of both
benefits and disadvantages of their usage.

4. Pattern role: by clustering classes according to the role they play in the pat-
tern occurrence (e.g., Concrete State, Concrete Prototype, etc.). This perspec-
tive represents the finest-grained analysis that can be performed under the
considered level (i.e., class-level). It allows us to investigate if the number of
violations in classes is related to specific roles or to the joint effect of all roles.

We note that the last three perspectives involve SPP classes only. This decision
is based on the fact that for coupled pattern occurrences it is not possible to sepa-
rate the individual influence of each pattern. Moreover, based on literature, coupled
design pattern occurrences have a different effect on QAs compared to single occur-
rences (Ampatzoglou et al., 2015; Khomh et al., 2009; McNatt and Bieman, 2001).

Summarizing the above, the main contribution of our work is that it explores the
link between patterns and aspects of quality that are not evident as problems yet.
For example, classes that do not participate in design pattern instances may be more
prone to the existence of performance issues (e.g., unnecessary data boxing1 and
unboxing, allocation of an object only to get its class, or inefficient use of collections).
If the number of concentrated violations becomes high, it may result in a perceivable
decrease of quality regarding performance. Therefore, the early identification of
such issues, and their potential link to some GoF patterns, is considered important.

1Boxing and unboxing refers to encapsulating data from one type into another, causing the value to
be wrapped, leading in turn to an extra hop in order to access the value (by unboxing it).

4.2. Related Work 79

Another contribution is that our work increases the validity of the empirical re-
sults on the subject in terms of data source and methodological triangulation (Pat-
ton, 2014). In other words, we can reach a safer conclusion by gathering data from
different sources and using different methods. Approaching a problem from dif-
ferent perspectives is especially important from an empirical software engineering
viewpoint in the sense that every method poses different threats to validity (e.g., the
use of profilers provides an overhead to program execution that is difficult to filter
out). Additionally, some use cases may never be executed during dynamic analy-
sis, leading to the omission of the underlying violations, but they will show up in
static analysis, as it covers the whole codebase. Therefore, if studies using different
methods reach similar conclusions, the results can be more uniformly interpreted.

The remainder of this chapter is organized as follows: related work is presented
in Section 4.2, along with a discussion of the main points of differentiation of this
study. In Section 4.3, we present the case study design, whereas its results are pre-
sented in Section 4.4, followed by a discussion of the findings in Section 4.5. Finally,
we report on threats to validity and actions taken to mitigate them in Section 4.6,
and draw the conclusions in Section 4.7.

4.2 Related Work

In this section, we present related work that discusses the relationship between the
application of design patterns and runtime QAs. We clarify that we only present
studies that consider GoF design patterns; therefore, we excluded studies that use
different patterns, e.g., architectural (Cohen, 2007) or security (Aleksy et al., 2006)
patterns. This section is organized into four subsections: First, we present the re-
lated work, grouped by the QAs addressed in this study, i.e., correctness (see Sec-
tion 4.2.1), performance (see Section 4.2.2) and security (see Section 4.2.3). Next, we
summarize this section and present the main points of advancement of our work
(Section 4.2.4). Most of the related work discussed in this section were retrieved
from a mapping study on GoF design patterns, by Ampatzoglou, Charalampidou
and Stamelos (2013b), and on a literature survey on the impact of patterns on qual-
ity, by Ali and Elish (2013).

4.2.1 Design Patterns and Correctness

Vokac (2004) analyzed the correlation of five design patterns and correctness in a
large commercial product (written in C++, with approx. 500KLOC). The product
was investigated over weekly snapshots of the source code, during a period of three

80
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

years. For each snapshot, the correctness of pattern-participating classes was mea-
sured in terms of number of defects, as collected from the issue tracking system. The
results of the study suggest that Factory, Observer, Singleton, and Template Method
patterns are correlated to higher defect frequency in source code. Additionally, Sin-
gleton and Observer seem to be often used in complex parts of the project (i.e., with
more code, and higher defect frequency).

Ampatzoglou, Kritikos, Arvanitou, Gortzis, Chatziasimidis and Stamelos (2011)
investigated the correlation between 12 design patterns and correctness. For that,
they performed a case study involving 94 software projects in the game application
domain. In this study, information was collected regarding bug tracking and pattern
instances from each version of every software. During the analysis, each pattern was
analyzed separately in order to identify correlations between the number of defects
and pattern instances. The results of the study suggest that specific design patterns
are related to higher defect frequency, although the presence of pattern occurrences
(without examining each pattern separately) seems not to be correlated with such a
frequency.

Gatrell and Counsell (2011) investigated the effect of 11 design patterns on cor-
rectness by analyzing a commercial project written in C# (with approx. 266KLOC).
For that, PP classes were manually collected and compared against NPP classes over
a two-year period, correlating them with the fault history provided by the source
control system, aiming at finding fault-prone classes. The results of the study sug-
gest that PP classes are more fault-prone than NPP classes, as well as that this is
related to both a higher number and the size of changes in NPP classes. Addition-
ally, the authors characterized Adapter, Template Method and Singleton as the most
fault-prone patterns.

Aversano et al. (2009) investigated the relationship between correctness of pat-
tern participants and the scattering degree of concerns2 that communicate with
them. For that, occurrences of 12 design patterns were extracted from several snap-
shots of three open-source projects, and the correctness was measured in terms of
code defects. The results of this study suggest that patterns that induce crosscutting
concerns (i.e., implemented across several classes spread along the system (Aver-
sano, Cerulo and Penta, 2007)) are correlated to a higher number of defects in their
participants.

4.2.2 Design Patterns and Performance

Afacan (2011) investigated the effect of the State design pattern on performance of
a Digital Signal Processor (DSP). The author compared three implementations for a

2According to Aversano et al., it is how spread, among classes, is the implementation of a concern.

4.2. Related Work 81

state machine: in C, C++, and C++ using the State design pattern. For that, perfor-
mance was measured in terms of execution time (in clock cycles, and µsec), and re-
quired memory (in 16-bit words). The results suggest that usage of the State design
pattern has a negative effect on the performance of a system. However, the author
also reports that the gain in architectural aspects is worth the expectedly small loss
in performance.

Rudzki (2004) investigated the effect of design patterns on performance. For
that, two design patterns (Facade and Command) were compared as alternative so-
lutions to each other. These patterns were used for implementing two different solu-
tions for accessing services of business layer from a sample Java application. Their
performance was measured in different deployment configurations, using four met-
rics: throughput, response time, number of correctly served requests, and number
of requests. The results of the study suggest that, in general, Facade provided a bet-
ter performance than Command. However, some results were hard to interpret due
to noise in the measured values.

Chantarasathaporn and Srisa-an (Chantarasathaporn and Srisa-an, 2006) pro-
posed a pattern instantiation for the Factory pattern (Gamma et al., 1995). This
variant consists of an energy conscious implementation of the pattern by using C#
language. In order to create an instantiation for power limited systems, the authors
evaluated several options that varied in terms of component structure (i.e., class or
struct) and type (i.e., static or non-static). The energy consumption was measured
using four metrics (obtained via profiler): User Processor Time (UPT), Privileged
Processor Time (PPT), Total Processor Time (TPT) and Memory used by the specific
software process. The results of the study suggest that the modified Factory Method
consumes around 11% less CPU time than the regular implementation.

Sahin et al. (2012) investigated the energy consumption of design patterns. For
that, they considered 15 design patterns, five from each of the categories proposed
by Gamma et al. (1995), measuring the difference in energy consumption between
two versions of the same software (before and after applying the pattern). For mea-
suring the energy consumption, the authors used a tool created by them, which is
also introduced in their work. The results of this study show that: (a) design patterns
can increase or decrease the energy usage; (b) the impact in energy consumption is
not necessarily similar for pattern within the same category; and (c) energy usage is
unlikely to be predicted by considering design-level artifacts only.

Finally, Litke et al. (2007) investigated changes in the energy consumption due
to the application of three different design patterns. For that, they used a profiler
for measuring: memory accesses to the instruction memory; memory accesses to
the data memory; and dissipated energy within the processor core. The results of
the study show that the application of design patterns does not necessarily imply a

82
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

change of energy consumption.

4.2.3 Design Patterns and Security

To the best of our knowledge, there is a lack of empirical studies investigating secu-
rity aspects of GoF design patterns; however, we were able to identify one descrip-
tive study. Ferraz et al. (2009) relate the 12 common types of security requirements
proposed by Firesmith (2003) to the GoF pattern categories (Gamma et al., 1995).
The authors suggest that using an initial set of GoF patterns might substantially re-
duce the effort required to fulfill security requirements in the future. However, no
empirical analysis was performed to evaluate the proposal.

A possible explanation on the lack of related work on the relationship between
security and GoF patterns is the fact that GoF patterns were not originally intended
to serve security requirements (VanHilst and Fernandez, 2007); hence the existence
of specialized solutions known as security patterns (Hafiz et al., 2007). Thus, we are
not interested in investigating whether the use of GoF patterns promotes security,
but on the contrary, if the application of GoF patterns leads to violations of security
good practices.

4.2.4 Overview of Related Work

The main differences of our study compared to the related work are summarized in
Table 4.1. In particular, we compare the studies with respect to three aspects:

(a) Objectives: The conceptual elements of the work, i.e., studied QAs; studied GoF
patterns; and type of approach measuring QAs.

(b) Empirical setting: The empirical setup of the studies, i.e., type of validation;
number of used projects; level of measurement (i.e., unit from which the QA
was assessed); and the number of assessed classes (a dash indicates that it was
not possible to find or estimate the number of classes).

(c) Ability to compare results: The elements of the analysis that are comparable
to our study, i.e., whether or not PP components are compared against NPP
components; granularity of the pattern investigation—i.e., category, pattern and
role—whether or not there is a distinction between SPP and CPP.

Based on this overview, the advancements of this study compared to the state-
of-the-art research are:

• It investigates three runtime QAs using static analysis, providing evidence on
their potential relationship to the application of design patterns;

4.3. Case Study Design 83

Table 4.1: Overview of related work

#ref Objectives Empirical setting Ability to compare results

QA patterns approach validation projects level classes PP vs. NPP granularity SPP 6= CPP

[19] correctness 11a dynamic case study 1 class 7,439 yes pattern no

[21] correctness 12b dynamic case study 3 class ~10,000 no pattern no

[28] correctness 5c dynamic case study 1 class 1,550 no pattern yes

[29] correctness 12b dynamic case study 94 system ~85,000 no pattern no

[5] performance 3d dynamic example 6 pattern
instance

~30 yes pattern yes*

[6] performance 15e dynamic example 15 pattern
instance

~250 yes
category,
pattern yes*

[31] performance State dynamic case study 1 system 8 yes pattern no

[32] performance Facade,
Command

dynamic case study 1 pattern
instance

- no pattern no

[33] performance Factory
Method

dynamic example 1 pattern
instance

~20 no pattern yes*

[34] security All none theoretical 0 none 0 no category no

This
correctness,
performance
and security

12b static case study 5 class 12,857 yes
category,
pattern,
role

yes

* Only SPP components are considered.
a Adapter, Builder, Command, Creator, Factory, Template Method, Proxy, Singleton, State, Strategy, Visitor.
b Abstract Factory, Singleton, Composite, Adapter, Command, Observer, State, Strategy, Template Method, Decorator, Prototype and Proxy.
c Singleton, Template Method, Decorator, Observer, Factory.
d Factory Method, Adapter, Observer.
e Abstract Factory, Builder, Factory Method, Prototype, Singleton, Bridge, Composite, Decorator, Flyweight, Proxy, Command, Mediator, Observer,
Strategy, Visitor.

• It identifies similarities and differences between the results obtained by static analy-
sis and those obtained by dynamic analysis, increasing the validity of evidence
on the subject, as well as adding to the current state of the art on analysis of
runtime QAs;

• It is, to the best of our knowledge, the first study that provides empirical evi-
dence on the relationship between the use of GoF patterns and security.

4.3 Case Study Design

This section describes the case study protocol, which was designed according to the
guidelines of Runeson et al. (2012) and is reported based on the Linear Analytic

84
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Structure (Runeson et al., 2012).

4.3.1 Objectives and Research Questions

The goal of this study is described using the Goal-Question-Metrics (GQM) ap-
proach (van Solingen et al., 2002), as follows: “analyze software projects for the pur-
pose of evaluating GoF design patterns with respect to their potential relationship with
runtime quality attributes, from the point of view of software developers in the context
of open source systems”. Based on the goal of this study, we defined the following
research questions (RQs):

RQ1: To what extent do runtime QAs differ between non-pattern-participating
(NPP), single-pattern-participating (SPP), and coupled-pattern-participating
(CPP) classes?

RQ1.1: To what extent do the aforementioned groups of classes differ regard-
ing correctness?

RQ1.2: To what extent do the aforementioned groups of classes differ regard-
ing performance?

RQ1.3: To what extent do the aforementioned groups of classes differ regard-
ing security?

RQ1 aims at exploring whether the application of GoF design patterns is related
to the levels of runtime QAs. This question is important to investigate, in the sense
that certain GoF patterns are using “expensive” or sometimes complex OO mecha-
nisms, e.g., polymorphism or extensive message passing, that can potentially harm
runtime QAs in favor of improving design-time ones. Additionally, while perform-
ing such an investigation, it is important to treat the two types of pattern partici-
pation (SPP and CPP) separately, because CPP classes are a special case of pattern-
participation.

RQ2: Is the relationship between GoF patterns and runtime QAs different across
categories of design patterns?

RQ2.1: Is there a difference in the levels of correctness among classes partici-
pating in patterns of different categories?

RQ2.2: Is there a difference in the levels of performance among classes partic-
ipating in patterns of different categories?

RQ2.3: Is there a difference in the levels of security among classes participating
in patterns of different categories?

4.3. Case Study Design 85

RQ2 aims at investigating if the different purposes that patterns serve (i.e., cre-
ate objects, handle system behavior, and organize source code structure) lead to a
different relation between GoF pattern application and the levels of runtime quali-
ties. A similar question was considered in other studies such as Sahin et al. (2012).
To explore this research question, we focus only on SPP classes, clustering them by
category (creational, behavioral and structural). We exclude CPP classes from this
RQ, since the behavior of coupled pattern cannot be safely attributed to one of the
patterns participating in it.

RQ3: Is the relationship between GoF patterns and runtime QAs, different across
design patterns?

RQ3.1: Is there a difference in the levels of correctness among classes partici-
pating in different patterns?

RQ3.2: Is there a difference in the levels of performance among classes partic-
ipating in different patterns?

RQ3.3: Is there a difference in the levels of security among classes participating
in different patterns?

RQ3 aims at identifying design patterns whose classes might be more prone
to violating good coding practices. Therefore, alternative solutions (non-pattern
or non-GoF) may be preferred when possible (Ampatzoglou, Charalampidou and
Stamelos, 2013a). Many studies (e.g., (Gatrell and Counsell, 2011), (Vokac, 2004)
and (Aversano et al., 2009)), have explored similar RQs. To answer this research
question, we focus only on SPP classes, clustering them by design pattern.

RQ4: Is the relationship between GoF patterns and the levels of runtime QAs, dif-
ferent across design patterns roles?

RQ4.1: Is there a difference in the levels of correctness among classes playing
different roles in GoF patterns?

RQ4.2: Is there a difference in the levels of performance among classes playing
different roles in GoF patterns?

RQ4.3: Is there a difference in the levels of security among classes playing dif-
ferent roles in GoF patterns?

RQ4 aims at investigating the different roles that classes can play within a certain
pattern (e.g., the Subject in an Observer pattern instance) to identify those that are
more prone to harm specific runtime QAs. Although roles have also been explored
in other studies, e.g., (Ampatzoglou et al., 2015; Di Penta et al., 2008), we decided not

86
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

to investigate the roles individually, but rather consider the similar purposes they
have (e.g., Container, Containee and Client), namely meta-roles (see Section 4.3.4).
We made this decision since meta-roles may lead to more exploitable results as they
encompass responsibilities that may lead to more relevant investigation (Ampat-
zoglou et al., 2015). To explore this research question, we focus only on SPP classes,
clustering them by design pattern meta-role.

4.3.2 Case Selection and Unit of Analysis

This study is a holistic multiple-case study, in which open-source software (OSS)
projects are the subjects. As unit of analysis we refer to one class of a project over
a certain period of time when the number and type of patterns, in which the class
participates, is stable. Based on the above, as a stable pattern status period, we refer
to a set of versions in which the class did not change its participation status (i.e.,
participating to a specific pattern, or not participating to any pattern). Therefore, it
is important to note that, in order to avoid possible bias from outliers (e.g., an out-
standing good release, or a very buggy version), we consider all available versions
of each system, considering the measurement of each metric in a unit of analysis as
the average of all versions in the stable pattern status period.

Concluding, we consider triplets of <class name, pattern participation, versions-
span> as unit of analysis. For example, suppose that class C1 starts its lifespan as
a participant in a Visitor pattern, until version 6; next, it does not participate in a
pattern for three versions; and next it becomes a Strategy participant for three more
versions. This class would provide us with three units of analysis, as follows:

<C1, Adapter, Ver. 1-Ver. 6>

<C1, no-pattern, Ver. 7-Ver. 9>

<C1, Strategy, Ver. 10-Ver. 12>

In order to select appropriate cases (i.e., subjects) for our study, we considered
OSS projects from SourceForge3. The projects used in our analysis were required:
(a) to be written in Java, due to limitations of the used tools (see Section 4.3.4); (b)
to have an adequate number of versions for evolution analysis; and (c) not to be
considered as “toy examples”. For that, we selected the five most popular projects
from SourceForge that fit our requirements, and we collected all available versions
for each one of them. The selected projects, accompanied by their size and duration
information, are presented in Table 4.2.

3https://sourceforge.net/

https://sourceforge.net/

4.3. Case Study Design 87

4.3.3 Variables

In order to answer the research questions stated in Section 4.3.1, we extracted three
sets of variables from each class of each version of the five selected projects (to later
compute the units of analysis - see Section 4.3.4), as follows:

• project and class identification information;

• pattern participation information; and

• estimates on the levels of QAs.

Table 4.2: Projects considered in the case study

Project name
Starting

Sizeb NoCc NoVd
yeara

Bonita BPM 2009 138K 3,994 45
Convertigo 2011 79K 1,779 40
Eclipse Checkstyle 2003 9K 216 37
Hibernate 2001 162K 3,374 126
LogicalDOC 2008 46K 818 31

a Year of registration according to SourceForge.
b Size in lines of code (of the last version).
c NoC = Number of Classes (of the last version).
d NoV = Number of Versions.

Details on the pattern detection and runtime QAs assessment are presented in
the following sections. We clarify that the third set represents assessments of the
studied QAs, and, therefore, when referring to the attributes, we are in practice
referring to their assessments. For that, we selected metrics that, to the best of our
knowledge, are able to quantify aspects of their levels of quality. An overview and
more details on each variable are presented in Section 4.3.4.

Detection of Design Patterns Occurrences

Regarding pattern detection in each version of the projects, we used a tool de-
veloped by Tsantalis et al. (2006). This tool4 uses a Similarity Scoring Algorithm
(SSA) for detecting instances of 12 patterns, namely, Adapter/Command, Compos-
ite, Decorator, Factory Method, Observer, Prototype, Singleton, State/Strategy, Tem-
plate Method, and Visitor. By reverse engineering the system under study, this tool
isolates subsystems and explores the relationship between elements in each one of

4http://users.encs.concordia.ca/˜nikolaos/pattern_detection.html

http://users.encs.concordia.ca/~nikolaos/pattern_detection.html

88
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

them, applying the proposed SSA to detect occurrences of the aforementioned pat-
terns (Tsantalis et al., 2006). The tool was already evaluated in independent studies
(e.g., by Kniesel and Binun (2009), and Pettersson et al. (2010)), which reported pos-
itively on its performance, precision and recall rates. In short, the recall of the tool
averages around 70%, varying between 25% and 100% in the reported benchmarks.
The precision is reported to be close to 100%, mostly due to structure-based detec-
tion approach. Moreover, we manually verified the precision of the tool by checking
50 random pattern instances for each GoF pattern that is detected by this tool (i.e.,
over 500 instances in total—standing for 32% of the total dataset in terms of pat-
tern instances), which were all true positives. We decided to use this tool for the
following reasons:

• it covers a fair amount of design patterns that can be detected;

• it has adequate performance, as reported in Tsantalis et al. (2006), also when
compared to similar tools (Kniesel and Binun, 2009; Pettersson et al., 2010);
and

• it facilitates the pattern detection process.

Although this tool is able to detect the aforementioned patterns, it does not ex-
tract all PP classes. According to Aversano et al. (2009) classes are subdivided into
two categories: (a) main PP classes, comprising those that provide the structure of
the pattern solution (commonly abstract classes); and (b) extended PP classes, which
are subclasses of the former that extend the functionality of the pattern solution.
The SSA tool only detects the main PP classes. Therefore, as we require all PPs to be
identified for our study, a second tool5 named SSA+, developed by the authors, was
used to identify and extract the extended PP classes. SSA+ takes as input the output
of SSA, and is able to identify 10 extra roles, based on the information provided by
SSA for each pattern occurrence. The extra roles are: Concrete Creator and Prod-
uct, for Factory Method pattern; Concrete Prototype, for Prototype pattern; Leaf,
for Composite pattern; Concrete Decorator and Concrete Component, for Decora-
tor pattern; Concrete Observer, for Observer pattern; Concrete State/Strategy, for
State/Strategy pattern; Concrete Class, for Template Method pattern; and Subject,
for Proxy pattern.

The task performed by SSA+ is deterministic, as it identifies classes that comply
with a set of rules (e.g., inherit from a main PP class), and, therefore, the final version
of the tool should present no faulty results, as it was thoroughly tested. In order
to further validate SSA+, we manually verified the output for numerous pattern

5https://github.com/search-rug/ssap

https://github.com/search-rug/ssap

4.3. Case Study Design 89

occurrences (randomly selected) of each pattern for which we detect extra roles. In
all cases, SSA+ found only true positives, and no class appeared to be missing. The
tool was also used in another study, in which a similar verification procedure was
performed (Feitosa, Avgeriou, Ampatzoglou and Nakagawa, 2017b). Additionally,
to validate our data collection, we verified the frequency of pattern occurrences in
the entire dataset against the frequencies obtained by related work (Ampatzoglou
et al., 2015; Khomh et al., 2009). In Table 4.3, we present the distribution of classes
among all participation types (NPP, SPP and CPP), for the five projects, as well as the
summary of all projects. All frequencies are presented considering main roles only
(detected via SSA), as well as all roles (SSA+, i.e., main and extra roles). Related
work has considered main roles and the frequency reported in Table 4.3 (SSA) is
accordance to theirs (Ampatzoglou et al., 2015; Ampatzoglou, Kritikos, Arvanitou,
Gortzis, Chatziasimidis and Stamelos, 2011; Khomh et al., 2009). Finally, one can
notice that, as expected, the frequency of PP classes considering all roles (SSA+) is
higher than considering main roles only (SSA).

Assessment of Runtime Quality Attributes

To evaluate software projects with respect to their runtime QAs, we performed static
analysis by collecting the amount of several different types of violations of good cod-
ing practices. For that, we used the tool FindBugs6, which detects such violations
and provides warnings (Hovemeyer and Pugh, 2004). The tool was already evalu-
ated in independent studies (e.g., by Hovemeyer and Pugh (2004) and Ayewah et al.
(2007)), which reported an average precision of 66% and stated that the precision can
be increased by measures such as filtering bug patterns and selecting confidence lev-
els. We also evaluated the tool for the study reported in Chapter 2 and found that its
precision for the three levels of confidence (i.e., low, medium, and high) are 26.67%,
60%, and 73.33%, respectively (Feitosa et al., 2015). Thus, we advised discarding
violations with low level of confidence.

It is possible that FindBugs introduces noise (i.e., false positives) to the data col-
lection. However, we also found in other studies (Ayewah and Pugh, 2010; Hove-
meyer and Pugh, 2004; Khalid et al., 2016; Tripathi and Gupta, 2014; Zheng et al.,
2006), as well as in our experiments, that the violations identified by FindBugs are
valuable pointers to parts of the system that need to be maintained. Moreover, we
note that although part of the violations detected by FindBugs may incur bugs in
the system (therefore the nomenclature “bug pattern”), we do not make this as-
sumption. We treat them simply as violations, which can be used as indicators of
quality. Other studies explored this approach to estimate quality (Hora et al., 2012;

6http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/

90
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Table 4.3: Frequency of pattern occurrences based on SSA and SSA+

Project name Number
of classes

Tool NPP SPP CPP

Bonita BPM 3994 SSA 74.0% 19.2% 6.8%
SSA+ 54.0% 35.3% 10.8%

Convertigo 1779 SSA 89.0% 8.2% 2.8%
SSA+ 74.6% 16.1% 9.3%

Eclipse Checkstyle 216 SSA 71.8% 19.9% 8.3%
SSA+ 40.7% 44.9% 14.4%

Hibernate 3374 SSA 63.5% 25.2% 11.4%
SSA+ 51.0% 26.6% 22.4%

LogicalDOC 818 SSA 85.0% 9.5% 5.5%
SSA+ 80.6% 13.0% 6.5%

Total 10181 SSA 74.0% 18.5% 7.5%
SSA+ 58.5% 27.4% 14.1%

The frequency is w.r.t. the last version of each project

Khalid et al., 2016). In particular, Khalid et al. (2016) examined violations from Find-
Bugs, correlating them to software quality as perceived by end-users. Their results
suggest that violations can be used as quality indicators, as the two were closely
related in the observed population. In short, we adopt the estimation of violations
identified by static analysis not as an absolute number of real bugs or faults in the
system at a given moment, but as a quality indicator that can warn developers and
architects to investigate a given part of the system.

In this case study, we have chosen to use FindBugs because it provides:

• a collection of over 400 bug patterns;

• adequate precision when compared to similar tools (Ayewah et al., 2008, 2007;
Hovemeyer and Pugh, 2004), which reflects on the relevance of the offered bug
patterns; and

• a grouping of these bug patterns in nine high-level categories7 that can in turn
be mapped into QAs, as presented below.

In this study, to evaluate runtime QAs, we considered the first five categories (in
total 246 bug patterns), as they can be mapped to the three studied QAs: correctness8

7The categories are: Security, Correctness, Multithreaded Correctness, Performance, Malicious Code,
Bad Practice, Internationalization, Experimental and Dodgy Code

8An example of a correctness bug pattern is: Signature declares use of unhashable
class in hashed construct (http://findbugs.sourceforge.net/bugDescriptions.html#HE_
SIGNATURE_DECLARES_HASHING_OF_UNHASHABLE_CLASS)

http://findbugs.sourceforge.net/bugDescriptions.html#HE_SIGNATURE_DECLARES_HASHING_OF_UNHASHABLE_CLASS
http://findbugs.sourceforge.net/bugDescriptions.html#HE_SIGNATURE_DECLARES_HASHING_OF_UNHASHABLE_CLASS

4.3. Case Study Design 91

(Correctness and Multithreaded Correctness categories), performance9 (Performance cate-
gory), and security10 (Security and Malicious Code categories). The levels of quality, in
each OSS version, for the three aforementioned QAs are estimated by the quantity
of:

• New violations per lines of code (LoC): this metric partially expresses the like-
lihood of a class to harm the assessed QA;

• Removed violations (i.e., not detected in comparison to the previous version)
per LoC: this metric partially expresses the likelihood of a class to benefit the
assessed QA. As this metric depends on the previous existence of violations,
we represent it as the percentage of removed violations compared to the total
amount; and

• Total violations (i.e., total number of detected violations) per LoC: this metric
takes into account the resulting effect of both adding and removing violations.

We clarify that, concerning correctness and security, the quantities are the sum
of the two categories of bug patterns that each QA is comprised of. For example,
security is measured by summing the numbers from both Security and Malicious
Code categories. For all three QAs a lower number of Total and New violations reflect
a higher level of quality, while it is the opposite for Removed violations (i.e., the level
of quality is directly proportional to the number of Removed violations).

4.3.4 Collection Procedure and Pre-processing

The data collection phase was a two-step process. First, we collected raw data of
the QAs assessment variables for every class of every version using FindBugs, as
well as design pattern related variables using the SSA and SSA+ tools. All tools
work on Java binary code, so we fed them with a set of .class files and recorded the
outcome. For FindBugs, we used the command line version 3.0.0, for automation
purposes. We configured the tool with maximum effort (i.e., enabling analysis that
increases precision), and reported violations with medium or high confidence level
(to improve precision, as reported in a previous study (Feitosa et al., 2015)) and from
all urgency priorities (i.e., from least to most harmful to the system). For SSA tool,
we used the command line version 4.5, also for automation purposes.

9An example of a performance bug pattern is: Method allocates an object, only to get the class object
(http://findbugs.sourceforge.net/bugDescriptions.html#DM_NEW_FOR_GETCLASS)

10An example of a security bug pattern is: HTTP cookie formed from untrusted input
(http://findbugs.sourceforge.net/bugDescriptions.html#HRS_REQUEST_PARAMETER_
TO_COOKIE)

http://findbugs.sourceforge.net/bugDescriptions.html#DM_NEW_FOR_GETCLASS
http://findbugs.sourceforge.net/bugDescriptions.html#HRS_REQUEST_PARAMETER_TO_COOKIE
http://findbugs.sourceforge.net/bugDescriptions.html#HRS_REQUEST_PARAMETER_TO_COOKIE

92
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Next, we derived additional information that was needed to collect every vari-
able for the units of analysis. For that, two tasks were performed:

1. We compiled FindBugs’ information for each project. The bug detection report
of all versions was compiled into a history of violations, generated by Find-
Bugs. The number of violations from each QA was obtained by counting the
rule violations with medium and high confidence from FindBugs11. The three
aforementioned metrics (New, Removed, and Total number of violations) were
calculated based on these values.

2. We mapped pattern roles to their respective meta-roles, according to the map
presented in Table 4.4. The meta-roles are assigned to roles based on the
purpose of those roles. We considered the same seven meta-roles as in our
earlier work (for more details see (Ampatzoglou et al., 2015)): Client, Con-
tainer (a container or aggregate in a “whole-part” relationship, or the depen-
dent class in a “simple association”), Containee (a containee or component in a
“whole-part” relationship or the independent class in a “simple association”),
Superclass (or abstract class), Subclass, Compound (playing two or more of
the aforementioned roles), and Singleton. For example, the Subject acts as a
container in the Observer pattern.

Finally, a dataset was created with the information of all variables for each unit
of analysis. This dataset was recorded as a table into a spreadsheet, in which each
line corresponded to one class of one project in a certain version range. Summariz-
ing, the full list of variables, together with their description, is presented in Table
4.5. The final dataset is created as described above to facilitate the identification
of coupled patterns (by detecting duplication of classes in different patterns on the
same version), and merging of tuples to build data subsets for answering each RQ
(e.g., merging tuples of same pattern category and version, to answer RQ2).

11We had analyzed and validated FindBugs, in a previous work (Khalid et al., 2016), regarding its
confidence levels, reporting that precision can be improved by excluding bugs with low confidence level.

4.3. Case Study Design 93

Table 4.4: Mapping of pattern roles to meta-roles

Pattern Type Pattern Role Meta-role

Adapter/Command Adaptee/Receiver Containee
Adapter/Concrete Command Container

Composite
Component Superclass
Composite Compound
Leaf Subclass

Decorator

Component Superclass
Concrete Component Subclass
Concrete Decorator Subclass
Decorator Compound

Factory Method
Concrete Creator Compound
Creator Superclass
Product Containee

Observer
Concrete Observer Subclass
Observer Compound
Subject Container

Prototype
Client Client
Concrete Prototype Subclass
Prototype Superclass

Proxy
Proxy Compound
RealSubject Subclass
Subject Superclass

Singleton Singleton Singleton

State/Strategy
Concrete State/Strategy Subclass
Context Client
State/Strategy Superclass

Template Method Abstract Class Superclass
Concrete Class Subclass

Table 4.5: List of collected variables

Variable Description Tool

V1 Source project of the class -

V2 Class full name (package + class name) -

V3 Versions of the project considered in the unit of analysis -

V4 Class type (i.e., NPP, SPP, or CPP)

SSA
&

SSA
+

tools

V5
Name of the category (i.e., behavioral, creational, structural)
containing the pattern in which the class participated.

V6 Name of the pattern in which the class participated

V7 Name of the meta-role that the class played in the pattern

V8-V10 Violation metrics for correctness FindBugs

V11-V13 Violation metrics for performance

V14-V16 Violation metrics for security

94
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

4.3.5 Data Analysis

During this phase, we analyzed the previously described variables (V1–V16) to in-
vestigate the relationship between the use of design patterns and the level of run-
time QAs. We clarify that, unless specified, when referring to a relationship with
a certain QA, we imply the scores of all metrics of the QA. The analysis of the col-
lected data is split in four steps, each aiming at answering each of the four RQs. In
each step, a data subset was derived from the final dataset (see Section 4.3.4), and
further analyzed as follows:

step 1 Verify relationship between NPP, SPP, and CPP classes for each QA. In this step,
we derived a data subset consisting of classes that are related to only one of
the three participation types during their entire version-span (within the col-
lected data). By avoiding change of participation, we aimed at mitigating bias
caused by the joint effect of multiple types of pattern participation. Therefore,
independent sample t-tests are performed in order to investigate differences
in the level of QAs among the types of participation. This step was divided
into four sub-steps.

a. Select relevant tuples. We selected only classes that have been only NPP,
SPP, or CPP during their lifetime (i.e., classes that did not change their
participation).

b. Remove duplicated entries. As CPP classes appear in more than one pattern
occurrence, it is necessary to avoid accounting for duplicates of classes.
For example, a class that has initially been a Singleton and in a later ver-
sion part of an Adapter occurrence would produce two units of analysis
as a pattern participant, which have identical number of violations (be-
cause they regard the same class). These two units of analysis would be
merged into a single CPP entry (to avoid duplicated entries).

c. Compute units of analysis. Tuples concerning the same class in the differ-
ent versions are now united by calculating the average for each metric,
resulting in the data subset to be analyzed.

d. Calculate differences in levels of QAs. We performed independent sample
t-tests using pattern participation (V4) as a grouping variable, and the
number of violations (V8-V16) as test variables. We clarify that, despite
analyzing three groups (NPP, SPP, and CPP), we did not perform analysis
of variance, since we intend to look into every pairwise comparison.

step 2 Verify difference among design pattern categories for each metric of each QA. In this
step, we derived a data subset consisting of classes that were SPP during their

4.4. Results 95

entire version-span, for the same reasons described in step 1. In a similar four-
sub-steps process, the units of analysis were initially selected and clustered
into three clusters, one for each pattern category (structural, behavioral, and
creational); afterwards, duplicates were removed, i.e., tuples concerning same
class, version, and pattern category; then, the units of analysis were computed
by merging tuples concerning same classes and different versions; finally, a
one-way analysis of variance (ANOVA) was performed for each metric of each
QA, i.e., V8–V16, using pattern category (V5) as grouping variable.

step 3 Verify difference among design patterns for each metric of each QA. In this step, we
derived a data subset consisting of classes that were SPP during their entire
version-span, for the same reasons described in step 1. Similar to step 2, we
performed ANOVA for each metric of each QA, but using the pattern (V6) as
grouping variable. Removal of duplicates and computation of units of analysis
were also similarly performed (considering pattern in the procedure).

step 4 Verify difference among design pattern meta-roles for each metric of each QA. In
this step we derived a data subset consisting of classes that were SPP during
their entire version-span, for the same reasons described in step 1. Next, we
clustered the dataset into seven groups, one for each meta-role (V7). Finally,
we performed independent sample t-tests between pairs of meta-roles for each
metric of each QA, i.e., V8–V16.

Summarizing the procedure for answering the RQs, Table 4.6 presents the map-
ping between each RQ, the used variables, as well as the step of the analysis in which
each RQ is answered, along with the used presentation methods.

4.4 Results

In this section, we present the results of the case study, highlighting the most im-
portant observations based on the acquired data. Each RQ is addressed separately,
presenting an overview of the considered data subset, as well as the statistical anal-
ysis over the data (see Section 4.3.5). Before presenting the results, we clarify that
the metric on Removed violations was not statistically evaluated in all RQs due to the
low number of classes that had removed violations. However, this is not an impor-
tant issue since the metric on Total number of violations also reflects the effects of
the removed ones (see Section 4.3.3).

96
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Table 4.6: Mapping of RQs to variables, steps, and presentation

Research Question Used Variables Step Presentation Method

RQ1
(relationship be-
tween PP and
NPP classes)

RQ1.1
(regarding correctness)

V2-V4: unit of analysis
V8-V10: correctness metrics

1 Independent
sample t-test

RQ1.2
(regarding performance)

V2-V4: unit of analysis
V11-V13: performance metrics

RQ1.3
(regarding security)

V2-V4: unit of analysis
V14-V16: security metrics

RQ2
(difference among
design pattern
categories)

RQ2.1
(regarding correctness)

V5: pattern category
V8-V10: correctness metrics

2 ANOVARQ2.2
(regarding performance)

V5: pattern category
V11-V13: performance metrics

RQ2.3
(regarding security)

V5: pattern category
V14-V16: security metrics

RQ3
(difference among
design patterns)

RQ3.1
(regarding correctness)

V6: pattern
V8-V10: correctness metrics

3 ANOVARQ3.2
(regarding performance)

V6: pattern
V11-V13: performance metrics

RQ3.3
(regarding security)

V6: pattern
V14-V16: security metrics

RQ4
(difference among
design pattern
meta-roles)

RQ4.1
(regarding correctness)

V7: meta-role
V8-V10: correctness metrics

4 Independent
sample t-test

RQ4.2
(regarding performance)

V7: meta-role
V11-V13: performance metrics

RQ4.3
(regarding security)

V7: meta-role
V14-V16: security metrics

4.4.1 Comparison between SPP, PPC, and NPP classes (RQ1)

The descriptive statistics (i.e., number of units of analysis, mean number of viola-
tions per 10 KLOC, and standard deviation) of the data subset built for answering
RQ1 (see step 1 of Section 4.3.5) are presented in Table 4.7. We clarify that due to
the nature of the data (i.e., violations) it is expected that most of the classes in the
dataset do not present violations. Thus, metrics such as median and mode would
not be descriptive for our dataset and, for that reason, are not included in Table
4.7. For each metric, we highlight the type of pattern participation with the lowest
amount of New and Total violations, e.g., for New security violations SPP classes had
the lowest average number of violations (i.e., 0.72).

Based on the descriptive statistics, we created the radar chart depicted on Figure
4.1to better visualize and compare the three types of pattern participation. To create
the charts, we normalized the mean for each metric (New violations, Removed vio-

4.4. Results 97

Table 4.7: Descriptive statistics of the data subset for RQ1

VT QA Class N Mean SDType

N
ew

Security
NPP 7,961 1.39 16.30
SPP 3,249 0.72 8.58
CPP 1,647 0.86 11.50

Correctness
NPP 7,961 0.56 11.50
SPP 3,249 0.18 2.82
CPP 1,632 0.45 9.99

Performance
NPP 7,961 0.74 10.90
SPP 3,249 0.44 5.70
CPP 1,647 0.24 2.26

To
ta

l

Security
NPP 7,961 19.90 137.00
SPP 3,249 11.60 81.90
CPP 1,647 11.20 90.80

Correctness
NPP 7,961 5.35 50.20
SPP 3249 2.92 35.10
CPP 1,643 3.65 29.30

Performance
NPP 7,961 7.44 57.90
SPP 3,249 4.52 43.70
CPP 1,647 8.79 55.60

R
em

ov
ed

Security
NPP 387 2.94 18.60
SPP 131 19.10 147.00
CPP 86 13.20 69.20

Correctness
NPP 197 13.20 47.10
SPP 59 9.22 37.70
CPP 87 2.34 7.90

Performance
NPP 259 10.30 53.20
SPP 71 11.70 43.00
CPP 103 4.84 18.00

lations, and Total number of violations) as the ratio over the best result. Therefore,
the best result has score 1, and the other two scores are equal or less than 1. We note
that for New and Total violations, the ratio is inverse, i.e., more violations are implied
by scores closer to 0, and best results (i.e., fewer violations) are denoted with scores
close to 1. Regarding Removed violations high scores imply best results (more viola-
tions are corrected), whereas low scores refer to cases in which only few violations
are resolved. In each radar chart, we have created three lines: (a) a continuous red
line for NPP classes; (b) a dotted blue line for SPP classes; and (c) a dashed green line
for CPP classes. To interpret these charts one needs to check which type of pattern
participation has a value equal to 1, and then compare to the rest. For instance, for
New violations we can observe that SPP classes exhibit the best results for Security
and Correctness, whereas CPP for Performance.

In order to verify the previously presented differences, we carried out statistical
tests to compare all obtained means. For that, we performed independent t-tests

98
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Figure 4.1: Relationship between pattern participation type and QAs

Table 4.8: Statistically significant results from the investigation of RQ1

VT QA Test Eq. of Variance Independent T-test

F Sig. t df Sig(2-tailed)

New

Security NPP vs. SPP 19.13 < 0.01 2.87 10,523.31 < 0.01

Correctness NPP vs. SPP 12.96 < 0.01 2.70 9,938.51 < 0.01

Performance
NPP vs. SPP 8.72 < 0.01 1.93 10,576.89 0.05

NPP vs. CPP 13.92 < 0.01 3.77 9,606.00 < 0.01

Total

Security NPP vs. SPP 40.61 < 0.01 3.98 9,729.72 < 0.01

NPP vs. CPP 23.97 < 0.01 3.20 3,404.78 < 0.01

Correctness NPP vs. SPP 24.81 < 0.01 2.91 8,510.88 < 0.01

Performance NPP vs. SPP 25.71 < 0.01 2.91 7,912.10 < 0.01

SPP vs. CPP 30.02 < 0.01 -2.72 2,703.67 < 0.01

Removed Correctness NPP vs. SPP 23.97 < 0.01 3.15 219.77 < 0.01

between every two types of participation (i.e., SPP vs. NPP, SPP vs. CPP, and NPP
vs. CPP) for each metric of each QA (V8–V16). In Table 4.8 we present the results
of the tests that are statistically significant. For example, the difference between
NPP and SPP for New security bugs presented in Figure 4.1 (top on the left radar
chart) is statistically significant. From the results, the following observations can be
highlighted.

Non-pattern-participating (NPP) classes are likely to underperform when compared
against pattern-participating (PP) classes (both SPP and CPP). For nine out of the 18
possible comparisons (between NPP and the other two class types), NPP classes ex-
hibit a statistically significant larger number of violations than classes participating
in patterns. At the same time, there is no strong statistical evidence of the difference be-
tween SPP and CPP classes. However, it should be pointed out that one difference

4.4. Results 99

Table 4.9: Descriptive statistics of the data subset for RQ2

VT QA
Pattern

N Mean SDCategory

N
ew

Security
Behavioral 1,830 0.87 7.37
Creational 1,082 0.40 4.10
Structural 50 8.08 49.60

Correctness
Behavioral 1,830 0.25 3.40
Creational 1,082 0.10 2.11
Structural 50 0.09 0.61

Performance
Behavioral 1,830 0.63 6.93
Creational 1,082 0.23 3.70
Structural 50 0.30 1.60

To
ta

l

Security
Behavioral 1,830 14.90 92.30
Creational 1,082 7.96 67.70
Structural 50 42.20 161.00

Correctness
Behavioral 1,830 4.90 51.60
Creational 1,082 1.17 15.80
Structural 50 3.30 23.30

Performance
Behavioral 1,829 7.12 56.50
Creational 1,082 2.58 33.50
Structural 50 5.66 34.10

between SPP and CPP classes has been found to be statistically significant (i.e., Total
amount of performance violations), providing an indication in favor of SPP classes.

4.4.2 Comparison between pattern categories RQ2

To compare the different pattern categories (i.e., Behavioral, Creational and Struc-
tural), we considered the data subset as described in step 2 of the data analysis (see
Section 4.3.5), comprising units of analysis limited to SPP classes. The descriptive
statistics for this dataset are presented in Table 4.9. Similar to RQ1, we present the
number of units of analysis, mean number of violations per 10 KLOC, and standard
deviation for each category (i.e., in this case, of each pattern category). To better
visualize the descriptive data, we created a radar chart to ease the comparison of
mean values (see Figure 4.2). Similar to Figure 4.1, the best result has score 1, and
the other two scores are equal or less than 1.

To verify the differences presented by the descriptive statistics, we performed a
two-step statistical analysis for each metric of each QA. First, we carried out an anal-
ysis of variance (ANOVA) to identify the existence of differences between the three
pattern categories for the given metric. If a difference was detected, then we applied
a post-hoc test to recognize which pattern categories differentiate from each other.
For the post-hoc test, we used the Bonferroni correction due to its ability to control
Type I error (i.e., find a relationship that in fact does not exist), and its suitability
for a small number of categories (Field, 2013). In Table 4.10, we present the tests
that revealed a statistically significant difference. From the results, we highlight the

100
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Figure 4.2: Relationship between pattern categories and QAs

Table 4.10: Statistically significant results from the investigation of RQ2

VT QA ANOVA Post-hoc test (Bonferroni)

F Sig. Test Sig.

New Security 17.56 < 0.01 Structural vs. Behavioral < 0.01

Structural vs. Creational < 0.01

Total
Security 5.20 < 0.01 Structural vs. Creational 0.01

Performance 2.92 0.05 Behavioral vs. Creational 0.05

following observations.
Classes that participate in Creational patterns are likely to have fewer violations of secu-

rity and performance coding practices than those participating in Structural and Behavioral
patterns. Based on the statistically significant differences presented in Table 4.10, we
notice that comparisons of Creational patterns regarding security are mostly valid.
With regards to performance violation, the only statistically significant different pro-
vides an indication that Creational patterns may be less prone to such violations.
This is an expected result as Creational patterns tend to be simpler than patterns
of the other two categories. Moreover, this finding corroborates with findings of
related work.

4.4.3 Comparison between patterns (RQ3)

For comparing the 12 patterns considered in this study, we focused on SPP classes
as units of analysis. However, this time we clustered them by pattern, so as to be
able to explore the differences between such types for each QA metric. Similar to
the previous RQs we present the descriptive statistics of this data subset (see Table

4.4. Results 101

4.11). This table shows the number of units of analysis for each pattern, as well as the
mean and standard deviation for each QA metric. It is important to highlight that we
excluded three patterns from the analysis (Composite, Observer and Proxy) due to
the small number of available SPP classes (1, 15 and 11, respectively). Additionally,
we did not consider results with mean violations equal to zero, although they are
shown in Table 4.11 (for clarity purposes). Such a mean indicates that we identified
no violations in the SPP classes and, although we expect this number to be small,
we cannot predict it with enough confidence.

Table 4.11: Descriptive statistics of the data subset for RQ3

VT QA Pattern N Mean SD

N
ew

Se
cu

ri
ty

Adapter/Command 371 0.98 6.22
Decorator 38 10.10 56.80
Factory Method 602 0.20 3.30
Prototype 45 0.00 0.00
Singleton 435 0.72 5.17
State/Strategy 1,020 0.67 7.31
Template Method 797 1.13 7.51

C
or

re
ct

ne
ss

Adapter/Command 371 0.17 1.24
Decorator 38 0.11 0.70
Factory Method 602 0.00 0.06
Prototype 45 0.00 0.00
Singleton 435 0.25 3.32
State/Strategy 1,020 0.22 2.02
Template Method 797 0.29 4.62

Pe
rf

or
m

an
ce

Adapter/Command 371 0.23 3.31
Decorator 38 0.40 1.83
Factory Method 602 0.12 2.67
Prototype 45 0.26 1.24
Singleton 435 0.37 4.90
State/Strategy 1,020 0.52 6.46
Template Method 797 0.79 7.54

To
ta

l

Se
cu

ri
ty

Adapter/Command 371 16.40 81.50
Decorator 38 50.40 182.00
Factory Method 602 1.94 30.10
Prototype 45 3.28 16.00
Singleton 435 16.80 100.00
State/Strategy 1,020 12.20 90.00
Template Method 797 18.60 95.80

C
or

re
ct

ne
ss

Adapter/Command 371 3.20 20.80
Decorator 38 4.34 26.80
Factory Method 602 0.11 1.95
Prototype 45 3.34 22.40
Singleton 435 2.42 23.70
State/Strategy 1,020 3.52 38.60
Template Method 797 6.74 64.80

Pe
rf

or
m

an
ce

Adapter/Command 371 2.75 19.30
Decorator 38 7.45 39.10
Factory Method 602 1.96 39.10
Prototype 45 14.80 56.10
Singleton 435 2.18 18.80
State/Strategy 1,019 3.78 35.80
Template Method 797 11.50 75.10

102
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Total

Total

Total

State/Strategy
Template Method

Factory Method
Prototype

Singleton

Decorator

Adapter/Command

Behavioral Creational Structural

Structural-Behavioral

Best ScoreWorst Score

Figure 4.3: Relationship between patterns and QAs

To better visualize the difference between the means and, most importantly, how
the patterns are ordered, we plotted each metric in different rows of Figure 4.3. Each
row presents the mean number of violations, normalized by the best score, i.e., the
best score received 1 (plotted on the rightmost side) and all others a ratio of this
value factor (patterns with score 0 are not plotted). The patterns are identified by
symbol (see legend of the figure), and each pattern category (e.g., Creational) has
a different filling color and graphic pattern. It is important to highlight that the
Adapter/Command patterns are detected jointly by SSA+ (due to design similari-
ties), and that they are from different categories (Structural and Behavioral respec-
tively). This is considered in both charts and analysis of the results.

Similar to the previous RQ, we used ANOVA to verify the differences among
the means. However, for the post-hoc test, we selected Games-Howell because the
number of groups (i.e., patterns) was inadequate for using the Bonferroni correction.
Table 4.12 presents the statistically significant results. From the results, we highlight
the following observations.

SPP classes of a Factory Method instance are less prone to violations. This finding
is supported by the facts that six comparisons involving Factory Method are sta-
tistically significant (see Table 4.12). This result is not surprising because this is a
Creational pattern, which has previously shown to be the least vulnerable one. Or-
dering of patterns tends to reflect the ordering of pattern categories (see Section 4.4.2), as
it would be expected. By looking at Figure 4.3, one can see that Creational patterns

4.4. Results 103

Table 4.12: Statistically significant results from the investigation of RQ3

VT QA ANOVA Post-hoc test (Games-Howell)

F Sig. Test Sig.

New Security 5.92 < 0.01

Adapter/Command vs. Prototype 0.04

Factory Method vs. Template Method 0.03

Singleton vs. State/Strategy 0.059

Total

Security 3.72 < 0.01

Adapter-Command vs. Factory Method 0.02

Factory Method vs. Singleton 0.04

Factory Method vs. State/Strategy 0.02

Factory Method vs. Template Method < 0.01

Prototype vs. Template Method < 0.01

Performance 4.21 < 0.01

Adapter/Command vs. Template Method 0.04

Factory Method vs. Template Method 0.04

Singleton vs. Template Method 0.02

are predominantly ranked among those with best scores, whereas Behavioral and
Structural patterns interchangeably rank among those with worst scores. For ex-
ample, Factory Method, which is a Creational pattern, achieves the highest scores,
while Template Method (a Behavioral pattern) and Decorator (a Structural pattern)
have the worst scores. However, no clear ordering appears within the patterns of
a category (expect for Factory Method). This might be evidence that the amount of
violations might be more related to the type of responsibility (identified by a pattern
category) rather than to specific patterns.

4.4.4 Comparison between pattern roles (RQ4)

As shown in Table 4.4, there are 30 pattern roles distributed among the 12 patterns
considered in this study. To study these roles, we decided to consider the meta-
roles (see Table 4.4) rather than the roles themselves, as we expect the amount of
violations to be related to the type of responsibility a role has. This reduces the
number of groups to be analyzed to the seven meta-roles presented in Table 4.4.

By focusing the investigation to the meta-roles that classes play in a pattern in-
stance, we analyze the relationship between the types of roles these classes have.
Therefore, for RQ4 we investigated only the combinations of roles that participate
within the same pattern (i.e., meta-roles that collaborate to provide a specific pat-
tern solution). For example, in the instance of a Prototype pattern, classes of the

104
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Total

Total

Total

Superclass

Subclass

Container

Containee

Compound

Client

Best ScoreWorst Score

Figure 4.4: Relationship between meta-roles and QAs

following meta-roles are present: Client, Superclass and Subclass. The investigation
of these meta-roles was performed in pairs, as follows: Client vs. Superclass; Client
vs. Subclass; and Superclass vs. Subclass. Considering all patterns, we derived a
total of 19 pairs; we excluded the Singleton meta-role because it involves one class
only.

The descriptive statistics of the analyzed meta-roles are presented in Table 4.13,
showing the number of units of analysis, mean violations per 10 KLOC and standard
deviation for each QA metric. In contrast to the previous RQs, we do not highlight
the best means, as the comparisons are at the level of pairs of meta-roles rather than
overall. To better visualize the comparison between the means, we created eight
plots, grouping the means by metric and type of violation. Figure 4.4 presents these
charts; they are read similarly to Figure 4.3 and colors represent sets of related meta-
roles (e.g., Subclass and Superclass).

For statistically analyzing the difference between meta-roles in each pair, we per-
formed independent sample t-tests. The tests that showed statistically significant
difference are presented in Table 4.14. Based on the results, the most important ob-
servation is that more generic meta-roles (i.e., Container and Superclass) are less prone to
violations than less generic meta-roles. This is an intuitive result because more abstract
elements of a design usually have less complex logic, being supposedly simpler to
implement. Additionally, there are several statistically significant differences that
show the clear difference between the meta-roles.

4.5. Discussion 105

Table 4.13: Descriptive statistics of the data subset for RQ4

VT QA Meta-role N Mean SD
N

ew

Se
cu

ri
ty

Client 461 1.26 10.50
Compound 203 2.43 25.30
Containee 470 0.77 5.54
Container 152 0.04 0.53
Subclass 1,382 0.90 7.05
Superclass 459 0.11 1.05

C
or

re
ct

ne
ss

Client 461 0.34 2.56
Compound 203 0.01 0.10
Containee 470 0.10 0.98
Container 152 0.09 0.88
Subclass 1,382 0.19 3.51
Superclass 459 0.13 1.71

Pe
rf

or
m

an
ce

Client 461 0.68 6.43
Compound 203 0.32 4.58
Containee 470 0.17 2.94
Container 152 0.06 0.54
Subclass 1,382 0.56 5.93
Superclass 459 0.41 7.13

To
ta

l

Se
cu

ri
ty

Client 461 15.40 77.20
Compound 203 13.00 93.70
Containee 470 12.80 72.40
Container 152 1.36 16.70
Subclass 1,382 17.40 103.00
Superclass 459 2.54 24.20

C
or

re
ct

ne
ss

Client 461 5.29 41.70
Compound 203 0.32 3.35
Containee 470 2.13 17.80
Container 152 1.22 9.28
Subclass 1,382 4.40 49.90
Superclass 459 2.16 39.20

Pe
rf

or
m

an
ce

Client 461 7.44 51.50
Compound 203 4.55 64.80
Containee 470 2.29 19.60
Container 152 1.32 12.60
Subclass 1,381 7.61 58.30
Superclass 459 2.01 25.80

4.5 Discussion

In this section, we discuss the main outcomes of the study, providing more details on
their interpretation, as well as implications for researchers and practitioners. Com-
parison to related work is also presented, when applicable.

4.5.1 Interpretation of results

Firstly, while analyzing the results of RQ1, one can notice that NPP classes are likely
to present more violations, regarding runtime QAs, than PP classes (i.e., SPP and
CPP). Additionally, SPP classes are more likely to have fewer violations than CPP
(we observed an average of 22%). A possible explanation is that PP classes are easier
to understand as the patterns also serve as an explicit design documentation and as

106
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Table 4.14: Statistically significant results from the investigation of RQ4

VT QA Test Eq. of Variance Independent T-test

F Sig. t df Sig(2-tailed)

New
Security

Containee vs. Container 10.56 < 0.01 2.82 494.24 0.01
Containee vs. Superclass 25.14 < 0.01 2.54 503.48 0.01
Client vs. Superclass 21.14 < 0.01 2.34 469.33 0.02
Container vs. Subclass 8.97 < 0.01 -4.42 1,489.28 < 0.01
Subclass vs. Superclass 22.63 < 0.01 4.03 1,551.12 < 0.01

Correctness Compound vs. Containee 7.96 0.01 -2.12 491.92 0.04
Performance Container vs. Subclass 4.28 0.04 -3.03 1,519.27 < 0.01

Total

Security

Containee vs. Container 15.33 < 0.01 3.18 586.69 < 0.01
Containee vs. Superclass 33.82 < 0.01 2.91 574.87 < 0.01
Client vs. Superclass 45.97 < 0.01 3.41 550.09 < 0.01
Container vs. Subclass 14.77 < 0.01 -5.21 1,390.06 < 0.01
Subclass vs. Superclass 37.49 < 0.01 4.97 1,735.38 < 0.01

Correctness Compound vs. Subclass 5.40 0.02 -3.00 1457.75 < 0.01
Compound vs. Containee 8.39 < 0.01 -2.13 540.98 0.03

Performance
Client vs. Superclass 16.05 < 0.01 2.03 677.47 0.04
Container vs. Subclass 7.04 0.01 -3.36 1060.25 < 0.01
Subclass vs. Superclass 15.76 < 0.01 2.84 1704.70 0.01

common language among the team members (Ahlgren and Markkula, 2005; Riehle,
2011). Therefore, it is expected to be easier to understand and maintain a piece
of source code when it is using a pattern. On the other hand, adding an extra re-
sponsibility to a class (i.e., by making it participate in more than one pattern) might
decrease the readability and understandability of the code.

Concerning security, our findings comply with the results of the literature. For
example, Ferraz et al. (2009) suggest that GoF design patterns support implement-
ing security requirements. Regarding correctness, Gatrell and Counsell (2011) found
that PP classes are more fault-prone than NPP classes. Conversely, we observed
that PP classes exhibited fewer violations than NPP classes. However, Gatrell and
Counsell also observed that their finding was attributed mainly to a tendency of PP
classes to be more change-prone. Thus, a normalization of the results could have
shown a finding similar to ours, in which the analysis procedure included normal-
ization. Moreover, Ampatzoglou, Kritikos, Arvanitou, Gortzis, Chatziasimidis and
Stamelos (2011), found the overall number of design pattern instances not to be cor-
related with defect frequency. Runtime defects observed for PP classes are probably
related to the complexity of the requirements that pattern instances are involved in,
since design patterns are expected to be placed in design hot spots.

Concerning performance, related work have found that PP classes perform
worse at times (Afacan, 2011; Litke et al., 2007; Sahin et al., 2012), whereas we ob-
served that PP classes display fewer violations. However, related work also ob-
served that pattern instances could also show improved performance compared to
alternative (non-pattern) solutions (Sahin et al., 2012), also suggesting that the us-

4.5. Discussion 107

age of design pattern do not necessarily result in change of runtime performance
(Litke et al., 2007). The energy consumption and/or CPU usage of PP classes can
be higher than that of NPP classes because patterns rely on certain object-oriented
(OO mechanisms (e.g., polymorphism) that have higher computational cost, but
such drawback is not always observed (Feitosa, Alders, Ampatzoglou, Avgeriou
and Nakagawa, 2017). To further study this matter, in a previous study (Feitosa,
Alders, Ampatzoglou, Avgeriou and Nakagawa, 2017), we investigated parameters
that can influence the efficiency of patterns solutions compared against alternative
(non-pattern) solutions. We found that the runtime benefits of a pattern can be as-
sociated with its application in more appropriate scenarios, e.g., when the imple-
mentation logic is complex in terms of size or messaging. The appropriate use can
greatly reduce the overhead of OO mechanisms.

Following our RQs, by analyzing the findings of RQ2 one can observe that Cre-
ational patterns tend to have the lowest number of violations in most cases. An ex-
planation could be that Creational patterns are implemented with a simple source
code structure. A simple implementation naturally supports better understanding
and readability of the source code, which in turn would explain the existence of
fewer violations. In contrast, Structural patterns had the highest frequency of vi-
olations. A possible explanation is that Structural patterns are commonly used to
organize complex concepts in an OO design, aiming at reducing the accidental com-
plexity of the software (Brooks Jr., 1987) (i.e., the complexity imposed by the de-
signer and not the functionality responsibility). However, even if they decrease the
accidental complexity, the essential complexity (i.e., the complexity inherent to the
implemented functionality) of these components is still high, leading to more viola-
tions when compared to simpler designs (e.g., Creational patterns). We also noticed
that the most recurrent violations are common among all pattern categories (see Ta-
ble B.3 on Appendix B), and are similar to those regarding all SPP classes (see Table
B.2 in Appendix B).

We note that the findings of this study are based on violations concerning run-
time qualities derived by a static analysis tool. To facilitate the comparison of obser-
vations on the difference between PP and NPP classes and on the violations exhib-
ited by Creational patterns, we summarize in Table 4.15 our key findings (static anal-
ysis column) versus findings derived by dynamic analysis in previous studies (Afa-
can, 2011; Ampatzoglou, Kritikos, Arvanitou, Gortzis, Chatziasimidis and Stame-
los, 2011; Feitosa, Alders, Ampatzoglou, Avgeriou and Nakagawa, 2017; Gatrell and
Counsell, 2011; Litke et al., 2007; Sahin et al., 2012). This summary indicates that the
results from static analysis are to a large extent aligned with those from dynamic
analysis, with few exceptions as discussed in the preceding paragraphs.

Findings regarding RQ3 suggest that the ordering of the patterns (from best to

108
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

Table 4.15: Comparable observations between static and dynamic analyses

Topic Observation

Results from Static Analysis (this study) Results from Dynamic Analysis

PP
vs

.N
PP

cl
as

se
s

Suggest that NPP classes are more likely to under-
perform.

Show cases in which PP classes underperform and
cases in which NPP classes underperform.

Results may be attributed to the promotion of best
practices.

Results may depend on consideration of good de-
sign practices. Proper use of patterns (e.g., to orga-
nize complex logic) may virtually remove the gap
between pattern and non-pattern solutions.

Suggest that violations are more often removed
from PP classes than NPP classes, and that the
number of violations in PP classes are lower.

Suggest that PP classes are likely to be more
change-prone, which reflect on higher error-
proneness.

C
re

at
io

na
l

pa
tt

er
ns

Suggest that instances of Factory Method are likely
to exhibit better scores than other patterns.

Suggest that Factory Method is among patterns
with the best performance.

Suggest that creational patterns (e.g., Factory
Method) are likely to exhibit better scores than pat-
terns of other categories.

Creational patterns (e.g., Factory Method and Pro-
totype) appear among patterns with the best per-
formance.

worst score) tends to follow the ordering of the findings from the pattern categories
(RQ2). This may suggest that, regardless of the QA, the type of the responsibility
(defined by the category) plays a major role and, thus, the category has influence
on the result. For example, a Creational pattern such as Factory Method presented
fewer violations in all cases (in average, 48% fewer than the second-ranked pattern).
A plausible explanation is the structural simplicity of this pattern. From the stud-
ied Creational patterns, Factory Method is potentially the simplest one, because all
other patterns allow more complex implementations (e.g., the cloning mechanism of
Prototype and the unique instantiation of Singleton). This finding is in accordance
with the related work. For both correctness and performance, studies showed that
Factory Method is among the patterns with best scores (Gatrell and Counsell, 2011;
Sahin et al., 2012; Vokac, 2004).

Furthermore, we notice that the difference in the patterns’ definition and pur-
pose may also reflect on the violations that are accumulated on their instances. By
examining Table B.4 (Appendix B), we observe that despite similarities, some of the
most recurrent violations differ among the patterns. For example, unsafe multi-
threaded calls are more recurrent for four out of the 12 analyzed patterns. Another
interesting observation is that instances of some patterns tend to accumulate viola-
tions of higher severity (“scary” or “scariest”, according to FindBugs classification).
In particular, although instances of Factory Method accumulate fewer violations of
correctness, the most recurrent ones are potentially more harmful to the system (see
Table B.4). This shows that even with a tendency of accumulating fewer violations,

4.5. Discussion 109

it might be important to monitor instances of certain patterns.
Finally, the findings from RQ4 suggest that classes playing more generic roles

(i.e., Superclass and Container) tend to show better scores than classes playing more
concrete ones (i.e., Subclass and Containee). A possible explanation for these obser-
vations is that more specialized roles implement more intense and complex business
logic and, therefore, are more prone to violations. The counting presented in Table
B.6 (Appendix B) supports this hypothesis, as one can see that more specialized
roles showed larger number of violations with higher severity. Moreover, the type
of violation may also be different depending on the role a class plays (see Table
B.5 on Appendix B). These observations may also be partially related to the likeli-
hood of a class to be changed. It is intuitive to expect that the more frequently a
class is changed the more violations are introduced into its source code. Di Penta
et al. (2008) investigated the correlation of pattern roles to the changes in pattern
participants. Their findings suggest that some meta-roles (i.e., Subclass and Client)
changed more frequently than the other meta-roles). This may indicate that change-
and violation-proneness are related.

4.5.2 Implications for practitioners and researchers

The findings of this study suggest that PP classes are likely to have fewer security,
correctness and performance violations than NPP classes, even in cases in which
a class participates in more than one pattern. Stated differently, this exploratory
study revealed that adhering to good architectural practices (such as the use of pat-
terns) is often accompanied by (or due to) better programming practices, leading
to fewer violations. One could argue that a well-designed architecture besides its
obvious benefits in supporting software evolution provides a solid basis for devel-
oping cleaner code with fewer violations. Building an application around reusable,
documented and well-tested pattern instances improves comprehensibility, thereby
limiting the possibilities of accidentally introducing violations. Moreover, the clean
code structure facilitates easier bug localization and removal.

This study has two main implications to researchers. The exploitation of static
analysis and, in particular, source code for investigating runtime QAs can add to the
current state of the art on the relationship between the presence of patterns and se-
curity, correctness and performance. The comparison of our results to related work
has in some cases led to contradictions, due to the different nature of our measure-
ment approach, but some common implications can be retrieved. First, the fact that
no universal assessment on the relationship between patterns and runtime quali-
ties can be made (without performing a separate investigation per pattern type) is a
common finding in both our study and almost every related work in the field. Sec-

110
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

ond, the fact that the structural complexity of the pattern is playing an important
role on the relationship of patterns and runtime qualities is confirmed by our case
study (e.g., Creational patterns present fewer violations).

Furthermore, to the best of our knowledge, this study is the first to provide em-
pirical evidence on the relationship between GoF patterns and security. In addition,
it is interesting to notice that most of the statistically significant results were w.r.t.
security. Therefore, we suggest the usage of static analysis when investigating this
QA. Finally, the investigation of pattern roles and, in particular, meta-roles has pro-
vided interesting and insightful findings to our study, showing to be a valuable
source of information when it comes to investigate GoF patterns. The investigation
of roles allows a finer-grained analysis of the patterns, while considering meta-roles
brings the discussion to a more abstract level, considering characteristics as mecha-
nisms used by the patterns. Thus, we also encourage the consideration of meta-roles
when investigating GoF patterns, especially if such characteristics are clearly rele-
vant for interpreting results of the study.

4.6 Threats to Validity

In this section, we present and discuss the threats to the validity of our study, in
particular, construct validity, reliability and external validity. Internal validity is
not applicable, as the study does not examine causal relations. Construct validity
reflects the connection between the object of study, or studied phenomenon, and the
RQs. Reliability is related to the possibility of others replicating the performed case
study and obtaining the same results. Finally, external validity comprises possible
threats to the generalization of the findings on this study to the entire population.

Concerning construct validity, it can be argued that static analysis does not assess
runtime qualities as effectively and precisely as dynamic analysis. Indeed, dynamic
analysis has been used much more extensively than static analysis in assessing run-
time qualities and such results are more well-established. To partially mitigate this
threat, we compared some of our results with those from studies using dynamic
analysis. The comparison indicates that the results from static analysis are to a large
extent aligned with those from dynamic analysis (with some exceptions discussed
in Section 4.5.1), so we consider this threat to some extent addressed. Another threat
related to construct validity is that the SSA tool is limited by its precision and recall:
false positives and negatives may bias the presented results. However, to the best of
our knowledge, the used tool is among the most reputed in the community, and has
adequate performance (see Section 4.3.3). For mitigating this threat, we manually
verified its precision and recall by checking 50 random pattern instances for each

4.6. Threats to Validity 111

GoF pattern that is detected by SSA tool (i.e., over 500 instances in total—standing
for 32% of the total dataset in terms of pattern instances), which were true positives.
We note that the level of agreement between the researchers was approximately
98%, since only for very few instances there was an initial disagreement that was
resolved through discussion among the two of the authors. Additionally, regarding
FindBugs, we acknowledge that the list of bug patterns is by no means exhaustive
and additional bugs related to security, correctness and performance could be used.
However, to the best of our knowledge this tool is also among the most reputed in
the community, and has adequate performance (see Section 4.3.3).

Finally, this study assumes that PP classes in the dataset contribute to pattern
instances that are correctly implemented. A pattern implementation might not be
the correct one, due to either a programming mistake or pattern grime (Izurieta and
Bieman, 2013), or because the deployed pattern is not the optimal way to solve the
underlying problem considering that the effect of a pattern on quality is affected by
different factors (Ampatzoglou et al., 2012). This poses a threat to construct validity.
To mitigate it, we checked all the manually verified pattern instances; we found that
their implementation was correct and they were a suitable solution for the problem
at hand. Since these instances account for 32% of the dataset, we consider that this
threat is to a large extent mitigated.

In order to mitigate reliability, two different researchers were involved in the
data collection procedure, double-checking all outputs. Furthermore, the same re-
searchers also double-checked the data analysis. Finally, all primitive data can be
reproduced by using the same cases and tooling. The pattern detection tool (SSA
v4.5) and bug detection tool (FindBugs, v3.0.0) were downloaded from the provided
sources, while we have made the tool developed by us (SSA+ v1.0) publicly avail-
able.

Finally, concerning external validity, we identified the following threats. First,
not all parts of the architecture can benefit from the introduction of patterns, as the
pattern goal might be irrelevant to the functionality/design of that part. Thus, the
outcomes of this study do not generalize to all parts of the codebase or the design
space, but only to those where the use of a design pattern would be beneficial and
applicable. Second, we investigated a limited number of OSS projects. However,
the five projects selected are the most popular projects in SourceForge that fitted our
selection criteria. Additionally, they vary in terms of both domains and character-
istics; this partially alleviates this threat. Next, we investigate a limited number of
patterns, as well as pattern instances. A larger sample could strengthen the results
and increase our confidence on generalizing our findings. Similarly, we investigated
a subset of all runtime QAs and, therefore, our results cannot be generalized to all
QAs without further investigation. Finally, we investigated OSS projects written

112
4. What can Violations of Good Practices tell about the Relationship between GoF Patterns

and Runtime Quality Attributes?

in Java only, while all used tooling was Java-specific. Therefore, our observations
focus on this programming language and cannot be generalized to other OO lan-
guages without further investigation.

4.7 Conclusion

In this chapter, we investigated the relationship of 12 GoF patterns to three runtime
QAs, namely security, correctness and performance. In particular, we conducted a
case study on multiple versions of five OSSs among the most popular Java projects
on SourceForge platform (Bonita BPM, Convertigo, Eclipse Checkstyle Plug-in, Hi-
bernate and Logical DOC), from which we collected 12,857 classes, being approx.
25% single-pattern participants, 13% coupled-pattern participants and 62% non-
pattern participants.

To investigate the relationship between GoF patterns and the aforementioned
QAs, we explored source code violations, defining three metrics for each QA,
namely the number of New violations, Removed violations and Total number of vio-
lations. Considering these metrics, we estimated the levels of the three QAs for each
collected class of each version. We investigated the relation of these metrics to GoF
patterns with regards to four different perspectives: pattern participation (i.e., NPP,
SPP or CPP), pattern category, pattern and meta-role. Results of the study suggest
that classes not participating in any pattern are more prone to violations, as well as
that participation in more than one pattern can also be connected to the existence of
more violations. In addition, classes participating in Creational patterns, especially
Factory Method, or playing more generic meta-roles (e.g., Container) are likely to
have fewer violations than other classes. However, we advise being attentive of
these violations as we found them to often be of higher severity.

The findings of this study, although they do not imply any causality between
the introduction of patterns and the removal of violations, provide evidence that
code residing around design patterns adheres to good programming practices. This
observation is consistent with the wide-spread belief that the application of patterns
complies with the adoption of software architecture principles. To complement the
findings from this study, the next chapter aims at investigating the impact of GoF
patterns on one performance indicator that has recently attracted the attention of
both researchers and practitioners, i.e., energy consumption, through a controlled
experiment.

Based on:

Daniel Feitosa, Rutger Alders, Apostolos Ampatzoglou, Paris Avgeriou, Elisa Y. Nakagawa, (2017)
“Investigating the Effect of Design Patterns on Energy Consumption,” in Journal of Software: Evolution and
Process, vol. 29, no. 2, e1851, DOI:10.1002/smr.1851

Chapter 5

Investigating the Effect of Design Patterns on
Energy Consumption

Abstract

GoF patterns are well-known best practices for the design of object-oriented sys-
tems. In this chapter, we aim at empirically assessing their relationship to energy
consumption, i.e., a performance indicator that has recently attracted the atten-
tion of both researchers and practitioners. To achieve this goal, we investigate
pattern-participating methods (i.e., those that play a role within the pattern) and
compare their energy consumption to the consumption of functionally equiva-
lent alternative (non-pattern) solutions. We obtained the alternative solution by
refactoring the pattern instances using well-known transformations (e.g., replace
polymorphism with conditional statements). The comparison is performed on
169 methods of two GoF patterns (namely State/Strategy and Template Method),
retrieved from two well-known open source projects. The results suggest that for
the majority of cases the alternative design excels in terms of energy consump-
tion. However, in some cases (e.g., when the method is large in size or invokes
many methods) the pattern solution presents similar or lower energy consump-
tion. The outcome of our study can be useful to both researchers and practition-
ers, since we: (a) provide evidence on a possible negative effect of GoF patterns,
and (b) can provide guidance on which cases the use of the pattern is not hurting
energy consumption.

5.1 Introduction

There has been an increase of energy demand within the ICT domain (Procaccianti
et al., 2015). This is a multi-faceted problem, as one can consider the effects of net-
works, hardware, drivers, operating systems, and applications on energy consump-
tion. In this chapter, we focus on applications and, particularly, how they can be

114 5. Investigating the Effect of Design Patterns on Energy Consumption

optimized in terms of energy consumption. Software optimizations in this context
have been discussed at three levels of granularity:

• at architectural level, e.g., research that deals with energy efficient architec-
tures for networked systems (e.g., data centers, cloud computing, etc.) (Ham-
madi and Mhamdi, 2014; Procaccianti et al., 2015; Zhang et al., 2016).

• at design level, e.g., identification of differences in energy efficiency when ap-
plying design patterns (cf. Section 5.2).

• at source code level, discussions on topics such as multi-threading (Liu, 2012;
Pinto et al., 2014), refactoring (Johann et al., 2012; Perez-Castillo and Piattini,
2014; Sahin et al., 2014; Tiwari et al., 1996) and related algorithms (Jain et al.,
2005; Noureddine et al., 2012b,a, 2015).

The scope of our work lies at the design level, as we look into the effect of GoF (Gang
of Four) design patterns and their alternative solutions on software energy consumption.
GoF design patterns are recurring solutions to common problems in object-oriented
software design (Gamma et al., 1995). GoF design patterns can be applied in almost
any type of software, varying from small devices to large data-centers. In Java ap-
plications it has been reported that up to 30% of system classes participate in one
or more GoF design pattern occurrences (Ampatzoglou et al., 2015; Khomh et al.,
2009), leading to a significant influence on overall energy consumption. Solutions
provided by these patterns exploit object-orientation mechanisms (e.g., polymor-
phism) to enforce more flexible and maintainable designs.

The effect of applying a pattern is not uniform across all of its instances, and
all quality attributes (Ampatzoglou, Charalampidou and Stamelos, 2013b). In par-
ticular, several studies (Ampatzoglou, Charalampidou and Stamelos, 2013b; Hsueh
et al., 2008; Huston, 2001) report that the effect of a pattern on a quality attribute de-
pends on certain pattern-related parameters, like the number of classes, number of
methods invoked, or number of polymorphic methods. Therefore, it is reasonable to
expect that GoF design patterns have a potential impact (positive or negative) on the
energy consumption of software-intensive systems, depending on certain pattern-
related parameters. In the case where a pattern is not the optimal design solution,
alternative (non-pattern) design solutions can be employed. Alternative design so-
lutions have been proposed by several authors, including GoF design pattern ad-
vocates (Adamczyk, 2004; Fowler et al., 1999; Gamma et al., 1995; Lyardet, 1997;
Victório et al., 2010). More details on GoF design pattern alternatives can be found
in a recent literature review (Ampatzoglou, Charalampidou and Stamelos, 2013a).
We note that knowing the impact of patterns on energy efficiency can be beneficial
in both green- and brown-field software development. In Greenfield projects (i.e.,

5.1. Introduction 115

fresh development), such a knowledge can support the monitoring of energy effi-
ciency, whereas in Brownfield projects (e.g., refactoring of system to new purpose),
it can support the decision making process on what parts of the system to refactor
and how.

In this chapter, we investigate the effect of GoF patterns and their alternatives
on energy consumption, as well as the pattern-related parameters that might influ-
ence this effect. Specifically, we focus on two GoF design patterns, namely Template
Method, and State/Strategy (Gamma et al., 1995); we note that State and Strategy
patterns have a similar structure (Tsantalis et al., 2006) and, therefore, a similar ex-
pected effect on energy consumption. Therefore, the two patterns are discussed as
one (for more details, see Section 5.3.1). The rationale for selecting the specific pat-
terns is twofold:

• Usage frequency: behavioral patterns are the most commonly used patterns,
accounting for about half of the design pattern usages in a system (Ampat-
zoglou, Charalampidou and Stamelos, 2011). Additionally, State/Strategy
patterns are the most used patterns among all, and Template Method the third.
Therefore, the accumulated impact of these patterns on energy consumption
is expected to be high;

• Main object-orientation mechanism: object-orientation has three pillars1: en-
capsulation, inheritance, and polymorphism (Weisfeld, 2013). Polymorphism
is the most commonly explored principle within the GoF patterns (19 out of 23
patterns uses polymorphism). However, it is important to highlight that en-
capsulation and inheritance, although less explored, are also present in the so-
lution of many patterns. From these mechanisms, polymorphism potentially
influences energy consumption the most, as it comprises a complex procedure
to map the polymorphic calls to the correct implementation (Harper and Mor-
risett, 1995). Both State/Strategy and Template Method use polymorphism as
their main mechanism to provide the pattern solution and, therefore, have po-
tentially high impact on the energy consumption. The two studied patterns
use polymorphism with different goals: State/Strategy pattern uses it to de-
fine the interface to interact with the states/strategy, while Template Method
pattern uses it to define the points of specialization to be implemented by the
concrete classes. In particular, the State/Strategy pattern encapsulates the dif-
ferent states/strategies, whereas the Template Method pattern exploits inher-
itance, since concrete classes extend the functionality of the abstract class. For
that reason, we point that other pillars are part of our investigation, although

1Some authors advocate a fourth pillar: abstraction. However, this is a higher level concept, which is
provided as combination of the other three pillars and, therefore, is not relevant for our argumentation.

116 5. Investigating the Effect of Design Patterns on Energy Consumption

polymorphism is the main mechanism.

To investigate the energy consumption, we compare the energy efficiency of pat-
tern solutions with the energy efficiency of their alternative designs (one for each
pattern), through a crossover experiment. We note that the alternative designs
were developed in a standardized way (see Sections 5.3.2 and 5.3.4). In the experi-
ment, we focus our investigation on pattern-related methods2 so as to enable a fine-
grained analysis of the energy consumption. In addition to exploring the differences
between pattern and alternative solutions, we also investigate some pattern-related
parameters that can cause the pattern to be either beneficial or harmful with respect
to energy consumption. For the experiment, we selected two large well-known open
source software (OSS) systems.

The remainder of this chapter is organized as follows. In Section 5.2, an overview
of the related work on energy consumption in design patterns, and alternatives to
design patterns is provided. Section 5.3 presents background information neces-
sary for understanding the experiment, i.e., the selected design patterns and their
alternative solutions. Section 5.4 presents the experiment planning, which describes
the research questions, hypotheses, the used tool and collected variables. Section
5.5 overviews the execution of the experiment (i.e., data collection and validation).
In Section 5.6, we elaborate on our analysis and answer the research questions. In
Section 5.7, we discuss the obtained findings, by focusing on the most important ob-
servations and presenting implication for researchers and practitioners. The threats
to the validity of our study are discussed in Section 5.8, followed by the conclusion
of this chapter in Section 5.9.

5.2 Related work

This section presents research efforts that discuss the effects of design patterns on
energy consumption. We focus on the consumption of design patterns, the types
of patterns being investigated, and the proposed alternatives for patterns. After
discussing the related work, an overview of how our research compares to related
work is provided.

In the work of Bunse et al. (2013), a case study on the overhead of design patterns
compared to “clean software” is presented. In this context, “clean software” is a
chunk of design that could be refactored into a pattern solution. The software in
this study mainly targets mobile devices. The design patterns discussed are Facade,
Abstract Factory, Observer, Decorator, Prototype, and Template Method. This initial
investigation shows that each of these design patterns has overhead when compared

2Pattern-related methods are methods that play a role within the design pattern.

5.2. Related work 117

to their “clean” counterparts. Most of the patterns have a relative small overhead,
except for the Decorator pattern, which, based on this study, consumes more than
double the amount of energy compared to the “clean” counterpart.

Additionally, Sahin et al. (2012) performed a more extensive investigation on the
impact of design patterns on energy usage. In particular, this study takes into ac-
count the feasibility, impact, consistency, and predictability of the energy consump-
tion of 15 design patterns, from all GoF pattern categories. The creational design
patterns discussed are the Abstract Factory, Builder, Factory Method, Prototype, and
Singleton. The structural patterns discussed are the Bridge, Composite, Decorator,
Flyweight, and Proxy pattern. Finally, the behavioral patterns that were selected
are the Command, Mediator Observer, Strategy, and Visitor. Results of the study
suggest that the use of design patterns, either increases or decreases the amount of
energy used. Additionally, there are no relations of the category of the design pat-
tern and the impact on energy usage. Finally, this study shows that it is not possible
to precisely estimate the impact of design patterns on energy consumption when
only considering artifacts on design level.

Litke et al. (2007) conducted an initial exploration of the energy consumption
of design patterns. This chapter includes an analysis of five design patterns, for
which the energy consumption and performance are described. These design pat-
terns were tested by the use of six example applications written in C++. These ap-
plications were first tested as clean, i.e., without the usage of design patterns, and
then transformed with the designated design pattern. The design patterns discussed
are the Factory Method, Adapter, Observer, Bridge, and Composite. For Factory
Method, Adapter, and Observer, differences were found between the original appli-
cation and the one containing the specified design pattern. The results show that
applying Factory Method or Adapter patterns does not necessarily impose a serious
threat to the energy consumption. However, a significant overhead was identified
by employing the Observer pattern, but additional research is still required to inves-
tigate the cases when Observer is indeed a threat to energy consumption. Since the
Bridge and Composite pattern had no significant difference in power consumption,
the authors suggest further analysis.

In a recent paper, Noureddine and Rajan (2015) performed a comparison on the
energy consumption overhead caused by 21 design patterns and explored in de-
tails the effects of two design patterns (Observer and Decorator pattern). The effects
discussed in this paper are the energy consumption of applications using the pat-
tern solution, the non-pattern solution, and an optimized alternative for the design
patterns. The optimized solutions for the alternatives are integrated into the appli-
cations by making changes to compilers, so that the optimizations are automatically
processed when compiling. This study suggested that simple transformations to the

118 5. Investigating the Effect of Design Patterns on Energy Consumption

Observer and Decorator patterns are able to provide reductions in energy consump-
tion in the range of 4.32% to 25.47%. We clarify that the patterns investigated in our
study are included among the 21 patterns initially investigated by Noureddine and
Rajan. However, the comparison of these results (from the initial investigation) to
ours is limited, since some extra details (e.g., implemented alternatives, source code
properties) would be necessary to further elaborate the discussion (see Section 5.7.1).

To ease the comparison of our work to the aforementioned studies, we summa-
rize the main differences in Table 5.1, according to the following aspects: (a) Design
patterns addressed; (b) Number of nontrivial systems used; (c) Number of pattern
instances analyzed; (d) Number of pattern-related methods analyzed; (e) Level of
energy measurement3 (process level or method level); (f) Level of investigation4

(instance level or method level); and (g) Number of investigated parameters that
influence energy consumption. Based on Table 5.1, the main contributions of this
study compared to the research state-of-the-art are the following:

• Usage of nontrivial systems—our investigation is performed considering
two nontrivial systems and a considerable amount of pattern instances and
pattern-related methods. This setup allows allow us to observe realistic results
that are more representative to the population of existing software-intensive
systems;

• Exploitation of a method-level approach for measuring energy consump-
tion—in addition to the more traditional approach of process-level measure-
ment. Being able to isolate the energy consumed by specific method calls, we
obtain measurements with lower overhead, allowing a more in-depth investi-
gation of both pattern and alternative solutions, in the sense that we focus on
pattern-related methods of each pattern instance; and

• Exploration of parameters of the processed patterns—in this study, we in-
vestigate not only the energy efficiency of State/ Strategy and the Template
Method design pattern, comparing them against their respective alternative
(non-pattern) design solutions, but also the parameters of their application
that render them either beneficial or not. We clarify that related work has
indicated parameters as possible causes for greater energy consumption, but
without any investigation of these parameters.

3Measurement at process level considers the energy consumed by the operating system process of the
running software; measurement at method level considers the energy consumed by a specific method
within the software process.

4Investigation at instance level considers pattern instances as subjects for analysis while the method
level considers the pattern-related methods as subjects.

5.3. Design Patterns and Alternatives 119

Table 5.1: Overview of related work

Reference Design
pat-

terns

Nontrivial
systems

of in-
stances

of
meth-

ods

Measure-
ment
level

Investi-
gation
level

of
param-

eters

(Bunse et al., 2013) 6a 0 6 0 Process Instance 0
(Sahin et al., 2012) 15b 0 15 0 Process Instance 0
(Litke et al., 2007) 5c 0 5 0 Process Instance 0
(Noureddine and Rajan, 2015) 21d 0 N/A* 0 Process Instance 0

This study 3e 2 21 169 Process
and

Method

Method 3

a Facade, Abstract Factory, Template Method, Prototype, Decorator, and Observer.
b Abstract Factory, Builder, Factory Method, Prototype, Singleton, Bridge, Composite, Decorator, Flyweight, Proxy,
Command, Mediator, Observer, Strategy, and Visitor.
c Factory Method, Observer, Adapter, Bridge, and Composite.
d Decorator, Observer, Mediator, Strategy, Template Method, Visitor, Abstract Factory, Builder, Factory Method, Proto-
type, Singleton, Bridge, Flyweight, Proxy, Chain of Responsibilities, Command, Interpreter, Iterator, State, Adapter, and
Composite.
e State, Strategy, and Template Method.
* Not available, the authors only mention “several small examples”.

5.3 Design Patterns and Alternatives

In this section we present background concepts that facilitate the understanding of
our experiment. In particular, we discuss the GoF design patterns that are explored
in this study (State, Strategy, and Template Method), elaborating on their design
structure and an overview of their uses and consequences. Additionally, we present
and discuss their alternative solutions (referred in this chapter as State/Strategy
Alternative and Template Method Alternative). The identification of design pattern
alternatives can be a nontrivial activity, since some GoF design patterns have no
reported alternatives in the literature (Ampatzoglou, Charalampidou and Stamelos,
2013a). To consider a design as a design pattern alternative, it should:

• originate from the literature;

• provide exactly the same functionality as the pattern; and

• have notable structural differences compared to the pattern.

We used two main sources to find alternatives: the seminal book on design refac-
toring by Fowler et al. (1999) and a systematic literature review conducted by Am-
patzoglou, Charalampidou and Stamelos (2013a), in which an overview of GoF de-
sign pattern alternatives are presented and discussed. Based on the aforementioned
criteria, we selected well-known alternative solutions from the literature, as they
are expected to be more recurrent in existing software. Although we acknowledge

120 5. Investigating the Effect of Design Patterns on Energy Consumption

the existence of design patterns and alternatives that are optimized for energy effi-
ciency (which would obviously lead to better solutions), we have deliberately not
included them in our study. The reason for this decision is that we intend to fo-
cus on widely-known solutions that have been applied to various software projects,
by developers who are not aware of energy optimization mechanism. Investigating
such optimized solutions can potentially introduce bias to our results, since neither
patterns nor alternatives would be in their standard form.

5.3.1 State/Strategy

The State pattern allows an object to change its behavior by switching from one
state to another (Gamma et al., 1995). One classic example for the State pattern are
traffic lights that turn from green to yellow, yellow to red and red back to green. The
collection of all states defines the space in which the context (traffic light) is able to
change its behavior. This behavior is implemented by each of the states separately.
The context class has at least one state instance object (i.e., a concrete state) that
represents its current state and thus functions as a central interface for clients to
communicate with (see model on the left in Figure 5.1). This context delegates the
handling of requests to its current state object. The State pattern is used in scenarios
where either the behavior of an object depends on its state and needs to be changed
during runtime, or the operations have large, multipart conditional statements that
depend on the object’s state (Gamma et al., 1995). Applying the State pattern has a
number of consequences: the specific behavior for each state is localized; the state
transitions are made explicit; and State objects can be shared when they have no
instance variables.

The Strategy pattern allows for the encapsulation of certain families (such as al-
gorithms), allowing them to be interchangeable depending on client requests or spe-
cific behaviors of the context (Gamma et al., 1995). The context class has at least one
object of the concrete strategy that provides its (unique) functionalities, which are
implemented according to a template defined by the strategy interface (see model
on the right in Figure 5.1). The Strategy pattern can be used in a number of different
situations (Gamma et al., 1995), e.g., when a class has different behaviors (depend-
ing on a specific situation) or when there are multiple implementation options to be
chosen. Consequences of using this pattern include (Gamma et al., 1995): it becomes
an alternative for sub-classing the context directly or using conditional statements,
by decoupling the algorithms into their own family; and it may cause memory and
computational overheads, because it increases the number of used objects, and con-
crete strategies may not use all information they receive when called.

By inspecting the class diagrams of State and Strategy patterns (see Figure 5.1),

5.3. Design Patterns and Alternatives 121

<<interface>>
State

+ handle()

Context

+ handleRequest()

ConcreteStateA

+ handle()

ConcreteStateB

+ handle()

<<interface>>
Strategy

+ execute()

Context

- object : Strategy

+ request()

ConcreteStrategyA

+ execute()

ConcreteStrategyB

+ execute()

Figure 5.1: UML model of State (on the left) and Strategy (on the right) patterns

we observe that they have an equivalent structure (i.e., skeleton design) (Gamma
et al., 1995; Tsantalis et al., 2006). Both patterns have a context that is called by an
external client and a family that consists of an interface with concrete classes. Both
contexts contain an object that represents at least one or more states/strategies that
can be uniformly handled. The main difference is the logic beneath the patterns,
i.e., the behavior is fundamentally different. In the case of the State pattern, the cur-
rent object (state) within the context is updated after the execution of every behavior
(the method handle, in the diagram). This is not necessary for the Strategy pattern,
as strategies may be interchangeable during runtime. Additionally, the change of
strategies is more an additional feature than a rule for the Strategy pattern, whereas
for State this is the basic concept of the pattern. In this study, we treat both pat-
terns mutually, since the expected changes to measure energy consumption is fo-
cused on the design, i.e., structure and the use of their common object-orientation
mechanisms. The aforementioned fundamental differences regard the behavior of
the pattern instance and, thus, are not expected to be a confounding factor for our
study, unless these fundamental differences systematically change design attributes
(e.g., method size). Nevertheless, we have not identified such cases in our dataset
(see Section 5.5.2).

5.3.2 State/Strategy Alternative

In a literature review performed by Ampatzoglou, Charalampidou and Stame-
los (2013a) many alternatives for the State/Strategy pattern are presented (Adam-
czyk, 2003, 2004; Ferreira and Rubira, 1998; Henney, 1999, 2002; Sobajic et al., 2010;
Victório et al., 2010). Similarly, Fowler et al. (1999) discuss several alternatives for
these two patterns. Among these available options, we have chosen to replace the
use of polymorphism with the use of conditional statements. In this solution, the
entire structure of the State/Strategy pattern is removed and the complete logic is
implemented in the context, which now has a local enumerator object that enables

122 5. Investigating the Effect of Design Patterns on Energy Consumption

the shifting between the different behaviors. Listing I shows an example of alterna-
tive implementation for a Strategy pattern instance. While implementing an alter-
native design, the implementation of each concrete strategy would be replaced with
the behavior of the corresponding state and the state update.

Listing 5.1: Example implementation of Strategy alternative

public c l a s s S t r a t e g y {

public enum S t r a t e g i e s {
Strategy1 ,
Strategy2 ,
S t ra tegy3

} ;

private enum c u r r e n t S t r a t e g y ;

public i n t [] s o r t (i n t [] l i s t) {
switch (c u r r e n t S t r a t e g y) {

case Stra tegy1 :
/ / I m p l e m e n t a t i o n o f S t r a t e g y 1 .

break ;
case Stra tegy2 :

/ / I m p l e m e n t a t i o n o f S t r a t e g y 2 .
break ;
case Stra tegy3 :

/ / I m p l e m e n t a t i o n o f S t r a t e g y 3 .
break ;
case default :

return 0 ;
break ;

}
}

}

Despite the simplicity of the recommended changes, creating alternatives re-
quires some effort, as design patterns may be implemented in various different
ways. These variations should be reflected into the alternative designs. Based on our
experience, one specific type of variation had direct impact in the implementation of
the alternative: the structure of the implemented pattern may differ from the origi-
nally proposed structure (Tsantalis et al., 2006). Specifically, the proposed structure
of State/Strategy has a standard Interface-Class (IC) hierarchical structure; however,
it may also be implemented with an abstract class between the interface and the
class (an intermediate level of inheritance), becoming an Interface-AbstractClass-
Class (IAC) hierarchical structure. Such a structure may contain several abstracts
classes in the middle. To deal with abstract classes in the alternative, each behavior

5.3. Design Patterns and Alternatives 123

AbstractClass

+ templateMethod()
+ operation()

ConcreteClassA

+ operation()

ConcreteClassB

+ operation()

Figure 5.2: UML model of the Template Method pattern

defined in a concrete class would be combined with the abstract class behavior. If
that is not possible, e.g., when a class or abstract class is used from the Java library,
an additional object would be created to be able to access its functionalities. We clar-
ify that other, less recurrent, variations are possible, but they are not handled in this
study. For example, a State/Strategy may comprise multiple interfaces, which are
partial responsibilities, and concrete classes may implement all or some of them.

5.3.3 Template Method

Similarly to Strategy, the Template Method isolates different algorithms or opera-
tions to their own subclass. However, this pattern allows the subclasses to alter
certain steps of an algorithm without changing the structure of the algorithm. An
abstract class has at least two operations, one primitive, which is used by the con-
crete subclass to implement the steps of an algorithm, and a template method that
contains the default structure (see Figure 5.2). The Template Method pattern can
be used to avoid code duplication, and to control or restrict any extensions of an
abstract class, so that an abstract function or hook function can only be called on
certain locations.

5.3.4 Template Method Alternative

Fowler et al. (1999) presents several alternatives for the Template Method and Am-
patzoglou, Charalampidou and Stamelos (2013a) discuss one alternative. From
these options, we chose the starting point from the Form Template Method (FTM)
refactoring, presented by Fowler et al. (1999). Generally, FTM transforms a non-
pattern code into a Template Method (see Figure 5.3). In contrast to State/Strategy
alternative (Section 5.3.2), in which we completely eliminated polymorphism, the
alternative for Template Method does use polymorphism, but in a different fashion.
Therefore, this study design cannot be considered appropriate for comparing the

124 5. Investigating the Effect of Design Patterns on Energy Consumption

AbstractClass

+ templateMethod()
+ operation()

ConcreteClassA

+ operation()

ConcreteClassB

+ operation()

AbstractClass

+ templateMethod()

ConcreteClassA

+ templateMethod()

ConcreteClassB

+ templateMethod()

Figure 5.3: Comparison of the Template Method pattern (on the left) against its alternative
(on the right)

effect of using polymorphism on energy efficiency.

By using this alternative, both primitive operations and specific behavioral oper-
ation now reside in each concrete class. However, the Template Method also leaves
room for variants in its implementation. In such cases, the adjustments that would
be applied in the alternative to handle these variations are described below. Simi-
larly to State/Strategy, the Template Method allows all or none of these adjustments
to be included.

• Depth of Inheritance Tree: Even though the Template Method uses only one
abstract class, it is possible that the methods are already defined in an inter-
face. This makes it harder to remove the primitive methods when creating
the alternative implementation. In these cases, the primitive method is not re-
moved, but it is moved to the concrete class. This allows us to both keep the
IAC structure and to implement the alternative.

• Private methods: It is possible for a template method to call private methods
within the abstract class. If this is the only case, the private method is called,
the private method is also moved down to the concrete class. When this is
not possible, the operations within the method are moved inside the template
method. This is not feasible in cases the operations rely on multiple other
methods or sources. In such a case, the private method is changed to protected.

As for State/Strategy, other, less recurrent, variations are possible, but are not
handled in this study. For example, a concrete class may aggregate the abstract
class, possibly creating recursive calls, which are not originally intended for tem-
plate method pattern instances.

5.4. Experimental Planning 125

5.4 Experimental Planning

In this section, we present the design and materials of the experiment reported in
this chapter. This experiment is reported based on the guidelines of Wohlin et al.
(2012) and on the structure proposed by Jedlitschka et al. (2008). Initially, the re-
search objective, questions and respective hypotheses of the study are discussed,
followed by the process to select objects of study and experimental units. Next, an
overview of the variables and instruments used to the data collection are presented.
Finally, the analysis procedure is described. For presentation purposes, we report
the data collection procedure along with the execution process, in Section 5.5.

5.4.1 Objectives, Research Questions, and Hypotheses

The goal of this study is defined according to the Goal-Question-Metrics approach
(van Solingen et al., 2002), as follows: “analyze instances of State, Strategy, and Tem-
plate Method patterns for the purpose of evaluation with respect to their energy con-
sumption from the point of view of software developers in the context of open source
systems”. To achieve this goal, we set three research questions (RQs):

RQ1: What is the difference between the application of the Template Method pat-
tern and an alternative design solution in terms of energy consumption?

RQ2: What is the difference between the application of the State/Strategy pattern
and an alternative design solution in terms of energy consumption?

RQ3: What are the parameters that influence the energy consumption of State, Strat-
egy, and Template Method pattern instances?

RQ1 and RQ2 aim at investigating whether the energy consumption of patterns
and alternative solutions is significantly different. Such information is of paramount
importance to make more informed decisions when selecting patterns over alter-
natives, while developing energy efficient software. To answer RQ1 and RQ2, we
formulated the following hypotheses:

H0: There is no difference between the energy consumed by software using a design
pattern solution and software using an alternative design solution.

H1: The energy consumed by software using a design pattern solution is signifi-
cantly lower than the energy consumed by software using an alternative solu-
tion.

H2: The energy consumed by software using a design pattern solution is signifi-
cantly higher than the energy consumed by software using an alternative so-
lution.

126 5. Investigating the Effect of Design Patterns on Energy Consumption

RQ3 aims at exploring if there are pattern-related parameters that affect the en-
ergy consumption of the patterns, and for which ranges of these parameters the
pattern can be characterized as beneficial or harmful. Such thresholds can serve
as guidance for decision making on when to apply a design pattern or not. To an-
swer this research question, we isolate groups (e.g., A and B) of pattern-participating
methods whose members have a similar difference in the energy consumption (com-
pared to the alternative solution) and investigate specific structural characteristics
of the pattern solution (for more details, see Section 5.4.4). To test the difference
between every two groups, we formulated the following hypotheses:

H0: There is no difference between the parameter values of the two groups (A and
B).

H1: The parameter value of group A is higher than the value of group B.

H2: The parameter value of group B is higher than the value of group A.

5.4.2 Design Type and Experimental Units

To answer the research questions and test the hypotheses, we designed a crossover
experiment (Wohlin et al., 2012), in which pattern-related methods are the experi-
mental units. Pattern-related methods are methods of pattern instances that play
a role within the design pattern. For our two selected patterns, these methods are
the template method (Template Method pattern) and the methods implementing the
behavior of states or strategies (States/Strategy pattern). We selected this unit for
three reasons: (a) units with finer granularity facilitate a more detailed investiga-
tion of parameters (i.e., design characteristics) that influence the energy efficiency of
design pattern solutions; (b) to standardize the data collection, since patterns may
have multiple pattern-related methods, each one implementing different responsi-
bilities; and (c) the alternative solutions provide the same functionality compared to
pattern-related methods, but with a different implementation, what also promotes
standardization of the data collection. For each experimental unit (i.e., a pair of pat-
tern and alternative solutions), we record all data needed to answer the research
questions, i.e., the energy consumption measurements for both pattern and alterna-
tive solutions, and design characteristics of the pattern solution.

To collect data for the experiment, it is necessary to select software systems and
pattern instances from which to sample pattern-related methods. Regarding soft-
ware systems, we decided to use OSS that met the following criteria:

• are written in the Java programming language, since the tool for retrieving
design pattern instances (see Section 5.4.3) is limited to Java;

5.4. Experimental Planning 127

• are nontrivial systems that are either widely used or known, so as to avoid the
use of toy examples; and

• contain instances of both the Template Method or the State/Strategy patterns.

Two OSS projects were selected for the study. Selecting more projects would
be unrealistic as all alternative solutions had to be manually implemented by us,
which is a time-consuming task. However, we do investigate a sufficient number
of pattern instances (more than related work) and pattern-related methods. For fur-
ther discussion, please see how we deal with threats to validity (Section 5.8). The
first OSS project is JHotDraw5, a Graphical User Interface (GUI) framework writ-
ten in Java that allows the creation of technical and structured graphical images.
The project started in 2000, having about 80,000 downloads at this point, and the
current version (7.6) has 680 Java source files, containing 80,535 SLOC. JHotDraw
was developed as a design exercise, for applying GoF design patterns, becoming
a powerful framework that is acknowledged by the software engineering commu-
nity as a benchmark for GoF design patterns detectors (Aversano, Canfora, Cerulo,
Del Grosso and Di Penta, 2007; Seng et al., 2006). The second OSS project is Joda
Time6, an Application Program Interface (API) that can replace the standard date
and time classes, providing better quality and in-depth functionalities. The project
started in 2003, having almost 500K downloads at this point, and the current version
(2.9.2) has 329 Java source files, containing 85K SLOC. Joda Time has a high rating
on GitHub and has also been used for research purposes (Manotas et al., 2014).

Despite the careful selection of representative software for the study, we ac-
knowledge that nontrivial (complex) systems may have associated risks, in the sense
that the transformation of a nontrivial pattern instance to an alternative solution
might not be uniform. To mitigate this risk, we developed a strategy while selecting
pattern instances / pattern-related methods, and implementing the alternative so-
lutions. Firstly, to select pattern instances for the study, we consider only those that
meet the following criteria:

• Used within the application: It is possible that the found pattern instances
are not used within the applications themselves, e.g., functionalities provided
as an API, whose pattern instances are partially implemented by the API user;

• Reachable: Some pattern instances are not reachable directly, imposing a long
(and hard to predict) sequence of calls, what may bias the measurement pro-
cess. One option is to modify the source code to make the pattern instance
easier to reach, but it would bias the results as well;

5http://www.jhotdraw.org/
6http://www.joda.org/joda-time/

128 5. Investigating the Effect of Design Patterns on Energy Consumption

• Performing deterministic tasks: Certain pattern instances may perform non-
deterministic tasks, such as saving data to files or transferring data over the
network. This could interfere with the actual measurement process; and

• Not too complex: In some cases, the pattern instances could have a relatively
high number of members, e.g., twenty or more concrete states/strategies or
are variants of the original pattern that are not handled in our study (see Sec-
tions 5.3.2 and 5.3.4). These pattern instances would make the process of im-
plementing the alternatives infeasible. On top of that, such pattern instances
would represent a threat to study validity, as these comprise exceptional cases.

Regarding method selection, the same criteria applied to pattern instances is
used. We believe that the pattern instances and pattern-related methods filtered
by these criteria are representative of the population, as excluded cases are mostly
exceptional. Finally, concerning the implementation of alternative solutions, we
have to ensure that the original business logic is preserved, avoiding unnecessary
changes to the original source code. As the alternatives preserve the original busi-
ness logic and only the difference in the energy consumption is analyzed, we believe
that we have mitigated much of the risk associated with the usage of nontrivial pro-
grams.

5.4.3 Variables and Instrumentation

To answer the research questions and test the hypotheses stated in Section 5.4.1, a
number of variables are derived. These variables are divided into two distinct cat-
egories: (a) pattern-related information (pattern, method and m-* in Table 5.2, which
are explained in the first subsection); and (b) measurements of energy consumption
(*-ptt and *-alt in Table 5.2, which are explained in the second subsection). These
variables are recorded for each unit of analysis (i.e., pattern-related methods). The
entire process of identifying and measuring the units of analysis culminates in the
creation of a dataset of all extracted variables for each unit. This dataset is recorded
as a table in which the columns correspond to collected variables. In the following
subsections, we present and discuss the variables and the tools used to extract them.

Pattern-related Information

To collect the necessary data for all units of analysis, we first find all the pattern
occurrences within the OSS applications. To detect the design patterns occurrences,
we use a tool developed by Tsantalis et al. (2006). This tool uses a Similarity Scoring
Algorithm (SSA) for detecting design structures similar to a desired GoF design pat-
tern. Among the 12 detectable patterns are Template Methods and State/Strategy

5.4. Experimental Planning 129

Table 5.2: List of collected variables

Variable Description Tool

pattern Pattern Type (Template Method or State/Strategy)
SSAmethod The pattern-related method that is measured

m-sloc SLOC of the pattern-related method
-m-mpc MPC of the pattern-related method

papi-ptt Energy consumption (in Joules) of the pattern solution, at process level
PowerAPIpapi-alt Energy consumption (in Joules) of the alternative solution, at process level

jalen-ptt Energy consumption (in Joules) of the pattern solution, at method level
Jalenjalen-alt Energy consumption (in Joules) of the alternative solution, at method level

ptop-ptt Energy consumption (in Joules) of the pattern solution for triangulation
pTopptop-alt Energy consumption (in Joules) of the alternative solution for triangulation

(identified jointly due to structural similarity). The extraction of the design pat-
terns is done by isolating subsystems of a given application through static analysis,
which enables the identification of relationships between the elements of each sepa-
rate subsystem. The SSA tool has been assessed by several studies (such as Kniesel
and Binun (2009) and Pettersson et al. (2010)), which have positively evaluated its
performance, precision, and recall rates. SSA was, therefore, selected for this study
because of the following:

• it provides detection of the design patterns of interest, i.e., Template Method and
State/Strategy; and

• it provides acceptable performance, as described by Tsantalis et al. (2006), also
when compared to similar tools (Kniesel and Binun, 2009; Pettersson et al.,
2010).

SSA is limited to the Java programming language, since the similarity analysis is
performed on compiled Java class files. After the application of the pattern detection
tool on a project, the results are compiled into one Extensible Markup Language
(XML) file that contains all the instances found within a given application.

Additionally, a set of metrics has to be extracted, which are used to investigate
parameters that influence the energy consumption of pattern instances (see Section
5.4.4). In order to select these metrics, we considered the SQualE platform (Balmas
et al., 2010), as it summarizes a broad and comprehensive list of metrics from the lit-
erature. From this list, we identified two metrics that could be measured at method
level: SLOC and MPC7. SLOC is measured as the amount of source line of code

7MPC consists of the number of direct invocations to methods that are not owned or inherited by the
class being measured.

130 5. Investigating the Effect of Design Patterns on Energy Consumption

of the method, while MPC is measured as the amount of calls, within the method,
to other methods (these calls do not include those to methods of the same class,
even if inherited). We clarify that the parameters SLOC and MPC are calculated
for the pattern solution only. For answering RQ3, we are interested in identifying
characteristics of the pattern design solution that are related to energy efficiency. In
addition, SLOC and MPC do not change considerably in the alternative solution,
since the transformation mostly causes a reorganization of the code and how meth-
ods are called. In other words, our goal is not to evaluate the change of complexity,
but how the complexity of the pattern solution influences the difference of energy
consumption between the solutions, especially because this complexity is dictated
by the business logic, which is not modified.

Assessment of Energy Consumption

To measure the energy consumption of software applications, there are multiple
tools based on both software and hardware (Noureddine et al., 2013). In this study
we, opted to use software tools, as they allow finer-grained measurements (i.e., at
the method level) (Noureddine et al., 2013). Although hardware measurement of-
fers a higher precision, it estimates the energy consumed by the whole machine, and
our study investigates the consumption difference at the methods level. Therefore,
we prioritized a finer-grained technique over a more precise one. In addition, se-
lecting and configuring a hardware measurement tool may represent a complex and
expensive task (Diouri et al., 2014), which if not accurately performed can introduce
additional bias. In order to select the appropriate tools, we searched the literature
and identified nine software tools for measuring energy consumption. We analyzed
two comparative studies that included these tools (Chen et al., 2012; Noureddine
et al., 2013), in addition to other literature, so as to verify their theoretical and em-
pirical validity in scientific setups. Based on this analysis, two tools presented the
highest precision, namely PowerAPI and pTop; a third tool, namely Jalen, although
with lower precision, is able to deliver finer-grained measurements. Other tools
that we considered either do not have sufficient validation or present lower preci-
sion regarding their respective granularity of measurement, or require additional
hardware investments.

PowerAPI is an API that enables real-time profiling of the energy consumption
at the level of operating system (OS) processes (Noureddine et al., 2012b,a, 2013,
2015). This tool currently supports measuring energy from CPU and network, which
are represented through power modules. The available implementations that are
provided for this tool are created for GNU/Linux distributions, but they are in-
dependent of the hardware. To measure the energy consumption of the CPU, the

5.4. Experimental Planning 131

Thermal Design Power (TDP) is taken into account, which is the maximum amount
of heat (which is generated by the CPU) that requires to be dissipated by the cooling
system. The precision for measuring the power consumption of software applica-
tions with PowerAPI was estimated by Noureddine et al. (2015) by comparing it
against a power meter. This estimation showed that the calculated margin of error
vary from 0.5% to 3%.

Jalen is an energy consumption profiler, which was created by the same devel-
opers of PowerAPI (Noureddine et al., 2012b, 2013, 2014, 2015). Jalen can collect en-
ergy consumption on different levels of granularity such as the method level. Sim-
ilarly to PowerAPI, Jalen is limited to the use on GNU/Linux distributions due to
the sensors used for the hardware components. Since Jalen injects monitoring code
through the bytecode instrumentation, it reduces the precision of the measurement.
In a comparison of tools performed by Noureddine et al. (2015), the measured time
for individual Tomcat’s server requests was 57% higher in average. However, since
we are comparing two different versions of the same applications (i.e., pattern and
alternative solutions), this cannot be considered as a confounding factor.

pTop is a profiler that can determine energy consumption on the OS process-
level and is designed to work solely on GNU/Linux distributions (Do et al., 2009;
Noureddine et al., 2013). pTop calculates the energy consumption through a dae-
mon that profiles the resource utilizations for all processes, whereas the power
consumption of the system CPU, network interface, memory and hard drive are
tracked. Each different system component needs to be configured (possibly cali-
brated as well) according to its specifications. Just like PowerAPI, it uses the TDP
to calculate the energy consumed by the CPU. The precision of pTop was analyzed
by comparing its results to a wattmeter (Noureddine et al., 2013). Results of this
analysis show that the average median error for pTop was less than 2 watts.

All the aforementioned energy measurement tools are suitable candidates to
obtain reliable results. However, PowerAPI and Jalen are designed to specifically
measure the energy consumption of Java applications, not including the overhead
caused by the Java Virtual Machine (JVM). Due to the granularity of the energy
measurement of Jalen (i.e., method level), the output is not influenced by the energy
expenditure of other parts of the system, which makes it a more suitable tool. How-
ever, in order to compare the related work to ours, it is also necessary to consider
the same perspective used in related work, i.e., process level measurements, in this
case by using PowerAPI. Therefore, we decided to use both PowerAPI and Jalen for
the study. We clarify that both tools have a limitation of being able to measure en-
ergy consumed by the CPU only. Therefore, among other reasons, we restricted the
experimental units to those that do not use extra resources (e.g., hard drive, or net-
work). Additionally, we decided to use pTop, which is more commonly known in

132 5. Investigating the Effect of Design Patterns on Energy Consumption

the scientific community, for triangulation purposes, to validate the measurements
obtained from PowerAPI and Jalen, and to verify the memory energy consumption
(see Section 5.5.2).

5.4.4 Analysis Procedure

During the data analysis, the previously described variables (see Table 5.2) are used
to answer the research questions. As mentioned in Section 5.4.3, we collect data
using two different tools (PowerAPI and Jalen) and, therefore, every task of the
analysis is performed for the data of each tool separately, and results are compared.
In addition, the data regards two design patterns (Template Method and State/S-
trategy) and every step of the analysis is repeated for both patterns separately. The
data analysis is twofold, described in the following.

General Analysis of Energy Consumption

Initially, we compare the energy measurements (*-ptt and *-alt) to test the hypothe-
ses posed by research questions RQ1 and RQ2. For evaluating whether or not the
pattern solution is significantly different from the alternative solution, we perform
two steps:

1. Check distribution. To decide whether to use parametric or non-parametric
tests, we verify the distribution of each dependent variable metric (i.e., papi-
ptt, papi-alt, jalen-ptt, and jalen-alt) by employing the Shapiro-Wilk test (Field,
2013). If not normal, a Wilcoxon signed ranks test (Field, 2013) is used for
assessing the difference between pattern and alternative solutions; otherwise,
paired sample t-test (Field, 2013) is used; and

2. Compare energy consumption. Next, we compare whether the difference be-
tween pattern and alternative solutions is statistically relevant. For that, we
employ the dependent sample test for investigating the data obtained by Pow-
erAPI and Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt vs. jalen-alt).

Analysis of Design Parameters

Once the difference in the energy consumption between pattern and alternative so-
lutions is observed, we want to investigate parameters that may influence this dif-
ference. For that, we isolate controlled groups (i.e., clusters) with similar difference
in the energy consumption and test the hypotheses posed by RQ3. This analysis
comprises the following steps:

5.5. Execution 133

1. Create clusters based on consumption. First, we create clusters based on the differ-
ence between the energy measurements for PowerAPI (i.e., papi-diff = papi-ptt
- papi-alt) and Jalen (i.e., jalen-diff = jalen-ptt - jalen-alt). For that, we employ
the agglomerative hierarchical clustering technique, considering the average
linkage method (or between-groups linkage) and using squared Euclidian dis-
tance (Hastie et al., 2009);

2. Merge clusters based on design parameters. Next, we investigate whether or not
the clusters are statistically different with regards to the analyzed design pa-
rameters (m-sloc and m-mpc). As the clusters comprise independent samples,
we employ Mann-Whitney tests (Field, 2013) for this investigation. The anal-
ysis for each parameter is performed separately and clusters that are not sta-
tistically different are merged; and

3. Verify trends. Finally, based on the final disposition of the clusters, we verify
trends with regards to both SLOC and MPC.

It is important to clarify that during the analysis we noticed cases in which the
pattern solution was more energy efficient than the alternative solution and, how-
ever, the clustering algorithm did not separate these units (see Section 5.6.4). There-
fore, aiming at complementing the answer for RQ3, an additional analysis is per-
formed, which comprises the following steps:

1. Group units. Based again on the difference between the energy consumption,
we separate the experimental units into two categories: (a) pattern solution
consumed more energy than the alternative solution; and (b) pattern solution
consumed less energy than the alternative solution; and

2. Compare parameters. Next, we analyze if the design parameters (SLOC and
MPC) may have an influence on determining which solution is more energy-
efficient. For that, we employ Mann-Whitney tests for investigating whether
each parameter is statistically differ between the two groups created in the
previous step.

5.5 Execution

In this section we explain how data for the experiment was collected. Firstly, we
describe the data collection procedure, showing details of the most relevant aspects.
Next, we present and discuss the validation of the collected data according to the
planned experiment.

134 5. Investigating the Effect of Design Patterns on Energy Consumption

Table 5.3: Descriptive of identified pattern occurrences and pattern-related methods

OSS
Included occurrences Excluded occurrences

TM SS TM SS

JHotDraw 7(15) 6(56) 5 25
Joda Time 7(80) 1(18) 5 17

TOTAL 14(95) 7(74) 10 42
TM = Template Method, SS = State/Strategy

5.5.1 Data Collection

The data collection is composed of four steps. Firstly, we extracted the pattern in-
stances and selected the pattern-related methods (i.e., experimental units). To collect
the experimental units, a set of pattern occurrences were extracted from JHotDraw
and Joda Time, and were manually inspected to decide whether pattern instances
could be included or excluded (see Section 5.4.2). Table 5.3 distinguishes between
the number of pattern occurrences that were included and excluded (according to
the process described in Section 5.4.2) for each OSS and GoF design pattern. For each
included pattern instance, a set of units of analysis was collected. The total number
of collected units for each OSS and GoF design pattern is presented between paren-
theses in Table 5.3. We clarify that, despite the limited number of included pattern
instances, we believe that the number of experimental units (95 and 74) is satisfac-
tory, providing statistically significant results (see Section 5.6). Moreover, the effort
required to implement the alternatives (as described in Sections 5.3.2 and 5.3.4) also
restricted the amount of experimental units that could be collected.

Next, for each unit, we calculated the parameters SLOC and MPC (i.e., based
on the pattern solution, see Section 5.4.3). Before starting the measurement process,
we implemented the alternative solution for each pattern instance as described in
Sections 5.3.2 and 5.3.4. Then, to measure the energy consumption of the units, a
standard measurement process was defined. This measurement process needed to
be consistent throughout the whole test run, so no external interference is intro-
duced to the results. First, a selection was done for the hardware system to be used
for the analysis, along with the OS and distribution. For the hardware system, we
chose the MSI wind box DC100 minicomputer due to its simplicity, availability, and
compatibility with the measurement tools. The MSI wind box contains the following
components:

1. AMD Brazos Dual Core E-450 (1.65GHz) with a TDP of 18 Watts;

2. 4GB of DDR3 memory; and

5.5. Execution 135

3. AMD Radeon HD 6320 graphics adapter.

Since the measurement tools are tailored for GNU/Linux system, we used one
of the distributions released for that OS. As we wanted less interference during the
measurement process, a clean installation of Ubuntu is used, which contains only
the essential packages and has no user interface. However, since JHotDraw requires
a graphical shell to call certain functionalities, a simplistic window manager, i38,
was installed on top of this distribution. For orchestrating and standardizing the ex-
ecution of the measurement tools and pattern related methods, a script was created
for performing the following procedure: start the measurement tool, wait a few sec-
onds for the tool to load, execute the usage scenario containing the pattern-related
method, wait for the application to finish and stop the measurement tool. Each us-
age scenario embedded multiple executions of a part of the application that called
one pattern-related method (i.e., experimental unit), guaranteeing measurable en-
ergy consumption (i.e., more than 30 seconds). Any selected part of the application
was the simplest possible and was fully checked to guarantee no hard external bias
(e.g., read/write operations). Each usage scenario was executed with the pattern
solution and the alternative solution. For reliability purposes, the aforementioned
procedure was executed 100 times for every pair scenario-solution, obtaining 100
measurements for each experimental unit. Finally, we obtained the final value for
each unit of analysis by excluding outlying measurements and calculating the aver-
age between the remaining measurements.

5.5.2 Validation of the Collected Data

There were three main assumptions in the experimental design that needed vali-
dation. Firstly, two researchers verified every manual data collection task. These
tasks were the selection of the patterns instances and pattern-related methods, the
calculation of the SLOC and MPC parameters, and measurement of energy con-
sumption. Secondly, as we considered experimental units from State and Strategy
pattern instances mutually, we verified whether there was a difference between the
energy consumed by them. Our results suggest no visual or statistically relevant
differences. Last, the energy consumption data was validated by triangulation.

As mentioned in Section 5.4.3, the energy consumption was obtained by two
tools, one working at process level (PowerAPI) and another working at method
level (Jalen). Our motivation for selecting these two tools was that they both esti-
mate the energy consumption based on the JVM, therefore, reducing the bias from
the overhead caused by the OS. In addition, PowerAPI has higher precision when

8https://i3wm.org/

136 5. Investigating the Effect of Design Patterns on Energy Consumption

compared to other tools, while Jalen, although having a lower precision, provides
more fine-grained measurements (as it captures only the energy consumption of the
method). By obtaining the two different perspectives, we aimed at comparing our
study to related work, as well as verifying the results w.r.t. the different levels of
measurements.

As expected, the tools provided measurements of different magnitudes, which
are related to the different characteristics of the tools. In addition, PowerAPI and
Jalen use a similar mechanism for exploring the JVM to calculate the results, which
could be biased. Besides, both tools can collect the energy consumed by the CPU
only and, although we restricted the experimental units to those not requiring ad-
ditional resources (e.g., hard-drive, network), not considering the energy consumed
by the memory could still represent a bias. Therefore, we sought to provide further
validation of the estimated measurements. To this end, we selected a process level
tool, pTop, which can estimate the energy consumed by both CPU and memory, as
well as has a higher precision, but estimates measurements by exploring the process
management of the OS.

The data collected by pTop suggest that the energy consumed by the memory
is negligible (approx. 0.0001% of the total energy consumed for every experimental
unit). In addition, to verify that our data collection was consistent, we triangulated
the measurements. For that, we performed eight Spearman correlation tests. For
each pattern (pattern = Template/Method or State/Strategy), we tested the correla-
tion between each design solution (pattern and alternative) of PowerAPI/Jalen and
pTop (i.e., papi-ptt vs. ptop-ptt; papi-alt vs. ptop-alt; jalen-ptt vs. ptop-ptt; and jalen-alt
vs. ptop-alt) . By observing that all tests proved a rather very strong correlation (see
Table 5.4), we considered all the measured data to be consistent and reliable for data
analysis. Finally, it is interesting to notice that Jalen has a lower correlation to pTop,
compared against PowerAPI. This is yet another evidence of the consistency of the
results, as Jalen is a method level tool and, thus, do not have the overhead caused
by the rest of the application.

5.6 Analysis

In this section we present the results of the experiment. Firstly, we show the de-
scriptive statistics of the dataset. Next, we present the results of the analysis carried
out for each research question, which was executed as described in Section 5.4.4. We
clarify that every statistical test was performed using the tool IBM SPSS Statistics9

and are reported based on the guidelines suggested by Field (2013).

9http://www-03.ibm.com/software/products/en/spss-statistics

http://www-03.ibm.com/software/products/en/spss-statistics

5.6. Analysis 137

Table 5.4: Pearson correlation test for validating estimated measurements from PowerAPI
and Jalen

Pattern Tool
Pattern solution (pTop) Alternative solution (pTop)

N Correlation
Coefficient

Sig. N Correlation
Coefficient

Sig.

Template
Method

PowerAPI 95 0.946 <0.01 95 0.947 <0.01
Jalen 89 0.893 <0.01 87 0.877 <0.01

State/
Strategy

PowerAPI 74 0.963 <0.01 74 0.929 <0.01
Jalen 71 0.933 <0.01 71 0.791 <0.01

TM = Template Method, SS = State/Strategy

5.6.1 Descriptive Statistics

For every experimental unit, pattern-related variables were collected (variables pat-
tern, method, m-sloc and m-mpc), and an alternative solution was implemented as
described in Section 5.3. Afterwards, the tools PowerApi, Jalen, and pTop were
used to collect the energy consumption from both pattern and alternative solutions
(*-ptt and *-alt). We remind that an experimental unit comprises a pair of pattern
and alternative design solutions. A summary of all numeric variables (i.e., SLOC,
MPC, and energy consumption measurements) is presented in Table 5.5 and Table
5.6, showing relevant descriptive statistics for Template Method and State/Strategy,
respectively. As can be seen in Table 5.5 and Table 5.6, few measurements were per-
formed by Jalen for the pattern and/or the alternative solution. This is due to a
limitation from Jalen, which tries to measure a specific method, but it is unable to
encapsulate the entire process. This is caused when either the length in time that
the method uses is too little, or when the method delegates its functionality in a
way that Jalen cannot track. Such cases were properly treated during the statistical
analyses, which are discussed in the following subsections.

Before performing the data analysis based on the energy measurements from
PowerAPI (papi-*) and Jalen (jalen-*), these measurements were checked against the
measurements from pTop (ptop-*). The details of this validation process are pre-
sented and discussed in Section 5.5.2. When observing the measurement from the
three tools, one can notice that they are different, following the order Jalen < Pow-
erAPI < pTop. This difference in the measurements is expected. Jalen measures the
consumption at a method level (i.e., not considering the consumption of the whole
program); PowerAPI measures the consumption of the Java process (i.e., the pro-
gram); and pTop measures the consumption of the OS’s process (i.e., which also
include the overhead of the JVM). When ordering the values, it is possible to notice
that greater overheads result in greater values, i.e., Jalen < PowerAPI < pTop.

138 5. Investigating the Effect of Design Patterns on Energy Consumption

Table 5.5: Descriptive statics of numeric variables for the Template Method pattern (pattern =
Template Method)

Variable N Min Max Mean Std. Error (Mean) Std. Deviation

m-sloca 95 2.00 36.00 6.03 0.59 5.75
m-mpcb 95 0.00 12.00 1.33 0.20 1.97
papi-pttc 95 92.30 1086.77 327.88 27.11 264.23
papi-altc 95 92.12 924.09 270.84 23.77 231.67
jalen-pttc 89 43.85 799.88 200.38 14.57 137.47
jalen-altc 87 22.58 777.32 150.13 10.38 96.84
ptop-pttc 95 189.78 2198.84 719.86 59.68 581.72
ptop-altc 95 193.85 2185.72 594.85 47.37 461.66
a Measured in number of uncommented lines in the pattern solution
b Measured in number of method invocations in the pattern solution
c Measured in Joules

Table 5.6: Descriptive statics of numeric variables for the State/Strategy pattern (pattern =
State/Strategy)

Variable N Min Max Mean Std. Error (Mean) Std. Deviation

m-sloca 74 0.00 36.00 5.68 0.69 5.93
m-mpcb 74 0.00 29.00 2.13 0.54 4.66
papi-pttc 74 157.58 1664.17 738.17 56.51 499.11
papi-altc 74 136.37 1002.25 341.95 19.88 175.54
jalen-pttc 68 27.38 1260.11 486.34 42.54 350.75
jalen-altc 66 20.20 635.89 186.96 14.72 119.56
ptop-pttc 74 316.08 4124.87 1640.06 129.72 1145.63
ptop-altc 74 273.21 2260.22 786.15 46.77 413.04
a Measured in number of uncommented lines in the pattern solution
b Measured in number of method invocations in the pattern solution
c Measured in Joules

5.6.2 RQ1: Template Method

The first research question aims at exploring the energy consumption of Template
Method pattern instances and their alternative solutions, focusing on identifying
if there is a statistically significant difference between the solutions (pattern and
alternative) regarding energy consumption. For that, we considered the energy con-
sumption measured by two different tools, one at process level (papi-*) and one at
method level (jalen-*). While the former tool provides a more traditional and system-
wide measurement, the latter provides a more fine-grained measurement allowing
us to focus on the point of interest (pattern-related method), excluding any interfer-
ence from the rest of the system. Although we did not expect to find differences in
the results obtained from the two tools (because both pattern and alternative solu-
tions are subject to the same interference), the method-level measurements should

5.6. Analysis 139

En
er

gy
 c

on
su

m
pt

io
n

(in
 Jo

ul
es

)

papi-ptt papi-alt jalen-ptt jalen-alt
0

250

500

750

1000

1250

Figure 5.4: Visual comparison of the energy consumption for Template Method

provide lower overhead (i.e., smaller energy measurements).

To answer this research question, we examined the pair of variables obtained
from PowerAPI and Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt vs. jalen-alt). In
order to decide if we were using parametric or non-parametric tests for assessing the
statistical significance of the differences between the pair of variables, we employed
the Shapiro-Wilk test to check the distribution of data for each variable. The results
of the test suggest that data were not following the normal distribution and, thus, a
non-parametric test had to be employed. Therefore, we used the Wilcoxon signed
ranks test to evaluate the hypotheses posed for RQ1 (see Section 5.4.1) and, thus,
investigate the energy consumption data from PowerAPI and Jalen. In addition, to
support visualizing the difference in the energy consumption, Figure 5.4 shows the
box-plot for each compared variable.

From the analysis results, two main findings can be highlighted. First, pattern
solutions consumed more energy than their alternatives based on the results of both
PowerAPI (p < 0.01, z = -4.92) and Jalen (p < 0.01, z = -5.57). This is evident in the
results from both tools (following the result of the descriptive statistics—Table 5.5),
which suggest a decrease of 17.4% (PowerAPI) and 24.34% (Jalen) on the energy
consumption of the alternative solution. Second, Jalen showed a greater difference
than PowerAPI (by comparing the z-score), which also follows the trend observed
by comparing their descriptive statistics. It is also important to highlight that, as ex-
pected, method level measurements (from Jalen) showed lower consumption then
process level (from PowerAPI). These findings corroborate that: (a) method level
measurements have lower overhead, since they isolate application and OS noises,

140 5. Investigating the Effect of Design Patterns on Energy Consumption

En
er

gy
 c

on
su

m
pt

io
n

(in
 Jo

ul
es

)

papi-ptt papi-alt jalen-ptt jalen-alt
0

500

1000

1500

2000

Figure 5.5: Visual comparison of the energy consumption for State/Strategy

and (b) pattern solutions indeed show increased energy consumption when com-
pared against their alternatives. Summarizing, we can answer RQ1 by affirming
that, for Template Method, pattern solutions tend to consume more energy than the
alternative solutions (implemented as described in Section 5.3) and that this obser-
vation becomes more evident when analyzing at method level. However, further
investigation on this assertion is presented in Section 5.6.4 (see RQ3).

5.6.3 RQ2: State/Strategy

Next, we explored the energy consumption of State/Strategy pattern instances and
their alternative solutions, focusing on identifying whether or not there is a statisti-
cally significant difference between the solutions (pattern and alternative) regarding
energy consumption. For that, we followed the same process as described for RQ1,
using, however, data related to State/Strategy (pattern = State/Strategy). Thus, first
we performed the Shapiro-Wilk test to confirm that the data was not normal, as ex-
pected due to the result from the previous data analysis. As the variables were not
normal, we used Wilcoxon signed ranks test to investigate the energy consumption
data from PowerAPI and Jalen. In addition, to support visualizing the difference in
the energy consumption, Figure 5.5 shows the box-plot for each compared variable.

Similarly to RQ1, the pattern solutions consumed more energy than their alter-
natives based on the results of both PowerAPI (p < 0.01, z = -6.19) and Jalen (p <

0.01, z = -6.8). This result is in accordance with what we expected from observing
the descriptive statistics in Table 5.6 and the box-plots in Figure 5.5. However, when
looking at the differences between each pair of pattern and alternative solutions,

5.6. Analysis 141

we can highlight some notable aspects. First, results obtained from PowerAPI and
Jalen are very close to each other, as it can be observed by the mean value in Table 5.6
and z-score of the test. Second, the average results from Jalen are lower than those
from PowerAPI, but still similar, especially by taking into consideration that Jalen
only measures the energy consumption at method level. Even though these values
are very close, the standard deviation and standard error mean (see Table 5.6) from
Jalen are proportionally higher (in comparison with the mean) than those of Pow-
erAPI. The relatively high standard deviation and standard error for the Jalen pair
is caused by differences in measurements on method level. The method level mea-
surements seem to be significantly distant from the mean. Nonetheless, the drop in
energy consumption for both pairs is remarkable, as the average decrease in energy
consumption is 53.68% for PowerAPI and 55.51% for Jalen. Summarizing, we can
answer RQ2 by affirming that, concerning State/Strategy, pattern solutions tend
to consume more energy than the alternative solution (implemented as described
in Section 5.3), although method level measurements show that this result requires
further investigation (due to the high standard deviation and error). We present this
further analysis in the next section, in which we discuss parameters that influence
energy consumption.

5.6.4 RQ3: Influence of Source Code Parameters

The third research question aims at investigating parameters that influence the en-
ergy consumption of design pattern instances. To achieve this goal, we considered
two metrics (SLOC and MPC) collected from every pattern-related method (i.e.,
based on the pattern solution, see Section 5.4.3) to investigate clusters of experi-
mental units via a three-step analysis. First, to cluster the experimental units, we
performed an agglomerative hierarchical clustering (using between-groups linkage
and squared Euclidean distance, see Section 5.4.4) based on the difference in en-
ergy consumption (i.e., *-diff = *-ptt - *-alt). Second, we employed Mann-Whitney
tests to evaluate the hypotheses posed for RQ3 (see Section 5.4.1), verifying whether
neighbor clusters (i.e., that are at the same level in the hierarchical tree) are statis-
tically different w.r.t. SLOC and MPC. If no statistically significant difference was
found, we merged the clusters and performed the test again with the neighbor of
the merged cluster. Finally, we investigated the final clusters to identify trends re-
garding the studied metrics (SLOC and MPC).

In Figure 5.6 we present the outcome of the hierarchical clustering for Template
Method data. The two charts on the top show the distribution of the experimental
units among the clusters. Each point consists of a pair <pattern solution; alternative
solution>, in which the Y axis is the energy consumption of the pattern solution

142 5. Investigating the Effect of Design Patterns on Energy Consumption

Energy consumed by alternative solution (in Joules)

En
er

gy
 c

on
su

m
ed

 b
y

pa
tte

rn
 s

ol
ut

io
n

(in
 Jo

ul
es

)

PowerAPI

1.1

1.2.1

1.2.2

2

0 200 400 600 800 1000
0

200

400

600

800

1000

Energy consumed by alternative solution (in Joules)

En
er

gy
 c

on
su

m
ed

 b
y

pa
tte

rn
 s

ol
ut

io
n

(in
 Jo

ul
es

)

Jalen

1.1

1.2.1

1.2.2

2

0 200 400 600 800
0

200

400

600

800

MPC

SL
O

C

-0.5 0 0.5 1
2

4

6

MPC

SL
O

C

-0.5 0 0.5 1
2

4

6
Clusters Clusters

Figure 5.6: Hierarchical clustering of Template Method units of analysis

and the X axis is the energy consumption of the alternative. The clusters can be
identified by the different shape and color presented in the legend. The two charts
on the bottom of Figure 5.6 show the centroids of the clusters with regards to SLOC
and MPC. The values for SLOC and MPC of each cluster are obtained as the average
of the units of the cluster. By checking these charts, it is already possible to notice
some separation between clusters w.r.t. the two metrics.

We investigated the separation between clusters, and the results of the statistical
tests are presented in Table 5.7 (along with the tests for State/Strategy data). As
multiple tests were performed for investigating every pair of cluster regarding every
metric, we report only the statistically significant results. Based on these tests, one
can see which clusters were merged. For example, when comparing the clusters
of Template Method (see upper charts of Figure 5.6) one can see four clusters (1.1;
1.2.1; 1.2.2; 2), from which two are very close (1.2.1; 1.2.2) and the separation was

5.6. Analysis 143

Table 5.7: Mann-Whitney test for comparing clusters

Pattern Tool Metric
Mann-Whitney test

Clusters Z Sig.

Template
Method

PowerAPI SLOC 1.1 & 1.2 -2.46 0.02
Jalen SLOC 1.1 & 1.2 -2.94 <0.01

St
at

e/
St

ra
te

gy

PowerAPI

SLOC 2.1 & 2.2 -3.62 <0.01
MPC 2.1 & 2.2 -2.86 <0.01
SLOC 1 & 2.1 -4.77 <0.01
MPC 1 & 2.1 -5.03 <0.01
SLOC 1 & 2 -4.31 <0.01
MPC 1 & 2 -4.70 <0.01

Jalen

SLOC 1.1.1 & 1.1.2 -2.91 <0.01
MPC 1.1.1 & 1.1.2 -2.16 0.03
SLOC 1.1 & 1.2 -2.46 0.01
MPC 1.1 & 1.2 -3.83 <0.01
SLOC 1 & 2 -3.62 <0.01
MPC 1 & 2 -3.63 <0.01

not statistically relevant w.r.t. to SLOC and MPC, forming a merged cluster (1.2). By
further inspecting the statistical tests and charts, one can see three clusters distant
from each other (1.1; 1.2; 2) w.r.t. to both SLOC and MPC, and that they follow a
trend in which clusters that group more energy-efficient solutions (e.g. 1.1) have
bigger SLOC and MPC scores. This observation suggests that the higher the SLOC
and MPC, the less advantageous the alternative solutions.

Figure 5.7 shows the scatterplots that concern the State/Strategy pattern, on
which we performed the same analysis described for Template Method. When in-
vestigating the clusters (based on the statistical tests—see Table 5.7), one can deduce
that three clusters remain for PowerAPI (1; 2.1; 2.2) and four for Jalen (1.1.1; 1.1.2;
1.2; 2). Although the data of the two tools led to slightly different clusters, the results
suggest the same trends, which are similar to the ones observed for the Template
Method pattern. In particular, both SLOC and MPC influence the benefit of using
an alternative instance instead of the pattern solution. Moreover, the cluster 1.1 from
the PowerAPI data (which is similar to cluster 1.1.1 from Jalen) is the closest to the
bisect line (i.e., pattern solution = alternative solution) and, by checking the metrics
chart, it is clear that this cluster has much higher SLOC and MPC when compared
to the others.

The performed analysis is so far able to provide evidence that both SLOC and
MPC influence the energy efficiency of a pattern solution and that both parameters
should be taken into account when deciding between using a pattern solution or an
alternative solution. However, there is one interesting question that has not been an-

144 5. Investigating the Effect of Design Patterns on Energy Consumption

Table 5.8: Mann-Whitney test for comparing most energy efficient solutions

Pattern Tool Metric
Mann-Whitney test

Z Sig.

Te
m

pl
at

e
M

et
ho

d PowerAPI
SLOC -3.62 <0.01
MPC -2.86 <0.01

Jalen
SLOC -2.91 <0.01
MPC -2.16 0.03

St
at

e/
St

ra
te

gy PowerAPI
SLOC -3.62 <0.01
MPC -2.86 <0.01

Jalen
SLOC -2.91 <0.01
MPC -2.16 0.03

swered by the clustering, yet. By observing all the scatterplots that were presented
until this point, it is clear that in some cases pattern solutions were more energy
efficient than the alternative solutions (i.e., experimental units below the bisect line
in the upper charts of Figures 6 and 7). However, the use of automated clustering
algorithms did not separate these units. Therefore, we decided to perform a sec-
ond analysis. We grouped the experimental units into the two categories (pattern >

alternative; and pattern < alternative). Next, we were able to investigate whether
or not SLOC and MPC may have an influence on determining if a pattern solution
is more energy-efficient than the alternative solution. To explore the differences be-
tween these groups, in terms of SLOC and MPC, we employed Mann-Whitney tests.
Table 5.8 shows the results of the test for both Template Method and State/Strategy.

Based on the results of Table 5.8, it becomes clear that SLOC has a significant
influence on the energy efficiency of the pattern instance for both GoF design pat-
terns, suggesting that the longer the method is, the more possible it becomes that
the pattern solution is more energy efficient. For the State/Strategy pattern, it is
also statistically evident that the number of calls to other methods influences the
energy efficiency of the solution, suggesting that more calls are related to a higher
possibility of the pattern solution being more efficient than the alternative.

Summarizing the evidence so far, it is possible to answer RQ3 by affirming that
both parameters, i.e., number of source lines of code and the number of invoked
methods, influence the energy efficiency of a pattern solution, suggesting that higher
SLOC and/or MPC are related to more energy efficient pattern solutions when com-
pared against their alternative solutions.

5.7. Discussion 145

PowerAPI Jalen

SL
O

C

Clusters Clusters

1.1

1.2

2.1

2.2.1

2.2.2

0 1 2 3
2

4

6

MPC MPC

SL
O

C

1.1.1

1.1.2

1.2.1

1.2.2

2.1.1

2.1.2

2.2

0 2 4-2
0

2.5

5

7.5

Energy consumed by alternative solution (in Joules)

En
er

gy
 c

on
su

m
ed

 b
y

pa
tte

rn
 s

ol
ut

io
n

(in
 Jo

ul
es

)

0 400 800 1200 1600
0

400

800

1200

1600

Energy consumed by alternative solution (in Joules)

En
er

gy
 c

on
su

m
ed

 b
y

pa
tte

rn
 s

ol
ut

io
n

(in
 Jo

ul
es

)

0 400 800 1200
0

400

800

1200

Figure 5.7: Hierarchical clustering of State/Strategy units of analysis

5.7 Discussion

In this section we discuss the main outcomes of this study. First, we discuss the
findings of the experiment, comparing them with related work. Second, we dis-
cuss the implications to researchers and practitioners. However, we need to clarify
that the discussion presented in this section regards only the Template Method and
State/Strategy patterns, as well as that our observations and interpretations are con-
strained by the limitations of the experimental settings and threats to validity (see
Section 5.8).

5.7.1 Interpretation of Results

The results of our experiment suggest that the alternative solutions are more en-
ergy efficient than the pattern solutions for both Template Method and State/Strat-

146 5. Investigating the Effect of Design Patterns on Energy Consumption

egy. This difference is higher for State/Strategy (approx. 54% for PowerAPI and
56% for Jalen) than to Template Method (approx. 17% for PowerAPI and 24% for
Jalen). These results are in accordance to related studies (see Section 5.2), which
have reached similar conclusions, i.e., that the alternative solutions tend to be more
energy efficient. Specifically, Bunse et al. (2013), as well as Noureddine and Rajan
(2015), also report on the Template Method pattern, and suggest that this pattern
presents a small, yet significant, overhead. Noureddine and Rajan (2015) also inves-
tigate State and Strategy patterns separately, and report a smaller overhead for State
(approx. 3%) and an equally small improvement for Strategy (approx. 3%). This dif-
ference between results may be related to certain characteristics of the study design
(e.g., the used pattern alternative or subjects of the study), but more details regard-
ing these characteristics would be necessary to elaborate on the rationale. To sum
up, the differences between pattern and alternative solutions observed in our study
are likely to be influenced by the overhead caused by employing polymorphism
(i.e., the main mechanism of both patterns). When calling polymorphic methods,
the JVM has to dynamically indicate the correct implementation to be used. Com-
monly, this indication is done by moving the instruction pointer10 to the memory
address containing the right method. Although simple, this kind of operation can
become computationally expensive if overused.

While investigating the influence of SLOC and MPC on the energy consumption
of pattern solutions, we were able to notice that both GoF patterns tend to provide a
slightly more energy-efficient solution when used to implement more complex be-
haviors (i.e., with longer methods and multiple calls to method of external classes).
This observation is also intuitive from three perspectives:

1. GoF design patterns are not beneficial in simple/non-complex design prob-
lems (even w.r.t. other quality attributes (Hsueh et al., 2008; Huston, 2001)),
since the extra complexity that they introduce is higher than the one that they
resolve;

2. The effect of polymorphism weakens when these patterns are handling com-
plex situations. The longer the method, the lower the ratio of method localiza-
tion compared to the overall computation and, therefore, the overall overhead
caused by the polymorphic mechanism of Template Method or State/Strategy;
and

3. It is understandable that patterns promote improved structuring of the source
code, which may sometimes lead to a smaller and/or more efficient bytecode

10Also known as program counter, instruction address register, instruction counter and instruction
sequencer, instruction pointer is a processor register that indicates the current assembly command to be
executed.

5.7. Discussion 147

(for the JVM), which in turn leads to slightly more energy-efficient software.
We observed such cases, e.g., when the pattern-related method comprises a
set of external invocations (i.e., to methods that are not owned or inherited by
the class being measured). In such cases, the JVM might be applying internal
optimizations, which would not be possible in the alternative, as the structure
pattern-related method is altered.

Although we have provided evidence that alternative solutions are in most of
the cases more energy efficient than pattern solutions (approx. 79% of the cases),
there are cases in which the opposite holds. Sahin et al. (2012) have also reported
on pattern instances that can be more energy efficient compared to alternative so-
lutions. In comparison to Sahin et al., we provide a more fine-grained analysis by
relating this differentiation to two metrics (i.e., SLOC and MPC). This finding can
also be possibly explained by the overhead caused by polymorphism, as we were
able to identify statistically significant differences on the metrics between pattern-
efficient (i.e., pattern solution consumed less energy than the alternative solution)
cases and alternative-efficient cases. On average, pattern-efficient solutions have
65.83% more source lines of code and 43.37% more method invocations than the
alternative-efficient solutions.

Finally, there is a crosscutting observation to all findings in this chapter, which
deals with differences in energy consumption at method and process levels. The
measurements from Jalen were lower than the measurements from PowerAPI
(40.42% on average). This observation is intuitively correct since the measurements
from Jalen are more localized (focused on only one method). Furthermore, it is in-
teresting to notice that differences between pattern and alternative solution were
smaller for Jalen (12.11% in average), a fact that suggests that the remaining parts
of the applications (i.e., not the pattern-related methods) were, to some extent, bias-
ing the analysis. Another possible explanation could be that the dynamic binding
procedure11 may not be fully captured by Jalen at times, as it focuses on the pattern-
related method being measured. However, we sought to mitigate this threat by:
(a) verifying cases of dynamic biding while selecting experimental units (i.e., pat-
tern related methods); (b) looking for outlying measurements; and (c) checking the
correlation of the measurements against pTop (see Section 5.5.2).

5.7.2 Implications to Researchers and Practitioners

The findings of this chapter suggest that pattern solutions are less harmful or even
beneficial to energy consumption when the responsibility assigned to the pattern

11Dynamic binding procedure refers to the action of resolving a binding (e.g., decide which method or
variables with same names to use) at runtime, when it is not possible at compile time.

148 5. Investigating the Effect of Design Patterns on Energy Consumption

instance (i.e., the implemented behavior) is nontrivial. Therefore, we advise prac-
titioners on considering this parameter when deciding whether or not to apply
Template Method or State/Strategy patterns. GoF patterns serve several purposes:
structuring and organizing source code; supporting quality attributes, such as main-
tainability and reusability; and improving communication between stakeholders by
providing a common language. For these reasons, GoF patterns have become a com-
mon practice in software development. Several studies that have investigated only
a subset of the GoF patterns report that approx. 30% of the classes of a system may
participate in pattern instances (Ampatzoglou et al., 2015; Ampatzoglou, Kritikos,
Arvanitou, Gortzis, Chatziasimidis and Stamelos, 2011; Khomh et al., 2009). How-
ever, as studies have shown, there are also side effects on using GoF patterns (Am-
patzoglou, Charalampidou and Stamelos, 2013b), and energy efficiency is one of the
aspects in which the software is negatively affected. Thus, we also advocate the
careful consideration of drivers (e.g., energy efficiency) of the software project, bal-
ancing them against the forces (e.g., complexity of the behavior to be implemented)
that influence the decision on applying a certain pattern or not.

Based on the aforementioned negative relationship between GoF patterns and
energy efficiency, one may wonder why using GoF patterns in systems that have
energy efficiency as a main concern. Nevertheless, GoF patterns are widely adopted
and, therefore, we expect that even systems that have energy as a concern may have
a non-negligible amount of GoF pattern instances, either intentionally (to promote
other quality attributes) or unintentionally. Therefore, the results of our study can
be used to help control a system’s efficiency in different situations. On the one hand,
while developing software, our findings may support the management of uninten-
tional harm to energy efficiency (via not necessary use of GoF patterns), as well
as intentional use to balance various quality attributes. On the other hand, when
refactoring a system for a new purpose, the findings of this study may support the
decision making process on what parts of the system to refactor and how.

This study has three main implications to researchers. First, the usage of non-
trivial systems for investigating patterns energy consumption is a challenging task,
since researchers need to a) deal with pattern variants, b) decide which variants
have to be investigated, c) incorporate these variations into the alternative solu-
tion, and d) measure the energy consumption of the pattern instance by executing
the same scenario for which the pattern instance was intended to. However, the
obtained evidence can be very insightful as shown by this study. Therefore, we do
suggest that when investigating the energy consumption of GoF patterns, nontrivial
systems should be used. Second, the use of method level energy measurements has
proven to provide extra information for investigating the hypotheses both visually
and statistically. It also contributed to the reliability of our findings by triangulat-

5.8. Threats to Validity 149

ing results of process and method level measurements. Third, when investigating
the energy efficiency of GoF patterns, exploring design parameters (e.g., SLOC and
MPC) proved to be highly relevant. By investigating the parameters, we were able
to not only suggest whether or not the pattern solution is worse than the alternative
solution, but also, and most importantly, we were able to interpret this phenomenon.
By further investigating this hypothesis and observing the magnitude of the influ-
ence of these parameters, we were able to highlight the circumstances under which
the patterns are more efficient than the alternative. Therefore, we suggest exploring
similar parameters and other design and source code properties when investigating
the influence of GoF design patterns to energy consumption.

5.8 Threats to Validity

In this section, threats to construct validity, internal validity, reliability, and external
validity of this study are discussed. Construct validity reflects how far the stud-
ied phenomenon is connected to the intended studied objectives. Internal validity
expresses to what extent the observed results are attributed to the performed inter-
vention, and not to other factors. Reliability is linked to whether the experiment is
conducted and presented in such a way that others can replicate it with the same
results. Finally, external validity deals with possible threats when generalizing the
findings derived from sample to the entire population.

Concerning construct validity, one threat is that the transformation of nontrivial
systems may be risky since, due to their complexity, it is more error-prone. Although
“synthetic” programs could facilitate the control over external factors, we believe
that nontrivial programs were imperative to investigate pattern-related methods.
Thus, to mitigate this bias, we took several measures while selecting experimental
units (see Sections 5.4.2 and 5.4.3). The collected energy measurements pose an-
other threat, as we consider consumption only by the CPU. If we included energy
consumed by other resources, such as hard drive and network, the results might
change. First, by only looking at CPU consumption, it enabled us to use three dif-
ferent measurement tools to increase the confidence on the obtained measurements.
To mitigate this threat further, we verified that the energy consumed by the memory
was negligible and do not represent a considerable bias (see Section 5.5.2), as well
as restricted the selection of pattern instances to those that do not require opera-
tions such as writing to or reading from files and communicating through network.
Another threat concerns the level of measurement (i.e., process or method level),
which can be a source of bias to the study as different perspectives could lead to dif-
ferent results. For that reason, we performed the analysis at both levels (process and

150 5. Investigating the Effect of Design Patterns on Energy Consumption

method), and checked their correlation. Additionally, some lack of precision could
have been introduced by a limitation of the used energy measurement tools. To
mitigate this threat, we selected tools that have been validated in different studies.
In addition to that, we performed data triangulation for all measurements by using
three different tools. Moreover, the measured data may also be slightly biased, since
small environmental changes might exist between different executions, leading to
different values. To mitigate this threat, we used a basic OS, installing only strictly
required dependencies, and every measurement was performed multiple times, us-
ing the average value for the analysis.

The main threat to the internal validity of our experiment is related to whether
the observed differences in the energy consumption were caused by the imple-
mented alternatives, and not by other factors. To mitigate this threat, we acted from
measurement and implementation perspectives. On the one hand, we used Jalen,
which is able to measure only the energy consumed by the experimental unit (i.e.,
pattern related-method), discarding the energy consumed by the rest of the appli-
cation, JVM, and OS. In addition, the procedure to measure the energy consumed
by pattern and alternative solutions was identical. On the other hand, while im-
plementing the alternatives, we assured that only the design changes proposed for
the alternatives (see Sections 5.3.2 and 5.3.4) were implemented, not altering the be-
havior of the pattern-related method. Another threat to this category is the fact that
the set of parameters that we investigated for answering RQ3 is not exhaustive, and
we cannot guarantee that differences in energy consumption have been comprehen-
sively explained, since there might be other parameters that influence the energy
consumption of design patterns.

In order to mitigate reliability threats, two different researchers were involved in
the data collection, double-checking all outputs. In addition to the two researchers,
a third one was involved in the analysis procedure. To implement the alternative
solutions, the provided guidelines are sufficient and any replication should lead to
the same results. To complement that, all scripts and source code are available on-
line12 and, therefore, all raw data can be reproduced with small variations by using
the same energy measurement tools and environment setup. Finally, data analysis
bias is limited in this study, since no subjectivity was involved.

Finally, concerning external validity, we have identified four possible threats.
First, we investigated a limited number of OSS projects. However, the two selected
projects are very different, both in terms of domains and characteristics (e.g., Joda
Time has more than the double of SLOC per class when compared to JHotDraw); this
partially alleviates this threat. Second, we investigate a limited number of pattern
instances, as well as a limited range of pattern variants. However, we evaluate a fair

12http://www.cs.rug.nl/search/uploads/Resources/JSEP Feitosa etal resources.zip

5.9. Conclusions 151

number of pattern-related methods (i.e., units of analysis), what partially alleviates
this threat. Nevertheless, a larger sample could strengthen the results, and increase
our confidence on generalizing our findings. Next, the presented results are depen-
dent on the used alternatives and pattern solutions. Thus, different alternatives or
pattern variations could lead to altered results. For example, alternative and/or pat-
tern solutions optimized for energy efficiency may increase the observed difference
between the solutions, or even invert it. However, the focus of our study was to an-
alyze representatives of existing and commonly used nontrivial software, in terms
of both pattern and alternative design solutions, as such investigation would im-
pact a plethora of software. Therefore, we selected the alternatives that we believe
to be the most common, as well as considered the original definition of the studied
patterns (also with small and similarly common variations), so as to have a more
representative sample of solutions that exist in practice. Finally, the results of this
study cannot be directly generalized to other GoF patterns, especially those that do
not use polymorphism as their main mechanism.

5.9 Conclusions

In this chapter, we investigated the effect of Template Method, and State/Strategy
GoF design patterns on energy consumption. In particular, we conducted an exper-
iment on two nontrivial OSSs, JHotDraw and Joda Time, from which we identified
21 pattern instances and 169 pattern-related methods (i.e., methods that use the pat-
tern structure), implemented an alternative (non-pattern) solution for each instance
(which contained the alternative implementation of the pattern-related methods),
and measured the energy consumption of both solutions using tools at both pro-
cess and method levels. Based on the collected data, we identified which solution
was more energy-efficient and what parameters affect the efficiency of the pattern
solution. To this end, we collected two metrics from every pattern-related method,
SLOC and MPC, and correlated them to the efficiency of the pattern solution.

The results of the study suggest that the alternative solution surpasses the pat-
tern solution in most cases. However, in some cases the pattern solution had similar
or even slightly lower energy consumption than the alternative solution. Since these
cases were identified in large pattern-related methods and/or methods with high
number of method invocations, it is suggested that these patterns are more suitable
when more complex behaviors have to be implemented. We clarify that some fac-
tors, such as the considered design pattern alternatives, may have influence on the
aforementioned observations, and that altering these factors may change the afore-
mentioned observations (for more details, see Section 5.8).

152 5. Investigating the Effect of Design Patterns on Energy Consumption

The findings of this study have value for both practitioners and researchers. On
the one hand, practitioners can reuse this knowledge to perform more informed
decision-making when applying GoF patterns. On the other hand, researchers can
learn from the reported experiences and reproduce aspects of this study when in-
vestigating GoF design patterns and/or energy consumption.

The findings reported in this chapter and Chapter 4 suggest that the practice
of applying design patterns is a promising solution to safeguard quality attributes
in CES development as the effect of GoF patterns on critical quality attributes is
controlled and deterministic. However, similarly to any other design artifact, design
pattern instances tend to drift from their original implementation. The next chapters
will unfold and report on the investigation of one phenomenon related to the decay
of design pattern instances, and how it may influence the observation obtained so
far.

Based on:

Daniel Feitosa, Paris Avgeriou, Apostolos Ampatzoglou and Elisa Y. Nakagawa, (2017) “The Evolution of
Design Pattern Grime: An Industrial Case Study,” in Proceedings of the 18th International Conference on
Product-Focused Software Process Improvement (PROFES ’17), Innsbruck, Austria, pp. 165–181,
DOI:10.1007/978-3-319-69926-4 13

Chapter 6

The Evolution of Design Pattern Grime: An
Industrial Case Study

Abstract

Instances of GoF design patterns may comprise a large portion of software sys-
tems. However, there are concerns regarding the efficacy with which software
engineers maintain pattern instances, which tend to decay over the software life-
time if no special emphasis is placed on them. Pattern grime (i.e., degradation of
the instance due to buildup of unrelated artifacts) has been pointed out as one
recurrent reason for the decay of GoF pattern instances. Seeking to explore this
issue, this chapter presents an investigation about the existence of relations be-
tween the accumulation of grime in pattern instances and various related factors:
(a) projects, (b) pattern types, (c) developers, and (d) the structural characteristics
of the pattern participating classes. For that, we empirically assessed these re-
lations through an industrial exploratory case study involving five projects (ap-
prox. 260,000 lines of code). Our findings suggest a linear accumulation of pat-
tern grime, which may depend on pattern type and developer. Moreover, we
present and discuss a series of correlations between the accumulation of pattern
grime and structural characteristics. The outcome of our study can benefit both
researchers and practitioners, as it points to interesting future work opportuni-
ties and also implications relevant to the refinement of best practices, the raise
awareness among developers, and the monitoring of pattern grime accumula-
tion.

6.1 Introduction

In Java applications, it has been reported that the number of classes that participate
in GoF pattern occurrences can vary from 15% to 65% (e.g., in software libraries)
(Ampatzoglou et al., 2015; Khomh et al., 2009), leading to a significant influence

154 6. The Evolution of Design Pattern Grime: An Industrial Case Study

on the overall quality of the system. However, the effect of patterns on quality is
not uniform (Ampatzoglou, Charalampidou and Stamelos, 2013b); the same pattern
can have both a positive and a negative effect on the quality of a software product.
Therefore, gaining more insights on how exactly patterns have an impact on qual-
ity is of paramount importance. A significant parameter that determines how pat-
tern instances affect quality is the amount of artifacts (e.g., methods and attributes)
that exist in the pattern-participant classes, which however, are not compliant to the
original pattern definition (Izurieta and Bieman, 2013). Izurieta and Bieman (2013)
named this phenomenon pattern grime and defined it as the degradation of design
pattern instance due to buildup of unrelated artifacts in pattern instances. For ex-
ample, grime can be introduced to a Template Method pattern instance by adding
public methods that are not invoked inside the template method. Similarly, grime
is introduced to a concrete state class of a State pattern instantiation when adding
public methods other than those defined in the state interface. For both the afore-
mentioned examples, such changes would lead to a reduced cohesion for the specific
class, as well as reduced levels of source code understanding. Thus, the accumula-
tion of grime can certainly be harmful to the quality of pattern instances and the
overall system (Dale and Izurieta, 2014; Izurieta and Bieman, 2008, 2013).

Despite the potential effect of pattern grime on software quality, there is cur-
rently a lack of studies that investigate factors related to the accumulation of pattern
grime. Therefore, in this study, we take a first step by exploring two types of fac-
tors related to the accumulation of pattern grime, i.e., different: projects, pattern
types, developers, and structural characteristics of pattern-participating classes
(e.g., coupling and lack of cohesion). To this end, we performed an industrial case
study, in which we analyzed five projects (that sum up to approx. 260,000 source
lines of code) containing eight different GoF pattern types and implemented by 16
developers. To measure grime, we provide an open-source tool that automates the
assessment of several pattern grime metrics. The outcome of this study sheds light
on the factors that influence the accumulation of grime in pattern instances. Our re-
sults can be used by architects and designers to develop best practices while using
design patterns, but also to monitor the evolution of grime and its respective effect
on software quality.

The remainder of this chapter is organized as follows. In Section 6.2, we present
work related to ours. The design of the case study is presented in Section 6.3, re-
ported according to the guidelines of Runeson et al. (2012), i.e., the Linear Analytic
Structure. In Sections 6.4 and 5 we present the results of our study and discuss the
most important findings, respectively. We report on the identified threats to validity
and actions taken to mitigate them in Section 6.6. Finally, we conclude the chapter
in Section 6.7.

6.2. Related Work 155

6.2 Related Work

In this section, we present work reporting on empirical studies on the evolution of
grime and / or its relation to other characteristics of software pattern instances (e.g.,
quality attributes and metrics).

Izurieta and Bieman (2007) investigated the evolution of various design pattern
instances from an open-source project to understand how patterns decay. The re-
sults suggest that the main reason for pattern instances to decay is due to grime.
Schanz and Izurieta (2010) proposed a taxonomy for subtypes of modular grime
(one type of grime) and performed a pilot study on nine pattern instances evolving
throughout eight versions of one industrial software. The study validated the pro-
posed classification, as well as suggested an increase of pattern grime. Regarding
how the accumulation of grime correlates to other characteristics of the system, Grif-
fith and Izurieta (2014) proposed a taxonomy for one type of grime, class grime, and
performed a pilot study on randomly selected pattern instances from open-source
projects to investigate the effects of class grime on design pattern understandabil-
ity, and found this quality attribute to be negatively affected by the accumulation of
class grime. In another study, Izurieta and Bieman (2008) evaluated the testability
of design pattern instances from three different patterns and found that as grime is
accumulated, other issues such as code smells also appears, and the testability of
the pattern instances decreases.

Izurieta and Bieman (2013) studied the accumulation of grime and rot (another
form of pattern decay, due to deterioration of the structural or functional integrity)
during the evolution of pattern instances of three open-source systems. The study
also correlated grime to testability, adaptability and pattern instability. The results
are similar to those observed in the aforementioned studies, including increase of
pattern grime and negative correlation with testability and adaptability. The au-
thors also reported that they could not identify rot of pattern instances nor corre-
lation between grime and pattern instability. Dale and Izurieta (2014) reported an
experiment to study the correlation between three subtypes of modular grime and
technical debt. Pattern instances of three example systems were used and modular
grime was systematically injected in the instances. The results suggest that one sub-
type of modular grime (i.e., strength) is more strongly correlated to technical debt,
in the sense that strong coupling (through class attributes) is correlated with sta-
ble grime, while weak coupling (other kinds of coupling) is correlated to increased
technical debt.

In comparison to related work, we contribute the following: (a) we studied five
industrial nontrivial projects that collectively provided 36,571 units of analysis (i.e.,
editions to pattern instances’ source code, see Section 6.3). Therefore, we can com-

156 6. The Evolution of Design Pattern Grime: An Industrial Case Study

pare our results with those obtained from the analysis of open-source projects and
toy examples; (b) among other facets, we investigated how pattern grime is accumu-
lated by different developers (16 in total), which has not been considered in previ-
ous studies; and (c) we studied the correlation between pattern grime and multiple
structural metrics of pattern instances, which has not been thoroughly explored in
previous studies.

6.3 Study Design

6.3.1 Objectives and Research Questions

The goal of this study, described using the Goal-Question-Metric (GQM) approach
(van Solingen et al., 2002), is formulated as follows: “analyze instances of GoF de-
sign patterns for the purpose of investigating the factors of project, pattern type, develop-
ers and structural characteristics of pattern participants with respect to their relationship
with pattern grime, from the point of view of software designers in the context of in-
dustrial software development”. Based on this goal, we defined the following research
questions (RQs):

RQ1: How does grime accumulate in pattern instances?

RQ1.1: Are there differences in accumulated grime among different projects?

RQ1.2: Are there differences in accumulated grime among different pattern
types?

RQ1.3: Are there differences in accumulated grime among different develop-
ers?

RQ2: Are structural characteristics of the pattern participants related to the accu-
mulation of grime?

RQ1 aims at assessing pattern grime within the five projects and exploring dif-
ferences across three different factors: projects, types of pattern (e.g., Observer, Tem-
plate Method) and developers. We chose these factors as they may potentially in-
fluence the accumulation of grime: the projects vary in requirements, design, size,
scope etc. and may thus influence grime accumulation; the types of patterns exhibit
different solutions and may allow or inhibit the accumulation of grime; the devel-
opers have diverse backgrounds and experience thus knowingly or inadvertently
accumulating grime differently.

RQ2 aims at investigating the relationship between levels of grime and a dif-
ferent type of factor: the structural characteristics of pattern-participating classes.

6.3. Study Design 157

This helps to further understand the details of how the structure of the pattern itself
relates to accumulating grime, and can thus inform best practices on the usage of
design patterns.

6.3.2 Case Selection, Unit of Analysis, and Subjects

To answer the research questions, we designed an exploratory case study (Runeson
et al., 2012), in which we analyze five industrial projects from one company in the
domain of web and mobile applications development. These projects provided us
with a diverse and comprehensive sample of developers (and projects) to investi-
gate: one team of six people worked on three of the projects, while the other two
projects were developed by two other teams (of five people each) independently.
We selected an industrial case study, since there is a lack of empirical studies on
pattern grime for such projects; most of the previous studies have been performed on toy
examples or open-source projects.

As cases, we used the pattern instances of the explored projects. From each case,
we recorded multiple units of analysis, based on the evolution of the specific in-
stance. In particular, we recorded a unit of analysis for every change in the instance
(i.e., pair of successive commits). We decided to focus on pairs of commits to iso-
late and assess events (changes to pattern instances) performed by a single developer. This
allows to investigate developers as a potential factor influencing grime (see RQ1.3).

6.3.3 Variables and Data Collection

To answer the research questions, we extracted four groups of variables: (1) Identifi-
cation of units of analysis; (2) Pattern information; (3) Assessment of grime change;
and (4) Assessment of structural change. Presented in Table 6.1, these variables are
recorded for each unit of analysis (i.e., change to pattern instance). The entire pro-
cess of identifying and measuring the units of analysis culminates in the creation of
a dataset of all extracted variables for each unit. This dataset is recorded as a table in
which the columns correspond to collected variables. We clarify that due to a non-
disclosure agreement signed with the company in this case study we cannot share
the created dataset. In the following we describe each group of variables.

Identification of Units of Analysis

This group regards the variables: commit, and developer. To identify every unit of
analysis, we queried the git repository and extracted the author information and
files that were changed for every commit. We ignored merge commits, as they do

158 6. The Evolution of Design Pattern Grime: An Industrial Case Study

not provide new information regarding changes to files. In addition, we considered
only changes to java classes that participate in a pattern instance.

Pattern Information

This group regards the variables: instance-id, and pattern. The collection of the pat-
tern instances is a time-consuming task. For that reason, we used two tools, namely
SSA (Similarity Score Analysis, v4.12) (Tsantalis et al., 2006) and SSA+ (v1.0.0), to
detect pattern instances and performed a series of validations. In short, these tools
allow us to detect pattern instances of 12 types: Adapter / Command, Composite,
Decorator, Factory Method, Observer, Prototype, Singleton, State / Strategy, Tem-
plate Method, and Visitor. We do not elaborate on the SSA tool nor its validation,
since we used a similar design setup to detect patterns in Chapter 4 (see Section
4.3.3), in which all relevant information can be found. We note that we manually
verified various (randomly selected) outputs. Regarding SSA+, it detects 10 ex-
tended pattern-participant classes, i.e., that participate in the pattern but it is not
part of the main pattern structure (e.g., Concrete State / Strategy). The full list of
detected extended pattern participants is available in the tool’s website1. To validate
SSA+, we also manually verified randomly selected outputs.

Assessment of Grime Change

This group regards the variables: cg-*, mg-*, and og-*. According to Izurieta and
Bieman (2007), there are three types of grime, which can be assessed independently:
class, modular and organizational. To measure these types, we selected six metrics,
as shown in Table 6.1. Each metric is estimated based on diverse design elements
of pattern-participating classes: (a) class grime metrics are based on attributes and
public methods; (b) modular grime metrics are based on incoming and outgoing
dependencies; and (c) organization grime metrics are based on package and their
dependencies. We clarify that we do not elaborate further on the metrics, which
are calculated as described by Izurieta and Bieman (2007). We chose these metrics
because they allow us to assess different aspects of each type of grime, and they
were previously used and validated to assess pattern grime in nontrivial systems
(Izurieta and Bieman, 2013).

To automate the calculation of the metrics, we created an open-source tool,
spoon-pttgrime2 (v0.1.0), available online as a public repository, which also con-
tains further information on how the metrics are calculated. This tool takes as input
Java source files of a project and an XML file describing the pattern instances in

1https://github.com/search-rug/ssap
2https://github.com/search-rug/spoon-pttgrime

https://github.com/search-rug/ssap
https://github.com/search-rug/spoon-pttgrime

6.3. Study Design 159

the project (i.e., the output from SSA+). For each pattern instance, spoon-pttgrime
calculates the six aforementioned metrics by querying the project’s AST using the
Spoon library (Pawlak et al., 2016). To validate the tool, we manually verified the
output for 20 pattern instances (randomly selected) over five consecutive commits.
Bugs were fixed and additional verification rounds showed no errors. As we are in-
terested in assessing the change of grime in pattern instances for a pair of commits,
we subtracted the grime estimation at the current commit (identified by the unit of
analysis) from the estimation of the immediate previous commit (i.e., its parent).

Assessment of Structural Change

This group regards the variables s-*. To assess structural change, we selected three
sets of metrics, proposed by Chidamber and Kemerer (1994), Li and Henry (1993),
and Bansiya and Davis (2002), accounting for the 21 metrics presented in Table 6.1.
We selected these metrics because they allow us to investigate many characteristics
of the structure of pattern participants, and because they are well-known by both re-
searchers and practitioners. To calculate the metrics, we used Percerons Client, i.e.,
a tool developed in our research group that automates the assessment of these met-
rics for Java classes. Percerons is a software engineering platform (Ampatzoglou,
Michou and Stamelos, 2013) to facilitate empirical research in software engineering
and has been used for similar reasons in (Griffith and Izurieta, 2014) and (Alhusain
et al., 2013).

6.3.4 Analysis Procedure

To answer RQ1, we analyze the descriptive statistics of the variables for unit identi-
fication, pattern information, and assessment of grime change. As our study com-
prises several projects / subjects and encompasses several GoF patterns, we de-
rive data subsets, so as to group the units of analysis based on the different ana-
lyzed factors (i.e., project, pattern and developer). When necessary we also perform
linear regressions and parametric or non-parametric tests (Field, 2013) in order to
devise trends and test differences between groups. To answer RQ2, we first ana-
lyze whether the distribution of all measurements for each metric is normally dis-
tributed. If true, we can select the Pearson correlation method (Field, 2013), other-
wise the Spearman’s rank correlation method (Field, 2013). For each pattern grime
metric, we perform the analysis as follows: first we calculate the correlation between
the grime metric and all structural metrics; next, we identify strong correlations (>
0.8) that are statistically significant, and discuss the results from the perspective of
grime accumulation.

160 6. The Evolution of Design Pattern Grime: An Industrial Case Study

Table 6.1: List of collected variables

Group Variable Description

Unit
Information

project Project from which the pattern instance was extracted
commit Hash of the commit in the git repository
dev Developer author of the commit

Pattern
Information

inst id ID of the pattern instance the class belongs to
pattern GoF design pattern of the instance

A
ss

es
sm

en
to

f
G

ri
m

e
C

ha
ng

e

cg-npm Difference in the total number of alien public methods in all classes of
the pattern instance (Class grime)

cg-na Difference in the total number of alien attributes in all classes of the
pattern instance (Class grime)

mg-ca Difference in the pattern instance afferent coupling (Modular grime)
mg-ce Difference in the pattern instance efferent coupling (Modular grime)
og-np Difference in the number of packages within the pattern instance (Or-

ganizational grime)
og-ca Difference in the fan-in at the package level (Organizational grime)

A
ss

es
sm

en
to

fS
tr

uc
tu

ra
lC

ha
ng

e

s-wmc Difference in the average weighted methods per class
s-dit Difference in the maximum depth of inheritance tree
s-noc Difference in the average number of children
s-cbo Difference in the average coupling between object classes
s-rfc Difference in the average response for a class
s-lcom Difference in the average lack of cohesion in methods
s-nom Difference in the average number of methods
s-mpc Difference in the average message-passing coupling
s-dac Difference in the average data abstraction coupling
s-size1 Difference in the lines of code
s-size2 Difference in the number of properties
s-dsc Difference in the design size in classes
s-noh Difference in the number of hierarchies
s-ana Difference in the average number of ancestors
s-dam Difference in the data access metric
s-camc Difference in the cohesion among methods of class
s-moa Difference in the measure of aggregation
s-mfa Difference in the measure of functional abstraction
s-nop Difference in the number of polymorphic methods
s-cis Difference in the class interface size
s-fan-in Difference in the afferent couplings

6.4 Results

In this section, first we briefly describe the collected data and subsequently address
each research question independently. We note that we investigated six metrics for
pattern grime, and therefore report the results for all metrics and highlight find-
ings independently for each one, when this is relevant. We collected a total of 1,422
commits, from the five studied projects, that include the creation or modification
of pattern-participating classes. From these commits, 94% (i.e., 1,341) include mod-

6.4. Results 161

Table 6.2: Amount of grime accumulated per commit

Metric Minimum Maximum Mean Std. Deviation

cg-npm -1.00 15.00 0.28 0.64
cg-na -1.50 9.50 0.12 0.45
mg-ca -3.75 44.00 0.21 1.18
mg-ce -10.00 85.00 1.61 4.53
og-np -0.25 2.00 0.02 0.14
og-ca -2.00 35.00 0.14 1.13

ifications to one or more pattern instances. We identified 2,349 pattern instances
of eight different GoF patterns: (Object) Adapter-Command, Factory Method, Ob-
server, Singleton, State-Strategy, and Template Method. Each pattern instance was
created and then modified up to 178 times (i.e., the maximum number of modifica-
tions for a single instance). From the total number of pattern instances, 87% (i.e.,
2,039) were modified at least once after being created, and 64% (i.e., 1,500) at least
five times. The data collection resulted in the identification of 36,571 units of analy-
sis (i.e., creation / modification of a pattern instance in a commit).

6.4.1 RQ1 - Accumulation of Grime

To study the differences in accumulated grime among different projects, types of
patterns and developers, we first present how the assessed pattern grime metrics
change within the instances’ evolution. Table 6.2 shows the following descriptive
statistics for the six metrics (previously presented in Table 6.1): minimum and max-
imum values, mean value among all units of analysis and standard deviation (i.e.,
how much measurements vary from the mean value). Based on the Table 6.2, we
notice that grime can either reduce (i.e., negative measurement) or increase. How-
ever, the data suggest that on average, grime in pattern instances tends to increase
during the instance’s evolution. Another observation is that the number of pack-
ages in a pattern instance (og-np) seems to be the grime indicator that is less likely
to change, which is a probable sign of common design practices. Moreover, despite
considerably higher maximum values, we notice that the measurements are consis-
tently close to the mean, since the standard deviation is not much higher than the
mean (especially compared to maximum values).

Next, we are interested in investigating how grime accumulated in different
projects (RQ1.1). Figure 6.1 depicts this information for the six metrics. P1 is the
project with most collected commits (605), while P5 provided the least commits (76).
The y-axis represents the mean amount of grime accumulated per modified instance
in a given commit. The x-axis represents consecutive commits. We note that the x-

162 6. The Evolution of Design Pattern Grime: An Industrial Case Study

:

Figure 6.1: Accumulation of grime per project for each grime metric

axis does not represent the full history of commits. Our goal is to investigate the
evolution of pattern instances and, thus, we considered only commits that include
the modification of pattern-participant classes. By inspecting Figure 6.1, we observe
that every project individually reflects the trend of the population, i.e., pattern grime
linearly increases during the project evolution. To verify this, we performed linear
regression for every pair <metric, project> and assessed how well the calculated
equation fits the data.

In Table 6.3, we present the results, which are all statistically significant. We
notice that the vast majority of the equations are powerful descriptors, since R2 (i.e.,
how close the data fit the regression line) is close to 1. The exceptions are the tuples
<og-np, P1>, <og-np, P5>, and <og-ca, P5>, which regard metrics of organization

6.4. Results 163

Table 6.3: Linear regression of pattern grime accumulation per project

Metric Project Equation R2 Metric Project Equation R2

cg-npm

P1 13.91 + 0.15x 0.91

cg-na

P1 5.47 + 0.07x 0.93
P2 -0.28 + 0.19x 0.99 P2 -0.59 + 0.08x 0.92
P3 -1.79 + 0.24x 0.99 P3 -0.51 + 0.11x 0.99
P4 7.44 + 0.24x 0.95 P4 1.89 + 0.13x 0.95
P5 5.32 + 0.37x 0.95 P5 3.44 + 0.17x 0.89

mg-ca

P1 2.27 + 0.04x 0.90

mg-ce

P1 129.84 + 1.40x 0.89
P2 -1.72 + 0.34x 0.99 P2 -9.04 + 1.00x 0.99
P3 -2.24 + 0.17x 0.93 P3 -15.42 + 1.34x 0.99
P4 5.68 + 0.11x 0.92 P4 15.36 + 1.21x 0.96
P5 0.71 + 0.04x 0.87 P5 26.47 + 1.20x 0.89

og-np

P1 2.00 + 0.01x 0.58

og-ca

P1 1.09 + 0.03x 0.92
P2 -0.06 + 0.00x 0.82 P2 3.11 + 0.12x 0.95
P3 -0.20 + 0.02x 0.96 P3 -3.86 + 0.08x 0.90
P4 -0.02 + 0.01x 0.89 P4 2.61 + 0.03x 0.81
P5 0.12 + 0.01x 0.61 P5 1.04 + 0.00x 0.64

grime. This is due to the drastic change in the accumulated grime observed for these
tuples, which may reflect systematic changes in the design (e.g., package renaming).

Further, we analyzed the dataset regarding different GoF patterns (RQ1.2). In
Table 6.4, we show the descriptive statistics for each metric and identified pattern.
We clarify that we do not report the results for the Observer and Template Method
patterns, as the number of units of analysis for them is negligible (18 and 5, re-
spectively). The results suggest that different patterns are subject to different lev-
els of grime. For example, it seems that little grime is accumulated in instances of
Singleton after their creation, whilst instances of Factory Method tend to accumu-
late the most amount of grime. To statistically investigate the difference between
patterns, we performed pairwise comparisons (Mann-Whitney tests), which are re-
ported within the supplementary material (Feitosa, Avgeriou, Ampatzoglou and
Nakagawa, 2017a). The results showed that the differences in most comparisons
(86% of the 36 tests) is statistically significant, thus supporting our findings.

The last facet we investigated was how different developers accumulate grime
(RQ1.3). We clarify that we do not report the complete descriptive statistics for each
metric and developer, which are available in the supplementary material (Feitosa,
Avgeriou, Ampatzoglou and Nakagawa, 2017a). In Table 6.5, we present the number
of pattern instances maintained by the 16 developers, changes to pattern instances
and mean value of the grime metrics. By analyzing the results, we notice that some
developers seem to consistently accumulate more grime than others (e.g., D7, D8
and D9), or less grime than others (e.g., D1 and D3), with respect to most metrics.
Furthermore, we can observe that developers that changed pattern instances more

164 6. The Evolution of Design Pattern Grime: An Industrial Case Study

Table 6.4: Amount of grime accumulated per pattern

Metric Pattern Num. of
instances

Num. of
changes

Min. Max. Mean Std. De-
viation

cg-na

Adapter-Command 770 13,225 -3.00 17.00 0.12 0.53
Factory Method 61 776 -3.42 13.00 0.15 0.78
Singleton 83 281 -1.00 1.00 0.01 0.16
State-Strategy 1121 19,937 -4.00 13.00 0.10 0.44

cg-npm

Adapter-Command 770 13,225 -3.00 26.00 0.21 0.77
Factory Method 61 776 -7.58 21.67 0.35 1.42
Singleton 83 281 -2.00 4.00 0.06 0.44
State-Strategy 1121 19,937 -8.00 21.33 0.21 0.80

mg-ca

Adapter-Command 770 13,225 -2.00 44.00 0.08 0.89
Factory Method 61 776 -7.00 102.00 0.59 4.15
Singleton 83 281 -1.00 7.00 0.49 0.96
State-Strategy 1121 19,937 -15.00 44.00 0.12 0.87

mg-ce

Adapter-Command 770 13,225 -20.00 197.00 1.19 5.60
Factory Method 61 776 -13.00 60.00 1.44 4.40
Singleton 83 281 -4.00 17.00 0.47 1.85
State-Strategy 1121 19,937 -30.00 159.00 1.23 5.66

og-ca

Adapter-Command 770 13,225 -2.00 35.00 0.06 0.75
Factory Method 61 776 -36.00 36.00 0.17 2.32
Singleton 83 281 -1.00 27.00 0.41 2.19
State-Strategy 1121 19,937 -6.00 34.00 0.06 0.62

og-np

Adapter-Command 770 13,225 0.00 2.00 0.01 0.13
Factory Method 61 776 -1.00 3.00 0.03 0.21
Singleton 83 281 0.00 1.00 0.01 0.10
State-Strategy 1121 19,937 -1.00 3.00 0.01 0.15

often tend to accumulate less grime. Seeking to support our observations statis-
tically, we compared pairs of developers based on every metric using the Mann-
Whitney test. By observing the findings of the test, we suggest that 73% of the 396
tests are statistically significant, and that the non-significant tests regard mostly the
number of packages (og-np). Detailed results are reported on the supplementary
material (Feitosa, Avgeriou, Ampatzoglou and Nakagawa, 2017a).

Summarizing the results for RQ1, pattern grime: (a) is likely to increase linearly over
system evolution; (b) grows similarly across different projects; (c) accumulates at different
paces depending on the pattern type and the individual developer. The interpretation of
all findings reported in this section, as well as their implications to researchers and
practitioners are discussed in Section 6.5.

6.4. Results 165

Table 6.5: Average amount of grime accumulated per developer

Developer Num. of
instances

Num. of
changes

cg-na cg-npm mg-ca mg-ce og-ca og-np

D1 465 7,525 0.08 0.17 0.04 0.93 0.04 0.00
D2 1,132 6,232 0.12 0.34 0.20 1.25 0.05 0.00
D3 549 5,232 0.07 0.07 0.04 0.85 0.01 0.00
D4 837 5,141 0.10 0.14 0.13 0.96 0.04 0.01
D5 335 3,442 0.10 0.23 0.04 1.35 0.02 0.02
D6 469 1,554 0.13 0.24 0.14 2.28 0.24 0.00
D7 292 1,406 0.17 0.29 0.23 2.54 0.19 0.05
D8 326 1,346 0.20 0.26 0.21 1.72 0.18 0.02
D9 161 697 0.13 0.38 0.27 1.68 0.20 0.02
D10 225 636 0.07 0.37 0.24 1.05 0.27 0.01
D11 233 515 0.01 0.19 0.34 0.37 0.06 0.00
D12 170 431 0.23 0.28 0.06 1.89 0.00 0.00
D13 41 56 0.79 1.64 0.89 8.04 0.29 0.21
D14 13 17 0.00 0.00 0.00 2.06 0.00 0.00
D15 3 8 0.00 0.03 -0.25 0.00 0.38 0.00
D16 2 4 0.00 0.00 0.00 0.75 0.00 0.00

6.4.2 RQ2 - Structural Characteristics and Pattern Grime

To assess the correlation between pattern grime and structural metrics, we first ver-
ified whether all measurements for each metric are normally distributed. We found
that not all are normally distributed and, thus, we decided to use a non-parametric
method to study the metrics: Spearman’s rank correlation. All assessed correlations
are presented in Table 6.6, and are all statistically significant.

Regarding the metrics for class grime, we make the following observations. The
metric cg-npm is strongly correlated (> 0.8) to s-wmc, s-nom, and s-cis. This may
be an indication that when many methods are added to pattern-related classes it is
common that a large portion of them are not related to the pattern realization. The
metric cg-na is strongly correlated to s-dac and s-moa. This may be an indication
that a considerable part of the pattern instance coupling is coming from added at-
tributes. This may not be necessarily an alert for bad design, but it rather depends
on how many attributes are added. Regarding modular grime, we notice that the
metric mg-ca is strongly correlated to s-fan-in only, which is a metric that is similar
to mg-ca, but at class level. This suggests that most of the pattern instance afferent
coupling comes from regular afferent coupling of the pattern participants. This may
indicate that pattern instances tend to evolve by adding functionality not related
to the pattern. The metric mg-ce is not strongly correlated to any metrics, whereas
the strongest correlations are with s-rfc and s-cbo. These moderate correlations also
indicate that, to some extent, the introduction of coupling in pattern instances is
also introducing grime. Finally, regarding organizational grime, the metric og-np is

166 6. The Evolution of Design Pattern Grime: An Industrial Case Study

Table 6.6: Correlation between grime and structural metrics

cg-npm cg-na mg-ca mg-ce og-np og-ca

s-wmc 0.86 0.44 0.38 0.48 0.46 0.38
s-dit 0.44 0.53 0.55 0.43 0.99 0.71
s-noc 0.45 0.52 0.60 0.41 0.99 0.73
s-cbo 0.47 0.67 0.50 0.73 0.46 0.41
s-rfc 0.65 0.54 0.31 0.65 0.41 0.33
s-lcom 0.70 0.35 0.32 0.36 0.35 0.31
s-nom 0.86 0.44 0.38 0.48 0.46 0.38
s-mpc 0.43 0.44 0.22 0.55 0.35 0.27
s-dac 0.36 0.87 0.34 0.59 0.56 0.42
s-size1 0.69 0.53 0.31 0.58 0.41 0.35
s-size2 0.79 0.65 0.38 0.58 0.44 0.38
s-dsc 0.44 0.53 0.56 0.43 0.99 0.70
s-noh 0.38 0.43 0.50 0.35 0.77 0.60
s-ana 0.45 0.53 0.51 0.43 0.93 0.66
s-dam 0.34 0.56 0.42 0.43 0.76 0.54
s-camc -0.14 0.16 0.17 0.03 0.45 0.30
s-moa 0.37 0.90 0.36 0.61 0.58 0.44
s-mfa 0.03 0.11 0.03 0.08 0.21 0.07
s-nop 0.71 0.35 0.48 0.34 0.51 0.43
s-cis 0.97 0.41 0.41 0.44 0.48 0.41
s-fan-in 0.46 0.42 0.90 0.36 0.70 0.63

strongly correlated to s-dit, s-noc, s-dsc, and s-ana. Despite the strong correlations,
this finding may be inconclusive as og-np rarely changes and this is probably the
main reason for such high correlations. Finally, the metric og-ca is not strongly cor-
related to any metrics, whereas the strongest correlations are with s-noc, s-dit and
s-dsc. These moderate correlations may indicate that, to some extent, the addition of
new classes to the pattern instance is to serve a new purpose, i.e., serve a class not
served before.

6.5 Discussion

In this section, we discuss the findings of our case study, as well as their impli-
cations. First, we interpret our findings, elaborating on explanations and conse-
quences for the observed results. Next, we present how our findings can benefit
both researchers and practitioners.

6.5.1 Interpretation of Results

In Section 6.4, we reported the raw findings of our case study, whereas in this sec-
tion, we interpret them and compare them against the state-of-the-art. First, regard-

6.5. Discussion 167

ing the evolution of grime, we observed that pattern grime is constantly increasing
along the versions of a system. This result can be considered intuitive as it aligns
with Lehman’s laws on software evolution: software quality deteriorates as the soft-
ware becomes larger and more complex. However, there is an interesting aspect of
this finding: the amount of grime that is accumulated in pattern instances clearly
suggests that pattern-participating classes are not “closed to modifications”, in the
sense that they are continuously “polluted” with artifacts (e.g., methods, dependen-
cies, etc.) that are not pattern-related. This pollution potentially influences how
the application of design patterns affects quality attribute indicators of a system.
Thus, pattern instantiation does not have a constant effect on quality, but it changes
along evolution. This finding is in accordance to the literature, which suggests that
the effect of GoF design patterns on product quality is not uniform along different
pattern instances (Ampatzoglou, Charalampidou and Stamelos, 2013b), and aligns
with results of studies with similar setups (Dale and Izurieta, 2014; Izurieta and Bie-
man, 2008, 2013). In particular, Izurieta and Bieman (2013) used the same pattern
grime metrics and investigated some patterns in common (e.g., Singleton and Fac-
tory Method), but by inspecting open-source systems. The results of both studies
agree on the increase of grime metrics.

Regarding the three parameters that were investigated in RQ1 (i.e., grime in dif-
ferent projects, patterns, and developers), the results suggested that the levels of
grime are similar at the different projects of the same company despite the little
overlap of developers among projects. This outcome can be potentially explained by
the fact that the developers were guided by the same practices, since they usually
follow the same company process. Nevertheless, this finding needs to be further
validated through a follow-up study conducted in different companies. Another
finding is that the levels of grime are different among pattern types, which complies
with the literature suggesting that different patterns have different effect on quality
attributes (e.g., (Ampatzoglou et al., 2015) on stability). In particular, we noticed that
instances of the Singleton pattern are the least likely to accumulate grime, whereas
instances of Factory Method are the most grime-prone. The acknowledgment of
certain good practices (e.g., avoid creation of God Classes) can lead to more “grime-
free” Singleton instances. However, if not careful, developers may enlarge the re-
sponsibility of classes unnecessarily, as observed with Factory Method instances,
which may include methods that suffer from the Feature Envy, Shotgun Surgery,
or Divergent Change smells. Therefore, we suggest monitoring pattern grime to iden-
tify spots of bad quality in the system. Such a practice may support the preservation
of quality indicators (such as understandability and testability) at acceptable levels
and thus increase productivity. Moreover, in comparison with related work, Izuri-
eta and Bieman (2013) also show that Singleton pattern instances tend to accumulate

168 6. The Evolution of Design Pattern Grime: An Industrial Case Study

less grime, whereas on the contrary Factory Method instances tend to accumulate
grime faster than other investigated patterns. This observation further supports that
open-source and industrial systems have similarities with regards to the accumula-
tion of pattern grime.

From the last investigated parameter, we found that the levels of grime also
differ among developers. Their tendency to accumulate grime likely depends on
diverse factors. In particular, varied levels of programming skills, knowledge of
the system and of GoF patterns can explain the different tendency to accumulate
grime. This finding supports the belief that personalized quality assessments are
required in industry (Amanatidis et al., 2017). Furthermore, we observed that de-
velopers that performed more changes are related to lower levels of accumulated
grime, suggesting that most tasks (resulting in more changes) are assigned to more
experienced developers, inclined to accumulate less grime. We suggest using such
information about developers in order to improve the software development process. For ex-
ample, since our industrial partner use agile methodologies, such information can
be considered in daily Scrum meetings in which issues are assigned to individual
developers. The personalization of software development and the effect on human
factors in the quality of the software have been extensively studied in the last years,
underlying the importance of such strategies.

Finally, regarding the relation of structural metrics with grime metrics, the re-
sults point out that some of the most established structural quality metrics are re-
lated to the grime metrics. For example, the fan-in metric is at least moderately cor-
related to all grime metrics. This finding may be explained by the fact that pattern
grime is calculated at the detailed-design level. Since class dependencies consist one
of the main elements of object-oriented design, it is intuitive to expect the obtained
correlations, e.g., between two metrics that are calculated based on class dependen-
cies. However, we note that the strength of the correlations varies among pattern
instances, which shows that structural metrics can be adequate predictors of grime
accumulation.

6.5.2 Implications to Researchers and Practitioners

Researchers can benefit from our results from several perspectives. We presented a
thorough exploration of the accumulation of pattern grime and we identified several
factors that influence how pattern grime grows during the evolution of pattern in-
stances. This exploration not only reinforces the importance of investigating pattern
grime, but also suggests several opportunities of future work, e.g., investigate char-
acteristics of developers that tend to accumulate grime. In addition, the identified
correlations between pattern grime and structural metrics help on understanding

6.6. Threats to Validity 169

how pattern grime is introduced, as well as open further possibilities to investi-
gate other relevant aspects of software systems and processes, for example technical
debt.

We also foresee benefits of our results to practitioners. Because we investigated
five nontrivial projects, our findings can help practitioners improve best practices
on the usage of design patterns, e.g., by warning developers to avoid accumulating
grime on Singletons pattern instances. Moreover, the metrics and correlations that
we present can be considered in processes for monitoring the evolution of the soft-
ware systems, e.g., high levels of fan-in in pattern-participating classes may indicate
that considerable grime is being inserted.

6.6 Threats to Validity

In this section, we discuss threats to construct validity (i.e., if the studied phe-
nomenon is connected to the set objectives), reliability (if the study can be repli-
cated), and external validity (i.e., generalizability). We do not analyze internal va-
lidity, as we do not try to establish causal relationships.

Concerning construct validity, the tool SSA is limited by its precision and recall:
false positives and negatives may bias the presented results. However, to the best
of our knowledge the used tool is among the most reputed in the community, and
has adequate performance (see Section 6.3). For mitigating this threat, we verified its
precision and recall manually by checking 30 random pattern instances for each GoF
pattern that was detected (i.e., over 100 instances in total), which were all successful.
Additionally, regarding SSA+ and spoon-pttgrime, we acknowledge that the tools
may have bugs. However, we verified over 50 random outputs of each tool and, to
the best of our knowledge, no bugs were found.

In order to mitigate reliability threats, two different researchers performed the
collection and analysis, double-checking sample outputs. Besides that, we acknowl-
edge that non-disclosure agreements do not allow us to share the collected dataset.
However, all used tools are freely available and replication studies can be carried
out. Finally, the external validity of our study is threatened by the fact that we an-
alyzed projects of the same company, thus, our findings may not be generalizable
to other projects nor teams. However, our results relate to those obtained in other
studies with similar setup, e.g., we expected modular grime to be the main con-
tributor for the pattern grime, and we found mg-ce to clearly grow at a faster pace.
In addition, our results are bounded by our study design. Adding other GoF pat-
terns, pattern grime metrics, or structural metrics could lead to adjustments in our
findings.

170 6. The Evolution of Design Pattern Grime: An Industrial Case Study

6.7 Conclusion

In this chapter, we presented an exploratory case study on how grime accumulates
in pattern instances and its correlation to structural characteristics of the pattern
participants. To this end, we investigated the evolution of 2,349 pattern instances
of eight patterns, assessing six grime metrics of three types of grime (class, modu-
lar and organization), as well as 21 structural metrics. We explored how grime is
distributed according to: (a) projects, pattern types, and developers, and (b) struc-
tural characteristics of pattern-participating classes. The results suggest that pattern
grime tends to increase linearly, it is likely independent of project but depends on
pattern type and developer. Moreover, we identified a series of correlations between
metrics for pattern grime and structural characteristics, e.g., the coupling added to
pattern participants tend to also introduce grime.

The accumulation of pattern grime observed in this study indicated that this
phenomenon could have undesired effects on pattern instances. Therefore, the next
chapter address this concern by reporting an investigation on whether there is a
relation between the three forms of pattern grime (i.e., organizational, modular, and
class) and the levels of three quality attributes addressed in this dissertation, namely
performance, security and correctness.

Based on:

Daniel Feitosa, Apostolos Ampatzoglou Paris Avgeriou, and Elisa Y. Nakagawa, (2018) “Correlating
Pattern Grime and Quality Attributes,” in IEEE Access, vol. 6, pp. 23065–23078,
DOI:10.1109/ACCESS.2018.2829895

Chapter 7

Correlating Pattern Grime and Quality
Attributes

Abstract

One important parameter that relates to the effect of patterns on quality is the
deterioration of pattern instances due to the buildup of artifacts unrelated to
the pattern structure, a phenomenon named pattern grime. In this chapter, we
investigate the relation between pattern grime and three qualities, namely per-
formance, security and correctness. To this end, we conducted a case study with
five industrial projects implemented by 16 developers. Our findings suggest a
correlation between the accumulation of grime and decreased levels of perfor-
mance, security, and correctness. Moreover, factors such as the project itself,
pattern type and the developer can influence this relation. The obtained results
can benefit both researchers and practitioners, as we provide evidence on the
accumulation of pattern grime and its correlation to performance, security and
correctness, and how different factors affect these correlations.

7.1 Introduction

The effect of patterns on software quality is not uniform, but it depends on a number
of parameters (Ampatzoglou, Charalampidou and Stamelos, 2013b). Several works
have concluded that a pattern can be beneficial in some cases and harmful in others,
with respect to a specific quality attribute, by studying the structural characteristics
of patterns, such as the number of pattern participating classes, number of methods,
etc (Charalampidou et al., 2017; Hsueh et al., 2008; Huston, 2001; Muraki and Saeki,
2002). In Chapter 6, we report on one phenomenon that may influence how bene-
ficial pattern instances may be to quality attributes, namely pattern grime (Izurieta
and Bieman, 2013). In general, accumulating pattern grime contributes to the degra-
dation of quality in pattern instances (Dale and Izurieta, 2014; Izurieta and Bieman,

172 7. Correlating Pattern Grime and Quality Attributes

2008, 2013). Given the high percentage of class participation in GoF patterns (up to
65%), the effects of ever-growing grime can be detrimental to the overall quality of
those systems.

Despite ongoing research on identifying the impact of pattern grime on software
quality (Griffith and Izurieta, 2014; Izurieta and Bieman, 2008, 2013), there are still
three shortcomings. First, only a few quality attributes have been addressed so far,
namely testability, adaptability and understandability. Second, despite the existence
of industrial case studies examining how pattern grime accumulates (Schanz and
Izurieta, 2010; Feitosa, Avgeriou, Ampatzoglou and Nakagawa, 2017b), there is a
lack of industrial studies regarding how the accumulation of grime relate to levels
of quality attributes; the existing studies are limited to open source software. Finally,
even these studies on open source have limited depth regarding the investigation of
factors that contribute to this relation between grime and qualities. For example,
developers with different levels of involvement in a project may accumulate grime
differently. Identifying the factors related to higher levels of grime can improve the
impact of design patterns on quality, as well as to a more adequate allocation of
resources in a project.

In this chapter, we address the aforementioned shortcomings through an indus-
trial case study that examines the relation between the accumulation of pattern
grime and quality. The study was designed according to the guidelines of Rune-
son et al. (2012), reported based on the Linear Analytic Structure (Runeson et al.,
2012). Thus, we offer three advancements compared to the state of the art (which
is further elaborated in Section 7.2). First, we focus on three qualities that have not
been studied: performance, correctness and security. Second, we consider five in-
dustrial software systems for our investigation, instead of open source. Finally, we
investigate three factors that may influence the underlying relations:

• the projects under development have several characteristics such as applica-
tion domain and type of systems (e.g., user application, library), which may
influence the usage of patterns and development practices. Studies have al-
ready shown that projects can accumulate pattern grime differently (Izurieta
and Bieman, 2013; Feitosa, Avgeriou, Ampatzoglou and Nakagawa, 2017b).
Thus, we seek to investigate if this may reflect on the relation between grime
and levels of quality as well;

• the types of pattern (e.g., Template Method, Singleton, etc.) have also been
pointed out as a factor on how pattern grime is accumulated (Izurieta and
Bieman, 2013; Schanz and Izurieta, 2010; Feitosa, Avgeriou, Ampatzoglou and
Nakagawa, 2017b). The different structural and behavioral characteristics of
patterns may also be related to how exactly quality is affected; and

7.2. Related Work 173

• the developers often have different traits such as background and experience,
which may affect their behavior and productivity (Amanatidis et al., 2017).
Besides, as reported in Chapter 6, developers have also been found to accumu-
late grime differently, which corroborates the relevance of also investigating if
this factor relates to a varying level of quality.

The study is executed based on the commits performed by 16 developers during
the implementation of the same five projects investigated in Chapter 6. Similar to
Chapter 4, the studied qualities are assessed through the number of violations of
various coding practices, each one mapped to one of the qualities (for more details
see Section 7.3.3, Step 4).

The remainder of this chapter is organized as follows. In Section 7.2, we present
related work. The design of our case study is described in Section 7.3. In Sections
7.4 and 7.5, we report on our results and discuss the most important findings. We
present the identified threats to validity in Section 7.6, together with actions taken
to mitigate them. Finally, we conclude the chapter in Section 7.7.

7.2 Related Work

In this section, we focus on the terminology related to pattern grime, and address
empirical studies that investigate the relation between accumulation of grime and
quality attributes.

7.2.1 Design Patterns Grime and Quality Attributes

Pattern grime concerns the degradation of pattern instances without breaking down
the original structure on the pattern definition (Izurieta and Bieman, 2013). This
degradation occurs through the addition of associations that do not comply with
patterns’ responsibilities (e.g., addition of a public method that is not in the defini-
tion), which can accumulate along the evolution of the instance and obscure their
design (Izurieta and Bieman, 2008). Izurieta and Bieman (2007) established that the
added associations can be assessed from three base perspectives, i.e., there are three
forms of pattern grime. Class grime regards class-related elements (e.g., number of
attributes, methods, or children) that are unrelated to the role of a class in the pat-
tern instance. Modular grime regards relationships (e.g., dependency, generalization)
between classes of the pattern instance and other classes, which are not predicted in
the definition of the pattern. Organizational grime regards how pattern-participant
classes are distributed into packages and/or namespaces. This threefold classifica-
tion was further refined by Schanz and Izurieta (2010), who provided a taxonomy of

174 7. Correlating Pattern Grime and Quality Attributes

subtypes for modular grime, and by Griffith and Izurieta (2014), with a taxonomy
of subtypes for class grime.

Regarding the relation between the accumulation of pattern grime and the lev-
els of quality attributes, we identified three empirical studies. Izurieta and Bieman
(2008) investigated how grime is associated with the testability of pattern instances.
For that, they considered instances of Singleton, Visitor and State patterns obtained
from an open-source system and assessed their testability by the number of test
cases necessary to cover them. By analyzing the testability against the accumula-
tion of modular grime, Izurieta and Bieman found that testability decreases (i.e.,
more test cases are needed) as grime accumulates. Moreover, other issues such as
the appearance of code smells also aggravate. In a complementary study, Izurieta
and Bieman (2013) explored how pattern grime affects the testability and adaptabil-
ity (measured by pattern instability) of instances from three open-source systems.
They examined all three forms of pattern grime (i.e., class, modular and organi-
zational) and again observed a negative impact. Both testability and adaptability
decreased with the accumulation of grime, although the results regarding organi-
zational grime were inconclusive due to lack of more data. Finally, Griffith and
Izurieta (2014) investigated how the understandability of pattern instances changes
due to the accumulation of grime. To this end, they focused on class grime and
randomly collected pattern instances from a database of open-source components
(Ampatzoglou, Michou and Stamelos, 2013). By correlating the accumulated grime
with understandability (assessed according to the QMOOD quality model (Bansiya
and Davis, 2002)), they found that this quality attribute is also affected negatively.

7.2.2 Comparison to State of Research

In Table 7.1, we compare the main parameters that differentiate our study from re-
lated work. In particular, we emphasize that: (a) we investigated three quality at-
tributes (i.e., performance, security and correctness) that have not been addressed
in this context; (b) we studied five industrial nontrivial projects (in contrast to open-
source ones) that collectively provided 36,571 units of analysis (i.e., modifications
to the source code of pattern instances, see Section 7.3); and (c) we investigated fac-
tors that, although have been explored with regards to the accumulation of grime,
have not still been examined with regards to the relation between grime and quality
attributes.

7.3. Study Design 175

Table 7.1: Comparison with related work

Ref. Context Projects Patterns Instances Forms of
grime

Quality
attributes

Factors

Izurieta and
Bieman
(2008)

open-
source

1 3 2 modular testability pattern

Izurieta and
Bieman
(2013)

open-
source

3 7 “small
num-
ber”

class, modular
and
organizational

testability
and
adaptability

lines of
code

Griffith and
Izurieta
(2014)

open-
source

not clear 16 not clear class understand-
ability

none

This study industrial 5 9 2,329 class, modular
and
organizational

correctness,
performance
and security

project,
pattern,
developer

7.3 Study Design

In this section, we present the protocol of our case study, designed according to the
guidelines of Runeson et al. (2012), reported based on the Linear Analytic Structure
(Runeson et al., 2012).

7.3.1 Objectives and Research Questions

We formulated the goal of this study using the Goal-Question-Metric (GQM) ap-
proach (van Solingen et al., 2002), as follows: “analyze the accumulation of grime on
GoF pattern instances for the purpose of evaluation with respect to its relationship with
the levels of performance, security and correctness, from the point of view of software
designers in the context of industrial software development”. To accomplish this goal,
we proposed three research questions (RQs), which are elaborated as follows.

RQ1: Does the accumulation of pattern grime correlate with changes in the investi-
gated quality attributes?

RQ1.1: Is a correlation observed for class grime?

RQ1.2: Is a correlation observed for modular grime?

RQ1.3: Is a correlation observed for organizational grime?

RQ1 aims at acquiring initial evidence of the relationship between the accumu-
lation of pattern grime and changes in the levels of correctness, performance and
security. We note that we address each quality attribute in isolation. To more com-
prehensively answer this question, we investigated all three forms of grime pro-
posed by Izurieta and Bieman (2007), i.e., class, modular and organizational grime.

176 7. Correlating Pattern Grime and Quality Attributes

RQ2: Which factors affect the aforementioned relation?

RQ2.1: Does it vary for different projects?

RQ2.2: Does it vary for different patterns?

RQ2.3: Does it vary for different developers?

Next, we extend our analysis to factors that may influence the relation between
pattern grime and quality attributes. In this study, we examined three factors. First,
we investigated if the correlation between grime and quality attributes differs for
different projects (RQ2.1). Second, we were interested in answering this question,
but for different patterns (RQ2.2). Although these two factors were briefly addressed
in related work, they have not been empirically explored so far. To complement
the analysis, we also investigated whether the relationship varies depending on the
developer (RQ2.3), in the sense that the expertise or experience of developers may
be reflected in the accumulated grime and/or quality attribute.

7.3.2 Case Selection and Units of Analysis

To answer the posed research questions, we designed an exploratory case study
(Runeson et al., 2012). For the same reasons posed in Chapter 6 (see Section 6.3.2),
we decided to use the same five industrial projects reported]from a company in the
domain of web and mobile applications development. Also for the same reasons
posed in the previous chapter, we used the same unit of analysis, i.e., changes that
pattern instances undergo (i.e., the source code change between two successive com-
mits). We clarify that the usage of such unit of analysis entail the collection of multi-
ple data points for individual pattern instances. However, each data point concerns
a different snapshot of the pattern instance, i.e., there is no repetition. Moreover,
the snapshot of a pattern instance is collected only when a change is made, i.e., the
collection is not made for every commit. Nevertheless, it is paramount to avoid bias
by having an excessive number of units from a few instances. For that, we verified
the balance of our population on this regard (see Section 7.4).

Other main sources of bias regard the authoring of commits and the size of
change, which may compromise our analyses. To address these concerns, we con-
sulted with the company, which informed us that their developers are not allowed
to commit for each other neither exchange source code to commit it. Moreover, a
practice of small commits is encouraged to avoid the aforementioned bad practices.

7.3. Study Design 177

Table 7.2: List of recorded variables

Step Variable Description

1
project Project from which the PI was extracted
commit Hash of the commit in the git repository
dev Developer author of the commit

2
inst id ID of the PI that the class belongs to
pattern GoF design pattern of the instance

3

cg-napm # alien public methods in all PI classes (Class grime)
cg-naa # alien attributes in all PI classes (Class grime)
mg-ca Afferent coupling of the PI (Modular grime)
mg-ce Efferent coupling of the PI (Modular grime)
og-np # packages within the PI (Organizational grime)
og-ca Afferent coupling at the package level (Organizational grime)

4
cor-viol # correctness violations in all PI classes
per-viol # performance violations in all PI classes
sec-viol # security violations in all PI classes

PI stands for “pattern instance”
stands for “Number of”

7.3.3 Variables and Data Collection

To address the research questions, we recorded four sets of variables for each unit of
analysis. Each set regards one of the major steps in the data collection: 1) Character-
ize commits; 2) Collect patterns instances; 3) Assess pattern grime; 4) Assess quality
attributes. In the following we describe each step, the variables collected in them
(highlighted between parentheses), and tools we used. A summary of the recoded
variables is presented in Table 7.2.

Step 1: Characterize Commits

The versioning of the five projects was managed using Git. For each commit we
recorded the project name (project), the commit hashcode (commit) and the devel-
oper responsible for the commit (dev). We also recorded the files that were modified
in order to filter out undesired commits. In particular, we ignored merges (as no
modifications to source code are applied) and commits that did not modify pattern
instances. We clarify that the latter filtering is performed in the next step.

Step 2: Collect Pattern Instances

This collection was performed for every commit, which is a time-consuming task.
Hence, we automated this task using two tools: SSA (Similarity Score Analysis,

178 7. Correlating Pattern Grime and Quality Attributes

v4.12) (Tsantalis et al., 2006), and SSA+1 (v1.0.0). The same tools and their validation
are discussed in details on Chapter 4 (see Section 4.3.3). We note that, to further
validate the performance of the tool, we manually assessed 50 instances, which were
all true positives.

Based on the collected information, we assign an ID (inst id) for every instance
and record it together with the type of the pattern (pattern). We note that IDs are
assigned when instances are first detected and then reused when the same instance
is detected again in later versions, i.e., they are persistent across versions of the
project. Instances were considered equivalent if the main pattern participants had
the same class name or matched a renamed version of the class (obtained from Git).

Step 3: Assess Pattern Grime

For every unit of analysis (i.e., change to a pattern instance), we assessed the amount
of pattern grime accumulated with regards to its three forms (i.e., class, modular and
organizational). For the same reasons described in Chapter 6 (see Section 6.3.3), we
selected the same six metrics. In short, we calculate for class grime: (a) number of
alien attributes (cg-naa), i.e., that are not described in the original pattern; and (b)
number of alien public methods (cg-napm). We clarify that we consider only public
methods, as they are responsible for exposing functionality of the pattern instance
to the whole system. For modular grime, we calculate: (a) afferent pattern cou-
pling (mg-ca) that is the amount of in-coming dependencies (or fan-in), representing
the responsibility of the pattern instance (Izurieta and Bieman, 2013); and (b) effer-
ent pattern coupling (mg-ce) that is the amount of dependencies on classes external
to the pattern instance (or fan-out), representing the instability of the pattern in-
stance (Izurieta and Bieman, 2013). Organizational grime is assessed by calculating:
(a) number of packages (og-np) that contain classes participating on the pattern in-
stance; and (b) afferent coupling at package level (og-ca). Although afferent coupling
is also calculated for modular grime (mg-ca), og-ca will depict the responsibility at a
higher level of abstraction. For example, mg-ca may increase within the same pack-
age containing the pattern instance, which would not affect og-ca.

To automate the data collection of the aforementioned metrics, we used the same
tool presented in Chapter 6, namely spoon-pttgrime2 (v0.1.0), which was developed
during the PhD. To further validate the tool, we verified the calculated metrics for
50 pattern instances that were randomly selected, and the results were all correct.
Based on the collected information, we record the amount of grime accumulated
according to each metric, i.e., the difference between two consecutive versions of

1https://github.com/search-rug/ssap
2https://github.com/search-rug/spoon-pttgrime

7.3. Study Design 179

the pattern instance.

We note that other indicators of grime have been proposed in the literature,
which are based on taxonomies of modular and class grime (Griffith and Izurieta,
2014; Schanz and Izurieta, 2010). However, they are not independent grime indica-
tors in the sense that they are subtypes of the indicators that we already investigate.
Moreover, these additional indicators have been so far validated only through syn-
thetic experiments (Dale and Izurieta, 2014; Griffith and Izurieta, 2014; Schanz and
Izurieta, 2010), and there is no tool to automate their measurement. At the same
time, the size of the population of our study makes it infeasible to assess them man-
ually. Therefore, we decided to consider such indicators in our future work, and not
include them in this study setup.

Step 4: Assess Quality Attributes

As mentioned in Section 7.1, we estimated the studied quality attributes based on
the number of violations of various coding practices. For that, we followed a similar
processes to that described in Chapter 4 (see Section 4.3.3). In short, we used Find-
Bugs (v3.0.1), which considers bug patterns as rules to identify violation of good
coding practices (Hovemeyer and Pugh, 2004). In particular, FindBugs organizes
its rules (i.e., bug patterns) into nine high-level categories3, from which five can
be mapped into the studied quality attributes: correctness (Correctness and Mul-
tithreaded Correctness categories), performance (Performance category), and secu-
rity (Security and Malicious Code categories). We note that, despite the name of the
tool, we do not consider its output as bugs but simply as warnings, i.e., violations
of good coding practices, and take them as indicators of quality. A similar approach
was used by Khalid et al. (2016), who correlated the violations of three categories
(one being performance) to quality as perceived by end-users. They found the data
to be closely related, which supports the violations as quality indicators.

We selected FindBugs for the same reasons discussed in Chapters 2 and 4. More-
over, the validation and limitations of the tools is discussed in both chapters. We
note that, to boost the precision of FindBugs, we exclude violations with low level of
confidence. To estimate the level for each quality attribute, we calculate the amount
of rules violations in the pattern-participant classes of a unit of analysis (cor-viol, per-
viol, and sec-viol). We clarify that lower numbers of violations reflect a higher level
of quality.

3The categories are: Security, Correctness, Multithreaded Correctness, Performance, Malicious Code,
Bad Practice, Internationalization, Experimental and Dodgy Code

180 7. Correlating Pattern Grime and Quality Attributes

7.3.4 Analysis Procedure

To investigate the collected data, we performed various statistical analyses. First,
to answer RQ1, we calculated the correlation between every pair of <grime met-
ric, quality indicator> (e.g., pattern efferent coupling vs. performance violations).
We assess the strength of the correlation according to the guidelines of Evans (1996):
‘very weak’ (0.00-0.19); ‘weak’ (0.20-0.39); ‘moderate’ (0.40-0.59); ‘strong’ (0.60-0.79);
and ‘very strong’ (0.80-1.00). To select the most fitting method for correlation anal-
ysis, we first tested the normality of our data, using the Kolmogorov-Smirnov test
(Field, 2013), which is more appropriate for large samples. We clarify that for nor-
mally distributed variables, we used Pearson correlation method (Field, 2013), oth-
erwise, we used the Spearman’s rank correlation method (Field, 2013). Moreover,
the correlations calculated in this study do not entail bias from consecutive mea-
surements with same value, also known as artificial boost. This is because every
unit of analysis regards different states of a particular pattern instance. Therefore,
consecutive measures with same value suggest that a specific metric is not designed
to capture this particular change, and this information is relevant to our study.

To answer RQ2, we performed the following steps for each factor (i.e., project,
pattern, developer) that might affect the relation between pattern grime and quality.
First, we grouped the dataset according to the factor. Next, we verified whether
the groups differentiate between themselves with regards to the measured vari-
ables. For that, we performed an Analysis of Variance (ANOVA) (Field, 2013) to
confirm a disparity among groups, followed by post-hoc tests for pairwise compar-
isons. We note that we applied Levene’s test (Field, 2013) to assess the assumption of
equal variances of the tested populations. When the assumption was met, we used
regular ANOVA, followed by Tukey’s Honestly Significant Differences (HSD) tests
(Field, 2013). Otherwise, we used Welch’s ANOVA, followed by Games-Howell
tests (which are more appropriate for large samples). Finally, for the groups that are
statistically different, we calculate the correlation for each pair of grime and quality
metrics and identify statistically relevant correlations.

7.4 Results

In this section, we present a summary of the collected data, as well as the results
of the analysis performed to answer the research questions posed in Section 7.3.1.
During the data collection, we identified 1,422 commits that contain the creation or
modification of pattern-participating classes of the five investigated projects, from
which the majority (94%) regard the modification of one or more pattern instances.
Based on the commits, we isolated 2,329 pattern instances of eight different GoF

7.4. Results 181

Table 7.3: Summary of dataset

Project Pattern Number of
instances

Number of units
of analysis

P1
(Object) Adapter/Command 284 8150
Singleton 80 155
State/Strategy 351 11586

P2
(Object) Adapter/Command 86 484
Observer 3 21
Singleton 16 42
State/Strategy 275 2113
Template Method 1 6

P3
(Object) Adapter/Command 327 3090
Factory Method 53 545
Singleton 29 152
State/Strategy 375 3995

P4
(Object) Adapter/Command 136 2144
Decorator 1 1
Factory Method 13 266
Singleton 21 73
State/Strategy 230 3275

P5
(Object) Adapter/Command 16 206
Factory Method 2 33
Singleton 5 10
State/Strategy 25 224

patterns: (Object) Adapter / Command, Decorator, Factory Method, Observer, Sin-
gleton, State / Strategy, and Template Method. In Table 7.3 we present a summary
of the units of analysis by project and patterns.

In Section 7.3.2, we highlighted the necessity of having a balanced population
(i.e., pattern instances should have similar number of modifications) to avoid bias
from pattern instances with excessive number of units of analysis. After studying
the history of commits, we assessed that each pattern instance underwent a maxi-
mum of 178 modifications. Moreover, 87% of the pattern instances (i.e., 2,039) were
modified at least once, and 64% (i.e., 1,500) at least five times. Our analysis sug-
gests that although the population is not evenly balanced, the discrepancies are not
enough to harm the statistical analysis of our study nor the answers to the research
questions.

In summary, we collected a total of 36,571 units of analysis (i.e., creation/modi-
fication of a pattern instance in a commit). For each unit, we recorded the amount
of pattern grime that was accumulated according to six metrics (cg-*, mg-* and og-*)
and the number of violations regarding the three studied quality attributes (*-viol).
We clarify that due to a non-disclosure agreement signed with the company in this

182 7. Correlating Pattern Grime and Quality Attributes

Table 7.4: Descriptive statistics per commit

Variable Minimum Maximum Mean Std. Deviation

cg-napm 0.00 52.80 13.66 8.27
cg-naa 0.00 41.50 7.95 5.00
mg-ca 0.00 107.00 8.01 10.72
mg-ce 0.00 325.00 100.18 61.22
og-np 1.00 5.00 2.34 0.53
og-ca 0.00 54.00 6.75 8.06
cor-viol 0.00 35.00 2.39 3.19
per-viol 0.00 8.00 0.97 1.45
sec-viol 0.00 20.00 0.25 1.40

case study, we cannot share the created dataset, nor certain details regarding specific
projects and developers.

To characterize our population, in Table 7.4 we present the descriptive statistics
for these variables. We notice that pattern efferent coupling (mg-ce) is the grime met-
ric that changes the most, which may be a sign of bad practices since it represents
the dependency of the pattern instance on other classes. On the counterpart, num-
ber of packages (og-np) is the metric that changes the least, which is expected given
that pattern instances normally grow within the same package. Furthermore, we
notice that violations of good practices regarding correctness appear to be consider-
ably more frequent than regarding performance and security. This observation may
be partially related to the fact that the majority of the rules checked by FindBugs
concern correctness: out of all the rules for the three studied qualities, correctness
accounts for approx. 70%, while performance and security correspond to approx.
15% each. Nevertheless, we could detect considerably fewer violations concerning
security rather than performance, which suggest that other parameters are also rel-
evant, such as the type of application or even the specific security-related violations
that FindBugs checks.

7.4.1 RQ1 - Grime and Quality Attributes

To answer RQ1, we calculated the correlation between all pairs of <grime metric,
quality indicator> (e.g., cg-ce vs. per-viol) as explained in Section 7.3.4. We note that
we could not assume normal distribution for all variables and, thus, we used Spear-
man’s rank correlation method. Moreover, ‘artificial boost’ is not a concern in this
population (see Section 7.3.4). Figure 7.1 depicts a heatmap with the results of our
analysis, in which darker shades of gray denote stronger correlation. The coeffi-
cients are written within each cell except for correlations that are not statistically
significant (which are blank). Based on Figure 7.1 we can make several observa-

7.4. Results 183

0.551 0.724 0.013 0.792 0.017

0.310 0.415 0.090 0.414 0.064 0.069

0.046 0.103 -0.093 0.117 0.145

cg-napm cg-naa mg-ca mg-ce og-np og-ca

sec-viol

per-viol

cor-viol

0 0.2 0.4 0.6 0.8 1

Correlation

strong
very

weak moderate strongweak
very

Figure 7.1: Correlation between grime metrics (cg-*, mg-*, og-*) and quality attributes

tions.
The accumulation of grime seems to be related with the depreciation of correct-

ness and performance (i.e., more violations), as we observed strong correlations (i.e.,
above 0.6) and moderate correlations (i.e., between 0.4 and 0.59) respectively (Evans,
1996). Furthermore, the very weak correlation with security violations (i.e., below
0.2) does not imply that a link does not exist. This only shows a lack of evidence.

Another observation is that metrics for assessing class grime, namely number of
alien public methods (cg-napm), alien attributes (cg-naa), and pattern efferent cou-
pling (mg-ce) displayed the strongest correlations regarding every quality attribute.
This outcome can be considered intuitive in the sense that, as structural elements at
the class level, patterns are expected to be more influential at lower levels of gran-
ularity (e.g., class rather than module). The degradation of another quality, namely
maintainability, due to the existence of alien methods is also reported in related
work (Charalampidou et al., 2017).

The aforementioned observations are based on how grime accumulates in pat-
tern instances. However, one may wonder if changes in the quality levels can be
simply explained by natural evolution of the source code, i.e., any type of change
to the pattern instance rather than pattern grime. To investigate this possibility, we
assessed the correlation between lines of code (LOC) and both grime metrics and
quality indicators. The results show that grime is strongly correlated (0.81) with
LOC, i.e., most maintenance activities in pattern instances entail accumulation of
grime. However, the correlation between grime and quality indicators was often
slightly stronger compared to the correlation between LOC and quality indicators.
For example, the correlation between cor-viol vs. mg-ce (0.792) is marginally stronger
than cor-viol vs. LOC (0.785), per-viol vs. mg-ce (0.414) is stronger than per-viol vs.
LOC (0.359), and sec-viol vs. mg-ce (-0.093) is stronger than sec-viol vs. LOC (-0.074).
Therefore, although the difference between correlation values may be marginal at
times, the overall analysis consistently shows that grime matches the degradation

184 7. Correlating Pattern Grime and Quality Attributes

of quality better than natural evolution.

7.4.2 RQ2 - Analysis of Factors

To further explore the relation between the accumulation of pattern and the three
studied quality attributes, we investigated three factors that may influence the ob-
served correlations as described in Section 7.3.4: projects, patterns and developers.

Comparison of Projects

We collected data from five different industrial projects, here referred to as P1 to P5.
From the 36,571 units of analysis, 19,891 regard P1, 2,667 regard P2, 7,781 regard P3,
5,759 regard P4, and 473 regard P5. Moreover, P1 and P2 were developed by two
different teams of developers while a third team developed P3, P4 and P5. In Table
7.5, we show the descriptive statistics of all variables for each project independently.

We notice that the projects are considerably distinct from each other with regard
to these variables. For example, P2 has the highest mean for most grime metrics
but not for quality indicators, while P5 has the lowest means for grime metrics but
present the highest average of performance violations. To verify the observed dif-
ferences, we compared the means between projects by performing an analysis of
variances (ANOVA) for each variable, followed by one post-hoc test for each pair-
wise comparison (i.e., 90 in total). The results of the tests are publicly available
online in a supplementary material4. The results show that 91% of the tests are sta-
tistically significant, i.e., the means differ between the two compared projects. Based
on these findings, we hypothesize that the different characteristics of projects are in-
deed reflected on the relationship between the accumulation of pattern grime and
the indicators of correctness, performance and security.

To verify how the accumulation of grime in projects relates to the levels of qual-
ity, we calculated the correlation between every pair of grime metric and quality
indicator for each project. The results are presented in Figure 7.2 (which is inter-
preted as Figure 7.1), from which we observe that the correlations are noticeably
different based on the projects. For example, similar to the results observed for the
general population, P1 exhibits a strong correlation (i.e., above 0.6) between class
grime metrics and the correctness indicator (cor-viol). The opposite is observed for
P2, for which the data suggest a correlation between pattern grime and the security
indicator (sec-viol), which have not been observed for the general population.

4https://doi.org/10.5281/zenodo.1133552

https://doi.org/10.5281/zenodo.1133552

7.4. Results 185

Table 7.5: Descriptive statistics per project

Variable Project Minimum Maximum Mean Std. Deviation

cg-napm

P1 0.00 44.67 13.94 8.26
P2 0.00 48.00 14.92 11.90
P3 0.00 52.80 11.79 6.47
P4 0.00 42.00 14.89 8.13
P5 0.00 29.75 10.36 5.73

cg-naa

P1 0.00 22.33 8.97 4.87
P2 0.00 30.33 5.87 3.72
P3 0.00 30.50 5.90 3.81
P4 0.00 41.50 8.45 6.13
P5 0.00 13.75 4.72 2.50

mg-ca

P1 0.00 49.00 6.52 8.48
P2 0.00 78.00 17.69 18.65
P3 0.00 107.00 7.44 10.29
P4 0.00 102.00 10.02 10.85
P5 0.00 5.00 1.00 1.07

mg-ce

P1 0.00 325.00 132.05 62.91
P2 0.00 140.00 55.07 28.23
P3 0.00 162.00 63.31 29.65
P4 0.00 141.00 65.50 27.99
P5 0.00 95.00 43.13 19.02

og-np

P1 1.00 3.00 2.31 0.48
P2 1.00 3.00 2.64 0.53
P3 1.00 5.00 2.30 0.60
P4 1.00 4.00 2.35 0.54
P5 1.00 3.00 2.21 0.46

og-ca

P1 0.00 54.00 5.55 8.32
P2 0.00 29.00 15.42 8.98
P3 0.00 44.00 7.71 7.50
P4 0.00 19.00 6.03 3.95
P5 0.00 5.00 0.88 0.55

cor-viol

P1 0.00 35.00 3.74 3.68
P2 0.00 5.00 0.16 0.55
P3 0.00 7.00 0.66 1.19
P4 0.00 10.00 1.24 1.25
P5 0.00 2.00 0.63 0.65

per-viol

P1 0.00 7.00 1.16 1.58
P2 0.00 8.00 1.12 1.50
P3 0.00 6.00 0.72 1.15
P4 0.00 5.00 0.57 1.10
P5 0.00 8.00 1.16 1.66

sec-viol

P1 0.00 2.00 0.03 0.18
P2 0.00 14.00 1.31 2.65
P3 0.00 14.00 0.31 1.33
P4 0.00 20.00 0.42 2.41
P5 0.00 8.00 0.28 0.89

186 7. Correlating Pattern Grime and Quality Attributes

0.760 0.839 0.059 0.889 0.117 0.290

0.083 0.087 0.163 0.071 0.193

0.345 0.279 0.101 0.316 0.157

0.400 0.675 0.138 0.711 0.035 0.170

0.176 0.761 -0.340 0.725 0.229

0.407 0.436 0.148 0.319 0.033 0.151

0.105 0.220 0.299 0.392 0.346 0.231

0.363 0.671 0.713

0.089 0.076 0.130 0.255 0.118 0.050

0.100 0.713 -0.408 0.757 0.159 -0.117

-0.073 0.090 -0.044 0.143

0.487 0.406 0.548 0.283 0.289 0.274

0.085 0.084 -0.027 0.034 0.159

-0.057 -0.084 -0.036 -0.094 0.064 0.048

-0.161 0.152P5

P4

P3

P2

P1

P5

P4

P3

P2

P1

P5

P4

P3

P2

P1

0 0.2 0.4 0.6 0.8 1

Correlation

strong
very

weak moderate strongweak
very

cg-napm cg-naa mg-ca mg-ce og-np og-ca

co
r-
v
io
l

p
er
-v
io
l

se
c-
v
io
l

Figure 7.2: Correlation between grime metrics (cg-*, mg-*, og-*) and quality attributes indica-
tors (*-viol) for individual projects (P*)

However, we also noticed that higher values of accumulated grime are related
to higher depreciation of quality (i.e., higher number of violations), which is of-
ten reflected in higher correlation coefficients. This evidence strengthens our find-
ing that the relationship between pattern grime and quality attribute indicators is
project-dependent. It also suggests that the observed difference is connected to how
grime accumulates in the different projects. This finding is in accordance to those
of Linares-Vásquez et al. (2014), which suggest that other indirect quality indicators
(such as anti-patterns or code smells) vary among projects of different application
domains, as well as with Izurieta and Bieman (2013), who observed varied levels of
grime and quality on the studied projects.

Comparison of Patterns

During the data collection, we identified instances of eight different patterns. From
the 36,571 units of analysis, 14,074 regard the (Object) Adapter / Command (AC)
patterns, 844 regard the Factory Method (FM) pattern, 432 regard the Singleton (Si)
pattern, 21,193 regard the State/Strategy (SS) patterns, 21 regard the Observer pat-
tern, six regard the Template Method pattern, and one regards the Decorator pat-
tern. Due to the limited amount of units, we do not present results concerning the

7.4. Results 187

last three patterns, which are available in the supplementary material.
In Table 7.6, we present the descriptive statistics of all variables for each pattern

independently. We notice that this factor also seems to influence the relations be-
tween pattern grime and indicators of the studied quality attributes. In particular,
we observe that the means for every metric varies considerably among patterns.
Moreover, we could not observe clear trends, i.e., patterns that consistently display
the highest or lower means. For example, Factory Method displays the highest mean
of security violations (sec-viol) but one of the lowest of correctness violations (cor-
viol).

To verify our observations, we computed the ANOVA for each variable and per-
formed the post-hoc tests (i.e., 48 in total). The results of the tests are available in the
supplementary material. We note that Singleton instances had no variance with re-
gards to number of packages (og-np) and security indicator (sec-viol), and, thus, these
variables were not considered in the analyses for this pattern. The results show that
93% of the tests are statistically significant.

To further investigate this factor, we calculated the correlation between every
pair of grime metric and quality indicator for the investigated patterns. In Figure
7.3 (which is interpreted as Figure 7.1), we present the results of the calculations,
which show clearly varying correlations depending on the pattern. We notice that,
as for projects, we could identify a pattern, namely Factory Method, for which the
accumulation of grime is moderately correlated with the depreciation of quality in-
dicators. Again, we observed that the combination of higher accumulation of grime
and quality indicators often reflects in higher correlation coefficients. All this infor-
mation suggests that the relationship between pattern grime and quality attribute
indicators also depends on the pattern type of the instance. This finding is in ac-
cordance with the literature, which suggests that different patterns have different
effects on the same quality attribute (e.g., (Ampatzoglou et al., 2015; Romano et al.,
2012)).

Comparison of Developers

The case study involved 16 developers, here referred to as D1 to D16, which account
for various amounts of units of analysis5. Due to the low number of data points, we
did not include D4, D7, D8 and D10 in our analyses. In Table 7.7, we show the
mean value of all variables, for each developer. We note that we do not present the
complete descriptive statistics, which are available in the supplementary material.
Similar to the previous factors, we observe that mean values regarding all variables

5The number of units by each developer is: D1 - 810; D2 - 5662; D3 - 1535; D4 - 8; D5 - 470; D6 - 5368;
D7 - 21; D8 - 62; D9 - 1464; D10 - 11; D11 - 811; D12 - 1648; D13 - 3565; D14 - 6748; D15 - 7825; D16 - 563.

188 7. Correlating Pattern Grime and Quality Attributes

Table 7.6: Descriptive statistics per pattern

Variable Pattern Minimum Maximum Mean Std. Deviation

cg-napm

AC 0.00 43.00 12.59 7.70
FM 2.40 52.80 15.63 8.89
Si 0.00 6.00 0.82 1.35
SS 0.67 48.00 14.55 8.39

cg-naa

AC 0.50 41.50 8.53 5.78
FM 1.00 23.20 6.86 4.43
Si 0.00 3.00 0.44 0.73
SS 0.00 30.33 7.77 4.32

mg-ca

AC 0.00 49.00 6.57 8.71
FM 1.00 107.00 19.70 23.46
Si 0.00 52.00 7.39 10.54
SS 0.00 78.00 8.51 10.80

mg-ce

AC 5.00 236.00 90.24 51.97
FM 10.00 129.00 58.00 25.67
Si 0.00 17.00 1.68 2.52
SS 1.00 325.00 110.56 64.80

og-np

AC 1.00 2.00 1.99 0.10
FM 1.00 5.00 3.37 0.68
Si 1.00 1.00 1.00 0.00
SS 1.00 4.00 2.56 0.50

og-ca

AC 0.00 46.00 5.82 7.72
FM 1.00 44.00 13.34 8.15
Si 0.00 54.00 13.06 8.03
SS 0.00 46.00 6.96 8.07

cor-viol

AC 0.00 13.00 2.19 2.84
FM 0.00 5.00 0.69 1.02
Si 0.00 3.00 0.02 0.21
SS 0.00 35.00 2.64 3.44

per-viol

AC 0.00 5.00 0.82 1.30
FM 0.00 6.00 0.56 1.22
Si 0.00 0.00 0.00 0.00
SS 0.00 8.00 1.11 1.54

sec-viol

AC 0.00 6.00 0.04 0.26
FM 0.00 20.00 4.71 5.81
Si 0.00 12.00 0.48 1.67
SS 0.00 14.00 0.21 1.05

differ among developers, i.e., they exhibit different characteristics. For example,
both D11 and D15 show higher tendency to pollute pattern instances with alien
methods (i.e., higher cg-napm values) than other developers. However, D11 seems
much less prone to pollute instances with external dependencies (i.e., lower mg-ce).

To validate the differences observed in the measurements, we performed

7.5. Discussion 189

Table 7.7: Descriptive statistics per developer

Dev. cg-napm cg-naa mg-ca mg-ce og-np og-ca cor-viol per-viol sec-viol

D1 9.50 3.17 8.40 38.09 2.28 7.07 0.47 0.00 0.25
D2 12.53 7.17 8.02 63.75 2.32 7.21 1.03 0.56 0.34
D3 9.83 7.11 7.68 70.78 2.30 8.59 0.26 1.14 0.29
D5 12.58 5.84 5.48 56.39 2.27 5.08 0.45 0.97 0.27
D6 14.01 9.15 7.00 127.50 2.30 5.65 3.57 1.59 0.05
D9 9.62 6.76 6.41 99.90 2.27 5.02 2.21 0.87 0.00
D11 16.36 5.88 14.27 51.18 2.59 13.07 0.07 0.83 0.96
D12 12.83 7.92 8.03 122.20 2.38 7.20 2.99 1.11 0.01
D13 12.42 8.36 7.21 112.66 2.26 5.49 2.61 1.83 0.08
D14 14.81 6.99 11.12 64.40 2.40 8.06 0.89 0.88 0.65
D15 15.65 9.78 5.57 152.28 2.34 5.28 4.83 0.64 0.01
D16 14.31 5.66 16.25 53.53 2.60 15.48 0.17 0.75 0.96

ANOVA on all variables, followed by the post-hoc tests (583 in total), which are
all available in the supplementary material. We note that no variance in the secu-
rity indicator (sec-viol) was observed for D9 and, thus, we discarded this variable for
analyses regarding the developer. The results show that 80% of the tests are statisti-
cally significant. The majority of the comparisons that were not significant, concern
the number of packages, which is intuitive, as pattern instances do not tend to be
spread across multiple packages/namespaces.

We also calculated the correlation between variables, which are shown in Figure
7.4 (which is interpreted as Figure 7.1). The results suggest that developers accu-
mulate grime differently and that this may reflect on the quality indicators. We also
observed that although we found that correlations differ among developers, they
are mostly consistent in the sense that more grime is correlated with more viola-
tions (i.e., depreciated quality). In summary, all collected information strengthens
our finding that developers comprise a factor to how the accumulation is related to
the depreciation of correctness, performance and security in pattern instances. Our
results are in accordance with those by Amanatidis et al. (2017), who studied the
accumulation of technical debt and observed an imbalance regarding the number of
violations among developers.

7.5 Discussion

In this section, we revisit the findings of our study and present their connection
to related work. Next, we elaborate on the main implications to researchers and
practitioners.

190 7. Correlating Pattern Grime and Quality Attributes

0.566 0.769 0.072 0.794 0.063 0.130

0.173 0.324 0.130 0.404

0.201 0.142 0.104

0.547 0.709 -0.014 0.808 -0.020 -0.028

0.243 0.359 -0.018 0.378 0.049

0.435 0.457 0.124 0.480 0.289 0.134

0.328 0.437 0.154 0.401 0.108

-0.093 -0.051 -0.112 -0.096 0.019 -0.020

0.514 0.509 0.345 0.527 0.310 0.287

-0.218 -0.218 0.144

0.069 0.030 0.136 -0.084 0.142SS

Si

FM

AC

SS

Si

FM

AC

SS

Si

FM

AC

0 0.2 0.4 0.6 0.8 1

Correlation

strong
very

weak moderate strongweak
very

cg-napm cg-naa mg-ca mg-ce og-np og-ca

co
r-
v
io
l

p
er
-v
io
l

se
c-
v
io
l

Figure 7.3: Correlation between grime metrics (cg-*, mg-*, og-*) and quality attributes indica-
tors (*-viol) for individual patterns (AC, FM, Si, and SS)

7.5.1 Interpretation of Results

Correlation between Grime and Attributes

The findings discussed in this chapter suggest that, as pattern grime accumulates,
classes that participate in pattern instances become more prone to quality depreci-
ation. In particular, such classes are more susceptible to source code that violates
good practices that promote correctness, performance and security of software sys-
tems. These findings corroborate those by related work that analyzes the relations
between grime and quality (Griffith and Izurieta, 2014; Izurieta and Bieman, 2008,
2013), in the sense that we also found that grime goes hand in hand with diminished
quality.

In our study, we noticed that three metrics, namely number alien attributes (cg-
naa), number of alien public methods (cg-napm) and instance efferent coupling (mg-
ce), were the most likely to be appropriate indicators of bad quality; these same
metrics have shown similar relevance in the related work. Moreover, these metrics
correspond to structural characteristics of pattern instances (e.g., efferent coupling),
and similar metrics (at class level rather than instance level) have been largely ex-
plored in the literature (e.g. (Charalampidou et al., 2017; Hsueh et al., 2008; Hus-
ton, 2001; Muraki and Saeki, 2002)) and found to be good estimators of the benefit
(or harmfulness) of pattern instances to quality attributes. In the study reported

7.5. Discussion 191

in Chapter 6, we found that the degradation of certain well-known design met-
rics can be used as hints of the accumulation of pattern grime (Feitosa, Avgeriou,
Ampatzoglou and Nakagawa, 2017b), as it is assessed based on design propertied
of pattern participants. In particular, we investigated the metric suits proposed by
Chidamber and Kemerer (1994), Li and Henry (1993), and Bansiya and Davis (2002).
Results of that study showed that the metrics data abstraction coupling (DAC) (Li
and Henry, 1993) and measure of aggregation (MOA) (Bansiya and Davis, 2002) may
help identifying accumulation of cg-naa; the metrics weighted methods per class
(WMC) (Chidamber and Kemerer, 1994) and class interface size (CIS) (Bansiya and
Davis, 2002) may help identifying accumulation of cg-napm; and the metrics cou-
pling between object classes (CBO) (Chidamber and Kemerer, 1994) and response
for a class (RFC) (Chidamber and Kemerer, 1994) may help identifying accumula-
tion of mg-ce.

Contributing Factors

The way pattern grime builds up in pattern-participant classes can depend on sev-
eral factors. Our empirical investigation confirmed that three such factors indeed
play a role: project, pattern and developer. With regard to projects, we observed
that the difference may be related to two sub-factors. The type of the project seems
relevant on determining the relation between grime and quality. Two of the studied
projects (P1 and P4) provide services to other applications (e.g., libraries or API’s)
and showed to be more prone to grime and violations; this aligns with the sugges-
tion by Evans (1996) that parameters such as application domain can be relevant.
However, we also noticed that these projects had more pattern instances (i.e., a big-
ger pattern code base) and that a second sub-factor, namely lines of code was also
correlated with both grime and quality indicators; this has also been discerned by
Izurieta and Bieman (2013).

A similar observation also holds for developers: those that wrote more code
(i.e., provided more units of analysis) were more prone to incur both grime and vi-
olations. Finally, our main observation concerning the difference among patterns
is that those using more complex mechanisms (e.g., State, Strategy and Factory
Method, which have polymorphic calls) tend to accumulate both more grime and
violations; this is intuitive given that more complex designs are less understand-
able and harder to maintain.

Investigating the factors in isolation allowed us to observe that the correlations
in different groups (based on factors) differ from the ones concerning the entire
dataset. However, although the differences may look random at first, we noticed a
recurrent motif. In particular, we observed that the majority (approx. 80%) of mod-

192 7. Correlating Pattern Grime and Quality Attributes

cg-napm cg-naa mg-ca mg-ce og-np og-ca

D16

D15

D14

D13

D12

D11

D9

D6

D5

D3

D2

D1

D16

D15

D14

D13

D12

D11

D9

D6

D5

D3

D2

D1

D16

D15

D14

D13

D12

D11

D9

D6

D5

D3

D2

D1
co
r-
v
io
l

p
er
-v
io
l

se
c-
v
io
l

0 0.2 0.4 0.6 0.8 1

Correlation

strong
very

weak moderate strongweak
very

0.417 0.534 0.579

0.302 0.562 0.090 0.519 0.098

0.254 0.263 0.157 0.221 0.221

0.293 0.414 0.375 0.130

0.732 0.778 0.053 0.849 0.106 0.238

0.723 0.791 0.743 -0.094 -0.135

0.780 0.872 0.887 0.089

0.746 0.800 0.083 0.815 0.075 0.240

0.405 0.518 0.087 0.536 -0.024 0.034

0.753 0.881 0.153 0.928 0.170 0.437

0.093 0.195 0.105 0.152

0.118 0.121 0.121 0.079

0.214 0.299 -0.053 0.498 -0.051

0.543 0.649 0.096 0.744 -0.085

0.315 0.604 0.688

0.494 0.482 0.111 0.445 0.137

0.580 0.669 0.555 -0.085 -0.166

0.128 0.180 0.272 0.265 0.285 0.277

0.400 0.415 0.456 -0.087

0.696 0.676 0.079 0.716 0.033 0.271

0.080 0.289 0.112 0.394 0.167 0.155

0.401 0.394 0.216 0.350 0.136 0.330

0.222 0.362 0.451 0.435 0.250

0.221 0.283 0.124 0.115

-0.031 0.114 0.057

0.193 0.131 0.093 0.156

-0.091 0.100

-0.119 -0.029 0.074 -0.063 0.171

0.367 0.393 0.542 0.259 0.270 0.287

0.056 0.062

-0.106 0.085 -0.037 0.257

0.146 0.081 0.160 0.212 0.206

0.058 0.052 0.092 0.053 0.063 0.072

0.388 0.353 0.432 0.225 0.254 0.115

Figure 7.4: Correlation between grime metrics (cg-*, mg-*, og-*) and quality attributes indica-
tors (*-viol) for individual developers (D*)

7.5. Discussion 193

erate or strong correlations (i.e., more than 0.4) (Evans, 1996) have been identified
when grime and qualities metrics are at a similar level. For example, projects that
on average concentrate few violations and have low levels of accumulated grime,
or the opposite. Among those, 56% regard higher values on both grime and quality
indicators.

Analysis of Violations

Finally, since we estimated the levels of quality attributes through the number of
violations of good coding practices, it is relevant to dig deeper into these violations.
In Table 7.8, we present the most recurrent violations, assessed according to the ad-
dressed research questions, i.e., the overall dataset, per project, per pattern and per
developer. We note that some developers have not violated any rules for certain
quality attributes in pattern-participant classes; those are marked with “-”. We ob-
serve that this list of violations comprises issues that are clearly harmful to the
respective quality attributes, e.g., calling unsafe methods in a multithreaded con-
text can lead to race conditions or unpredictable states.

Thus, if these violations are among the recurrent ones, they can pose a serious
threat to the system. Furthermore, the top issues vary among projects, patterns and
developers. The differences that we observe between developers is aligned with the
findings by Amanatidis et al. (2017), who not only observed an imbalance on how
developers accumulate violations but also a difference on the recurrence. Never-
theless, it is possible to discern the connection between groups. For example, the
two recurrent performance issues that appear for the most among developers (i.e.,
“Comparison of different types” and “Possible null pointer dereference”), also ap-
pear frequently among projects and patterns, and one of them is the most recurrent
in the entire dataset.

7.5.2 Implications to Researchers and Practitioners

GoF patterns are popular among practitioners as established and valuable design
solutions. However, the consequences of using them often become a matter of con-
cern, especially regarding quality. This chapter sheds some light on this respect,
suggesting the following implications to practitioners. We encourage the conscious
usage of GoF patterns, in the sense that knowledge about the patterns being ap-
plied, as well as the pattern instances in the system under development, should be
disseminated within the team of developers.

In addition, monitoring the pattern instances is of paramount importance to
maintain desired levels of quality, especially correctness, performance and secu-
rity. Moreover, practitioners can take advantage of the tool spoon-pttgrime in order

194 7. Correlating Pattern Grime and Quality Attributes

Table 7.8: Most recurrent violations

Correctness Performance Security

Overall Comparison of different
types

Class member should be
static

Exposed inner representation by in-
corporating mutable object

Pr
oj

ec
t

P1 Comparison of different
types

Class member should be
static

Method invocation without proper
security check

P2 Unsafe call in for multi-
threading

Class member should be
static

Exposed inner representation by re-
turning mutable object

P3 Possible null pointer derefer-
ence

Private method is never
called

Exposed inner representation by in-
corporating mutable object

P4 Unsafe call for multithread-
ing

Unnecessary value unboxing Exposed inner representation by in-
corporating mutable object

P5 Unsafe call for multithread-
ing

Unnecessary call to toString() Exposed inner representation by in-
corporating mutable object

Pa
tt

er
n

AC Comparison of different
types

Class member should be
static

Field should be package protected

FM Possible null pointer derefer-
ence

Unnecessary value unboxing Exposed inner representation by in-
corporating mutable object

Si Comparison of different
types

Inefficient use of map iterator Exposed inner representation by in-
corporating mutable object

SS Comparison of different
types

Class member should be
static

Exposed inner representation by re-
turning mutable object

D
ev

el
op

er

D1 Comparison to null - Exposed inner representation by in-
corporating mutable object

D2 Possible null pointer derefer-
ence

Unnecessary value unboxing Exposed inner representation by in-
corporating mutable object

D3 Possible null pointer derefer-
ence

Class member should be
static

Exposed inner representation by in-
corporating mutable object

D5 Unsafe call for multithread-
ing

Unnecessary value unboxing Exposed inner representation by in-
corporating mutable object

D6 Comparison of different
types

Private method is never
called

Method invocation without proper
security check

D9 Possible null pointer derefer-
ence

Private method is never
called

-

D11 Variable self-assignment Class member should be
static

Exposed inner representation by in-
corporating mutable object

D12 Possible null pointer derefer-
ence

Class member should be
static

-

D13 Nullcheck on dereferenced
variable

Invoke of inefficient construc-
tor

Method invocation without proper
security check

D14 Unsafe call for multithread-
ing

Class member should be
static

Exposed inner representation by re-
turning mutable object

D15 Comparison of different
types

Private method is never
called

-

D16 Unsafe call for multithread-
ing

Class member should be
static

Exposed inner representation by in-
corporating mutable object

to track the accumulation of grime and plan maintenance activities. Conversely, if
practitioners already use FindBugs within their development process, the number
of violations (for correctness, performance and security) can be used as indicators of
grime accumulation, helping the team on identifying pattern instances with poten-
tially deteriorated design.

The findings of this study can also benefit researchers. Our work joins the small
pool of studies that investigate pattern grime, especially its relation to quality at-

7.6. Threats to Validity 195

tributes, and further demonstrate the relevance of researching this phenomenon
and the underlying relations. In particular, we provide evidence that encourages
the investigation of other quality attributes, as well as factors related to it. The
presented information also builds up on the body of knowledge on pattern grime,
and we hope it will support future research. Particularly, we envisage confirmatory
studies to seek more evidence to explain the observed variations in the relationship
between grime and the studied quality attribute, as well as others. We also demon-
strate that the usage of static analysis tools such as FindBugs can provide valuable
information regarding the accumulation of grime. Finally, the design of our case
study and used tools used can be exploited for future research efforts.

7.6 Threats to Validity

In this section, we discuss threats to the validity of the study reported on this chap-
ter; in particular, construct validity, reliability and external validity. Construct va-
lidity concerns to what extent the objects of the study are connected to the research
questions. Reliability regards the extent to which the study can be replicated with
the same observed results. External validity pertains to the limitations to generalize
our findings to the entire population. We note that we do not analyze internal valid-
ity, as we empirically study the correlation between variables without establishing
causal relations.

Regarding construct validity, we identified the following threats. First, the SSA
and FindBugs tools are limited by their precision and recall, which may bias our
results due to false positives and negatives. We note that, to the best of our knowl-
edge, these tools have adequate performance and good reputation (see Section 7.3.3,
Steps 2 and 4). Nevertheless, to mitigate this threat, we randomly selected 50 pat-
tern instances and verified the output from each tool manually. In addition, we
acknowledge that the list rules provided by FindBugs is by no means exhaustive
and additional rules could affect our results. However, we reiterate that the diverse
list of bug patterns (i.e., 252 rules) and evidence provided by other studies that used
FindBugs to estimate quality attributes (Feitosa et al., 2015; Khalid et al., 2016) sug-
gest that the tool is adequate for the purpose used in this study. Finally, concerning
the tools developed in our group (SSA+ and spoon-pttgrime), which although per-
form deterministic tasks, may contain bugs and bias the results of the study. To
mitigate this threat, we also checked their output for 50 randomly selected pattern
instances. In addition, our tools have been used in previous studies, where they
were also validated.

To address reliability threats, at least two researchers were involved in both data

196 7. Correlating Pattern Grime and Quality Attributes

collection and analysis. Samples of the output were checked by both researchers
and the verification followed a checklist to avoid irregularities. Furthermore, most
tasks were automated by the tools referenced in this chapter, which are all publicly
available. Despite our effort, we acknowledge that non-disclosure agreements do
not allow us to share the collected dataset. However, replications studies can be
carried out to attempt to replicate our results.

Concerning external validity, the main threat is that we explored projects from
the same company, from which three were developed by the same team. Such uni-
formity (e.g., developers subject to same company practices) may lessen the gener-
alizability of our findings to other companies or teams. However, we note that the
accumulation of grime that we observed aligns with the results of other studies, e.g.,
class and modular grime are the main indicators of grime. Moreover, we also aimed
at identifying variations in the relationship between pattern grime and quality at-
tributes based on project and developer, which we identified successfully despite
the “uniformity” of our subjects. The other threats regard limitations of our study
design. In particular, we investigated a limited number of patterns and subjects, and
we acknowledge that additions to the population may affect our findings. Further-
more, we investigated projects developed in Java and our observations cannot be
generalized to other languages without additional analyses. Finally, the grime met-
rics and quality indicators are estimators, and the usage of different variables may
affect the observed results. Specifically, the inclusion of metrics based on subtypes
of grime could provide more refined observations.

7.7 Conclusions

In this chapter, we reported on an exploratory case study with five industrial soft-
ware systems, in which we examined the relationship between the accumulation of
pattern grime and the levels of three quality attributes, namely correctness, perfor-
mance and security. For that, we considered six metrics regarding the three forms
of grime (i.e., class, modular and organizational), and one indicator of each stud-
ied quality attribute, estimated by the amount of violations of coding practices in
pattern-participant classes. We investigated the evolution of 2,329 pattern instances
over 1,422 commits, totalizing 36,571 units of analysis, in which we assessed the cor-
relations between the grime metrics and quality indicators. Moreover, we sought to
analyze factors that might influence the observed correlations, in particular, projects,
pattern types, and developers.

The results suggest that pattern grime is related to the depreciation of correct-
ness, performance and security in pattern instances. These findings are based on

7.7. Conclusions 197

both class and modular grime, whilst no strong evidence is observed based on or-
ganizational grime. The results also suggest that all three examined factors can in-
fluence the relationship between pattern grime and quality attributes.

Finally, the findings reported in this chapter and Chapter 6 answer the last open
research question of the PhD project. Therefore, the next chapter concludes this
dissertation, summarizing the entirety of the work and results, as well as discussing
opportunities for future work.

Chapter 8

Conclusions and Future Work

This chapter presents the conclusions of the PhD dissertation. In Section 8.1, the
research questions posed in Chapter 1 are revisited and answered according to the
findings of the empirical studies reported in Chapters 2 to 7. In the same section, the
contributions of this dissertation, compared to the state of the art, are summarized.
Finally, the perspectives for future work are described in Section 8.2.

8.1 Research Questions and Contributions

In Chapter 1 we formulated the main problem statement of this dissertation: “De-
spite the growing body of knowledge for engineering CESs, their design process is still chal-
lenging. This is especially true due to their complexity, and hard requirements regarding
critical quality attributes. Furthermore, it usually involves complex trade-offs for both criti-
cal and noncritical quality attributes. However, we currently lack practices that can support
the design of CES while managing quality attributes and their trade-offs”. To address this
problem, Chapter 1 also presents six research questions that were derived based on
the Design Science framework, and were answered in Chapters 2 to 7. Table 8.1
repeats these research questions, lists the corresponding chapters in which they are
answered, and summarizes the contribution of each chapter compared to the state-
of-the-art.

To summarize a response to the problem statement, the findings reported in
this thesis suggest that, when applicable, GoF patterns can promote critical quality
attributes while also supporting the management of noncritical quality attributes.
However, phenomena such as pattern grime and factors such as the logical and
design complexity of pattern instances can affect the extent of the benefits that GoF
patterns could otherwise promote. To elaborate on the response, each research ques-
tion presented in Table 8.1 is briefly answered in the following.

RQ1: Are there trade-offs when dealing with quality attributes in CES?
This research question was formulated as one part of the problem space explo-
ration (the second part is covered by RQ2), with the goal of empirically investi-

200 8. Conclusions and Future Work

Table 8.1: Contributions of the PhD dissertation

Research
Question

Chapter Contributions compared to the state-of-the-art

RQ1: Are there
trade-offs when
dealing with
quality attributes
in CES?

2 It compares trade-offs that appear in CESs with other application
domains. Furthermore, it investigates the interplay among nine
quality attributes. To the best of our knowledge, this is the first
study that presents empirical evidence on such trade-offs and it is
also the most inclusive study of this type in terms of investigated
quality attributes.

RQ2: How are CES
designed?

3 It provides: a) a classification of the existing approaches to design
CES; b) a list of tools for supporting these approaches; c) a list of
domains for which these approaches have been developed and
used; d) a list of the most commonly identified CQAs in the CES
design; e) a classification of these approaches, based on the level
of their empirical evidence.

RQ3.a: How do
patterns affect
runtime quality
attributes?

4 It investigates three runtime quality attributes using static analy-
sis, providing evidence on their potential relationship to the ap-
plication of design patterns. It identifies similarities and differ-
ences between the results obtained by static analysis and those
obtained by dynamic analysis, increasing the validity of evidence
on the subject, as well as adding to the current state of the art on
analysis of runtime quality attributes. This is, to the best of our
knowledge, the first study that provides empirical evidence on
the relationship between the use of GoF patterns and security.

RQ3.b: How do
patterns influence
energy
consumption?

5 It considers two nontrivial systems and a considerable amount
of pattern instances and pattern-related methods. This setup
allows to observe realistic results that are more representative
to the population of existing software-intensive systems. Fur-
thermore, it analyses measurements at both process-level and
method-level, which allows for comparing results at different
levels of granularity. Finally, it investigates not only the energy
efficiency of pattern instances, but also the design parameters
that render them either beneficial or not.

RQ4.a: How does
pattern grime
evolves?

6 It investigates how pattern grime is accumulated by different de-
velopers (16 in total) during the development of five-industrial
nontrivial projects (in contrast to open-source ones). To the best
of our knowledge, the focus on developers has not been consid-
ered in previous studies, while the industrial validation is also
a first. Furthermore, it studies the correlation between pattern
grime and multiple structural metrics of pattern instances, which
has not been thoroughly explored in previous studies.

RQ4.b: How is
pattern grime
related to runtime
quality attributes?

7 It investigates three quality attributes (i.e., performance, security
and correctness) that have not been previously addressed in this
context. Furthermore, it studies five industrial nontrivial projects
that collectively provided 36,571 units of analysis (i.e., modifica-
tions to the source code of pattern instances). Finally, it inves-
tigates three factors, namely project, type of pattern, and devel-
oper; although these have been explored with regards to the ac-
cumulation of grime, they have not yet been examined regarding
the relation between grime and quality attributes.

8.1. Research Questions and Contributions 201

gating the existence of quality trade-offs, on the implemented architecture (i.e.
the system implementation), among versions of open source CESs, and compare
such trade-offs with those of systems from other application domains. This ques-
tion was answered in Chapter 2, where a case study that addresses this challenge
was reported. The results suggest the existence of possible trade-offs between
critical quality attributes (correctness, security, and performance), as well as the
fact that noncritical quality attributes (e.g., reusability, understandability, etc.)
are usually compromised in favor of critical quality attributes. The latter was
observed more prominently in the CES domain. On the contrary, we have not
observed critical quality attributes compromised in favor of noncritical ones, for
either CES or other application domains.

RQ2: How are CES designed?

To complete the problem space exploration, this second research question was
defined with the goal of providing a fair overview on CESs design approaches.
The answer to this question was presented in Chapter 3, where a Systematic
Mapping Study (SMS) was reported. In this SMS, a total of 1,673 papers were
collected from five digital libraries, and 269 primary studies were filtered in the
sequence. This study analyzed five facets: design approaches, applications do-
mains, critical quality attributes, tools, and type of evidence. The findings sug-
gested that the body of knowledge is vast and overlaps with other types of sys-
tems (e.g., real-time or cyber-physical systems). In addition, some critical quality
attributes, such as performance and security, are common among various appli-
cation domains. The results also suggested that many approaches and tools are
often generic to CES and do not specialize for domains, such as automotive or
avionics. Finally, Chapter 3 also highlighted a few approaches that could be po-
tentially beneficial to CES and have not been thoroughly explored yet, like using
design patterns to improve levels of critical quality attributes.

RQ3.a: How do patterns affect runtime quality attributes?

Design patterns were discerned in the previous answer as a promising approach
to manage qualities in CES; an approach that has not been thoroughly explored
so far. Therefore, this research question aimed at studying whether the presence
of patterns enforces the conformance to good coding practices, thus promoting
critical quality attributes. The answer to this question was presented in Chapter
4, in which the reported case study explored the relationship between the pres-
ence of GoF design patterns and violations of good coding practices (related to
three critical runtime quality attributes: correctness, performance and security).
The results suggested that classes not participating in patterns are more proba-

202 8. Conclusions and Future Work

ble to violate good coding practices for correctness, performance and security. In
a more fine-grained level of analysis, by focusing on specific patterns, the find-
ings indicated that patterns with more complex structure (e.g., Decorator) and
pattern roles that are more change-prone (e.g., Subclasses) are more likely to be
associated with a higher number of violations (up to 50 times more violations
when compared against other pattern types or roles).

RQ3.b: How do patterns influence energy consumption?

The previous answer shed light on the matter of using design patterns to manage
critical quality attributes. This research questions aimed at extending the previ-
ous investigation (Chapter 4) by focusing on a specific runtime quality attribute
that has received increasing attention over the past years: energy consumption.
This question was answered in Chapter 5 through an experiment that examined
pattern-participating methods (i.e., those that play a role within the pattern) and
compared their energy consumption to the consumption of functionally equiv-
alent alternative (non-pattern) solutions. The results suggested that the alterna-
tive solution excels the pattern solution in the majority of the cases. However,
exceptions in which the pattern solution had similar or even slightly lower en-
ergy consumption than the alternative solution were also identified. By further
analyzing the design parameters of these exceptions, it was identified that the
pattern solution was as energy efficient or more energy efficient than the alter-
native solution in case of large methods and/or methods with higher number of
method invocations. This suggested that the studied patterns are more suitable
energy-wise when more complex behaviors have to be implemented.

RQ4.a: How does pattern grime evolves?

The previous investigations suggested that design patterns can be a viable solu-
tion to safeguard quality attributes in CES development. However, design pat-
terns, just like other design solutions, are not immune to degradation through-
out software evolution. The addition of functionality to pattern instances may
distance their design from the original definition, which is defined as pattern
grime. As this phenomenon had not been thoroughly explored, this research
question aimed at studying the relationship between grime and various related
factors. The answer to this question was presented in Chapter 6, which reported
a case study on investigating the existence of relations between the accumula-
tion of grime in pattern instances and various related factors: (a) projects, (b)
pattern types, (c) developers, and (d) the structural characteristics of the pattern
participating classes. The reported results suggested that pattern grime tends
to increase linearly, and that it is likely independent of project but dependent of

8.2. Future Work 203

pattern type and developer. Moreover, Chapter 6 also presents a series of corre-
lations between metrics for pattern grime and structural characteristics, e.g., the
coupling added to pattern participants tends to also introduce grime.

RQ4.b: How is pattern grime related to runtime quality attributes?
The accumulation of pattern grime observed in the previous study indicated that
this phenomenon could have undesired effects on pattern instances. Therefore,
this research question focused on investigating whether there is a relation be-
tween three forms of pattern grime (i.e., organizational, modular, and class) and
the levels of three quality attributes addressed in previous research questions,
namely performance, security and correctness. The question was answered in
Chapter 7 through a case study with five industrial projects (approx. 260,000
lines of code) implemented by 16 developers. The results suggested that pattern
grime is correlated to the depreciation of correctness, performance and security
in pattern instances. These findings were established on both class and modular
grime, whilst no strong evidence was observed on organizational grime. The re-
sults also suggest that all three examined factors (i.e., project, pattern type, and
developers) can influence the relationship between pattern grime and quality
attributes.

8.2 Future Work

Based on the findings, scope and limitations of the empirical studies carried out
during the PhD, several opportunities of future work could be identified. These
opportunities are described in the following, grouped into five main directions: (a)
creation of a recommendation system based on the knowledge obtained during the
PhD, (b) extension of the research scope to other approaches and programming lan-
guages, (c) investigation of patterns and granularity of this investigation, (d) in-
vestigation of quality attributes, metrics and tools, and (e) more in-depth study of
pattern grime and other phenomena.

8.2.1 Pattern Recommendation System

The main outcome of this project is that design patterns can be considered as a
promising design asset for developing critical embedded systems, in the sense that:
(a) they promote design-time qualities; and (b) under certain circumstances they
avoid deterioration of (or can even become beneficial for) runtime quality attributes.
Throughout this dissertation a set of parameters and factors that can affect the
decision-making process have been unveiled. Thus, a recommendation system that

204 8. Conclusions and Future Work

will consider all the identified parameters and guide practitioners’ design decision
making is expected to be of significant value. Such a system would consider not
only the structural parameters discussed in this thesis, but also the applicability of
the patterns in the given context and design problems.

8.2.2 Scope of Studies

All the studies that have been performed in this PhD project are based on artifact
analysis, originating mostly from software systems implemented in the Java pro-
gramming language. An interesting extension would be the replication of studies
with projects written in other languages often used for developing embedded sys-
tems, such as C and C++. To allow such replications, the tools used in the reported
studies would have to be adapted or replaced with equivalent tools. An adaptation
of replacement would have to provide the following features for the target language:
(a) estimate metrics for the investigated quality attributes; (b) detect the investigated
patterns, including extended pattern participants; (c) estimate pattern grime; and
(d) estimate energy consumption at class and method levels. The main challenge
in creating or adapting tools is that the languages have different Abstract Syntax
Trees (ASTs). However, one solution to overcome this challenge could be to take ad-
vantage of recent standards or technologies for language-independent parsing such
as OMG’s Generic Abstract Syntax Tree Meta-model1 (Canovas and Molina, 2010;
Fleck et al., 2016) and Oracle’s Graal+Truffle2 (Grimmer et al., 2015; Azadmanesh
et al., 2017). Furthermore, it would be interesting to consider larger populations
in future work in order to discuss the impact of higher numbers of subjects to the
results.

Regarding the SMS reported in Chapter 3, the body of knowledge that was pre-
sented has considerable overlap with other classes of system (e.g., hard-real time
systems). Thus, it would be relevant to continue exploring such related classes and
seek other approaches that could be applied to the designing of CESs.

8.2.3 Exploration of Other Patterns

The research conducted in this PhD project focused only on GoF design patterns, as
they are the most famous patterns catalog that is applicable in any object-oriented
language, and may comprise a large size of a system. However, GoF are not the
only available patterns in the software literature. Therefore, it is relevant to consider

1https://www.omg.org/spec/ASTM
2https://graalvm.org

https://www.omg.org/spec/ASTM
https://graalvm.org

8.2. Future Work 205

studying other types of patterns, such as POSA, small-memory patterns, etc. which
are of great interest for embedded systems design.

Regarding GoF patterns, there are also several opportunities for extending the
work reported in this dissertation. First, not all GoF patterns were considered in
the reported studies and, thus, similar studies addressing additional patterns could
contribute to the state-of-the-art. In the particular case of the study involving en-
ergy consumption, it would be beneficial to focus on the other two pillars of object-
orientation that have not been investigated in depth (i.e., encapsulation and inheri-
tance). Furthermore, the analysis of the collected data could also be extended by, for
example, applying different normalizations e.g. in terms of project size or function-
ality. Finally, it would be interesting to compare the overall level of quality attributes
across projects that have varying numbers of pattern instances.

8.2.4 Exploration of Quality Attributes

This PhD project focused on a subset of quality attributes and, in particular, a subset
of critical quality attributes, namely correctness, performance and security. There-
fore, it is interesting to extend the work reported in this dissertation by investigating
additional quality attributes. Furthermore, each quality attribute is estimated using
specific metrics, and the exploration of different metrics is valuable to further vali-
date the results presented in this dissertation. Finally, to assess the various quality
attributes addressed in this PhD, different tools were employed. Although the tools
had been deemed adequate, the use of alternative tools, could contribute to not only
triangulate the results, but also to investigate additional effects or relationships.

Regarding the empirical analysis reported in this dissertation, two main exten-
sions should be mentioned. First, FindBugs reports a severity level for each de-
tectable violation of good coding practices, which was not particularly explored.
Thus, it would be interesting to extend the current work to factor in the severity
of violations. Second, in the study involving energy consumption, popular open-
source systems of various domains were analyzed, but they are not particularly tai-
lored for energy efficiency. Thus, it would be interesting to focus also on systems
that have energy efficiency among their main concerns, investigating how GoF pat-
terns and alternatives are used within such a context and comparing these systems
with other kinds of systems.

8.2.5 Pattern Grime and Beyond

Some of the investigated facets on how pattern grime accumulates can and should
be further explored, e.g., what factors may be related to developers that tend to accu-

206 8. Conclusions and Future Work

mulate more or less grime. The investigation of additional grime metrics and factors
could enhance the understanding over the consequences of accumulating pattern
grime. In particular, metrics regarding subtypes of grime have been proposed in the
literature and their exploration could shed light into the interplay between indica-
tors of the types and subtypes of grime in similar study settings. Furthermore, work
based on the correlation between pattern grime and structural metrics raised ques-
tions that can be investigated in confirmatory studies, e.g., whether most introduced
afferent coupling is indeed resulting in the accumulation of grime.

Regarding the relationship between the accumulation of patter grime and levels
of quality attributes, confirmatory empirical studies could investigate one or more
of the factors explored in the PhD in more details, and seek evidence to explain the
observed variations in this relationship. Moreover, the studies involving pattern
grime reported in this dissertation considered industrial systems. Although open-
source software has been studied in related work, there is a lack of studies with
similar design. Such a study can increase the external validity of the results reported
on this dissertation.

Finally, pattern grime is not the only phenomenon that can lead to the decay of
pattern instances. Well-known phenomena such as technical debt can have particu-
lar effects on design pattern instances. In this regard, it is interesting to investigate
the extent of the decay and how it can influence the relationship between the appli-
cation of design pattern and the levels of quality attributes.

Appendix A

A.1 Supplementary Material to Chapter 3

In this following, we present the list of primary studies included in the systematic
mapping study (SMS) reported in Chapter 3. We assigned an ID to each primary
study, which are used in the reporting of the SMS when referencing the studies. The
ID’s are in the format [S < number >].

[S1] Gove, R. and Heinzman, J. L.: 1991, Safety criteria and model for mission-
critical embedded software systems, Proceedings of the Sixth Annual Conference
on Computer Assurance, Systems Integrity, Software Safety and Process Security
(COMPASS ’91), IEEE, pp. 69–73. DOI: 10.1109/CMPASS.1991.161041

[S2] Fidge, C. J. and Lister, A. M.: 1992, Disciplined approach to real-time systems
design, Information and Software Technology 34(9), 603–610. DOI: 10.1016/0950-
5849(92)90137-e

[S3] Lutz, R. R.: 1993, Analyzing software requirements errors in safety-
critical, embedded systems, Proceedings of First IEEE International Sym-
posium on Requirements Engineering (RE ’93), IEEE, pp. 126–133. DOI:
10.1109/ISRE.1993.324825

[S4] Kelly, J. C. and Covington, R. G.: 1994, Results of a formal methods demonstra-
tion project, Proceedings of the WESCON ’94 Conference, IEEE, pp. 62–66. DOI:
10.1109/WESCON.1994.403627

[S5] Vardanega, T.: 1994, Experience with the development of hard real-time em-
bedded Ada software, Proceedings of the 16th International Conference on Soft-
ware Engineering (ICSE ’94), IEEE Computer Society Press, pp. 301–308. DOI:
10.1109/ICSE.1994.296792

208 Appendix A

[S6] Corbett, J. C.: 1996, Timing analysis of Ada tasking programs, IEEE Transac-
tions on Software Engineering 22(7), 461–483. DOI: 10.1109/32.538604

[S7] Baufreton, P., Méhaut, X. and Rutten, É.: 1997, Embedded systems in avionics
and the SACRES approach, Proceedings of the 16th International Conference on
Computer Safety, Reliability and Security (SAFECOMP ’97), Springer, pp. 311–
320. DOI: 10.1007/978-1-4471-0997-6 24

[S8] Edwards, S., Lavagno, L., Lee, E. A. and Sangiovanni-Vincentelli, A.: 1997,
Design of embedded systems: formal models, validation, and synthesis, Pro-
ceedings of the IEEE 85(3), 366–390. DOI: 10.1109/5.558710

[S9] Heimdahl, M. P. and Thompson, J. M.: 1997, Specification and analysis of sys-
tem level inter-component communication, Proceedings of the First IEEE Inter-
national Conference on Formal Engineering Methods (ICFEM ’97), IEEE, pp. 192–
201. DOI: 10.1109/2.666842

[S10] Büssow, R., Geisler, R. and Klar, M.: 1998, Specifying safety-critical embed-
ded systems with statecharts and Z: A case study, Fundamental Approaches to
Software Engineering, Springer, pp. 71–87. DOI: 10.1007/bfb0053584

[S11] Dal Cin, M.: 1998, Modeling fault-tolerant system behavior, Systems: Theory
and Practice, Springer, pp. 213–234. DOI: 10.1007/978-3-7091-6451-8 10

[S12] Hollingworth, K. and Saeed, A.: 1998, CoRSA-A Constraint Based Approach
to Requirements and Safety Analysis, Computer Safety, Reliability and Security,
Springer, pp. 3–15. DOI: 10.1007/3-540-49646-7 1

[S13] Muscettola, N., Nayak, P. P., Pell, B. and Williams, B. C.: 1998, Remote
agent: To boldly go where no AI system has gone before, Artificial Intelligence
103(1), 5–47. DOI: 10.1016/s0004-3702(98)00068-x

[S14] von Hanxleden, R., Botorabi, A. and Kupczyk, S.: 1998, A codesign approach
for safety-critical automotive applications, IEEE Micro 18(5), 66–79. DOI:
10.1109/40.735945

[S15] Winter, K., Santen, T. and Heisel, M.: 1998, An agenda for specifying soft-
ware components with complex data models, Computer Safety, Reliability and
Security, Springer, pp. 16–31. DOI: 10.1007/3-540-49646-7 2

[S16] Bienmüller, T., Brockmeyer, U., Damm, W., Döhmen, G., Eßmann, C., Hol-
berg, H.-J., Hungar, H., Josko, B., Schlör, R., Wittich, G. et al.: 1999, Formal
verification of an avionics application using abstraction and symbolic model

A.1. Supplementary Material to Chapter 3 209

checking, Towards System Safety, Springer, pp. 150–173. DOI: 10.1007/978-1-
4471-0823-8 10

[S17] Bryant, S. E. and Key, K.: 1999, Redefining the process for development of
embedded software, Proceedings of the 1999 IEEE International Symposium on
Computer Aided Control System Design (CACSD ’99), IEEE, pp. 261–266. DOI:
10.1109/CACSD.1999.808658

[S18] Cin, M. D., Huszerl, G. and Kosmidis, K.: 1999, Quantitative evaluation of de-
pendability critical systems based on guarded statechart models, Proceedings of
the Fourth IEEE International Symposium on High-Assurance Systems Engineering
(HASE ’99), IEEE, pp. 37–45. DOI: 10.1109/HASE.1999.809473

[S19] Heiner, M. and Heisel, M.: 1999, Modeling safety-critical systems with Z and
Petri nets, Computer Safety, Reliability and Security, Springer, pp. 361–374. DOI:
10.1007/3-540-48249-0 31

[S20] Kandasamy, N., Hayes, J. P. and Murray, B. T.: 1999, Tolerating transient faults
in statically scheduled safety-critical embedded systems, Proceedings of the 18th
IEEE Symposium on Reliable Distributed Systems (SRDS ’99), IEEE, pp. 212–221.
DOI: 10.1109/RELDIS.1999.805097

[S21] Thompson, J. M., Heimdahl, M. P. and Miller, S. P.: 1999, Specification-Based
Prototyping for Embedded Systems, Proceedings of the Seventh Joint Meeting of
The European Software Engineering Conference and the ACM Sigsoft Symposium on
the Foundations of Software Engineering (ESEC/FSE ’99), Springer, pp. 163–179.
DOI: 10.1007/3-540-48166-4 11

[S22] Lajolo, M., Rebaudengo, M., Roerda, M. S., Violante, M. and Lavagno, L.:
2000, Evaluating system dependability in a co-design framework, Proceedings
of the Conference on Design, Automation and Test in Europe (DATE ’00), ACM,
pp. 586–590. DOI: 10.1145/343647.343861

[S23] Seward, D., Pace, C., Morrey, R. and Sommerville, I.: 2000, Safety analysis
of autonomous excavator functionality, Reliability Engineering & System Safety
70(1), 29–39. DOI: 10.1016/s0951-8320(00)00045-4

[S24] Claesson, V., Lönn, H. and Suri, N.: 2001, Efficient TDMA synchroniza-
tion for distributed embedded systems, Proceedings of the 20th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS ’01), IEEE, pp. 198–201. DOI:
10.1109/RELDIS.2001.970769

[S25] Doche, M., Vernier-Mounier, I. and Kordon, F.: 2001, A modular approach to
the specification and validation of an electrical flight control system, Proceed-

210 Appendix A

ings ot the International Symposium of Formal Methods Europe (FME ’01), Springer,
pp. 590–610. DOI: 10.1007/3-540-45251-6 34

[S26] Grieskamp, W., Heisel, M. and Dörr, H.: 2001, Specifying embedded systems
with statecharts and Z: an agenda for cyclic software components, Science of
Computer Programming 40(1), 31–57. DOI: 10.1016/s0167-6423(00)00024-1

[S27] Liu, J., Chou, P. H., Bagherzadeh, N. and Kurdahi, F.: 2001, Power-aware
scheduling under timing constraints for mission-critical embedded systems,
Proceedings of the 38th Annual Design Automation Conference (DAC’01), ACM,
pp. 840–845. DOI: 10.1145/378239.379076

[S28] Winkelmann, K.: 2001, Formal Methods in Designing Embedded Sys-
tems—the SACRES Experience, Formal Methods in System Design 19(1), 81–110.
DOI: 10.1023/A:1011295931367

[S29] Chou, P. H., Liu, J., Li, D. and Bagherzadeh, N.: 2002, Impacct: Methodology
and tools for power-aware embedded systems, Design Automation for Embedded
Systems 7(3), 205–232. DOI: 10.1023/A:1019730322551

[S30] Garriou, D.: 2002, Symbolic simulation of synchronous programs, Elec-
tronic Notes in Theoretical Computer Science 65(5), 11–18. DOI: 10.1016/s1571-
0661(05)80436-0

[S31] Karsai, G., Neema, S., Abbott, B. and Sharp, D.: 2002, A modeling lan-
guage and its supporting tools for avionics systems, Proceedings of the 21st
Digital Avionics Systems Conference (DASC ’02), Vol. 1, IEEE, pp. 6A3–1. DOI:
10.1109/DASC.2002.1067981

[S32] Bate, I. and Burns, A.: 2003, An integrated approach to scheduling in
safety-critical embedded control systems, Real-Time Systems 25(1), 5–37. DOI:
10.1023/A:1022920502619

[S33] Choi, Y. and Heimdahl, M.: 2003, Model checking software requirement speci-
fications using domain reduction abstraction, Proceedings of the 18th IEEE Inter-
national Conference on Automated Software Engineering (ASE ’03), IEEE, pp. 314–
317. DOI: 10.1109/ASE.2003.1240328

[S34] Dajani-Brown, S., Cofer, D., Hartmann, G. and Pratt, S.: 2003, Formal model-
ing and analysis of an avionics triplex sensor voter, Model Checking Software,
Springer, pp. 34–48. DOI: 10.1007/3-540-44829-2 3

[S35] Kopetz, H. and Bauer, G.: 2003, The time-triggered architecture, Proceedings of
the IEEE 91(1), 112–126. DOI: 10.1109/jproc.2002.805821

A.1. Supplementary Material to Chapter 3 211

[S36] Obermaisser, R. and Peti, P.: 2003, A framework for rapid application develop-
ment of distributed embedded real-time systems, Proceedings of the 15th IEEE
International Conference on Computer as a Tool (EUROCON ’03), Vol. 1, IEEE,
pp. 80–84. DOI: 10.1109/EURCON.2003.1247983

[S37] Tsai, W.-T., Yu, L., Zhu, F. and Paul, R.: 2003, Rapid verification of embedded
systems using patterns, Proceedings of the 27th Annual International Computer
Software and Applications Conference (COMPSAC ’03), IEEE, pp. 466–471. DOI:
10.1109/CMPSAC.2003.1245381

[S38] Wang, L.: 2003, Fault handling in embedded industrial measurement and
control systems: issues and a case study, Proceedings of the 2003 IEEE Systems
Readiness Technology Conference (AUTOTESTCON ’03), IEEE, pp. 713–719. DOI:
10.1109/AUTEST.2003.1243657

[S39] Yang, S., Sang, N. and Xiong, G.: 2003, Integrated safety critical systems on
reliable real time network, Proceedings of the Fourth International Conference on
Parallel and Distributed Computing, Applications and Technologies (PDCAT ’03),
IEEE, pp. 66–70. DOI: 10.1109/PDCAT.2003.1236260

[S40] Zhang, Y. and Chakrabarty, K.: 2003, Fault recovery based on checkpoint-
ing for hard real-time embedded systems, Proceedings of the 18th IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI Systems (DFT ’03), IEEE,
pp. 320–327. DOI: 10.1109/DFTVS.2003.1250127

[S41] Coyle, E., Maguire, L. and McGinnity, T.: 2004, Self-repair of embedded
systems, Engineering Applications of Artificial Intelligence 17(1), 1–9. DOI:
10.1016/j.engappai.2003.11.009

[S42] Dion, B., Le Sergent, T., Martin, B. and Griebel, H.: 2004, Model-based
development for time-triggered architectures, Proceedings of the 23rd Dig-
ital Avionics Systems Conference (DASC ’04), Vol. 2, IEEE, pp. 6–D. DOI:
10.1109/DASC.2004.1390733

[S43] Durrieu, G., Laurent, O., Seguin, C. and Wiels, V.: 2004, Formal proof and
test case generation for critical embedded systems using scade, Building the
Information Society, Springer, pp. 499–504. DOI: 10.1007/978-1-4020-8157-6 44

[S44] Gopalakrishnan, S., Sha, L. and Caccamo, M.: 2004, Hard real-time com-
munication in bus-based networks, Proceedings of the 25th IEEE Interna-
tional Real-Time Systems Symposium (RTSS ’04), IEEE, pp. 405–414. DOI:
10.1109/REAL.2004.24

212 Appendix A

[S45] Hansson, H., Åkerholm, M., Crnkovic, I. and Törngren, M.: 2004, SaveCCM-a
component model for safety-critical real-time systems, Proceedings os the 30th
Euromicro Conference, IEEE, pp. 627–635. DOI: 10.1109/eurmic.2004.1333431

[S46] Konrad, S., Cheng, B. H. and Campbell, L. A.: 2004, Object analysis patterns
for embedded systems, IEEE Transactions on Software Engineering 30(12), 970–
992. DOI: 10.1109/tse.2004.102

[S47] Lavagno, L., Di Natale, M., Ferrari, A. and Giusto, P.: 2004, SoftContract:
model-based design of error-checking code and property monitors, UML Mod-
eling Languages and Applications, Springer, pp. 150–162. DOI: 10.1007/978-3-
540-31797-5 16

[S48] Maheshwari, A., Burleson, W. and Tessier, R.: 2004, Trading off transient fault
tolerance and power consumption in deep submicron (DSM) VLSI circuits,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12(3), 299–311.
DOI: 10.1109/tvlsi.2004.824302

[S49] Morris, J., Kroening, D. and Koopman, P.: 2004, Fault tolerance tradeoffs in
moving from decentralized to centralized embedded systems, Proceedings of
the International Conference on Dependable Systems and Networks (DSN ’93), IEEE,
pp. 377–386. DOI: 10.1109/dsn.2004.1311907

[S50] Ortmeier, F., Thums, A., Schellhorn, G. and Reif, W.: 2004, Combining formal
methods and safety analysis–the ForMoSA approach, Integration of Software
Specification Techniques for Applications in Engineering, Springer, pp. 474–493.
DOI: 10.1007/978-3-540-27863-4 26

[S51] Pop, P., Eles, P., Peng, Z. and Pop, T.: 2004, Analysis and optimization of dis-
tributed real-time embedded systems, ACM Transactions on Design Automation
of Electronic Systems 11(3), 593–625. DOI: 10.1145/1142980.1142984

[S52] Schinz, I., Toben, T., Mrugalla, C. and Westphal, B.: 2004, The Rhapsody UML
verification environment, Proceedings of the Second International Conference on
Software Engineering and Formal Methods (SEFM ’04), IEEE, pp. 174–183. DOI:
10.1109/SEFM.2004.1347518

[S53] Thiele, L. and Wilhelm, R.: 2004, Design for timing predictability, Real-Time
Systems 28(2-3), 157–177. DOI: 10.1023/b:time.0000045316.66276.6e

[S54] Wu, B., Wu, Z. and Chen, W.: 2004, Component model optimization for dis-
tributed real-time embedded software, Proceedings of the 2004 IEEE Interna-
tional Conference on Systems, Man and Cybernetics (ICSMC ’04), Vol. 2, IEEE,
pp. 1158–1163. DOI: 10.1109/ICSMC.2004.1399780

A.1. Supplementary Material to Chapter 3 213

[S55] Zhang, Y. and Chakrabarty, K.: 2004, Dynamic adaptation for fault tolerance
and power management in embedded real-time systems, ACM Transactions on
Embedded Computing Systems 3(2), 336–360. DOI: 10.1145/993396.993402

[S56] Caffall, D. S. and Michael, J. B.: 2005, Formal methods in a system-of-systems
development, Proceedings of the 2005 IEEE International Conference on Systems,
Man and Cybernetics (ICSMC ’05), Vol. 2, IEEE, pp. 1856–1863. DOI: 10.1109/IC-
SMC.2005.1571417

[S57] de Freitas Francisco, A. L. and Rammig, F. J.: 2005, Fault-tolerant hard-
real-time communication of dynamically reconfigurable, distributed embed-
ded systems, Proceedings of the Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’05), IEEE, pp. 275–283. DOI:
10.1109/ISORC.2005.27

[S58] Feiler, P. H., Lewis, B., Vestal, S. and Colbert, E.: 2005, An overview of the
SAE architecture analysis & design language (AADL) standard: a basis for
model-based architecture-driven embedded systems engineering, Architecture
Description Languages, Springer, pp. 3–15. DOI: 10.1007/0-387-24590-1 1

[S59] Guerrouat, A. and Richter, H.: 2005, A formal approach for analysis and test-
ing of reliable embedded systems, Electronic Notes in Theoretical Computer Sci-
ence 141(3), 91–106. DOI: 10.1016/j.entcs.2005.02.050

[S60] Hewett, R. and Seker, R.: 2005, A risk assessment model of embedded soft-
ware systems, Proceedings of the 29th Annual IEEE/NASA Software Engineering
Workshop (SEW ’05), IEEE, pp. 142–149. DOI: 10.1109/SEW.2005.16

[S61] Latronico, E. and Koopman, P.: 2005, Design time reliability analysis of
distributed fault tolerance algorithms, Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN ’05), IEEE, pp. 486–495. DOI:
10.1109/DSN.2005.38

[S62] Obermaisser, R.: 2005, Ordering messages in virtual CAN networks, Proceed-
ings of the 12th IEEE International Conference on Electronics, Circuits and Systems
(ICECS ’05), IEEE, pp. 1–4. DOI: 10.1109/icecs.2005.4633552

[S63] Obermaisser, R., Peti, P. and Kopetz, H.: 2005, Virtual networks in an inte-
grated time-triggered architecture, Proceedings of the 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS ’05), IEEE,
pp. 241–253. DOI: 10.1109/WORDS.2005.55

[S64] Pai, G., Bechta-Dugan, J. and Lateef, K.: 2005, Bayesian Networks applied to

214 Appendix A

Software IV & V, Proceedings of the 29th Annual IEEE/NASA Software Engineer-
ing Workshop (SEW ’05), IEEE, pp. 293–304. DOI: 10.1109/SEW.2005.20

[S65] Peti, P., Obermaisser, R., Tagliabo, F., Marino, A. and Cerchio, S.: 2005, An
integrated architecture for future car generations, Proceedings of the Eighth
IEEE International Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC ’05), IEEE, pp. 2–13. DOI: 10.1109/ISORC.2005.12

[S66] Pop, P., Eles, P. and Peng, Z.: 2005, Analysis and optimisation of heteroge-
neous real-time embedded systems, IEE Proceedings - Computers and Digital
Techniques 152(2), 130–147. DOI: 10.1049/ip-cdt:20045069

[S67] Silva, V., Marau, R., Almeida, L., Ferreira, J., Calha, M., Pedreiras, P. and Fon-
seca, J.: 2005, Implementing a distributed sensing and actuation system: The
CAMBADA robots case study, Proceedings of the 10th IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA ’05), Vol. 2, IEEE, pp. 8–pp. DOI:
10.1109/ETFA.2005.1612753

[S68] Tavares, E., Maciel, P., Bessa, A., Barreto, R., Barros, L., Oliveira Jr, M. and
Lima, R.: 2005, A time petri net based approach for embedded hard real-time
software synthesis with multiple operational modes, Proceedings of the 18th
Symposium on Integrated Circuits and Systems Design (SBCCI ’05), IEEE, pp. 98–
103. DOI: 10.1145/1081081.1081110

[S69] Benoit, E., Chovin, A., Foulloy, L., Chatenay, A. and Mauris, G.: 2006, Toward
a safe design of CANopen distributed instruments, IEEE Transactions onInstru-
mentation and Measurement 55(3), 771–777. DOI: 10.1109/tim.2006.873798

[S70] Buckl, C., Knoll, A. and Schrott, G.: 2006, Model-based development of fault-
tolerant embedded software, Proccedings of the Second International Symposium
on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
’06), IEEE, pp. 103–110. DOI: 10.1109/isola.2006.22

[S71] Choi, K.-S., Jung, S.-C., Kim, H.-J., Bae, D.-H. and Lee, D.-H.: 2006, UML-
based Modeling and Simulation Method for Mission-Critical Real-Time Em-
bedded System Development., Proceedings of the IASTED International Confer-
ence on Software Engineering, Vol. 2006, pp. 160–165.

[S72] Goldsby, H., Cheng, B. H., Konrad, S. and Kamdoum, S.: 2006, A visualization
framework for the modeling and formal analysis of high assurance systems,
Model Driven Engineering Languages and Systems, Springer, pp. 707–721. DOI:
10.1007/11880240 49

A.1. Supplementary Material to Chapter 3 215

[S73] Guerrouat, A. and Richter, H.: 2006, A component-based specification ap-
proach for embedded systems using FDTs, ACM SIGSOFT Software Engineer-
ing Notes 31(2), 14. DOI: 10.1145/1118537.1123073

[S74] Miller, S. P., Tribble, A. C., Whalen, M. W. and Heimdahl, M. P.: 2006, Prov-
ing the shalls, International Journal on Software Tools for Technology Transfer 8(4-
5), 303–319. DOI: 10.1007/s10009-004-0173-6

[S75] Obermaisser, R. and Peti, P.: 2006, A fault hypothesis for integrated architec-
tures, Proceedings of the Fourth International Workshop on Intelligent Solutions in
Embedded Systems (WISES ’06), IEEE, pp. 1–18. DOI: 10.1109/wises.2006.329115

[S76] Oswald, N.: 2006, Towards a conceptual framework-based architecture for
unmanned systems, Informatics in Control, Automation and Robotics I, Springer,
pp. 167–177. DOI: 10.1007/1-4020-4543-3 20

[S77] Ryan, C., Heffernan, D. and Leen, G.: 2006, Interactive consistency on a time-
triggered real-time control network, IEEE Transactions on Industrial Informatics
2(4), 242–254. DOI: 10.1109/tii.2006.885189

[S78] Schoitsch, E., Althammer, E., Eriksson, H., Vinter, J., Gönczy, L., Pataricza, A.
and Csertan, G.: 2006, Validation and Certification of Safety-Critical Embed-
ded Systems–The DECOS Test Bench, Computer Safety, Reliability, and Security,
Springer, pp. 372–385. DOI: 10.1007/11875567 28

[S79] Su, H., Hemingway, G., Chen, K. and Koo, T. J.: 2006, Model-based tool-
chain infrastructure for automated analysis of embedded systems, Auto-
mated Technology for Verification and Analysis, Springer, pp. 523–537. DOI:
10.1007/11901914 38

[S80] Villani, E., Miyagi, P. E. and Valette, R.: 2006, Landing system verification
based on petri nets and a hybrid approach, IEEE Transactions on Aerospace and
Electronic Systems 42(4), 1420–1436. DOI: 10.1109/taes.2006.314582

[S81] Yang, G., Li, H. and Wu, Z.: 2006, SmartC: A component-based hierarchical
modeling language for automotive electronics, Proceedings of the Second IEEE
International Symposium on Dependable, Autonomic and Secure Computing (DASC
’06), IEEE, pp. 203–210. DOI: 10.1109/dasc.2006.45

[S82] Azevedo, J. L., Cunha, B. and Almeida, L.: 2007, Hierarchical distributed ar-
chitectures for autonomous mobile robots: a case study, Proceedings of the IEEE
Conference on Emerging Technologies and Factory Automation (ETFA ’07), IEEE,
pp. 973–980. DOI: 10.1109/efta.2007.4416889

216 Appendix A

[S83] Banci, M., Fantechi, A., Gnesi, S. and Lombardi, G.: 2007, Experimenting with
diversity in the model driven development of a railway signaling system, Pro-
ceedings of the Second International Workshop on Engineering Fault Tolerant Sys-
tems (EFTS ’07), ACM, p. 5. DOI: 10.1145/1316550.1316555

[S84] Barboni, E., Navarre, D., Palanque, P. and Basnyat, S.: 2007, A for-
mal description technique for interactive cockpit applications compliant
with ARINC specification 661, Proceedings of the 12th International Sympo-
sium on Industrial Embedded Systems (SIES ’07), IEEE, pp. 250–257. DOI:
10.1109/sies.2007.4297342

[S85] Buckl, C., Regensburger, M., Knoll, A. and Schrott, G.: 2007, Models for auto-
matic generation of safety-critical real-time systems, Proceedings of the Second
International Conference on Availability, Reliability and Security (ARES ’07), IEEE,
pp. 580–587. DOI: 10.1109/ares.2007.106

[S86] de las Heras, E. and Villar, E.: 2007, Specification for SystemC-AADL inter-
operability, Proceedings of the Fifth Workshop on Intelligent Solutions in Embedded
Systems (WISES ’07), IEEE, pp. 76–86. DOI: 10.1109/wises.2007.4408490

[S87] Gamatié, A., Gautier, T., Guernic, P. L. and Talpin, J.-P.: 2007, Polychronous
design of embedded real-time applications, ACM Transactions on Software En-
gineering and Methodology 16(2), 9. DOI: 10.1145/1217295.1217298

[S88] Gu, Z., He, X. and Yuan, M.: 2007, Optimization of static task and bus ac-
cess schedules for time-triggered distributed embedded systems with model-
checking, Proceedings of the 44th Annual Design Automation Conference (DAC
’07), ACM, pp. 294–299. DOI: 10.1145/1278480.1278556

[S89] Heitmeyer, C. L. and Jeffords, R. D.: 2007, Applying a formal require-
ments method to three NASA systems: Lessons learned, Proceedings of
the 2007 IEEE Aerospace Conference (AeroConf ’07), IEEE, pp. 1–10. DOI:
10.1109/aero.2007.352764

[S90] Islam, S. and Suri, N.: 2007, A multi variable optimization approach for the
design of integrated dependable real-time embedded systems, Embedded and
Ubiquitous Computing, Springer, pp. 517–530. DOI: 10.1007/978-3-540-77092-
3 45

[S91] Iwu, F., Galloway, A., McDermid, J. and Toyn, I.: 2007, Integrating safety and
formal analyses using UML and PFS, Reliability Engineering & System Safety
92(2), 156–170. DOI: 10.1016/j.ress.2005.11.060

A.1. Supplementary Material to Chapter 3 217

[S92] Natale, M. D.: 2007, Virtual platforms and timing analysis: status, challenges
and future directions, Proceedings of the 44th ACM/IEEE Design Automation Con-
ference (DAC ’07), IEEE, pp. 551–555. DOI: 10.1145/1278480.1278620

[S93] Nguyen, K. D., Thiagarajan, P. and Wong, W.-F.: 2007, A UML-based de-
sign framework for time-triggered applications, Proceedings of the 28th IEEE
International Real-Time Systems Symposium (RTSS ’07), IEEE, pp. 39–48. DOI:
10.1109/rtss.2007.18

[S94] Obermaisser, R., Peti, P. and Tagliabo, F.: 2007, An integrated architec-
ture for future car generations, Real-Time Systems 36(1-2), 101–133. DOI:
10.1007/s11241-007-9015-4

[S95] Obermaisser, R. and Schlager, M.: 2007, A Simulation Framework for Virtual
Integration of Integrated Systems, Proceedings of the International Conference on
Computer as a Tool (EUROCON ’07), IEEE, pp. 2208–2216. DOI: 10.1109/eur-
con.2007.4400256

[S96] Ponsard, C., Massonet, P., Molderez, J.-F., Rifaut, A., van Lamsweerde, A. and
Van, H. T.: 2007, Early verification and validation of mission critical systems,
Formal Methods in System Design 30(3), 233–247. DOI: 10.1007/s10703-006-0028-
8

[S97] Rosset, V., Souto, P. F. and Vasques, F.: 2007, Formal verification of a group
membership protocol using model checking, On the Move to Meaningful Inter-
net Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, Springer, pp. 471–488.
DOI: 10.1007/978-3-540-76848-7 34

[S98] Shukla, S. K., Suhaib, S. M., Mathaikutty, D. A. and Talpin, J.-P.: 2007, On
the Polychronous Approach to Embedded Software Design, Next Generation
Design and Verification Methodologies for Distributed Embedded Control Systems,
Springer, pp. 261–273. DOI: 10.1007/978-1-4020-6254-4 20

[S99] Squair, M. J.: 2007, Safety, software architecture and MIL-STD-1760, Proceed-
ings of the 11th Australian Workshop on Safety Critical Systems and Software (SCS
’07), Australian Computer Society, Inc., pp. 93–112.

[S100] Wang, J., Liu, S., Qi, Y. and Hou, D.: 2007, Developing an insulin pump sys-
tem using the SOFL method, Proceedings of the 14th Asia-Pacific Software Engi-
neering Conference (APSEC ’07), IEEE, pp. 334–341. DOI: 10.1109/apsec.2007.41

[S101] Yang, I., Kim, D., Kang, K., Lee, D. and Yoon, K.: 2007, Smart Actuator-Based
Fault-Tolerant Control for Networked Safety-Critical Embedded Systems, Em-

218 Appendix A

bedded Software and Systems, Springer, pp. 615–626. DOI: 10.1007/978-3-540-
72685-2 57

[S102] Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkansson, J.,
Möller, A., Pettersson, P. and Tivoli, M.: 2007, The SAVE approach to
component-based development of vehicular systems, Journal of Systems and
Software 80(5), 655–667. DOI: 10.1016/j.jss.2006.08.016

[S103] Althammer, E., Schoitsch, E., Sonneck, G., Eriksson, H. and Vinter, J.: 2008,
Modular certification support—the DECOS concept of generic safety cases,
Proceedings of the Sixth IEEE International Conference on Industrial Informatics
(INDIN ’08), IEEE, pp. 258–263. DOI: 10.1109/indin.2008.4618105

[S104] Aoyama, M. and Yoshino, A.: 2008, AORE (aspect-oriented requirements en-
gineering) methodology for automotive software product lines, Proceedings of
the 15th Asia-Pacific Software Engineering Conference (APSEC ’08), IEEE, pp. 203–
210. DOI: 10.1109/apsec.2008.59

[S105] Armoush, A., Salewski, F. and Kowalewski, S.: 2008a, Effective pattern rep-
resentation for safety critical embedded systems, Proceedings of the 2008 In-
ternational Conference on Computer Science and Software Engineering (CSSE ’08),
IEEE, pp. 91–97. DOI: 10.1109/csse.2008.739

[S106] Armoush, A., Salewski, F. and Kowalewski, S.: 2008b, Recovery block with
backup voting: A new pattern with extended representation for safety critical
embedded systems, Proceedings of the 11th International Conference on Informa-
tion Technology (ICIT ’08), IEEE, pp. 232–237. DOI: 10.1109/icit.2008.60

[S107] Balp, H., Borde, É. and Haı̈k, G.: 2008, Automatic composition of AADL
models for the verification of critical component-based embedded systems,
Proceedings of the 13th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS ’08), IEEE, pp. 269–274. DOI: 10.1109/iceccs.2008.26

[S108] Barreto, R., Maciel, P., Tavares, E., Freitas, R. D., Oliveira, M. and Lima,
R. M.: 2008, A time Petri net-based method for embedded hard real-time soft-
ware synthesis, Design Automation for Embedded Systems 12(1-2), 31–62. DOI:
10.1007/s10617-007-9011-x

[S109] Delanote, D., Van Baelen, S., Joosen, W. and Berbers, Y.: 2008, Using AADL
to model a protocol stack, Proceedings of the 13th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS ’08), IEEE, pp. 277–281.
DOI: 10.1109/iceccs.2008.12

A.1. Supplementary Material to Chapter 3 219

[S110] Giese, M., Mistrzyk, T., Pfau, A., Szwillus, G. and von Detten, M.: 2008,
Amboss: A task modeling approach for safety-critical systems, Engineering
Interactive Systems, Springer, pp. 98–109. DOI: 10.1007/978-3-540-85992-5 8

[S111] Hall, B., Paulitsch, M., Benson, D. and Behbahani, A.: 2008, Jet engine control
using ethernet with a BRAIN, Proceedings of the 44th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference & Exhibit, Vol. 5291. DOI: 10.2514/6.2008-5291

[S112] Insaurralde, C. C., Seminario, M. A., Jiménez, J. F. and Giron-Sierra, J. M.:
2008, Model-based design analysis of an Avionics Fuel Distributed Control
System, Proceedings of the IEEE/AIAA 27th Digital Avionics Systems Conference
(DASC ’08), IEEE, pp. 5–C. DOI: 10.1109/dasc.2008.4702856

[S113] Liu, X., Liu, X., Li, J., Zhao, Y. and Wang, Z.: 2008, Refinement of UML Inter-
action for Correct Embedded System Design, Proceedings of the Ninth Interna-
tional Conference for Young Computer Scientists (ICYCS ’08), IEEE, pp. 1156–1162.
DOI: 10.1109/icycs.2008.251

[S114] Liu, Y. and Wong, T.: 2008, Component architecture and modeling for
microkernel-based embedded system development, Proceedings of the 19th
Australian Conference on Software Engineering (ASWEC ’08), IEEE, pp. 190–199.
DOI: 10.1109/aswec.2008.4483207

[S115] Ma, Y., Talpin, J.-P. and Gautier, T.: 2008, Virtual prototyping AADL ar-
chitectures in a polychronous model of computation, Proceedings of the 6th
ACM/IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE ’08), IEEE, pp. 139–148. DOI: 10.1109/memcod.2008.4547701

[S116] Pascoal, E., Rufino, J., Schoofs, T. and Windsor, J.: 2008, AMOBA-ARINC 653
simulator for modular based space applications, Proceedings of the Eurospace
Data Systems in Aerospace Conference (DASIA ’08) 10, 2.

[S117] Pinello, C., Carloni, L. P. and Sangiovanni-Vincentelli, A. L.: 2008, Fault-
tolerant distributed deployment of embedded control software, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 27(5), 906–919.
DOI: 10.1109/tcad.2008.917971

[S118] Sakurai, K., Bokor, P. and Suri, N.: 2008, Aiding modular design and ver-
ification of safety-critical time-triggered systems by use of executable formal
specifications, Proceedings of the 11th IEEE High Assurance Systems Engineering
Symposium (HASE ’08), IEEE, pp. 261–270. DOI: 10.1109/hase.2008.45

[S119] Sveda, M. and Vrba, R.: 2008, Meta-Design Support for Safe and Secure Net-
worked Embedded Systems, Proceedings of the Third International Conference on

220 Appendix A

Systems (ICONS ’08), IEEE, pp. 69–74. DOI: 10.1109/icons.2008.52

[S120] Yi, Z., Cai, W. and Yue, W.: 2008, Adaptive safety critical middleware for dis-
tributed and embedded safety critical system, Proceedings of the Fourth Interna-
tional Conference on Networked Computing and Advanced Information Management
(NCM ’08), Vol. 1, IEEE, pp. 162–166. DOI: 10.1109/NCM.2008.58

[S121] Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S. P. and Cofer, D. D.: 2009,
A formal architecture pattern for real-time distributed systems, Proceedings of
the 30th IEEE Real-Time Systems Symposium (RTSS ’09), IEEE, pp. 161–170. DOI:
10.1109/rtss.2009.50

[S122] Armoush, A., Beckschulze, E. and Kowalewski, S.: 2009, Safety assessment
of design patterns for safety-critical embedded systems, Proceedings of the 35th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA
’09), IEEE, pp. 523–527. DOI: 10.1109/seaa.2009.12

[S123] Ayrault, P., Hardin, T. and Pessaux, F.: 2009, Development Life-cycle of
Critical Software Under FoCaL, Electronic Notes in Theoretical Computer Science
243, 15–31. DOI: 10.1016/j.entcs.2009.07.003

[S124] Bak, S., Chivukula, D. K., Adekunle, O., Sun, M., Caccamo, M. and Sha, L.:
2009, The system-level simplex architecture for improved real-time embed-
ded system safety, Proceedings of the 15th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS ’09), IEEE, pp. 99–107. DOI: 10.1109/r-
tas.2009.20

[S125] Barranco, M., Proenza, J. and Almeida, L.: 2009, Boosting the robustness
of controller area networks: CANcentrate and ReCANcentrate, Computer
42(5), 66–73. DOI: 10.1109/mc.2009.145

[S126] Bochot, T., Virelizier, P., Waeselynck, H. and Wiels, V.: 2009, Model checking
flight control systems: The Airbus experience., Proceedings of the 31st Interna-
tional Conference on Software Engineering - Companion Volume (ICSE-Companion
’09), Vol. 2009, pp. 18–27. DOI: 10.1109/icse-companion.2009.5070960

[S127] Borde, E., Haı̈k, G. and Pautet, L.: 2009, Mode-based reconfiguration of crit-
ical software component architectures, Proceedings of the Design, Automation &
Test in Europe Conference & Exhibition (DATE ’09), IEEE, pp. 1160–1165. DOI:
10.1109/date.2009.5090838

[S128] Domis, D. and Trapp, M.: 2009, Component-based abstraction in fault tree
analysis, Computer Safety, Reliability, and Security, Springer, pp. 297–310. DOI:
10.1007/978-3-642-04468-7 24

A.1. Supplementary Material to Chapter 3 221

[S129] Gustafsson, J., Altenbernd, P., Ermedahl, A. and Lisper, B.: 2009, Approxi-
mate worst-case execution time analysis for early stage embedded systems de-
velopment, Software Technologies for Embedded and Ubiquitous Systems, Springer,
pp. 308–319. DOI: 10.1007/978-3-642-10265-3 28

[S130] Huber, B. and Obermaisser, R.: 2009, Platform Modeling in Safety-Critical
Embedded Systems, Intelligent Technical Systems, Springer, pp. 145–158. DOI:
10.1007/978-1-4020-9823-9 11

[S131] Islam, S., Suri, N., Balogh, A., Csertán, G. and Pataricza, A.: 2009,
An optimization based design for integrated dependable real-time embed-
ded systems, Design Automation for Embedded Systems 13(4), 245–285. DOI:
10.1007/s10617-009-9041-7

[S132] Izosimov, V., Polian, I., Pop, P., Eles, P. and Peng, Z.: 2009, Analysis and
optimization of fault-tolerant embedded systems with hardened processors,
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition
(DATE ’09), IEEE, pp. 682–687. DOI: 10.1109/DATE.2009.5090752

[S133] Kim, J. E., Rogalla, O., Kramer, S. and Hamann, A.: 2009, Extracting, specify-
ing and predicting software system properties in component based real-time
embedded software development, Proceedings of the 31st International Confer-
ence on Software Engineering - Companion Volume (ICSE-Companion ’09), IEEE,
pp. 28–38. DOI: 10.1109/ICSE-COMPANION.2009.5070961

[S134] Lasnier, G., Zalila, B., Pautet, L. and Hugues, J.: 2009, Ocarina: An envi-
ronment for aadl models analysis and automatic code generation for high in-
tegrity applications, Proceedings of the 14th International Conference on Reliable
Software Technologies (Ada-Europe ’09), Springer, pp. 237–250. DOI: 10.1007/978-
3-642-01924-1 17

[S135] Medikonda, B. S. and Panchumarthy, S. R.: 2009b, An approach to modeling
software safety in safety-critical systems, Journal of Computer Science 5(4), 311.
DOI: 10.3844/jcs.2009.311.322

[S136] Medikonda, B. S. and Panchumarthy, S. R.: 2009a, A framework for software
safety in safety-critical systems, ACM SIGSOFT Software Engineering Notes
34(2), 1–9. DOI: 10.1145/1507195.1507207

[S137] Miller, S. P., Cofer, D. D., Sha, L., Meseguer, J. and Al-Nayeem, A.: 2009,
Implementing logical synchrony in integrated modular avionics, Proceedings
of the IEEE/AIAA 28th Digital Avionics Systems Conference (DASC ’09), IEEE,
pp. 1–A. DOI: 10.1109/dasc.2009.5347579

222 Appendix A

[S138] Nanda, M. and Rao, S.: 2009, A formal method approach to analyze
the design of aircraft flight control systems, Proceedings of the Third Annual
IEEE Systems Conference (SysCon ’09), IEEE, pp. 64–69. DOI: 10.1109/sys-
tems.2009.4815773

[S139] Pagano, B., Andrieu, O., Moniot, T., Canou, B., Chailloux, E., Wang, P.,
Manoury, P. and Colaço, J.-L.: 2009, Experience report: using Objective Caml
to develop safety-critical embedded tools in a certification framework, ACM
SIGPLAN Notices 44(9), 215–220. DOI: 10.1145/1631687.1596582

[S140] Pellizzoni, R., Meredith, P., Nam, M.-Y., Sun, M., Caccamo, M. and Sha, L.:
2009, Handling mixed-criticality in SoC-based real-time embedded systems,
Proceedings of the Seventh ACM International Conference on Embedded Software
(EMSOFT ’09), ACM, pp. 235–244. DOI: 10.1145/1629335.1629367

[S141] Rosset, V., Souto, P. and Vasques, F.: 2009, Reliable communication for DuST
networks, Proceedings of the IEEE Conference on Emerging Technologies & Factory
Automation (ETFA ’09), IEEE, pp. 1–8. DOI: 10.1109/etfa.2009.5347122

[S142] Selby, R. W.: 2009a, Development and Management of Large-Scale Mission-
Critical Embedded Software Systems for Robotic Spacecraft, Proceedings of the
47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, p. 1648. DOI: 10.2514/6.2009-1648

[S143] Selby, R. W.: 2009b, Synthesis, Analysis, and Modeling of Large-Scale
Mission-Critical Embedded Software Systems, Trustworthy Software Develop-
ment Processes, Springer, pp. 3–10. DOI: 10.1007/978-3-642-01680-6 3

[S144] Sveda, M.: 2009, Fault Management for Secure Embedded Systems, Proceed-
ings of the Fourth International Conference on Systems (ICONS ’09), IEEE, pp. 23–
28. DOI: 10.1109/icons.2009.12

[S145] Varona-Gomez, R. and Villar, E.: 2009, Aadl simulation and performance
analysis in systemc, Proceedings of the 14th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS ’09), IEEE, pp. 323–328. DOI:
10.1109/iceccs.2009.11

[S146] Viehl, A., Pressler, M. and Bringmann, O.: 2009, Bottom-up performance
analysis considering time slice based software scheduling at system level,
Proceedings of the 7th IEEE/ACM International Conference on Hardware/Soft-
ware Codesign and System Synthesis (CODES ’09), ACM, pp. 423–432. DOI:
10.1145/1629435.1629493

A.1. Supplementary Material to Chapter 3 223

[S147] Wang, H. and Liang, N.: 2009, A software diversity model for embedded
safety-critical system, Proceedings of the International Conference on Wireless Net-
works and Information Systems (WNIS ’09), IEEE, pp. 106–109. DOI: 10.1109/w-
nis.2009.52

[S148] Yang, X., Lei, J. and Xiong, G.-z.: 2009, Inter-partition Information Flow
Control for High-Assurance Embedded Systems, Proceedings of the WRI World
Congress on Computer Science and Information Engineering (CSIE ’09), Vol. 2,
IEEE, pp. 456–460. DOI: 10.1109/csie.2009.656

[S149] Adler, R., Schaefer, I., Trapp, M. and Poetzsch-Heffter, A.: 2010, Component-
based modeling and verification of dynamic adaptation in safety-critical em-
bedded systems, ACM Transactions on Embedded Computing Systems 10(2), 20:1–
20:39. DOI: 10.1145/1880050.1880056

[S150] Adler, R., Schneider, D. and Trapp, M.: 2010, Engineering dynamic adap-
tation for achieving cost-efficient resilience in software-intensive embed-
ded systems, Proceedings of the 15th IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS ’10), IEEE, pp. 21–30. DOI:
10.1109/iceccs.2010.22

[S151] Aguiar, A., Sérgio Filho, J., Magalhães, F. G., Casagrande, T. D. and Hessel,
F.: 2010, Hellfire: A design framework for critical embedded systems’ applica-
tions, Proceedings of the 11th International Symposium on Quality Electronic Design
(ISQED ’10), IEEE, pp. 730–737. DOI: 10.1109/isqed.2010.5450495

[S152] Baruah, S., Li, H. and Stougie, L.: 2010, Towards the design of certifiable
mixed-criticality systems, Proceedings of the 16th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS ’10), IEEE, pp. 13–22. DOI:
10.1109/rtas.2010.10

[S153] Correa, T., Becker, L. B., Farines, J.-M., Bodeveix, J.-P., Filali, M. and Verna-
dat, F.: 2010, Supporting the design of safety critical systems using AADL,
Proceedings of the 15th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS ’10), IEEE, pp. 331–336. DOI: 10.1109/iceccs.2010.56

[S154] Farcas, C., Farcas, E., Krueger, I. H. and Menarini, M.: 2010, Address-
ing the Integration Challenge for Avionics and Automotive Systems—From
Components to Rich Services, Proceedings of the IEEE 98(4), 562–583. DOI:
10.1109/jproc.2009.2039630

[S155] Feiler, P. H.: 2010, Model-based validation of safety-critical embedded sys-
tems, Proceedings of the 2010 IEEE Aerospace Conference (AeroConf ’10), IEEE,

224 Appendix A

pp. 1–10. DOI: 10.1109/aero.2010.5446809

[S156] Förster, M. and Schneider, D.: 2010, Flexible, any-time fault tree analysis
with component logic models, Proceedings of the IEEE 21st International Sym-
posium on Software Reliability Engineering (ISSRE ’10), IEEE, pp. 51–60. DOI:
10.1109/issre.2010.47

[S157] Grießnig, G., Mader, R., Steger, C. and Weiß, R.: 2010, Design and imple-
mentation of safety functions on a novel CPLD-based fail-safe system archi-
tecture, Proceedings of the 17th IEEE International Conference and Workshops on
Engineering of Computer Based Systems (ECBS ’10), IEEE, pp. 206–212. DOI:
10.1109/ecbs.2010.29

[S158] Insaurralde, C. C., Seminario, M. A., Jiménez, J. F. and Giron-Sierra, J. M.:
2010, Model-based development framework for distributed embedded con-
trol of aircraft fuel systems, Proceedings of the IEEE/AIAA 29th Digital Avionics
Systems Conference (DASC ’10), IEEE, pp. 6–E. DOI: 10.1109/dasc.2010.5655449

[S159] Lafaye, M., Faura, D., Gatti, M. and Pautet, L.: 2010, A new modeling ap-
proach for ima platform early validation, Proceedings of the Seventh Interna-
tional Workshop on Model-Based Methodologies for Pervasive and Embedded Soft-
ware (MOMPES ’10), ACM, pp. 17–20. DOI: 10.1145/1865875.1865878

[S160] Lakhani, F. and Pont, M. J.: 2010, Using design patterns to support migra-
tion between different system architectures, Proceedings of the Fifth International
Conference on System of Systems Engineering (SoSE ’10), IEEE, pp. 1–6. DOI:
10.1109/sysose.2010.5544004

[S161] Lefftz, V., Bertrand, J., Casse, H., Clienti, C., Coussy, P., Maillet-Contoz,
L., Mercier, P., Moreau, P., Pierre, L. and Vaumorin, E.: 2010, A Design
Flow for Critical Embedded Systems, Proceedings of the Fifth International
Symposium on Industrial Embedded Systems (SIES ’10), pp. 229–233. DOI:
10.1109/sies.2010.5551393

[S162] Lesens, D.: 2010, Using static analysis in space: why doing so?, Static Analy-
sis, Springer, pp. 51–70. DOI: 10.1007/978-3-642-15769-1 5

[S163] Li, C., Zhou, X. and Dong, Y.: 2010, Formal behavior specification for
AADL, Proceedings of the Second International Conference on Industrial and In-
formation Systems (IIS ’10), Vol. 2, IEEE, pp. 110–113. DOI: 10.1109/INDU-
SIS.2010.5565667

[S164] Li, H. and Baruah, S.: 2010a, An algorithm for scheduling certifiable mixed-
criticality sporadic task systems, Proceedings of the IEEE 31st Real-Time Systems

A.1. Supplementary Material to Chapter 3 225

Symposium (RTSS ’10), IEEE, pp. 183–192. DOI: 10.1109/rtss.2010.18

[S165] Li, H. and Baruah, S.: 2010b, Load-based schedulability analysis of cer-
tifiable mixed-criticality systems, Proceedings of the 10th ACM International
Conference on Embedded Software (EMSOFT ’10), ACM, pp. 99–108. DOI:
10.1145/1879021.1879035

[S166] Meseguer, J. and Ölveczky, P. C.: 2010, Formalization and correctness of the
PALS architectural pattern for distributed real-time systems, Formal Methods
and Software Engineering, Springer, pp. 303–320. DOI: 10.1007/978-3-642-16901-
4 21

[S167] Mitzlaff, M., Lang, M., Kapitza, R. and Schröder-Preikschat, W.: 2010, A
membership service for a distributed, embedded system based on a time-
triggered flexray network, Proceedings of the Ninth European Dependable Com-
puting Conference (EDCC ’10), IEEE, pp. 155–162. DOI: 10.1109/edcc.2010.27

[S168] Perez, J., Azkarate-Askasua, M. and Perez, A.: 2010, Codesign and simulated
fault injection of safety-critical embedded systems using SystemC, Proceed-
ings of the Ninth European Dependable Computing Conference (EDCC ’10), IEEE,
pp. 221–229. DOI: 10.1109/edcc.2010.34

[S169] Schlickling, M. and Pister, M.: 2010, Semi-automatic derivation of tim-
ing models for WCET analysis, ACM SIGPLAN Notices 45(4), 67–76. DOI:
10.1145/1755951.1755899

[S170] Stallbaum, H. and Rzepka, M.: 2010, Toward DO-178B-compliant Test Mod-
els, Proceedings of the Seventh Workshop on Model-Driven Engineering, Verification,
and Validation (MoDeVVa ’10), IEEE, pp. 25–30. DOI: 10.1109/modevva.2010.21

[S171] Steindl, M., Mottok, J. and Meier, H.: 2010, SES-based Framework for Fault-
tolerant Systems, Proceedings of the Eight Workshop on Intelligent Solutions in Em-
bedded Systems (WISES ’10), IEEE, pp. 12–16. DOI: 10.1109/wises.2010.5548427

[S172] Suri, N., Jhumka, A., Hiller, M., Pataricza, A., Islam, S. and Sârbu, C.:
2010, A software integration approach for designing and assessing dependable
embedded systems, Journal of Systems and Software 83(10), 1780–1800. DOI:
10.1016/j.jss.2010.04.063

[S173] Sveda, M.: 2010, Fault Management Driven Design with Safety and Security
Requirements, Proceedings of the 17th IEEE International Conference and Work-
shops on Engineering of Computer-Based Systems (ECBS ’10), IEEE, pp. 113–120.
DOI: 10.1109/ecbs.2010.19

226 Appendix A

[S174] Trienekens, J. J., Kusters, R. J. and Brussel, D. C.: 2010, Quality specification
and metrication, results from a case-study in a mission-critical software do-
main, Software Quality Journal 18(4), 469–490. DOI: 10.1007/s11219-010-9101-z

[S175] Trindade, O., de Oliveira Neris, L., Barbosa, L. C. P. and Branco, K. R. L. J. C.:
2010, A layered approach to design autopilots, Proceedings of the 2010 IEEE
International Conference on Industrial Technology (ICIT ’10), IEEE, pp. 1415–1420.
DOI: 10.1109/ICIT.2010.5472499

[S176] Varona-Gomez, R. and Villar, E.: 2010, Aads+: Aadl simulation including the
behavioral annex, Proceedings of the 15th IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS ’10), IEEE, pp. 379–384. DOI:
10.1109/iceccs.2010.8

[S177] Wasicek, A., El-Salloum, C. and Kopetz, H.: 2010, A system-on-a-chip plat-
form for mixed-criticality applications, Proceedings of the 13th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC ’10), IEEE, pp. 210–216. DOI: 10.1109/isorc.2010.43

[S178] Yates, A. M., Torres-Pomales, W., Malekpour, M. R., González, O. R. and
Gray, W. S.: 2010, High-Intensity Radiated Field fault-injection experiment
for a fault-tolerant distributed communication system, Proceedings of the 29th
IEEE/AIAA Digital Avionics Systems Conference (DASC ’10), IEEE, pp. 4–E. DOI:
10.1109/dasc.2010.5655331

[S179] Yun, L. and Fulei, G.: 2010, Tool of scheduling simulation based on AADL
models, Proceedings of the Second World Congress on Software Engineering (WCSE
’10), Vol. 1, IEEE, pp. 45–48. DOI: 10.1109/WCSE.2010.42

[S180] Ölveczky, P. C., Boronat, A. and Meseguer, J.: 2010, Formal semantics and
analysis of behavioral AADL models in Real-Time Maude, Formal Techniques
for Distributed Systems, Springer, pp. 47–62. DOI: 10.1007/978-3-642-13464-7 5

[S181] Abella, J., Cazorla, F. J., Quiñones, E., Grasset, A., Yehia, S., Bonnot, P.,
Gizopoulos, D., Mariani, R. and Bernat, G.: 2011, Towards improved sur-
vivability in safety-critical systems, Proceedings of the IEEE 17th International
On-Line Testing Symposium (IOLTS ’11), IEEE, pp. 240–245. DOI: 10.1109/i-
olts.2011.5994536

[S182] Assayad, I., Girault, A. and Kalla, H.: 2011, Tradeoff exploration between
reliability, power consumption, and execution time, Computer Safety, Reliability,
and Security, Springer, pp. 437–451. DOI: 10.1007/978-3-642-24270-0 32

A.1. Supplementary Material to Chapter 3 227

[S183] Belwal, C. and Cheng, A. M.: 2011, Feasibility interval for the transactional
event handlers of P-FRP, Proceedings of the IEEE 10th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom ’11),
IEEE, pp. 966–973. DOI: 10.1109/trustcom.2011.133

[S184] Björnander, S., Seceleanu, C., Lundqvist, K. and Pettersson, P.: 2011, Abv-a
verifier for the architecture analysis and design language (aadl), Proceedings of
the 16th IEEE International Conference on Engineering of Complex Computer Sys-
tems (ICECCS ’11), IEEE, pp. 355–360. DOI: 10.1109/iceccs.2011.43

[S185] Blanquart, J.-P., Armengaud, E., Baufreton, P., Bourrouilh, Q., Griessnig, G.,
Krammer, M., Laurent, O., Machrouh, J., Peikenkamp, T., Schindler, C. et al.:
2011, Towards cross-domains model-based safety process, methods and tools
for critical embedded systems: the CESAR approach, Computer Safety, Reliabil-
ity, and Security, Springer, pp. 57–70. DOI: 10.1007/978-3-642-24270-0 5

[S186] Bonifacio, G., Marmo, P., Orazzo, A., Petrone, I., Velardi, L. and Venticinque,
A.: 2011, Improvement of processes and methods in testing activities for
safety-critical embedded systems, Computer Safety, Reliability, and Security,
Springer, pp. 369–382. DOI: 10.1007/978-3-642-24270-0 27

[S187] Braga, R. T. V., Branco, K. R., Junior, O. T. and de Oliveira Neris, L.: 2011,
Safe-crites: Developing safety-critical embedded systems supported by reuse
techniques, Proceedings of the IEEE International Conference on Information Reuse
and Integration (IRI ’11), IEEE, pp. 206–211. DOI: 10.1109/iri.2011.6009547

[S188] Cardoso, J. M., Diniz, P. C., Petrov, Z., Bertels, K., Hübner, M., van Someren,
H., Gonçalves, F., de Coutinho, J. G. F., Constantinides, G. A., Olivier, B. et al.:
2011, REFLECT: Rendering FPGAs to multi-core embedded computing, Recon-
figurable Computing, Springer, pp. 261–289. DOI: 10.1007/978-1-4614-0061-5 11

[S189] Cuenca-Asensi, S., Martı́nez-Álvarez, A., Restrepo-Calle, F., Palomo, F. R.,
Guzmán-Miranda, H. and Aguirre, M. A.: 2011, Soft core based embed-
ded systems in critical aerospace applications, Journal of Systems Architecture
57(10), 886–895. DOI: 10.1016/j.sysarc.2011.04.006

[S190] Daramola, O., Stålhane, T., Sindre, G. and Omoronyia, I.: 2011, Enabling
hazard identification from requirements and reuse-oriented HAZOP analy-
sis, Proceedings of the Fourth International Workshop on Managing Requirements
Knowledge (MARK ’11), IEEE, pp. 3–11. DOI: 10.1109/mark.2011.6046555

[S191] Dias, D. M. and Iyoda, J. M.: 2011, Behavioural preservation in fault tolerant
patterns, Formal Methods, Foundations and Applications, Springer, pp. 156–171.

228 Appendix A

DOI: 10.1007/978-3-642-25032-3 11

[S192] El Ariss, O., Xu, D. and Wong, W. E.: 2011, Integrating safety analysis
with functional modeling, IEEE Transactions on Systems, Man and Cybernetics
41(4), 610–624. DOI: 10.1109/tsmca.2010.2093889

[S193] Forget, J., Grolleau, E., Pagetti, C. and Richard, P.: 2011, Dynamic prior-
ity scheduling of periodic tasks with extended precedences, Proceedings of the
IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA ’11),
IEEE, pp. 1–8. DOI: 10.1109/etfa.2011.6059015

[S194] Gray, I., Matragkas, N., Audsley, N. C., Indrusiak, L. S., Kolovos, D. and
Paige, R.: 2011, Model-based hardware generation and programming-the
MADES approach, Proceedings of the 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops
(ISORCW ’11), IEEE, pp. 88–96. DOI: 10.1109/isorcw.2011.20

[S195] Griessnig, G., Kundner, I., Armengaud, E., Torchiaro, S. and Karlsson,
D.: 2011, Improving automotive embedded systems engineering at Euro-
pean level, e & i Elektrotechnik und Informationstechnik 128(6), 209–214. DOI:
10.1007/s00502-011-0003-y

[S196] Hilbrich, R. and Goltz, H.-J.: 2011, Model-based generation of static sched-
ules for safety critical multi-core systems in the avionics domain, Proceedings
of the Fourth International Workshop on Multicore Software Engineering (IWMSE
’11), ACM, pp. 9–16. DOI: 10.1145/1984693.1984695

[S197] Hong, D., Gu, T. and Baik, J.: 2011, A uml model based white box reliability
prediction to identify unreliable components, Proceedings of the Fifth Interna-
tional Conference on Secure Software Integration & Reliability Improvement Com-
panion (SSIRI-C ’11), IEEE, pp. 152–159. DOI: 10.1109/ssiri-c.2011.30

[S198] Hooman, J., Huis, R., Schuts, M. et al.: 2011, Experiences with a compo-
sitional model checker in the healthcare domain, Foundations of Health Infor-
matics Engineering and Systems, Springer, pp. 93–110. DOI: 10.1007/978-3-642-
32355-3 6

[S199] Höfig, K. and Domis, D.: 2011, Failure-Dependent execution time analysis,
Proceedings of the joint ACM SIGSOFT Conference on Quality of software architec-
tures and Architecting Critical Systems (QoSA-ISARCS ’11), ACM, pp. 115–122.
DOI: 10.1145/2000259.2000279

[S200] Julien Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.
and Rival, X.: 2011, Static analysis by abstract interpretation of embedded

A.1. Supplementary Material to Chapter 3 229

critical software, ACM SIGSOFT Software Engineering Notes 36(1), 1–8. DOI:
10.1145/1921532.1921553

[S201] Kumar, S. P., Ramaiah, P. S. and Khanaa, V.: 2011, Architectural patterns
to design software safety based safety-critical systems, Proceedings of the 2011
International Conference on Communication, Computing & Security (ICCCS ’11),
ACM, pp. 620–623. DOI: 10.1145/1947940.1948069

[S202] Lamy, F. and Schoofs, T.: 2011, Industry use cases for the Java environment
for parallel realtime development, Proceedings of the Ninth International Work-
shop on Java Technologies for Real-Time and Embedded Systems (JTRES ’11), ACM,
pp. 106–115. DOI: 10.1145/2043910.2043928

[S203] Leitner, A., Mader, R., Kreiner, C., Steger, C. and Weiß, R.: 2011, A devel-
opment methodology for variant-rich automotive software architectures, e &
i Elektrotechnik und Informationstechnik 128(6), 222–227. DOI: 10.1007/s00502-
011-0001-0

[S204] Lévêque, T. and Sentilles, S.: 2011, Refining extra-functional property val-
ues in hierarchical component models, Proceedings of the 14th International
ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE
’11), ACM, pp. 83–92. DOI: 10.1145/2000229.2000242

[S205] Mader, R., Grießnig, G., Leitner, A., Kreiner, C., Bourrouilh, Q., Armengaud,
E., Steger, C. and Weiss, R.: 2011, A Computer-Aided approach to preliminary
hazard analysis for automotive embedded systems, Proceedings of the 18th IEEE
International Conference and Workshops on Engineering of Computer Based Systems
(ECBS ’11), IEEE, pp. 169–178. DOI: 10.1109/ecbs.2011.43

[S206] Pagetti, C., Forget, J., Boniol, F., Cordovilla, M. and Lesens, D.: 2011, Multi-
task implementation of multi-periodic synchronous programs, Discrete Event
Dynamic Systems 21(3), 307–338. DOI: 10.1007/s10626-011-0107-x

[S207] Pedroza, G., Apvrille, L. and Knorreck, D.: 2011, Avatar: A sysml environ-
ment for the formal verification of safety and security properties, Proceedings
of the 11th Annual International Conference on New Technologies of Distributed Sys-
tems (NOTERE ’11), IEEE, pp. 1–10. DOI: 10.1109/notere.2011.5957992

[S208] Rodrigues, D., de Melo Pires, R., Estrella, J. C., Marconato, E. A., Trindade,
O. and Branco, K. R. L. J. C.: 2011, Using SOA in Critical-Embedded Systems,
Proceedings of the joint 2011 International Conference on Internet of Things and
Fourth International Conference on Cyber, Physical and Social Computing (iThings-
CPSCom ’11), IEEE, pp. 733–738. DOI: 10.1109/ithings/cpscom.2011.127

230 Appendix A

[S209] Rodrigues, D., de Melo Pires, R., Estrella, J. C., Vieira, M., Corrêa, M., Júnior,
J. B. C., Branco, K. R. L. J. C. and Júnior, O. T.: 2011, Application of SOA in
safety-critical embedded systems, Convergence and Hybrid Information Technol-
ogy, Springer, pp. 345–354. DOI: 10.1007/978-3-642-24106-2 45

[S210] Sabetzadeh, M., Nejati, S., Briand, L. and Mills, A.-H. E.: 2011, Using SysML
for modeling of safety-critical software-hardware interfaces: Guidelines and
industry experience, Proceedings of the IEEE 13th International Symposium on
High-Assurance Systems Engineering (HASE ’11), IEEE, pp. 193–201. DOI:
10.1109/hase.2011.23

[S211] Saddem, R., Toguyeni, A. and Tagina, M.: 2011, Diagnosis of critical em-
bedded systems: application to the control card of a railway vehicle braking
systems, Proceedings of the 2011 IEEE Conference on Automation Science and En-
gineering (CASE ’11), IEEE, pp. 163–168. DOI: 10.1109/case.2011.6042512

[S212] Sojer, D.: 2011, Synthesis of Fault Detection Mechanisms TRACK: Real-Time,
Embedded and Physical Systems, Proceedings of the IEEE 35th Annual Computer
Software and Applications Conference (COMPSAC ’11), IEEE, pp. 700–703. DOI:
10.1109/compsac.2011.108

[S213] Varet, A. and Larrieu, N.: 2011, New methodology to develop certified safe
and secure aeronautical software—An embedded router case study, Proceed-
ings of the IEEE/AIAA 30th Digital Avionics Systems Conference (DASC ’11), IEEE,
pp. 7C6–1. DOI: 10.1109/dasc.2011.6096126

[S214] Wang, Y., Ma, D., Zhao, Y., Zou, L. and Zhao, X.: 2011, An aadl-based mod-
eling method for arinc653-based avionics software, Proceedings of the IEEE 35th
Annual Computer Software and Applications Conference (COMPSAC ’11), IEEE,
pp. 224–229. DOI: 10.1109/compsac.2011.36

[S215] Wasicek, A., El-Salloum, C. and Kopetz, H.: 2011, Authentication in time-
triggered systems using time-delayed release of keys, Proceedings of the 14th
IEEE International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC ’11), IEEE, pp. 31–39. DOI: 10.1109/isorc.2011.14

[S216] Yu, H., Ma, Y., Glouche, Y., Talpin, J.-P., Besnard, L., Gautier, T., Guer-
nic, P. L., Toom, A. and Laurent, O.: 2011, System-level co-simulation of
integrated avionics using Polychrony, Proceedings of the 26th ACM Interna-
tional Symposium on Applied Computing (SAC ’11’), ACM, pp. 354–359. DOI:
10.1145/1982185.1982263

[S217] Zhang, Y., Li, G. and Zhang, J.: 2011, QP based framework for develop-

A.1. Supplementary Material to Chapter 3 231

ment and formal verification of flight control software of UAV, Artificial In-
telligence and Computational Intelligence, Springer, pp. 1–8. DOI: 10.1007/978-3-
642-23881-9 1

[S218] Ziemke, C., Kuwahara, T. and Kossev, I.: 2011, An integrated devel-
opment framework for rapid development of platform-independent and
reusable satellite on-board software, Acta Astronautica 69(7), 583–594. DOI:
10.1016/j.actaastro.2011.04.011

[S219] Acharyulu, P. S. and Seetharamaiah, P.: 2012, A methodological framework
for software safety in safety critical computer systems, Journal of Computer Sci-
ence 8(9), 1564. DOI: 10.3844/jcssp.2012.1564.1575

[S220] Agrou, H., Sainrat, P., Gatti, M. and Toillon, P.: 2012, Mastering the behav-
ior of multi-core systems to match avionics requirements, Proceedings of the
IEEE/AIAA 31st Digital Avionics Systems Conference (DASC ’12), IEEE, pp. 6E5–
1. DOI: 10.1109/dasc.2012.6382403

[S221] Aliouat, Z. and Aliouat, M.: 2012, Verification of cooperative transient fault
diagnosis and recovery in critical embedded systems, The International Arab
Journal of Information Technology 9(4), 373–381.

[S222] Andrade, H. A., Ghosal, A., Ravindran, K. and Evans, B. L.: 2012, A
methodology for the design and deployment of reliable systems on hetero-
geneous platforms, Proceedings of the 2012 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig ’12), IEEE, pp. 1–7. DOI: 10.1109/recon-
fig.2012.6416722

[S223] Asplund, F., Biehl, M. and Loiret, F.: 2012, Towards the automated qualifi-
cation of tool chain design, Computer Safety, Reliability, and Security, Springer,
pp. 392–399. DOI: 10.1007/978-3-642-33675-1 36

[S224] Barnat, J., Brim, L., Beran, J., Kratochvı́la, T. and Oliveira, Í. R.: 2012, Execut-
ing model checking counterexamples in Simulink, Proceedings of the Sixth In-
ternational Symposium on Theoretical Aspects of Software Engineering (TASE ’12),
IEEE, pp. 245–248. DOI: 10.1109/TASE.2012.42

[S225] Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A.,
Megow, N. and Stougie, L.: 2012, Scheduling real-time mixed-criticality jobs,
IEEE Transactions on Computers 61(8), 1140–1152. DOI: 10.1109/tc.2011.142

[S226] Braga, R. T. V., Junior, O. T., Branco, K. R. C., Neris, L. D. O. and Lee, J.: 2012,
Adapting a software product line engineering process for certifying safety

232 Appendix A

critical embedded systems, Computer Safety, Reliability, and Security, Springer,
pp. 352–363. DOI: 10.1007/978-3-642-33678-2 30

[S227] Braga, R. T., Trindade Jr, O., Branco, K. R. and Lee, J.: 2012, Incorporating
certification in feature modelling of an unmanned aerial vehicle product line,
Proceedings of the 16th International Software Product Line Conference (SPLC ’12),
ACM, pp. 249–258. DOI: 10.1145/2362536.2362570

[S228] Cadoret, F., Borde, E., Gardoll, S. and Pautet, L.: 2012, Design patterns for
rule-based refinement of safety critical embedded systems models, Proceedings
of the 17th International Conference on Engineering of Complex Computer Systems
(ICECCS ’12), IEEE, pp. 67–76.

[S229] Casola, V., Esposito, M., Mazzocca, N. and Flammini, F.: 2012, Freight train
monitoring: A case-study for the pSHIELD project, Innovative Mobile and Inter-
net Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference
on, IEEE, pp. 597–602. DOI: 10.1109/imis.2012.51

[S230] Costa, I. C. and de Oliveira, J. M. P.: 2012, Modeling Unmanned Aircraft
System conflicts resolution based on a real-time services approach, Proceed-
ings of the IEEE/AIAA 31st Digital Avionics Systems Conference (DASC ’12), IEEE,
pp. 8A5–1. DOI: 10.1109/dasc.2012.6383115

[S231] Dalpez, S., Vaccari, A., Passerone, R. and Penasa, A.: 2012, Design of an inno-
vative proximity detection embedded-system for safety application in indus-
trial machinery, Proceedings of the IEEE 17th Conference on Emerging Technologies
& Factory Automation (ETFA ’12), IEEE, pp. 1–8. DOI: 10.1109/etfa.2012.6489582

[S232] Diemer, J., Thiele, D. and Ernst, R.: 2012, Formal worst-case timing analysis
of Ethernet topologies with strict-priority and AVB switching, Proceedings of
the 7th IEEE International Symposium on Industrial Embedded Systems (SIES ’12),
IEEE, pp. 1–10. DOI: 10.1109/sies.2012.6356564

[S233] Ebnenasir, A., Hajisheykhi, R. and Kulkarni, S. S.: 2012, Facilitating the de-
sign of fault tolerance in transaction level SystemC programs, Distributed Com-
puting and Networking, Springer, pp. 91–105. DOI: 10.1016/j.tcs.2012.11.010

[S234] Edmunds, A., Rezazadeh, A. and Butler, M.: 2012, Formal modelling for Ada
implementations: Tasking event-B, Proceedings of the 17th International Confer-
ence on Reliable Software Technologies (Ada-Europe ’12), Springer, pp. 119–132.
DOI: 10.1007/978-3-642-30598-6 9

[S235] Fernandes, L. C., Souza, J. R., Shinzato, P. Y., Pessin, G., Mendes, C. C.,
Osório, F. S. and Wolf, D. F.: 2012, Intelligent robotic car for autonomous nav-

A.1. Supplementary Material to Chapter 3 233

igation: Platform and system architecture, Proceedings of the Second Brazilian
Conference on Critical Embedded Systems (CBSEC ’12), IEEE, pp. 12–17. DOI:
10.1109/cbsec.2012.26

[S236] Gatti, S., Aimé, F., Treuchot, S. and Jourdan, J.: 2012, Incremental functional
certification for avionic functions reuse & evolution, Proceedings of the IEEE/A-
IAA 31st Digital Avionics Systems Conference (DASC ’12), IEEE, pp. 7A5–1. DOI:
10.1109/dasc.2012.6382409

[S237] Gezgin, T., Henkler, S., Rettberg, A. and Stierand, I.: 2012, Abstraction
techniques for compositional state-based scheduling analysis, Proceedings of
the Second Brazilian Symposium on Computing System Engineering (SBESC ’12),
IEEE, pp. 166–171. DOI: 10.1109/sbesc.2012.40

[S238] Hazra, A., Ghosh, P. and Dasgupta, P.: 2012, Reliability annotations to for-
mal specifications of context-sensitive safety properties in embedded systems,
Proceedings of the Forum on Specification and Design Languages (FDL ’12), IEEE,
pp. 36–43.

[S239] Jo, H.-C., Han, S., Lee, S.-H. and Jin, H.-W.: 2012, Implementing control and
mission software of UAV by exploiting open source software-based arinc 653,
Proceedings of the 31st IEEE/AIAA Digital Avionics Systems Conference (DASC
’12), IEEE, pp. 8B2–1. DOI: 10.1109/DASC.2012.6382436

[S240] Koskinen, J., Vuori, M. and Katara, M.: 2012, Safety Process Patterns: De-
mystifying Safety Standards, Proceedings of the IEEE International Conference on
Software Science, Technology and Engineering (SWSTE ’12), IEEE, pp. 63–71. DOI:
10.1109/swste.2012.10

[S241] Lafaye, M., Pautet, L., Borde, E., Gatti, M. and Faura, D.: 2012, Model driven
resource usage simulation for critical embedded systems, Proceedings of the
Conference on Design, Automation and Test in Europe (DATE ’12), EDA Consor-
tium, pp. 312–315. DOI: 10.1109/date.2012.6176486

[S242] Lee, S.-H., Han, S. and Jin, H.-W.: 2012, A Configurable, Extensible Imple-
mentation of Inter-Partition Communication for Integrated Modular Avion-
ics, Proceedings of the IEEE 18th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA ’12), IEEE, pp. 453–458. DOI:
10.1109/rtcsa.2012.44

[S243] Lefftz, V. and Lachaize, J.: 2012, SoCKET: A HW/SW Co-Design Flow: Pre-
sentation & feedbacks from aeronautic and space application domains, Pro-
ceedings of the Eurospace Data Systems in Aerospace Conference (DASIA ’12).

234 Appendix A

[S244] Mader, R., Armengaud, E., Leitner, A. and Steger, C.: 2012, Automatic
and optimal allocation of safety integrity levels, Proceedings of the Annual
Reliability and Maintainability Symposium (RAMS ’12), IEEE, pp. 1–6. DOI:
10.1109/rams.2012.6175431

[S245] Mader, R., Grießnig, G., Armengaud, E., Leitner, A., Kreiner, C., Bourrouilh,
Q., Steger, C. and Weiss, R.: 2012, A bridge from system to software devel-
opment for safety-critical automotive embedded systems, Proceedings of the
38th EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA ’12), IEEE, pp. 75–79. DOI: 10.1109/seaa.2012.61

[S246] Marrone, S., Nardone, R., Orazzo, A., Petrone, I. and Velardi, L.: 2012, Im-
proving verification process in driverless metro systems: the MBAT project,
Proceedings of the Fifth International Symposium On Leveraging Applications of For-
mal Methods, Verification and Validation (ISoLA ’12), Springer, pp. 231–245. DOI:
10.1007/978-3-642-34032-1 23

[S247] Méry, D. and Singh, N. K.: 2012, Critical systems development method-
ology using formal techniques, Proceedings of the Third Symposium on In-
formation and Communication Technology (SoICT ’12), ACM, pp. 3–12. DOI:
10.1145/2350716.2350720

[S248] Nejati, S., Di Alesio, S., Sabetzadeh, M. and Briand, L.: 2012, Modeling and
analysis of CPU usage in safety-critical embedded systems to support stress
testing, Proceedings of the 15th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS ’12), Springer. DOI: 10.1007/978-3-
642-33666-9 48

[S249] Novak, T. and Stoegerer, C.: 2012, Software architecture of a safety-related
actuator in traffic management systems, Computer Safety, Reliability, and Secu-
rity, Springer, pp. 268–278. DOI: 10.1007/978-3-642-33678-2 23

[S250] Perez, J., Nicolas, C. F., Obermaisser, R. and El Salloum, C.: 2012, Model-
ing Time-Triggered Architecture Based Real-Time Systems Using SystemC,
System Specification and Design Languages, Springer, pp. 123–141. DOI:
10.1007/978-1-4614-1427-8 8

[S251] Saadatmand, M. and Leveque, T.: 2012, Modeling security aspects in dis-
tributed real-time component-based embedded systems, Proceedings of the
Ninth International Conference on Information Technology: New Generations (ITNG
’12), IEEE, pp. 437–444. DOI: 10.1109/itng.2012.103

[S252] Skopik, F., Treytl, A., Geven, A., Hirschler, B., Bleier, T., Eckel, A., El-Salloum,

A.1. Supplementary Material to Chapter 3 235

C. and Wasicek, A.: 2012, Towards secure time-triggered systems, Computer
Safety, Reliability, and Security, Springer, pp. 365–372. DOI: 10.1007/978-3-642-
33675-1 33

[S253] Soderberg, A. and Vedder, B.: 2012, Composable safety-critical systems
based on pre-certified software components, Proceedings of the IEEE 23rd Inter-
national Symposium on Software Reliability Engineering Workshops (ISSREW ’12),
IEEE, pp. 343–348. DOI: 10.1109/issrew.2012.83

[S254] Xu, T., Liu, Z., Tang, T., Zheng, W. and Zhao, L.: 2012, Component based
design of fault tolerant devices in cyber physical system, Proceedings of the
15th IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW ’12), IEEE, pp. 37–42. DOI:
10.1109/isorcw.2012.17

[S255] Assayad, I., Girault, A. and Kalla, H.: 2013, Tradeoff exploration between
reliability, power consumption, and execution time for embedded systems, In-
ternational Journal on Software Tools for Technology Transfer 15(3), 229–245. DOI:
10.1007/s10009-012-0263-9

[S256] Ben Atitallah, R., Senn, E., Chillet, D., Lanoe, M. and Blouin, D.:
2013, An efficient framework for power-aware design of heterogeneous
MPSoC, IEEE Transactions on Industrial Informatics 9(1), 487–501. DOI:
10.1109/tii.2012.2198657

[S257] Bolchini, C. and Miele, A.: 2013, Reliability-driven system-level synthe-
sis for mixed-critical embedded systems, IEEE Transactions on Computers
62(12), 2489–2502. DOI: 10.1109/tc.2012.226

[S258] Boniol, F., Lauer, M., Pagetti, C. and Ermont, J.: 2013, Freshness and Re-
activity Analysis in Globally Asynchronous Locally Time-Triggered Systems,
NASA Formal Methods, Springer, pp. 93–107. DOI: 10.1007/978-3-642-38088-4 7

[S259] Castellanos, C., Vergnaud, T., Borde, E., Derive, T. and Pautet, L.: 2013, For-
malization of design patterns for security anddependability, Proceedings of the
4th International ACM SIGSOFT Symposium on Architecting Critical Systems (IS-
ARCS ’13), ACM, pp. 17–26. DOI: 10.1145/2465470.2465476

[S260] Hu, W., Oberg, J., Barrientos, J., Mu, D. and Kastner, R.: 2013, Expanding
Gate Level Information Flow Tracking for Multilevel Security, IEEE Embedded
Systems Letters 5(2), 25–28. DOI: 10.1109/LES.2013.2261572

[S261] Jiang, K., Eles, P. and Peng, Z.: 2013, Optimization of secure embedded
systems with dynamic task sets, Proceedings of the 2013 Design, Automation &

236 Appendix A

Test in Europe Conference & Exhibition (DATE ’13), IEEE, pp. 1765–1770. DOI:
10.7873/date.2013.355

[S262] Martin, L. K., Schatalov, M., Hagner, M., Goltz, U. and Maibaum, O.: 2013,
A methodology for model-based development and automated verification of
software for aerospace systems, Proceedings of the 2013 IEEE Aerospace Confer-
ence (AeroConf ’13), IEEE, pp. 1–19. DOI: 10.1109/aero.2013.6496950

[S263] Min, H.-S., Chung, S.-M. and Choi, J.-Y.: 2013, Deriving System Behavior
from UML State Machine Diagram: Applied to Missile Project., Journal of Uni-
versal Computer Science 19(1), 53–77. DOI: 10.3217/jucs-019-01-0053

[S264] Notander, J. P., Runeson, P. and Höst, M.: 2013, A model-based framework
for flexible safety-critical software development: a design study, Proceedings
of the 28th Annual ACM Symposium on Applied Computing (SAC ’13), ACM,
pp. 1137–1144. DOI: 10.1145/2480362.2480575

[S265] Osaiweran, A., Schuts, M., Hooman, J. and Wesselius, J.: 2013, In-
corporating formal techniques into industrial practice: an experience re-
port, Electronic Notes in Theoretical Computer Science 295, 49–63. DOI:
10.1016/j.entcs.2013.04.005

[S266] Rossignol, A.: 2013, The Reference Technology Platform, Springer, pp. 213–236.
DOI: 10.1007/978-3-7091-1387-5 6

[S267] Tamas-Selicean, D., Keymeulen, D., Berisford, D., Carlson, R., Hand, K., Pop,
P., Wadsworth, W. and Levy, R.: 2013, Fourier transform spectrometer con-
troller for partitioned architectures, Proceedings of the 2013 IEEE Aerospace Con-
ference (AeroConf ’13), IEEE, pp. 1–11. DOI: 10.1109/aero.2013.6496969

[S268] Wang, Y. and Ma, D.: 2013, An automatic development process for inte-
grated modular avionics software, Journal of Networks 8(5), 1088–1095. DOI:
10.4304/jnw.8.5.1088-1095

[S269] Yoon, M.-K., Mohan, S., Choi, J., Kim, J.-E. and Sha, L.: 2013, SecureCore:
A multicore-based intrusion detection architecture for real-time embedded
systems, Proceedings of the IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS ’13), IEEE, pp. 21–32. DOI: 10.1109/R-
TAS.2013.6531076

Appendix B

B.1 Supplementary Tables to Chapter 4

Table B.2: Top three most recurrent violations per class type

QA Class Violation Rank FrequencyType

Se
cu

ri
ty

SPP
Exposed inner representation by returning mutable object RC4 37%
Exposed inner representation by incorporating mutable object RC4 32%
Field should be final RC4 18%

CPP

Exposed inner representation by returning mutable object RC4 38%
Exposed inner representation by incorporating mutable object RC4 25%
Field should be final RC4 13%

NPP

Exposed inner representation by incorporating mutable object RC4 35%
Exposed inner representation by returning mutable object RC4 31%
Field should be final RC4 20%

C
or

re
ct

ne
ss

SPP
Unsafe call for multithreading RC2 14%
Inconsistent synchronization RC4 11%
Incorrect initialization of static lazy field RC4 10%

CPP

Inconsistent synchronization RC4 17%
Nullcheck on dereferenced variable RC3 9%
Possible null pointer dereference RC2 8%

NPP

Nullcheck on dereferenced variable RC3 10%
Possible null pointer dereference RC2 9%
Possible null pointer dereference on exception RC3 7%

Pe
rf

or
m

an
ce

SPP
Inner class should be static RC4 27%
Invoke of inefficient constructor RC4 14%
Class should be static RC4 7%

CPP

Invoke of inefficient constructor RC4 23%
Inner class should be static RC4 22%
Class should be static RC4 6%

NPP

Inner class should be static RC4 23%
Invoke of inefficient constructor RC4 12%
Inefficient conversion to array RC4 10%

FindBugs’ rank categories: RC1—Scariest; RC2—Scary; RC3—Troubling; RC4—Of Concern

238 Appendix B

Table B.3: Top three most recurrent violations per pattern category

QA Pattern Violation Rank FrequencyCategory

Se
cu

ri
ty

Creational
Field should be final RC4 41%
Exposed inner representation by returning mutable object RC4 22%
Exposed inner representation by incorporating mutable object RC4 16%

Behavioral

Exposed inner representation by returning mutable object RC4 36%
Exposed inner representation by incorporating mutable object RC4 29%
Field should be final RC4 19%

Structural

Exposed inner representation by incorporating mutable object RC4 57%
Field should be final RC4 24%
Exposed inner representation by returning mutable object RC4 14%

C
or

re
ct

ne
ss

Creational
Incorrect initialization of static lazy field RC4 37%
Unsafe call for multithreading RC2 26%
Nullcheck on dereferenced variable RC3 11%

Behavioral

Inconsistent synchronization RC4 16%
Possible null pointer dereference on exception RC3 13%
Unsafe call for multithreading RC2 10%

Structural

Possible null value is passed to a method that cannot handle it RC2 60%
Potential disposal of necessary return value RC1 20%
Field always return default value RC3 20%

Pe
rf

or
m

an
ce

Creational
Inner class should be static RC4 29%
Invoke of inefficient constructor RC4 13%
Slow parsing of primitive value RC4 9%

Behavioral

Inner class should be static RC4 24%
Invoke of inefficient constructor RC4 15%
Class should be static RC4 11%

Structural

Inefficient conversion to array RC4 56%
Inefficient search for first occurrence RC4 13%
Inefficient search for last occurrence RC4 13%

FindBugs’ rank categories: RC1—Scariest; RC2—Scary; RC3—Troubling; RC4—Of Concern

B.1. Supplementary Tables to Chapter 4 239

Table B.4: Top three most recurrent violations per pattern

QA Pattern Violation Rank Frequency

Se
cu

ri
ty

Factory Method
Exposed inner representation by returning mutable object RC4 36%
Exposed inner representation by incorporating mutable object RC4 34%
Field should be final RC4 27%

Prototype

Field should be final RC4 71%
Exposed inner representation by returning mutable object RC4 18%
Opportunity for SQL injection RC4 6%

Singleton

Field should be final RC4 37%
Exposed inner representation by returning mutable object RC4 11%
Field should be package protected RC4 11%

Adapter/Command

Exposed inner representation by returning mutable object RC4 48%
Exposed inner representation by incorporating mutable object RC4 42%
Field should be final RC4 5%

Decorator

Exposed inner representation by incorporating mutable object RC4 55%
Field should be final RC4 25%
Exposed inner representation by returning mutable object RC4 15%

State/Strategy

Exposed inner representation by returning mutable object RC4 44%
Exposed inner representation by incorporating mutable object RC4 35%
Field should be final RC4 8%

Template Method

Field should be final RC4 34%
Exposed inner representation by returning mutable object RC4 26%
Exposed inner representation by incorporating mutable object RC4 22%

C
or

re
ct

ne
ss

Factory Method
Unsafe call for multithreading RC2 70%
Nullcheck on dereferenced variable RC3 16%
Lack of appropriate hashing method RC1 5%

Prototype

Inconsistent synchronization RC4 17%
Possible null pointer dereference RC2 17%
Repetition of conditional tests RC3 17%

Singleton

Incorrect initialization of static lazy field RC4 71%
Nullcheck on dereferenced variable RC3 8%
Check of instance type is always false RC2 4%

Adapter/Command

Inconsistent synchronization RC4 14%
Null value is passed to a method that cannot handle it RC2 11%
Unsafe call for multithreading RC2 8%

Decorator

Possible null value is passed to a method that cannot handle it RC2 60%
Potential disposal of necessary return value RC1 20%
Field always return default value RC3 20%

State/Strategy

Inconsistent synchronization RC4 23%
Possible null pointer dereference on exception RC3 20%
Inconsistent synchronization RC4 8%

Template Method

Unsafe call for multithreading RC2 30%
Nullcheck on dereferenced variable RC3 10%
Possible null pointer dereference RC2 9%

Pe
rf

or
m

an
ce

Factory Method
Slow parsing of primitive value RC4 19%
Unnecessary value unboxing RC4 18%
Inefficient search for last occurrence RC4 12%

Prototype

Invoke of inefficient constructor RC4 26%
Inner class should be static RC4 13%
Inefficient concatenation of string in a loop RC4 12%

Singleton

Inner class should be static RC4 58%
Inefficient search for first occurrence RC4 7%
Invoke of inefficient constructor RC4 6%

Adapter/Command

Inner class should be static RC4 36%
Invoke of inefficient constructor RC4 14%
Inefficient search for first occurrence RC4 10%

Decorator

Inefficient conversion to array RC4 56%
Inefficient search for first occurrence RC4 13%
Inefficient search for last occurrence RC4 13%

State/Strategy

Inner class should be static RC4 31%
Class should be static RC4 9%
Invoke of inefficient constructor RC4 8%

Template Method

Inner class should be static RC4 18%
Class should be static RC4 15%
Invoke of inefficient constructor RC4 14%

FindBugs’ rank categories: RC1—Scariest; RC2—Scary; RC3—Troubling; RC4—Of Concern

240 Appendix B

Table B.5: Top three most recurrent violations per meta-role

QA Meta-role Violation Rank Frequency

Se
cu

ri
ty

Client
Exposed inner representation by returning mutable object RC4 41%
Exposed inner representation by incorporating mutable object RC4 34%
Field should be final RC4 13%

Superclass

Field should be final RC4 29%
Exposed inner representation by returning mutable object RC4 26%
Exposed inner representation by incorporating mutable object RC4 18%

Subclass

Exposed inner representation by returning mutable object RC4 35%
Exposed inner representation by incorporating mutable object RC4 25%
Field should be final RC4 24%

Container

Exposed inner representation by incorporating mutable object RC4 38%
Exposed inner representation by returning mutable object RC4 23%
Opportunity for SQL injection RC4 19%

Containee

Exposed inner representation by returning mutable object RC4 47%
Exposed inner representation by incorporating mutable object RC4 40%
Field should be final RC4 8%

Both

Exposed inner representation by incorporating mutable object RC4 63%
Exposed inner representation by returning mutable object RC4 25%
Field should be final RC4 13%

C
or

re
ct

ne
ss

Client
Inconsistent synchronization RC4 21%
Possible null pointer dereference on exception RC3 9%
Mistaken read of uninitialized field in constructor RC1 9%

Superclass

Inconsistent synchronization RC4 62%
Possible null pointer dereference RC2 10%
Possible race condition in servlet field RC4 8%

Subclass

Possible null pointer dereference on exception RC3 17%
Unsafe call for multithreading RC2 15%
Should notify all threads RC4 7%

Container

Unsafe call for multithreading RC2 19%
Suspicious use of inappropriate comparison RC2 17%
Potential dereferencing a field with null value RC3 14%

Containee

Inconsistent synchronization RC4 23%
Null value is passed to a method that cannot handle it RC2 19%
Inconsistent synchronization RC4 9%

Both

Unsafe call for multithreading RC2 72%
Nullcheck on dereferenced variable RC3 14%
Lack of appropriate hashing method RC1 6%

Pe
rf

or
m

an
ce

Client
Inner class should be static RC4 27%
Class should be static RC4 10%
Private method is never called RC4 10%

Superclass

Invoke of inefficient constructor RC4 35%
Inefficient conversion to array RC4 13%
Class should be static RC4 11%

Subclass

Inner class should be static RC4 21%
Invoke of inefficient constructor RC4 15%
Class should be static RC4 10%

Container

Inner class should be static RC4 36%
Invoke of inefficient constructor RC4 14%
Private method is never called RC4 12%

Containee

Inner class should be static RC4 30%
Inefficient search for first occurrence RC4 14%
Invoke of inefficient constructor RC4 13%

Both

Slow parsing of primitive value RC4 24%
Unnecessary value unboxing RC4 22%
Field should be static RC4 11%

FindBugs’ rank categories: RC1—Scariest; RC2—Scary; RC3—Troubling; RC4—Of Concern

B.1. Supplementary Tables to Chapter 4 241

Table B.6: Average number of violations per version per KLOC

RQ QA Group New Removed Total

RC1 RC2 RC3 RC4 RC1 RC2 RC3 RC4 RC1 RC2 RC3 RC4

Pa
tt

er
n

Pa
rt

ic
ip

at
io

n

Se
c.

SPP 0.00 1.36 0.07 29.25 0.00 0.62 0.00 14.01 0.00 37.32 2.74 651.34
CPP 0.00 0.00 0.00 12.66 0.00 0.00 0.00 6.82 0.00 0.00 0.00 276.64
NPP 0.00 1.54 0.13 77.95 0.00 1.10 0.00 34.29 0.00 20.07 1.70 1957.39

C
or

. SPP 1.18 4.04 2.81 1.52 0.77 1.18 0.84 0.98 20.38 90.31 63.44 39.70
CPP 0.63 1.14 1.46 0.91 0.53 0.56 0.83 0.56 8.24 19.38 26.74 29.70
NPP 2.37 11.02 9.63 1.31 1.77 5.86 4.53 1.04 45.12 167.35 173.37 31.71

Pe
r. SPP 0.00 0.00 0.00 16.52 0.00 0.00 0.00 7.13 0.00 0.00 0.00 334.03

CPP 0.00 0.00 0.00 9.74 0.00 0.00 0.00 5.37 0.00 0.00 0.00 221.75
NPP 0.00 0.00 0.00 48.91 0.00 0.00 0.00 28.87 0.00 0.00 0.00 1058.03

Pa
tt

er
n

C
at

eg
or

y Se
c.

Creational 0.00 0.00 0.00 5.37 0.00 0.00 0.00 2.06 0.00 0.00 0.00 111.50
Behavioral 0.00 1.36 0.07 16.66 0.00 0.62 0.00 8.93 0.00 37.32 2.74 339.21
Structural 0.00 0.00 0.00 1.41 0.00 0.00 0.00 0.65 0.00 0.00 0.00 23.59

C
or

. Creational 0.10 0.60 0.22 0.17 0.09 0.11 0.07 0.05 1.12 12.75 3.47 5.02
Behavioral 0.83 2.72 2.01 0.83 0.58 0.62 0.32 0.59 12.21 64.46 48.76 22.80
Structural 0.01 0.06 0.13 0.00 0.01 0.06 0.13 0.00 0.14 0.18 5.18 0.00

Pe
r. Creational 0.00 0.00 0.00 3.54 0.00 0.00 0.00 1.73 0.00 0.00 0.00 77.33

Behavioral 0.00 0.00 0.00 11.38 0.00 0.00 0.00 4.69 0.00 0.00 0.00 224.75
Structural 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.08 0.00 0.00 0.00 2.80

Pa
tt

er
n

Se
cu

ri
ty

FactoryMethod 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.02 0.00 0.00 0.00 12.33
Prototype 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.56 0.00 0.00 0.00 16.93
Singleton 0.00 0.00 0.00 3.90 0.00 0.00 0.00 1.48 0.00 0.00 0.00 82.25
AdapterCommand 0.00 0.00 0.00 5.81 0.00 0.00 0.00 2.36 0.00 0.00 0.00 177.04
Decorator 0.00 0.00 0.00 1.34 0.00 0.00 0.00 0.65 0.00 0.00 0.00 23.02
Observer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
StateStrategy 0.00 0.00 0.00 8.41 0.00 0.00 0.00 4.71 0.00 0.00 0.00 183.84
TemplateMethod 0.00 1.36 0.07 8.25 0.00 0.62 0.00 4.22 0.00 37.32 2.74 155.37

C
or

re
ct

ne
ss

FactoryMethod 0.02 0.20 0.04 0.00 0.02 0.08 0.03 0.00 0.39 4.66 0.66 0.00
Prototype 0.00 0.08 0.03 0.07 0.00 0.02 0.00 0.00 0.00 3.01 1.07 2.64
Singleton 0.07 0.33 0.15 0.10 0.06 0.01 0.04 0.05 0.72 5.08 1.73 2.38
AdapterCommand 0.24 0.66 0.45 0.52 0.09 0.39 0.32 0.33 6.91 12.93 6.04 11.88
Decorator 0.01 0.06 0.13 0.00 0.01 0.06 0.13 0.00 0.14 0.18 5.18 0.00
Observer 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.22 0.00 0.00
StateStrategy 0.38 0.62 1.16 0.75 0.29 0.25 0.15 0.51 5.60 12.94 29.66 20.86
TemplateMethod 0.45 2.05 0.85 0.08 0.28 0.37 0.17 0.08 6.62 49.29 19.10 1.94

Pe
rf

or
m

an
ce

FactoryMethod 0.00 0.00 0.00 1.15 0.00 0.00 0.00 0.98 0.00 0.00 0.00 17.91
Prototype 0.00 0.00 0.00 1.32 0.00 0.00 0.00 0.19 0.00 0.00 0.00 43.43
Singleton 0.00 0.00 0.00 1.07 0.00 0.00 0.00 0.55 0.00 0.00 0.00 15.99
AdapterCommand 0.00 0.00 0.00 1.43 0.00 0.00 0.00 0.63 0.00 0.00 0.00 29.15
Decorator 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.08 0.00 0.00 0.00 2.80
Observer 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.22 0.00 0.00 0.00 2.40
StateStrategy 0.00 0.00 0.00 3.97 0.00 0.00 0.00 1.68 0.00 0.00 0.00 76.25
TemplateMethod 0.00 0.00 0.00 7.19 0.00 0.00 0.00 2.79 0.00 0.00 0.00 146.10

M
et

a-
ro

le

Se
cu

ri
ty

Client 0.00 0.00 0.00 3.06 0.00 0.00 0.00 2.05 0.00 0.00 0.00 54.75
Superclass 0.00 0.11 0.00 0.58 0.00 0.11 0.00 0.26 0.00 0.11 0.00 9.61
Subclass 0.00 1.24 0.07 14.50 0.00 0.51 0.00 7.70 0.00 37.21 2.74 306.73
Container 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.25 0.00 0.00 0.00 9.84
Containee 0.00 0.00 0.00 5.89 0.00 0.00 0.00 2.13 0.00 0.00 0.00 176.28
Both 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.14 0.00 0.00 0.00 11.88

C
or

re
ct

ne
ss

Client 0.32 0.34 0.68 0.70 0.28 0.12 0.10 0.47 3.86 6.24 11.42 19.82
Superclass 0.10 0.05 0.30 0.00 0.10 0.05 0.00 0.00 0.21 0.14 13.38 0.00
Subclass 0.41 2.41 1.19 0.20 0.20 0.52 0.34 0.12 8.28 59.05 30.20 5.62
Container 0.09 0.35 0.45 0.00 0.06 0.28 0.32 0.00 1.59 4.02 6.04 0.00
Containee 0.15 0.37 0.00 0.52 0.03 0.11 0.00 0.33 5.32 11.13 0.00 11.88
Both 0.02 0.20 0.04 0.00 0.02 0.08 0.03 0.00 0.39 4.66 0.66 0.00

Pe
rf

or
m

an
ce

Client 0.00 0.00 0.00 2.43 0.00 0.00 0.00 0.85 0.00 0.00 0.00 46.11
Superclass 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.33 0.00 0.00 0.00 14.26
Subclass 0.00 0.00 0.00 9.55 0.00 0.00 0.00 3.56 0.00 0.00 0.00 208.20
Container 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.46 0.00 0.00 0.00 15.63
Containee 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.39 0.00 0.00 0.00 20.30
Both 0.00 0.00 0.00 1.04 0.00 0.00 0.00 0.98 0.00 0.00 0.00 13.54

FindBugs’ rank categories: RC1—Scariest; RC2—Scary; RC3—Troubling; RC4—Of Concern

Bibliography

Adamczyk, P.: 2003, The anthology of the finite state machine design patterns, Proceedings of
the 10th Conference on Pattern Languages of Programs (PLoP ’03), Irsee, Germany.

Adamczyk, P.: 2004, Selected patterns for implementing finite state machines, Proceedings of
the 11th Conference on Pattern Languages of Programs (PLoP ’04), Irsee, Germany.

Afacan, T.: 2011, State design pattern implementation of a DSP processor: A case study of
Tms5416C, Proceedings of the Sixth International Symposium on Industrial and Embedded Sys-
tems (SIES ’11), IEEE, Vasteras, Sweden, pp. 67–70.
DOI: 10.1109/SIES.2011.5953682

Aguiar, A., Filho, S. J., Magalhães, F. G., Casagrande, T. D., Hessel, F., Magalhaes, F. G.,
Casagrande, T. D. and Hessel, F.: 2010, Hellfire: A design framework for critical embedded
systems’ applications, Proceedings of the 11th International Symposium on Quality Electronic
Design (ISQED ’10), IEEE, San Jose, CA, USA, pp. 730–737.
DOI: 10.1109/ISQED.2010.5450495

Ahlgren, R. and Markkula, J.: 2005, Design patterns and organisational memory in mobile
application development, Proceedings of the Sixth International Conference on Product Focused
Software Process Improvement (PROFES ’05), Oulu, Finland, pp. 143–156.
DOI: 10.1007/11497455 13

AlBreiki, H. H. and Mahmoud, Q. H.: 2014, Evaluation of static analysis tools for software se-
curity, Proceedings of the 10th International Conference on Innovations in Information Technology
(IIT ’14), IEEE, Al Ain, United Arab Emirates, pp. 93–98.
DOI: 10.1109/INNOVATIONS.2014.6987569

Aleksy, M., Korthaus, A. and Seifried, C.: 2006, Design patterns usage in peer-to-peer systems
– An empirical analysis, Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology Workshops (WI-IATW ’06), IEEE Computer
Society, Hong Kong, China, pp. 459–462.
DOI: 10.1109/WI-IATW.2006.57

244 BIBLIOGRAPHY

Alhusain, S., Coupland, S., John, R. and Kavanagh, M.: 2013, Towards machine learning
based design pattern recognition, Proceedings of the 13th UK Workshop on Computational In-
telligence (UKCI ’13), IEEE, Guildford, UK, pp. 244–251.
DOI: 10.1109/UKCI.2013.6651312

Ali, M. and Elish, M. O.: 2013, A comparative literature survey of design patterns impact on
software quality, Proceedings of the Fourth International Conference on Information Science and
Applications (ICISA ’13), IEEE, Suwon, South Korea, pp. 1–7.
DOI: 10.1109/ICISA.2013.6579460

Alshammari, B., Fidge, C. and Corney, D.: 2010, Security metrics for object-oriented designs,
Proceedings of the 21st Australian Software Engineering Conference (ASWEC ’10), IEEE, Auck-
land, New Zealand, pp. 55–64.
DOI: 10.1109/ASWEC.2010.34

Alves, V., Niu, N., Alves, C. and Valença, G.: 2010, Requirements engineering for software
product lines: A systematic literature review, Information and Software Technology 52(8), 806–
820.
DOI: 10.1016/j.infsof.2010.03.014

Amanatidis, T., Chatzigeorgiou, A., Ampatzoglou, A. and Stamelos, I.: 2017, Who is pro-
ducing more technical debt?, Proceedings of the Nineth International Workshop on Managing
Technical Debt (MTD ’17), ACM Press, Cologne, Germany, pp. 4:1–4:8.
DOI: 10.1145/3120459.3120464

Ampatzoglou, A., Charalampidou, S. and Stamelos, I.: 2011, Investigating the use of object-
oriented design patterns in open-source software: A case study, in L. A. Maciaszek and
P. Loucopoulos (eds), Evaluation of Novel Approaches to Software Engineering, Springer Berlin
Heidelberg, pp. 106–120.
DOI: 10.1007/978-3-642-23391-3 8

Ampatzoglou, A., Charalampidou, S. and Stamelos, I.: 2013a, Design pattern alternatives,
Proceedings of the 17th Panhellenic Conference on Informatics (PCI ’13), ACM, Thessaloniki,
Greece, pp. 122–127.
DOI: 10.1145/2491845.2491857

Ampatzoglou, A., Charalampidou, S. and Stamelos, I.: 2013b, Research state of the art on GoF
design patterns: A mapping study, Journal of Systems and Software 86(7), 1945–1964.
DOI: 10.1016/j.jss.2013.03.063

Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S. and Avgeriou, P.: 2015, The effect
of GoF design patterns on stability: A case study, IEEE Transactions on Software Engineering
41(8), 781–802.
DOI: 10.1109/TSE.2015.2414917

Ampatzoglou, A., Frantzeskou, G. and Stamelos, I.: 2012, A methodology to assess the impact
of design patterns on software quality, Information and Software Technology 54(4), 331–346.
DOI: 10.1016/j.infsof.2011.10.006

BIBLIOGRAPHY 245

Ampatzoglou, A., Gkortzis, A., Charalampidou, S. and Avgeriou, P.: 2013, An embedded
multiple-case study on oss design quality assessment across domains, Proceedings of the
Seventh ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM ’13), IEEE, pp. 255–258.
DOI: 10.1109/ESEM.2013.48

Ampatzoglou, A., Kritikos, A., Arvanitou, E.-M., Gortzis, A., Chatziasimidis, F. and Stame-
los, I.: 2011, An empirical investigation on the impact of design pattern application on
computer game defects, Proceedings of the 15th International Academic MindTrek Conference
on Envisioning Future Media Environments (MindTrek ’11), ACM, Tampere, Finland, pp. 214–
221.
DOI: 10.1145/2181037.2181074

Ampatzoglou, A., Michou, O. and Stamelos, I.: 2013, Building and mining a repository of de-
sign pattern instances: Practical and research benefits, Entertainment Computing 4(2), 131–
142.
DOI: 10.1016/j.entcom.2012.10.002

Antonio, E. A., Ferrari, F. C. and Ferraz Fabbri, S. C. P.: 2012, A systematic mapping of ar-
chitectures for embedded software, Proceedings of the Second Brazilian Conference on Critical
Embedded Systems (CBSEC ’12), Campinas, Brazil, pp. 18–23.
DOI: 10.1109/CBSEC.2012.22

Aversano, L., Canfora, G., Cerulo, L., Del Grosso, C. and Di Penta, M.: 2007, An empirical
study on the evolution of design patterns, Proceedings of the the Sixth joint meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC-FSE ’07), ACM Press, Dubrovnik, Croatia, p. 385.
DOI: 10.1145/1287624.1287680

Aversano, L., Cerulo, L. and Di Penta, M.: 2009, Relationship between design patterns defects
and crosscutting concern scattering degree: an empirical study, IET Software 3(5), 395.
DOI: 10.1049/iet-sen.2008.0105

Aversano, L., Cerulo, L. and Penta, M. D.: 2007, Relating the evolution of design patterns and
crosscutting concerns, Proceedings of the Seventh International Working Conference on Source
Code Analysis and Manipulation (SCAM ’07), IEEE, Paris, France, pp. 180–192.
DOI: 10.1109/SCAM.2007.21

Ayewah, N., Hovemeyer, D., Morgenthaler, J. D., Penix, J. and Pugh, W.: 2008, Using static
analysis to find bugs, IEEE Software 25(5), 22–29.
DOI: 10.1109/MS.2008.130

Ayewah, N. and Pugh, W.: 2010, The Google FindBugs fixit, Proceedings of the 19th international
symposium on Software testing and analysis (ISSTA ’10), ACM, Trento, Italy, pp. 241–252.
DOI: 10.1145/1831708.1831738

246 BIBLIOGRAPHY

Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J. and Zhou, Y.: 2007, Evaluating static
analysis defect warnings on production software, Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering (PASTE ’07), ACM
Press, San Diego, California, USA, pp. 1–8.
DOI: 10.1145/1251535.1251536

Azadmanesh, M. R., Hauswirth, M. and Van De Vanter, M. L.: 2017, Language-independent
information flow tracking engine for program comprehension tools, Proceedings of the 25th
International Conference on Program Comprehension (ICPC ’17), IEEE Press, pp. 346–355.
DOI: 10.1109/ICPC.2017.5

Bafandeh Mayvan, B., Rasoolzadegan, A. and Ghavidel Yazdi, Z.: 2017, The state of the art
on design patterns: A systematic mapping of the literature, Journal of Systems and Software
125, 93–118.
DOI: 10.1016/j.jss.2016.11.030

Balmas, F., Bergel, A., Denier, S., Ducasse, S., Laval, J., K., M.-M. and H. Abdeen, F. B.: 2010,
SQualE - Software metric for Java and C++ practices, Technical report, INRIA, Paris.
URL: http://www.squale.org/quality-models-site/research-deliverables/WP1.1 Software-metrics-
for-Java-and-Cpp-practices v2.pdf

Bansiya, J. and Davis, C.: 2002, A hierarchical model for object-oriented design quality as-
sessment, IEEE Transactions on Software Engineering 28(1), 4–17.
DOI: 10.1109/32.979986

Barbosa, J. R., Delamaro, M. E., Maldonado, J. C. and Vincenzi, A. M. R.: 2011, Software
testing in critical embedded systems: a systematic review of adherence to the Do-178B
standard, Proceedings of the Third International Conference on Advances in System Testing and
Validation Lifecycle, Barcelona, Spain, pp. 126–130.
URL: https://www.thinkmind.org/index.php?view=article&articleid=valid 2011 5 40 40074

Barney, S., Petersen, K., Svahnberg, M., Aurum, A. and Barney, H.: 2012, Software quality
trade-offs: A systematic map, Information and Software Technology 54(7), 651–662.
DOI: 10.1016/j.infsof.2012.01.008

Barros, M. d. O., Farzat, F. d. A. and Travassos, G. H.: 2014, Learning from optimization: A
case study with Apache Ant, Information and Software Technology 57(1), 684–704.
DOI: 10.1016/j.infsof.2014.07.015

Bartelt, C., Bauer, O., Beneken, G., Bergner, K., Birowicz, U., Bliß, T., Cordes, N., Cruz, D.,
Dohrmann, P., Friedrich, J., Gnatz, M., Hammerschall, U., Hidvegi-Barstorfer, I., Hummel,
H., Israel, D., Klingenberg, T., Klugseder, K., Küffer, I., Kuhrmann, M., Kranz, M., Kranz,
W., Meinhardt, H.-J., Meisinger, M., Mittrach, S., Neußer, H.-J., Niebuhr, D., Plögert, K.,
Rauh, D., Rausch, A., Rittel, T., Rösch, W., Saas, E., Schramm, J., Sihling, M., Ternité, T.,
Vogel, S. and Wittmann, M.: 2010, V-modell Xt Gesamt 1.3, Technical report, Bundesver-
waltungsamt, Freistaat Bayern, 4Soft GmbH, Airbus Defence & Space AG/GmbH, IABG

BIBLIOGRAPHY 247

mbH, Siemens AG, Technische Universität Clausthal, Technische Universität München.
URL: http://v-modell.iabg.de/XThtmleng/index.html

Bass, L., Clements, P. and Kazman, R.: 2012, Software Architecture in Practice, 3 edn, Addison-
Wesley Professional.

Bass, L., Nord, R., Wood, W., Zubrow, D. and Ozkaya, I.: 2008, Analysis of architecture eval-
uation data, Journal of Systems and Software 81(9), 1443–1455.
DOI: 10.1016/j.jss.2008.02.021

Bate, I.: 2008, Systematic approaches to understanding and evaluating design trade-offs, Jour-
nal of Systems and Software 81(8), 1253–1271.
DOI: 10.1016/j.jss.2007.10.032

Boehm, B. and In, H.: 1996, Identifying quality-requirement conflicts, IEEE Software 13(2), 25–
35.
DOI: 10.1109/52.506460

Bourque, P. and Fairley, R. E.: 2014, Guide to the Software Engineering Body of Knowledge, 3rd
edn, IEEE Computer Society Press.

Brooks Jr., F. P.: 1987, No silver bullet essence and accidents of software engineering, Computer
20(4), 10–19.
DOI: 10.1109/MC.1987.1663532

Bunse, S. S. C., Schwedenschanze, Z. and Stiemer, S.: 2013, On the energy consumption of
design patterns, Proceedings of the Seconda Workshop EASED BUIS Energy Aware Software-
Engineering and Development, pp. 7–8.

Buschmann, F., Henney, K. and Schmidt, D. C.: 2007, Pattern-Oriented Software Architecture,
On Patterns and Pattern Languages, Vol. 5 of Pattern-Oriented Software Architecture, Wiley.

Buyens, K., Scandariato, R. and Joosen, W.: 2009, Measuring the interplay of security prin-
ciples in software architectures, Proceedings of the Third International Symposium on Empir-
ical Software Engineering and Measurement (ESEM ’09), IEEE, Lake Buena Vista, FL, USA,
pp. 554–563.
DOI: 10.1109/ESEM.2009.5315968

Canovas, J. and Molina, J.: 2010, An architecture-driven modernization tool for calculating
metrics, IEEE Software 27(4), 37–43.
DOI: 10.1109/MS.2010.61

Cawley, O., Wang, X. and Richardson, I.: 2010, Lean/agile software development method-
ologies in regulated environments - State of the art, First International Conference on Lean
Enterprise Software and Systems (LESS ’10), Helsinki, Finland, pp. 31–36.
DOI: 10.1007/978-3-642-16416-3 4

248 BIBLIOGRAPHY

Chantarasathaporn, K. and Srisa-an, C.: 2006, Energy conscious factory method design pat-
tern for mobile devices with C# and intermediate language, Proceedings of the Third interna-
tional conference on Mobile technology, applications & systems (Mobility ’06), ACM, Bangkok,
Thailand, pp. 29:1–29:8.
DOI: 10.1145/1292331.1292364

Charalampidou, S., Ampatzoglou, A., Avgeriou, P., Sencer, S., Arvanitou, E.-M. and Stame-
los, I.: 2017, A theoretical model for capturing the impact of design patterns on quality,
Proceedings of 32nd ACM SIGAPP Symposium On Applied Computing (SAC ’17), ACM Press,
Marrakech, Morocco, pp. 1231–1238.
DOI: 10.1145/3019612.3019781

Chatzigeorgiou, A. and Stiakakis, E.: 2013, Combining metrics for software evolution as-
sessment by means of data envelopment analysis, Journal of Software: Evolution and Process
25(3), 303–324.
DOI: 10.1002/smr.584

Chen, H., Li, Y. and Shi, W.: 2012, Fine-grained power management using process-level pro-
filing, Sustainable Computing: Informatics and Systems 2(1), 33–42.

Chidamber, S. and Kemerer, C.: 1994, A metrics suite for object oriented design, IEEE Trans-
actions on Software Engineering 20(6), 476–493.
DOI: 10.1109/32.295895

Cohen, F.: 2007, Identifying and avoiding SOA performance problems, FastSOA, Elsevier,
pp. 75–101.
DOI: 10.1016/B978-012369513-0/50005-7

Dale, M. R. and Izurieta, C.: 2014, Impacts of design pattern decay on system quality, Proceed-
ings of the Eighth ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’14), ACM Press, Torino, Italy, pp. 37:1–37:4.
DOI: 10.1145/2652524.2652560

Del Rosso, C.: 2008, Software performance tuning of software product family architectures:
Two case studies in the real-time embedded systems domain, Journal of Systems and Software
81(1), 1–19.
DOI: 10.1016/j.jss.2007.07.006

Di Penta, M., Cerulo, L., Guéhéneuc, Y. G. and Antoniol, G.: 2008, An empirical study of
the relationships between design pattern roles and class change proneness, Proceedings of
the 24th International Conference on Software Maintenance (ICSM ’08), IEEE, Beijing, China,
pp. 217–226.
DOI: 10.1109/ICSM.2008.4658070

Dı́az, G. and Bermejo, J. R.: 2013, Static analysis of source code security: Assessment of tools
against SAMATE tests, Information and Software Technology 55(8), 1462–1476.
DOI: 10.1016/j.infsof.2013.02.005

BIBLIOGRAPHY 249

Dieste, O., Grimán, A. and Juristo, N.: 2009, Developing search strategies for detecting rele-
vant experiments, Empirical Software Engineering 14(5), 513–539.
DOI: 10.1007/s10664-008-9091-7

Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S., Mayo, R. and
Quintana-Ortı́, E. S.: 2014, Assessing power monitoring approaches for energy and power
analysis of computers, Sustainable Computing: Informatics and Systems 4(2), 68–82.
DOI: 10.1016/j.suscom.2014.03.006

Do, T., Rawshdeh, S. and Shi, W.: 2009, ptop: A process-level power profiling tool, Proceedings
of the 2nd workshop on power aware computing and systems (HotPower’09).

Dromey, R.: 1995, A model for software product quality, IEEE Transactions on Software Engi-
neering 21(2), 146–162.
DOI: 10.1109/32.345830

Dybå, T. and Dingsøyr, T.: 2008, Empirical studies of agile software development: A system-
atic review, Information and Software Technology 50(9-10), 833–859.

Dybå, T., Dingsøyr, T. and Hanssen, G. K.: 2007, Applying systematic reviews to diverse study
types: An experience report, Proceedings of the First International Symposium on Empirical
Software Engineering and Measurement (ESEM ’07), Madrid, Spain, pp. 225–234.
DOI: 10.1109/ESEM.2007.21

Eklund, U. and Bosch, J.: 2013, Archetypical approaches of fast software development and
slow embedded projects, Proceedings og the 39th Euromicro Conference Series on Software En-
gineering and Advanced Applications (SEAA ’13), Santander, Spain, pp. 276–283.
DOI: 10.1109/SEAA.2013.38

Elberzhager, F., Rosbach, A. and Bauer, T.: 2013, Analysis and testing of matlab simulink mod-
els: a systematic mapping study, Proceedings og the 2013 International Workshop on Joining
AcadeMiA and Industry Contributions to testing Automation (JAMAICA ’13), Lugano, Switzer-
land, pp. 29–34.
DOI: 10.1145/2489280.2489285

Evans, J. D.: 1996, Straightforward statistics for the behavioral sciences, Brooks/Cole Pub. Co.,
Pacific Grove.

Feitosa, D., Alders, R., Ampatzoglou, A., Avgeriou, P. and Nakagawa, E. Y.: 2017, Investigat-
ing the effect of design patterns on energy consumption, Journal of Software: Evolution and
Process 29(2), e1851.
DOI: 10.1002/smr.1851

Feitosa, D., Ampatzoglou, A., Avgeriou, P., Affonso, F. J., Andrade, H., Felizardo, K. R. and
Nakagawa, E. Y.: 2017, Supplementary Material: ”Design approaches for critical embedded
system: A systematic mapping study”.
DOI: 10.5281/zenodo.996480

250 BIBLIOGRAPHY

Feitosa, D., Ampatzoglou, A., Avgeriou, P., Affonso, F. J., Andrade, H., Felizardo, K. R. and
Nakagawa, E. Y.: 2018, Design Approaches for Critical Embedded Systems: A System-
atic Mapping Study, Evaluation of Novel Approaches to Software Engineering (ENASE ’17),
Springer, Cham, pp. 243–274.
DOI: 10.1007/978-3-319-94135-6 12

Feitosa, D., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A. and Nakagawa, E.: 2018, What
can violations of good practices tell about the relationship between GoF patterns and run-
time quality attributes?, Information and Software Technology .
DOI: 10.1016/j.infsof.2018.07.014

Feitosa, D., Ampatzoglou, A., Avgeriou, P. and Nakagawa, E. Y.: 2015, Investigating qual-
ity trade-offs in open source critical embedded systems, Proceedings of the 11th International
ACM SIGSOFT Conference on the Quality of Software Architectures (QoSA ’15), ACM, Mon-
treal, QC, Canada, pp. 113–122.
DOI: 10.1145/2737182.2737190

Feitosa, D., Ampatzoglou, A., Avgeriou, P. and Nakagawa, E. Y.: 2018, Correlating Pattern
Grime and Quality Attributes, IEEE Access 6, 23065–23078.
DOI: 10.1109/ACCESS.2018.2829895

Feitosa, D., Avgeriou, P., Ampatzoglou, A. and Nakagawa, E. Y.: 2017a, Supplementary Ma-
terial: ”The Evolution of Design Pattern Grime: An Industrial Case Study”.
DOI: 10.5281/zenodo.806800

Feitosa, D., Avgeriou, P., Ampatzoglou, A. and Nakagawa, E. Y.: 2017b, The evolution of de-
sign pattern grime: An industrial case study, Proceedings of the 18th International Conference
on Product-Focused Software Process Improvement (PROFES ’17), Innsbruck, Austria, pp. 165–
181.
DOI: 10.1007/978-3-319-69926-4 13

Fernandez-Buglioni, E.: 2013, Security Patterns in Practice: Designing Secure Architectures Using
Software Patterns, Wiley Software Patterns Series, Wiley.

Ferraz, F. S., Assad, R. E. and Lemos Meira, S. R.: 2009, Relating security requirements and
design patterns: Reducing security requirements implementation impacts with design pat-
terns, Proceedings of the Fourth International Conference on Software Engineering Advances (IC-
SEA ’09), IEEE, Porto, Portugal, pp. 9–14.
DOI: 10.1109/ICSEA.2009.10

Ferreira, L. L. and Rubira, C. M. F.: 1998, The reflective state pattern, Proceedings of the Pattern
Languages of Program Design Monticello, Illinois-USA .

Field, A.: 2013, Discovering Statistics Using IBM SPSS Statistics, 4th edn, SAGE Publications
Ltd.

Firesmith, D. G.: 2003, Engineering security requirements.
DOI: 10.5381/jot.2003.2.1.c6

BIBLIOGRAPHY 251

Fleck, G., Kirchmayr, W., Moser, M., Nocke, L., Pichler, J., Tober, R. and Witlatschil, M.: 2016,
Experience report on building astm based tools for multi-language reverse engineering,
Proceedings of the 23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER ’16), pp. 683–687.
DOI: 10.1109/SANER.2016.33

Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D.: 1999, Refactoring: improving the
design of existing code, ISBN: 0-201-48567-2 .

Gajski, D. D., Zhu, J., Dömer, R., Gerstlauer, A. and Zhao, S.: 2000, SPECC: Specification Lan-
guage and Methodology, Springer US, Boston, MA.
DOI: 10.1007/978-1-4615-4515-6

Gamma, E., Helm, R., Johnson, R. E. and Vlissides, J.: 1995, Design patterns: elements of reusable
object-oriented software, Vol. 206, Addison-Wesley Longman Publishing Co., Inc.

Gatrell, M. and Counsell, S.: 2011, Design patterns and fault-proneness a study of commercial
C# software, Proceedings of the Fifth International Conference on Research Challenges in Infor-
mation Science (RCIS ’11), IEEE, Gosier, France, pp. 1–8.
DOI: 10.1109/RCIS.2011.6006827

Goseva-Popstojanova, K. and Perhinschi, A.: 2015, On the capability of static code analysis to
detect security vulnerabilities, Information and Software Technology 68, 18–33.
DOI: 10.1016/j.infsof.2015.08.002

Grady, R. B.: 1992, Practical software metrics for project management and process improvement,
Prentice-Hall, Inc.

Griffith, I. and Izurieta, C.: 2014, Design pattern decay: the case for class grime, Proceedings
of the Eighth ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM ’14), ACM Press, Torino, Italy, pp. 39:1–39:4.
DOI: 10.1145/2652524.2652570

Grimmer, M., Seaton, C., Schatz, R., Würthinger, T. and Mössenböck, H.: 2015, High-
performance cross-language interoperability in a multi-language runtime, ACM SIGPLAN
Notices 51(2), 78–90.
DOI: 10.1145/2936313.2816714

Guessi, M., Nakagawa, E. Y., Oquendo, F. and Maldonado, J. C.: 2012, Architectural descrip-
tion of embedded systems: A systematic review, Proceedings of the Third International ACM
SIGSOFT Symposium on Architecting Critical Systems (ISARCS ’12), ACM, Bertinoro, Italy,
pp. 31–40.
DOI: 10.1145/2304656.2304661

Hafiz, M., Adamczyk, P. and Johnson, R. E.: 2007, Organizing security patterns, IEEE Software
24(4), 52–60.
DOI: 10.1109/MS.2007.114

252 BIBLIOGRAPHY

Haghighatkhah, A., Oivo, M., Banijamali, A. and Kuvaja, P.: 2017, Improving the state of
automotive software engineering, IEEE Software 34(5), 82–86.
DOI: 10.1109/MS.2017.3571571

Hammadi, A. and Mhamdi, L.: 2014, A survey on architectures and energy efficiency in data
center networks, Computer Communications 40, 1–21.
DOI: 10.1016/j.comcom.2013.11.005

Harper, R. and Morrisett, G.: 1995, Compiling polymorphism using intensional type analy-
sis, Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’95), ACM Press, San Francisco, CA, USA, pp. 130–141.
DOI: 10.1145/199448.199475

Hastie, T., Tibshirani, R. and Friedman, J.: 2009, The Elements of Statistical Learning, Springer
Series in Statistics, Springer New York, New York, NY.
DOI: 10.1007/978-0-387-84858-7

Heath, S.: 2002, Embedded Systems Design, Elsevier.
DOI: 10.1016/B978-0-7506-5546-0.X5000-2

Helmerich, A., Koch, N., Mandel, L., Braun, P., Dornbusch, P., Gruler, A., Keil, P., Leisibach,
R., Romberg, J., Schätz, B., Wild, T. and Wimmel, G.: 2005, Study of worldwide trends and
R&D programmes in embedded systems in siew of maximising the impact of a technology
platform in the area, Technical report, Information Society Technologies.
DOI: KK-04-14-422-EN-N

Henney, K.: 1999, Collections for States, Proceedings of the Fourth European Conference on Pattern
Languages of Programms (EuroPLoP ’99), Irsee, Germany, pp. 57–64.

Henney, K.: 2002, Methods for States, Proceedings of the First Nordic Conference on Pattern Lan-
guages of Programming (VikingPLoP ’02), Højstrupgård, Denmark.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A. and America, P.: 2007, A general
model of software architecture design derived from five industrial approaches, Journal of
Systems and Software 80(1), 106–126.
DOI: 10.1016/j.jss.2006.05.024

Hora, A., Anquetil, N., Ducasse, S. and Allier, S.: 2012, Domain specific warnings: Are they
any better?, Proceedings of the 28th International Conference on Software Maintenance (ICSM
’12), IEEE, Trento, Italy, pp. 441–450.
DOI: 10.1109/ICSM.2012.6405305

Hovemeyer, D. and Pugh, W.: 2004, Finding bugs is easy, ACM SIGPLAN Notices 39(12), 92–
106.
DOI: 10.1145/1052883.1052895

Hsueh, N.-L., Chu, P.-H. and Chu, W.: 2008, A quantitative approach for evaluating the qual-
ity of design patterns, Journal of Systems and Software 81(8), 1430–1439.
DOI: 10.1016/j.jss.2007.11.724

BIBLIOGRAPHY 253

Huston, B.: 2001, The effects of design pattern application on metric scores, Journal of Systems
and Software 58(3), 261–269.
DOI: 10.1016/S0164-1212(01)00043-7

ISO/IEC: 2011, ISO/IEC 25010:2011 - Systems and software engineering – Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) – System and software quality mod-
els, Technical report, ISO/IEC.
URL: http://www.iso.org/iso/catalogue detail.htm?csnumber=35733

ISO/IEC: 2015, ISO/IEC 15026-3:2015 Systems and software engineering – Systems and soft-
ware assurance – Part 3: System integrity levels, Technical report, ISO/IEC.
URL: http://www.iso.org/iso/home/store/catalogue ics/catalogue detail ics.htm?csnumber=64842

ISO/IEC/IEEE: 2010, ISO/IEC/IEEE 24765-2010 - Systems and software engineering – Vo-
cabulary, Technical report, ISO/IEC/IEEE.
DOI: 10.1109/IEEESTD.2010.5733835

Izurieta, C. and Bieman, J. M.: 2007, How software designs decay: A pilot study of pattern
evolution, Proceedings of the First International Symposium on Empirical Software Engineering
and Measurement (ESEM ’07), IEEE, Madrid, Spain, pp. 449–451.
DOI: 10.1109/ESEM.2007.55

Izurieta, C. and Bieman, J. M.: 2008, Testing consequences of grime buildup in object oriented
design patterns, Proceedings of the First International Conference on Software Testing, Verifica-
tion, and Validation (ICST ’08), IEEE, Lillehammer, Norway, pp. 171–179.
DOI: 10.1109/ICST.2008.27

Izurieta, C. and Bieman, J. M.: 2013, A multiple case study of design pattern decay, grime,
and rot in evolving software systems, Software Quality Journal 21(2), 289–323.
DOI: 10.1007/s11219-012-9175-x

Jain, R., Molnar, D. and Ramzan, Z.: 2005, Towards understanding algorithmic factors af-
fecting energy consumption: switching complexity, randomness, and preliminary experi-
ments, Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC ’05), ACM, Cologne, Germany, pp. 70–79.

Jedlitschka, A., Ciolkowski, M. and Pfahl, D.: 2008, Reporting experiments in software en-
gineering, Guide to Advanced Empirical Software Engineering, Springer London, London,
pp. 201–228.
DOI: 10.1007/978-1-84800-044-5 8

Johann, T., Dick, M., Naumann, S. and Kern, E.: 2012, How to measure energy-efficiency of
software: Metrics and measurement results, Proceedings of the First International Workshop
on Green and Sustainable Software (GREENS ’12), IEEE, Zurich, Switzerland, pp. 51–54.

Kacimi, O., Ellen, C., Oertel, M. and Sojka, D.: 2014, Creating a reference technology platform
- Performing model-based safety analysis in a heterogeneous development environment,

254 BIBLIOGRAPHY

Second International Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD ’14), Lisbon, Portugal, pp. 645–652.
DOI: 10.5220/0004875306450652

Karlström, D. and Runeson, P.: 2006, Integrating agile software development into stage-gate
managed product development, Empirical Software Engineering 11(2), 203–225.
DOI: 10.1007/s10664-006-6402-8

Khalid, H., Nagappan, M. and Hassan, A. E.: 2016, Examining the relationship between Find-
Bugs warnings and app ratings, IEEE Software 33(4), 34–39.
DOI: 10.1109/MS.2015.29

Khomh, F., Gueheneuc, Y.-G. and Antoniol, G.: 2009, Playing roles in design patterns: An
empirical descriptive and analytic study, Proceedings of the 25th IEEE International Conference
on Software Maintenance (ICSM ’09), IEEE, Edmonton, AB, Canada, pp. 83–92.
DOI: 10.1109/ICSM.2009.5306327

Kitchenham, B. A., Dyba, T. and Jorgensen, M.: 2004, Evidence-based software engineering,
Proceedings of the 26th International Conference on Software Engineering (ICSE ’04), IEEE Com-
put. Soc, Edinburgh, UK, pp. 23–28.
DOI: 10.1109/icse.2004.1317449

Kitchenham, B. and Charters, S.: 2007, Guidelines for performing systematic literature re-
views in software engineering, Engineering 2, 1051.

Kitchenham, B. and Pfleeger, S.: 1996, Software quality: the elusive target [special issues
section], IEEE Software 13(1), 12–21.
DOI: 10.1109/52.476281

Kniesel, G. and Binun, A.: 2009, Standing on the shoulders of giants - A data fusion approach
to design pattern detection, Proceedings of the 17th International Conference on Program Com-
prehension (ICPC ’09), IEEE, Vancouver, BC, Canada, pp. 208–217.
DOI: 10.1109/ICPC.2009.5090044

Li, W. and Henry, S.: 1993, Object-oriented metrics that predict maintainability, Journal of
Systems and Software 23(2), 111–122.
DOI: 10.1016/0164-1212(93)90077-B

Linares-Vásquez, M., Klock, S., McMillan, C., Sabané, A., Poshyvanyk, D. and Guéhéneuc,
Y.-G.: 2014, Domain matters: bringing further evidence of the relationships among anti-
patterns, application domains, and quality-related metrics in Java mobile apps, Proceedings
of the 22nd International Conference on Program Comprehension (ICPC ’14), ACM Press, Hy-
derabad, India, pp. 232–243.
DOI: 10.1145/2597008.2597144

Litke, A., Zotos, K., Chatzigeorgiou, A. and Stephanides, G.: 2007, Energy consumption anal-
ysis of design patterns, International Journal of Electrical, Computer, Energetic, Electronic and
Communication Engineering 1(11), 1663–1667.

BIBLIOGRAPHY 255

Liu, Y. D.: 2012, Energy-efficient synchronization through program patterns, Proceedings of the
First International Workshop on Green and Sustainable Software (GREENS ’12), IEEE, Zurich,
Switzerland, pp. 35–40.

Lyardet, F. D.: 1997, The dynamic template pattern, Proceedings of the Conference on Pattern
Languages of Design (PLoP ’97).

Manotas, I., Pollock, L. and Clause, J.: 2014, SEedS: a software engineer’s energy-optimization
decision support framework, Proceedings of the 36th International Conference on Software En-
gineering (ICSE ’14), ACM Press, Hyderabad, India, pp. 503–514.
DOI: 10.1145/2568225.2568297

March, S. T. and Smith, G. F.: 1995, Design and natural science research on information tech-
nology, Decision Support Systems 15(4), 251–266.
DOI: 10.1016/0167-9236(94)00041-2

Marwedel, P.: 2010, Embedded System Design: Embedded Systems Foundations of Cyber-Physical
Systems, Embedded Systems, Springer Netherlands.

Marwedel, P.: 2011, Embedded System Design, Embedded Systems, 2 edn, Springer Nether-
lands, Dordrecht.
DOI: 10.1007/978-94-007-0257-8

McCall, J. A.: 1977, Factors in software quality, Technical report, US Rome Air development
center reports.

McNatt, W. B. and Bieman, J. M.: 2001, Coupling of design patterns: common practices and
their benefits, Proceedings of the 25th Annual International Computer Software and Applications
Conference (COMPSAC ’01), IEEE, Chicago, IL, USA, pp. 574–579.
DOI: 10.1109/CMPSAC.2001.960670

Medikonda, B. S. and Panchumarthy, S. R.: 2009, A framework for software safety in safety-
critical systems, ACM SIGSOFT Software Engineering Notes 34(2), 1.
DOI: 10.1145/1507195.1507207

Misra, S. C. and Bhavsar, V. C.: 2003, Relationships Between Selected Software Measures
and Latent Bug-Density: Guidelines for Improving Quality, in V. Kumar, M. L. Gavrilova,
C. J. K. Tan and P. L’Ecuyer (eds), Computational Science and Its Applications (ICCSA 2003),
Vol. 2667 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 724–732.
DOI: 10.1007/3-540-44839-X

Miyashiro, M. A. S., Ferreira, M. G. V. and Sant’Anna, N.: 2015, CMmi-Dev process areas
modeled on a process for critical embedded systems development, Proceedings of the 2015
Science and Information Conference (SAI ’15), IEEE, London, UK, pp. 870–878.
DOI: 10.1109/SAI.2015.7237245

256 BIBLIOGRAPHY

Muraki, T. and Saeki, M.: 2002, Metrics for applying GoF design patterns in refactoring pro-
cesses, Proceedings of the Fourth International workshop on Principles of software evolution (IW-
PSE ’01), ACM Press, Vienna, Austria, pp. 27–36.
DOI: 10.1145/602461.602466

Nakagawa, E. Y., Gonçalves, M., Guessi, M., Oliveira, L. B. R. and Oquendo, F.: 2013, The state
of the art and future perspectives in systems of systems software architectures, Proceedings
of the First International Workshop on Software Engineering for Systems-of-Systems (SESoS ’13),
Montpellier, France, pp. 13–20.
DOI: 10.1145/2489850.2489853

Noureddine, A., Bourdon, A., Rouvoy, R. and Seinturier, L.: 2012a, A preliminary study of
the impact of software engineering on greenit, Proceedings of the First International Workshop
on Green and Sustainable Software (GREENS ’12), IEEE, Zurich, Switzerland, pp. 21–27.

Noureddine, A., Bourdon, A., Rouvoy, R. and Seinturier, L.: 2012b, Runtime monitoring of
software energy hotspots, Proceedings of the 27th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE ’12), IEEE, Essen, Germany, pp. 160–169.

Noureddine, A. and Rajan, A.: 2015, Optimising energy consumption of design patterns,
Proceedings of the 37th International Conference on Software Engineering (ICSE ’15), Florence,
Italy.

Noureddine, A., Rouvoy, R. and Seinturier, L.: 2013, A review of energy measurement ap-
proaches, ACM SIGOPS Operating Systems Review 47(3), 42–49.

Noureddine, A., Rouvoy, R. and Seinturier, L.: 2014, Unit testing of energy consumption
of software libraries, Proceedings of the 29th Annual ACM Symposium on Applied Computing
(SAC ’14), ACM, ACM Press, Gyeongju, Korea, pp. 1200–1205.
DOI: 10.1145/2554850.2554932

Noureddine, A., Rouvoy, R. and Seinturier, L.: 2015, Monitoring energy hotspots in software,
Automated Software Engineering pp. 1–42.

Oliveira, L. B. R., Guessi, M., Feitosa, D., Manteuffel, C., Galster, M., Oquendo, F. and Nak-
agawa, E. Y.: 2013, An Investigation on Quality Models and Quality Attributes for Em-
bedded Systems, Proceedings of the Eighth International Conference on Software Engineering
Advances (ICSEA ’13), IARIA XPS Press, Venice, Italy, pp. 523–528.

Oliveira, M. F., Redin, R. M., Carro, L., Lamb, L. and Wagner, F.: 2008, Software quality met-
rics and their impact on embedded software, Proceedings of the Fifth International Workshop
on Model-based Methodologies for Pervasive and Embedded Software (MOMPES 2008), IEEE, Bu-
dapest, Hungary, pp. 68–77.
DOI: 10.1109/MOMPES.2008.11

Ollila, J., Sangiovanni, A., Vincentelli, Kleisterlee, G., Dais, S., Pistorio, P., Levin, D., Baksaas,
J. F., Ranque, D., Skalicky, P. and Petit, A.: 2004, Building ArtEmiS: Report by the High-
Level Group on Embedded Systems, Technical report, Information Society Technologies and

BIBLIOGRAPHY 257

European Commission.
DOI: KK-60-04-296-EN-C

Patton, M. Q.: 2014, Qualitative Research & Evaluation Methods: Integrating Theory and Practice,
SAGE Publications.

Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C. and Seinturier, L.: 2016, SPooN: A
library for implementing analyses and transformations of Java source code, Software: Prac-
tice and Experience 46(9), 1155–1179.
DOI: 10.1002/spe.2346

Pelliccione, P., Knauss, E., Heldal, R., Magnus Ågren, S., Mallozzi, P., Alminger, A. and Bor-
gentun, D.: 2017, Automotive Architecture Framework: The experience of Volvo Cars,
Journal of Systems Architecture 77, 83–100.
DOI: 10.1016/j.sysarc.2017.02.005

Penta, M. D., Cerulo, L. and Aversano, L.: 2009, The life and death of statically detected
vulnerabilities: An empirical study, Information and Software Technology 51(10), 1469–1484.
DOI: 10.1016/j.infsof.2009.04.013

Perez-Castillo, R. and Piattini, M.: 2014, Analyzing the harmful effect of god class refactoring
on power consumption, Software, IEEE 31(3), 48–54.

Perry, D. E. and Wolf, A. L.: 1992, Foundations for the study of software architecture, ACM
SIGSOFT Software Engineering Notes 17(4), 40–52.
DOI: 10.1145/141874.141884

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M.: 2008, Systematic mapping studies in
software engineering, Proceedings of the 12th International Conference on Evaluation and As-
sessment in Software Engineering (EASE ’08), Bari, Italy, pp. 68–77.
DOI: 10.1142/S0218194007003112

Pétrissans, A., Krawczyk, S., Cattaneo, G., Feeney, N., Veronesi, L. and Meunier, C.: 2012,
Final Study Report: Design of Future Embedded Systems (SmaRt 2009 / 0063), Technical
report, International Data Corporation.
DOI: KK-04-13-201-EN-N

Pettersson, N., Löwe, W. and Nivre, J.: 2010, Evaluation of accuracy in design pattern occur-
rence detection, IEEE Transactions on Software Engineering 36(4), 575–590.
DOI: 10.1109/TSE.2009.92

Pinto, G., Castor, F. and Liu, Y. D.: 2014, Understanding energy behaviors of thread man-
agement constructs, Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA ’14), ACM, Portland, OR, USA,
pp. 345–360.
DOI: 10.1145/2714064.2660235

258 BIBLIOGRAPHY

Procaccianti, G., Lago, P. and Bevini, S.: 2015, A systematic literature review on energy effi-
ciency in cloud software architectures, Sustainable Computing: Informatics and Systems 7, 2–
10.
DOI: 10.1016/j.suscom.2014.11.004

Riaz, M., Breaux, T. and Williams, L.: 2015, How Have We Evaluated Software Pattern Appli-
cation? A systematic Mapping Study of Research Design Practices, Information and Software
Technology 65, 14–38.
DOI: 10.1016/j.infsof.2015.04.002

Riehle, D.: 2011, Lessons Learned from Using Design Patterns in Industry Projects, Transac-
tions on Pattern Languages of Programming II, Vol. 6510 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 1–15.
DOI: 10.1007/978-3-642-19432-0 1

Romano, D., Raila, P., Pinzger, M. and Khomh, F.: 2012, Analyzing the impact of antipatterns
on change-proneness using uine-grained source code changes, Proceedings of the 19th Work-
ing Conference on Reverse Engineering (WCRE ’12), IEEE, Kingston, ON, Canada, pp. 437–446.
DOI: 10.1109/WCRE.2012.53

Rudzki, J.: 2004, How design patterns affect application performance – a case of a multi-tier
J2eE application, Proceedings of the Fourth International Workshop on Scientific Engineering of
Distributed Java Applications (FIDJI ’04), Springer-Verlag, Luxembourg-Kirchberg, Luxem-
bourg, pp. 12–23.
DOI: 10.1007/978-3-540-31869-9 2

Runeson, P., Host, M., Rainer, A. and Regnell, B.: 2012, Case Study Research in Software Engi-
neering: Guidelines and Examples, Wiley Blackwell.

Sadowski, C., van Gogh, J., Jaspan, C., Soderberg, E. and Winter, C.: 2015, Tricorder: Building
a program analysis ecosystem, Proceedings of the 37th IEEE International Conference on Soft-
ware Engineering (ICSE ’15), IEEE, Florence, Italy, pp. 598–608.
DOI: 10.1109/ICSE.2015.76

Sahin, C., Cayci, F., Gutiérrez, I. L. M., Clause, J., Kiamilev, F., Pollock, L. and Winbladh, K.:
2012, Initial explorations on design pattern energy usage, Proceedings of the First Interna-
tional Workshop on Green and Sustainable Software (GREENS ’12), IEEE, Zurich, Switzerland,
pp. 55–61.
DOI: 10.1109/GREENS.2012.6224257

Sahin, C., Pollock, L. and Clause, J.: 2014, How do code refactorings affect energy usage?,
Proceedings of the Eighth ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM ’14), ACM, ACM Press, Torino, Italy, pp. 36:1–36:10.
DOI: 10.1145/2652524.2652538

BIBLIOGRAPHY 259

Schanz, T. and Izurieta, C.: 2010, Object oriented design pattern decay, Proceedings of the
Fourth ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM ’10), ACM Press, Bolzano-Bozen, Italy, pp. 7:1–7:8.
DOI: 10.1145/1852786.1852796

Schilling, W. and Alam, M.: 2008, A methodology for quantitative evaluation of software
reliability using static analysis, Proceedings of the 2008 Annual Reliability and Maintainability
Symposium (RAMS ’08), IEEE, Las Vegas, NV, USA, pp. 399–404.
DOI: 10.1109/RAMS.2008.4925829

Selim, G. M. K., Wang, S., Cordy, J. R. and Dingel, J.: 2012, Model transformations for migrat-
ing legacy models: An industrial case study, Proceedings of the Eighth European Conference
on Modelling Foundations and Applications (ECMFA ’12), Springer, Kgs. Lyngby, Denmark,
pp. 90–101.
DOI: 10.1007/978-3-642-31491-9 9

Seng, O., Stammel, J. and Burkhart, D.: 2006, Search-based determination of refactorings for
improving the class structure of object-oriented systems, Proceedings of the Eighth Annual
Conference on Genetic and Evolutionary Computation (GECCO ’06), ACM Press, Seattle, WA,
USA, pp. 1909–1916.
DOI: 10.1145/1143997.1144315

Sobajic, O., Moussavi, M. and Far, B.: 2010, Extending the strategy pattern for parameterized
algorithms, Proceedings of the 17th Conference on Pattern Languages of Programs (PLOP’10),
Reno/Tahoe, NV, USA.

Sommerville, I.: 2000, Software Engineering, 6 edn, Addison Wesley.

Suryn, W.: 2014, Software Quality Engineering, Wiley Blackwell.
DOI: 10.1002/9781118830208

Tamrabet, Z., Marir, T. and Mokhati, F.: 2018, A survey on quality attributes and quality mod-
els for embedded software, International Journal of Embedded and Real-Time Communication
Systems 9(2), 1–17.
DOI: 10.4018/IJERTCS.2018070101

Thompson, H., Lora-Tamayo, E., Damm, W., Dormoy, J.-L., Hobbs, L., Jansz, M., Kosmider,
T. and Pribyl, W.: 2017a, Final evaluation of the ARTEMIS and ENIAC joint undertaking
(2008-2013) operating under Fp7, Technical report, European Comission.
DOI: 10.2759/271765

Thompson, H., Lora-Tamayo, E., Damm, W., Dormoy, J.-L., Hobbs, L., Jansz, M., Kosmider,
T. and Pribyl, W.: 2017b, Interim evaluation of the ECSEL joint undertaking (2014-2016)
operating under Horizon 2020, Technical report, European Comission.
DOI: 10.2759/614017

Tiwari, V., Malik, S., Wolfe, A. and Lee, M. T.-C.: 1996, Instruction level power analysis and
optimization of software, Technologies for wireless computing, Springer, pp. 139–154.

260 BIBLIOGRAPHY

Tripathi, A. K. and Gupta, A.: 2014, A controlled experiment to evaluate the effectiveness
and the efficiency of four static program analysis tools for Java programs, Proceedings of the
18th International Conference on Evaluation and Assessment in Software Engineering (EASE ’14),
ACM, London, UK, pp. 23:1–23:4.
DOI: 10.1145/2601248.2601288

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G. and Halkidis, S.: 2006, Design pattern de-
tection using similarity scoring, IEEE Transactions on Software Engineering 32(11), 896–909.
DOI: 10.1109/TSE.2006.112

van Solingen, R., Basili, V., Caldiera, G. and Rombach, H. D.: 2002, Goal Question Metric
(GQM) approach, Encyclopedia of Software Engineering, John Wiley & Sons, Inc., Hoboken,
NJ, USA, pp. 528–532.
DOI: 10.1002/0471028959.sof142

VanHilst, M. and Fernandez, E. B.: 2007, Reverse engineering to detect security patterns in
code, Proceedings of 1st International Workshop on Software Patterns and Quality, Information
Processing Society of Japan, pp. 1–6.

Victório, R. A. S. S., Coutinho, G. C. A. and Others: 2010, Persistent state pattern, Proceedings
of the 17th Conference on Pattern Languages of Programs (PLoP ’10), ACM, Reno/Tahoe, NV,
USA, pp. 5:1–5:16.
DOI: 10.1145/2493288.2493293

Vokac, M.: 2004, Defect frequency and design patterns: an empirical study of industrial code,
IEEE Transactions on Software Engineering 30(12), 904–917.
DOI: 10.1109/TSE.2004.99

Weisfeld, M.: 2013, The Object-Oriented Thought Process, 4 edn, Addison-Wesley Professional.

Wieringa, R.: 2014, Design Science Methodology for Information Systems and Software Engineering,
Springer Berlin Heidelberg, Berlin, Heidelberg.
DOI: 10.1007/978-3-662-43839-8

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A.: 2012, Experi-
mentation in Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg.
DOI: 10.1007/978-3-642-29044-2

Zaman, S., Adams, B. and Hassan, A. E.: 2011, Security versus performance bugs, Proceedings
of the Eighth Working Conference on Mining Software Repositories (MSR ’11), ACM Press, Hon-
olulu , HI, USA, pp. 93–102.
DOI: 10.1145/1985441.1985457

Zhang, C. and Budgen, D.: 2012, What do we know about the effectiveness of software design
patterns?, IEEE Transactions on Software Engineering 38(5), 1213–1231.
DOI: 10.1109/TSE.2011.79

BIBLIOGRAPHY 261

Zhang, H. and Babar, M. A.: 2010, On searching relevant studies in software engineering,
Proceedings of the 14th international conference on Evaluation and Assessment in Software Engi-
neering (EASE ’10), British Computer Society, Keele, UK, pp. 111–120.

Zhang, Z., Cai, Y.-Y., Zhang, Y., Gu, D.-J. and Liu, Y.-F.: 2016, A distributed architecture based
on microbank modules with self-reconfiguration control to improve the energy efficiency
in the battery energy storage system, IEEE Transactions on Power Electronics 31(1), 304–317.
DOI: 10.1109/TPEL.2015.2406773

Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. P. and on Vouk, M. A. S. E. I. T.:
2006, On the value of static analysis for fault detection in software, Software Engineering,
IEEE Transactions on 32(4), 240–253.
DOI: 10.1109/TSE.2006.38

	Abstract
	Samenvatting
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Critical Embedded Systems
	Software Quality
	Design Patterns
	Research Design
	Problem Statement
	Design Science Framework
	Problem Decomposition
	Empirical Research Methodology

	Overview of the Dissertation

	Investigating Quality Trade-offs in Open Source Critical Embedded Systems
	Introduction
	Related Work
	Quality Trade-offs in Embedded Systems
	Quality Analysis through Evolution
	Overview of Related Work

	Case Study Design
	Objectives and Research Questions
	Case Selection and Unit of Analysis
	Variables
	Collection Procedure and Pre-processing
	Data Analysis

	Results
	Discussion
	Trade-offs in CES Domain
	Comparison of the Two Groups
	Implications for Practitioners and Researchers

	Threats to Validity
	Conclusions

	Design Approaches for Critical Embedded System: A Systematic Mapping Study
	Introduction
	Related Work
	Development Processes
	Verification and Validation
	Software Architecture
	Comparative Analysis

	Review Methodology
	Research Scope
	Search Strategy
	Study Selection
	Keywording
	Data Extraction and Mapping

	Results
	Demographic Overview
	Design Approaches
	Application Domains
	Quality Attributes
	Tools
	Evidence Type

	Discussion
	Relationship between Quality Attributes
	Domain-Specific Research for CES
	Relationships among Approaches, Tools, and Languages
	Implications to Researchers and Practitioners

	Threats to Validity
	Conclusions

	What can Violations of Good Practices tell about the Relationship between GoF Patterns and Runtime Quality Attributes?
	Introduction
	Related Work
	Design Patterns and Correctness
	Design Patterns and Performance
	Design Patterns and Security
	Overview of Related Work

	Case Study Design
	Objectives and Research Questions
	Case Selection and Unit of Analysis
	Variables
	Collection Procedure and Pre-processing
	Data Analysis

	Results
	Comparison between SPP, PPC, and NPP classes (RQ1)
	Comparison between pattern categories RQ2
	Comparison between patterns (RQ3)
	Comparison between pattern roles (RQ4)

	Discussion
	Interpretation of results
	Implications for practitioners and researchers

	Threats to Validity
	Conclusion

	Investigating the Effect of Design Patterns on Energy Consumption
	Introduction
	Related work
	Design Patterns and Alternatives
	State/Strategy
	State/Strategy Alternative
	Template Method
	Template Method Alternative

	Experimental Planning
	Objectives, Research Questions, and Hypotheses
	Design Type and Experimental Units
	Variables and Instrumentation
	Analysis Procedure

	Execution
	Data Collection
	Validation of the Collected Data

	Analysis
	Descriptive Statistics
	RQ1: Template Method
	RQ2: State/Strategy
	RQ3: Influence of Source Code Parameters

	Discussion
	Interpretation of Results
	Implications to Researchers and Practitioners

	Threats to Validity
	Conclusions

	The Evolution of Design Pattern Grime: An Industrial Case Study
	Introduction
	Related Work
	Study Design
	Objectives and Research Questions
	Case Selection, Unit of Analysis, and Subjects
	Variables and Data Collection
	Analysis Procedure

	Results
	RQ1 - Accumulation of Grime
	RQ2 - Structural Characteristics and Pattern Grime

	Discussion
	Interpretation of Results
	Implications to Researchers and Practitioners

	Threats to Validity
	Conclusion

	Correlating Pattern Grime and Quality Attributes
	Introduction
	Related Work
	Design Patterns Grime and Quality Attributes
	Comparison to State of Research

	Study Design
	Objectives and Research Questions
	Case Selection and Units of Analysis
	Variables and Data Collection
	Analysis Procedure

	Results
	RQ1 - Grime and Quality Attributes
	RQ2 - Analysis of Factors

	Discussion
	Interpretation of Results
	Implications to Researchers and Practitioners

	Threats to Validity
	Conclusions

	Conclusions and Future Work
	Research Questions and Contributions
	Future Work
	Pattern Recommendation System
	Scope of Studies
	Exploration of Other Patterns
	Exploration of Quality Attributes
	Pattern Grime and Beyond

	Appendix A
	Supplementary Material to Chapter 3

	Appendix B
	Supplementary Tables to Chapter 4

	Bibliography

