1,816 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Drowsy Eyes and Face Mask Detection for Car Drivers using the Embedded System

    Get PDF
    Efforts to prevent the spread of the COVID-19 virus have underscored the critical importance of mask-wearing as a preventive measure. Concurrently, road traffic accidents, often resulting from human error, have emerged as a significant contributor to global mortality rates. This study endeavors to address these pressing issues by employing advanced Deep Learning techniques to detect mask usage and identify drowsy eyes, thus contributing to the prevention of COVID-19 and accidents due to driver fatigue. To achieve this objective, an embedded system was developed, utilizing the integration of hardware and software components. The system effectively utilizes MobileNetV2 for face mask detection and employs HOG and SVM algorithms for drowsy eye detection. By seamlessly integrating these detection systems into a single embedded device, the simultaneous detection of both mask usage and drowsy eyes is made possible. The results demonstrates a commendable accuracy rate of 80% for face mask detection and 75% for drowsy eye detection. Furthermore, the mask detection component exhibits a remarkable training accuracy of 99%, while the drowsy eye detection component demonstrates an 80% training accuracy, affirming the system's efficacy in precisely identifying masks and drowsy eyes. The proposed embedded system offers potential applications in enhancing road safety. Its capability to effectively detect drowsy eyes and mask usage in car drivers contributes significantly to preventing accidents due to driver fatigue. Additionally, it plays a vital role in mitigating COVID-19 transmission by promoting widespread mask-wearing among individuals. This study exemplifies the potential of integrating Deep Learning methodologies with embedded systems, thus paving the way for future research and development in the realm of driver safety and virus prevention

    Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence

    Get PDF
    Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%

    Driver attention analysis and drowsiness detection using mobile devices

    Get PDF
    Drowsiness and lack of attention are some of the most fatal and underrated accident causes while driving. In this thesis a non intrusive classifier based on features from drivers' facial movements has been developed, focusing on detection strategies that could be deployed on low-complexity devices, like smartphones. Different classification architectures will be proposed and studied in order to understand which implementation performed the best in terms of detection accuracy.openEmbargo temporaneo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    Driver activity recognition for intelligent vehicles: a deep learning approach

    Get PDF
    Driver decisions and behaviors are essential factors that can affect the driving safety. To understand the driver behaviors, a driver activities recognition system is designed based on the deep convolutional neural networks (CNN) in this study. Specifically, seven common driving activities are identified, which are the normal driving, right mirror checking, rear mirror checking, left mirror checking, using in-vehicle radio device, texting, and answering the mobile phone, respectively. Among these activities, the first four are regarded as normal driving tasks, while the rest three are classified into the distraction group. The experimental images are collected using a low-cost camera, and ten drivers are involved in the naturalistic data collection. The raw images are segmented using the Gaussian mixture model (GMM) to extract the driver body from the background before training the behavior recognition CNN model. To reduce the training cost, transfer learning method is applied to fine tune the pre-trained CNN models. Three different pre-trained CNN models, namely, AlexNet, GoogLeNet, and ResNet50 are adopted and evaluated. The detection results for the seven tasks achieved an average of 81.6% accuracy using the AlexNet, 78.6% and 74.9% accuracy using the GoogLeNet and ResNet50, respectively. Then, the CNN models are trained for the binary classification task and identify whether the driver is being distracted or not. The binary detection rate achieved 91.4% accuracy, which shows the advantages of using the proposed deep learning approach. Finally, the real-world application are analysed and discussed

    Preface

    Get PDF
    DAMSS-2018 is the jubilee 10th international workshop on data analysis methods for software systems, organized in Druskininkai, Lithuania, at the end of the year. The same place and the same time every year. Ten years passed from the first workshop. History of the workshop starts from 2009 with 16 presentations. The idea of such workshop came up at the Institute of Mathematics and Informatics. Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea. This idea got approval both in the Lithuanian research community and abroad. The number of this year presentations is 81. The number of registered participants is 113 from 13 countries. In 2010, the Institute of Mathematics and Informatics became a member of Vilnius University, the largest university of Lithuania. In 2017, the institute changes its name into the Institute of Data Science and Digital Technologies. This name reflects recent activities of the institute. The renewed institute has eight research groups: Cognitive Computing, Image and Signal Analysis, Cyber-Social Systems Engineering, Statistics and Probability, Global Optimization, Intelligent Technologies, Education Systems, Blockchain Technologies. The main goal of the workshop is to introduce the research undertaken at Lithuanian and foreign universities in the fields of data science and software engineering. Annual organization of the workshop allows the fast interchanging of new ideas among the research community. Even 11 companies supported the workshop this year. This means that the topics of the workshop are actual for business, too. Topics of the workshop cover big data, bioinformatics, data science, blockchain technologies, deep learning, digital technologies, high-performance computing, visualization methods for multidimensional data, machine learning, medical informatics, ontological engineering, optimization in data science, business rules, and software engineering. Seeking to facilitate relations between science and business, a special session and panel discussion is organized this year about topical business problems that may be solved together with the research community. This book gives an overview of all presentations of DAMSS-2018.DAMSS-2018 is the jubilee 10th international workshop on data analysis methods for software systems, organized in Druskininkai, Lithuania, at the end of the year. The same place and the same time every year. Ten years passed from the first workshop. History of the workshop starts from 2009 with 16 presentations. The idea of such workshop came up at the Institute of Mathematics and Informatics. Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea. This idea got approval both in the Lithuanian research community and abroad. The number of this year presentations is 81. The number of registered participants is 113 from 13 countries. In 2010, the Institute of Mathematics and Informatics became a member of Vilnius University, the largest university of Lithuania. In 2017, the institute changes its name into the Institute of Data Science and Digital Technologies. This name reflects recent activities of the institute. The renewed institute has eight research groups: Cognitive Computing, Image and Signal Analysis, Cyber-Social Systems Engineering, Statistics and Probability, Global Optimization, Intelligent Technologies, Education Systems, Blockchain Technologies. The main goal of the workshop is to introduce the research undertaken at Lithuanian and foreign universities in the fields of data science and software engineering. Annual organization of the workshop allows the fast interchanging of new ideas among the research community. Even 11 companies supported the workshop this year. This means that the topics of the workshop are actual for business, too. Topics of the workshop cover big data, bioinformatics, data science, blockchain technologies, deep learning, digital technologies, high-performance computing, visualization methods for multidimensional data, machine learning, medical informatics, ontological engineering, optimization in data science, business rules, and software engineering. Seeking to facilitate relations between science and business, a special session and panel discussion is organized this year about topical business problems that may be solved together with the research community. This book gives an overview of all presentations of DAMSS-2018

    Artificial Intelligence in Civil Infrastructure Health Monitoring—historical Perspectives, Current Trends, and Future Visions

    Get PDF
    Over the past 2 decades, the use of artificial intelligence (AI) has exponentially increased toward complete automation of structural inspection and assessment tasks. This trend will continue to rise in image processing as unmanned aerial systems (UAS) and the internet of things (IoT) markets are expected to expand at a compound annual growth rate of 57.5% and 26%, respectively, from 2021 to 2028. This paper aims to catalog the milestone development work, summarize the current research trends, and envision a few future research directions in the innovative application of AI in civil infrastructure health monitoring. A blow-by-blow account of the major technology progression in this research field is provided in a chronological order. Detailed applications, key contributions, and performance measures of each milestone publication are presented. Representative technologies are detailed to demonstrate current research trends. A road map for future research is outlined to address contemporary issues such as explainable and physics-informed AI. This paper will provide readers with a lucid memoir of the historical progress, a good sense of the current trends, and a clear vision for future research
    corecore