91 research outputs found

    Rapid Surface Lowering of Benito Glacier, Northern Patagonian Icefield

    Get PDF
    The Patagonian Icefields, which straddle the Andes below 46?S, are one of the most sensitive ice masses to climate change. However, recent mass loss from the icefields, along with its spatial and temporal variability, is not well constrained. Here we determine surface elevation changes of Benito Glacier, a 163 km2 outlet glacier draining the western flank of the North Patagonian Icefield, using a combination of field and satellite-derived elevation data acquired between 1973 and 2017. Our results demonstrate that, just below the equilibrium line, the glacier dramatically thinned by 139 m in the past 44 years, equivalent to a mean rate of 3.2 ? 0.2 m a-1. However, surface lowering was temporally variable, characterized by a hiatus between 2000 and 2013, and a subsequent increase up to 7.7 ? 3.0 m a-1 between 2013 and 2017. Analysis of Benito Glacier?s flow regime throughout the period indicates that the observed surface lowering was caused by negative surface mass balance, rather than dynamic thinning. The high rate of surface lowering observed over the past half a decade highlights the extreme sensitivity of mid-latitude glaciers to recent atmospheric forcingpublishersversionPeer reviewe

    Detailed quantification of glacier elevation and mass changes in South Georgia

    Get PDF
    Most glaciers in South America and on the Antarctic Peninsula are retreating and thinning. They are considered strong contributors to global sea level rise. However, there is a lack of glacier mass balance studies in other areas of the Southern Hemisphere, such as the surrounding Antarctic Islands. Here, we present a detailed quantification of the 21st century glacier elevation and mass changes for the entire South Georgia Island using bi-static synthetic aperture radar interferometry between 2000 and 2013. The results suggest a significant mass loss since the beginning of the present century. We calculate an average glacier mass balance of -1.04 0.09 m w.e.a(-1) and a mass loss rate of 2.28 0.19 Gt a(-1) (2000-2013), contributing 0.006 0.001 mm a(-1) to sea-level rise. Additionally, we calculate a subaqueous mass loss of 0.77 0.04 Gt a(-1) (2003-2016), with an area change at the marine and lake-terminating glacier fronts of -6.58 0.33 km(2) a(-1), corresponding to similar to 4% of the total glacier area. Overall, we observe negative mass balance rates in South Georgia, with the highest thinning and retreat rates at the large outlet glaciers located at the north-east coast. Although the spaceborne remote sensing dataset analysed in this research is a key contribution to better understanding of the glacier changes in South Georgia, more detailed field measurements, glacier dynamics studies or further long-term analysis with high-resolution regional climate models are required to precisely identify the forcing factors

    Glacier response to climate variability and climate change across the Southern Andes

    Get PDF
    Die Gletscherschmelze in den sĂŒdlichen Anden trĂ€gt maßgeblich zum Anstieg des Meeresspiegels der letzten Jahrzehnte bei und beeinflusst regional die saisonale WasserverfĂŒgbarkeit. In jĂŒngster Zeit wurde eine rapide Zunahme der Massenverluste insbesondere einzelner großer Auslassgletscher des SĂŒdlichen Patagonisches Eisfeldes beobachtet. Im Rahmen der Dissertation wurden die rezente VariabilitĂ€t des Klimas und der klimatischen Massenbilanz fĂŒr ausgewĂ€hlte vergletscherte Gebiete in Patagonien und Feuerland untersucht. Die Verbesserung unseres VerstĂ€ndnisses ĂŒber rĂ€umliche und zeitliche Muster der klimatischen Massenbilanz, ihrer atmosphĂ€rischen Antriebsfaktoren und ihres Einflusses auf das in jĂŒngster Vergangenheit beobachtete individuelle Gletscherverhalten, sind weitere wichtige Ziele. Da die KlimavariabilitĂ€t die Hauptursache fĂŒr lokale VerĂ€nderungen in der KryosphĂ€re der sĂŒdlichen Anden ist, wurden langjĂ€hrige meteorologische Beobachtungen im Gebiet der Gran Campo Nevado-Eiskappe im sĂŒdlichsten Patagonien im Hinblick auf rĂ€umliche und zeitliche VariabilitĂ€t untersucht und der Einfluss mesoskaliger Wettermuster und Modi atmosphĂ€rischer Oszillationen auf die AusprĂ€gung des Klimas analysiert. DarĂŒber hinaus wurde die rezente VariabilitĂ€t der klimatischen Massenbilanz fĂŒr ausgewĂ€hlte Gletscher in SĂŒdpatagonien und Feuerland durch die Implementierung des Energie- und Massenbilanzmodells COSIMA simuliert. Eine unterschiedliche AusprĂ€gung der OberflĂ€chenmassenbilanz und geodĂ€tischer Massenbilanz unterstreicht wie wichtig ein besseres VerstĂ€ndnis ĂŒber die Prozesse der klimatischen Massenbilanz und Eisdynamik ist. Des Weiteren wurden Simulationen der klimatischen Massenbilanz eingesetzt, um eine ausgeglichene Massenbilanz fĂŒr rezente und vergangene Ausdehnungen des Gletschers Schiaparelli abzuleiten. Ziel war es, eine modellgestĂŒtzte AnnĂ€herung an die klimatischen Bedingungen wĂ€hrend der Kleinen Eiszeit zu simulieren.Glacier mass loss of the Southern Andes contributes largely to sea-level rise during recent decades and also affects the regional water availability. Despite the overall glacier retreat of most glaciers in Patagonia and Tierra del Fuego, a recent increase in mass loss of individual glaciers has been observed. The recent variability of climate and climatic mass balance for selected glaciated study sites in Patagonia and Tierra del Fuego are investigated in this thesis. Improving our understanding on the spatial and temporal variations of climatic mass balance processes, its atmospheric drivers, and their impact on the recently observed individual glacier behavior are further important aims. Since climate variability is the key driver of local changes in the cryosphere in the Southern Andes, a unique record of meteorological observations across the Gran Campo Nevado Ice Cap in Southernmost Patagonia was analyzed with regard to main climate features and the relationship between the in-situ observations, large-scale climate modes and mesoscale weather patterns. Furthermore, recent climatic mass balance variability was simulated for selected glaciers in Southern Patagonia and Tierra del Fuego by implementing the ’COupled Snow and Ice energy and MAss balance model’ COSIMA. Contrasting patterns of positive simulated annual climatic mass balance and clearly negative geodetic mass balance were found for two neighboring glaciers of the Southern Patagonia Icefield between 2000 and 2014. This highlights the importance of understanding of both, the climatic mass balance, and the ice-dynamical processes. Climatic mass balance simulations were further used to derive glacier steady-state conditions for recent and past glacier extents of Schiaparelli Glacier, aiming for a model-based approximation of climate conditions during the Little Ice Age

    The rapid and steady mass loss of the patagonian icefields throughout the GRACE Era: 2002-2017

    Get PDF
    We use the complete gravity recovery and climate experiment (GRACE) Level-2 monthly time series to derive the ice mass changes of the Patagonian Icefields (Southern Andes). The glacial isostatic adjustment is accounted for by a regional model that is constrained by global navigation satellite systems (GNSS) uplift observations. Further corrections are applied concerning the effect of mass variations in the ocean, in the continental water storage, and of the Antarctic ice sheet. The 161 monthly GRACE gravity field solutions are inverted in the spatial domain through the adjustment of scaling factors applied to a-priori ice mass change patterns based on published remote sensing results for the Southern and Northern Patagonian Icefields, respectively. We infer an ice mass change rate of -24.4 ± 4.7 Gt/a for the Patagonian Icefields between April 2002 and June 2017, which corresponds to a contribution to the eustatic sea level rise of 0.067 ± 0.013 mm/a. Our time series of monthly ice mass changes reveals no indication for an acceleration in ice mass loss. We find indications that the Northern Patagonian Icefield contributes more to the integral ice loss than previously assumed.Fil: Richter, Andreas Jorg. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Laboratorio Maggia.; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Technische UniversitĂ€t Dresden; AlemaniaFil: Groh, Andreas. Technische UniversitĂ€t Dresden; AlemaniaFil: Horwath, Martin. Technische UniversitĂ€t Dresden; AlemaniaFil: Ivins, Erik. California Institute of Technology; Estados UnidosFil: Marderwald, Eric Rodolfo. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Laboratorio Maggia.; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Hormaechea, JosĂ© Luis. Estacion Astronomica Rio Grande; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Austral de Investigaciones CientĂ­ficas; ArgentinaFil: Perdomo, RaĂșl. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Laboratorio Maggia.; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Dietrich, Reinhard. Technische UniversitĂ€t Dresden; Alemani

    Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry

    Get PDF
    The Northern and Southern Patagonian Ice Fields (NPI and SPI) in South America are the largest bodies of ice in the Southern hemisphere outside of Antarctica and the largest contributors to eustatic sea level rise (SLR) in the world, per unit area. Here we exploit swath processed CryoSat-2 interferometric data to produce maps of surface elevation change at sub-kilometer spatial resolution over the Ice Fields for six glaciological years between April 2011 and March 2017. Mass balance is calculated independently for nine sub-regions, including six individual glaciers larger than 300 kmÂČ. Overall, between 2011 and 2017 the Patagonian Ice Fields have lost mass at a combined rate of 21.29 ± 1.98 Gt a−Âč, contributing 0.059 ± 0.005 mm a−Âč to SLR. We observe widespread thinning on the Ice Fields, particularly north of 49° S. However the pattern of surface elevation change is highly heterogeneous, partly reflecting the importance of dynamic processes on the Ice Fields. The Jorge Montt glacier (SPI), whose tidewater terminus is approaching floatation, retreated ~2.5 km during our study period and lost mass at the rate of 2.20 ± 0.38 Gt a−Âč (4.64 ± 0.80 mwe a−Âč). In contrast with the general pattern of retreat and mass loss, Pio XI, the largest glacier in South America, is advancing and gaining mass at 0.67 ± 0.29 Gt a−Âč rate

    60 Years of Glacier Elevation and Mass Changes in the Maipo River Basin, Central Andes of Chile

    Get PDF
    Glaciers in the central Andes of Chile are fundamental freshwater sources for ecosystems and communities. Overall, glaciers in this region have shown continuous recession and down-wasting, but long-term glacier mass balance studies providing precise estimates of these changes are scarce. Here, we present the first long-term (1955–2013/2015), region-specific glacier elevation and mass change estimates for the Maipo River Basin, from which the densely populated metropolitan region of Chile obtains most of its freshwater supply. We calculated glacier elevation and mass changes using historical topographic maps, Shuttle Radar Topography Mission (SRTM), TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X), and airborne Light Detection and Ranging (LiDAR) digital elevation models. The results indicated a mean regional glacier mass balance of −0.12 ± 0.06 m w.e.a−1, with a total mass loss of 2.43 ± 0.26 Gt for the Maipo River Basin between 1955–2013. The most negative glacier mass balance was the Olivares sub-basin, with a mean value of −0.29 ± 0.07 m w.e.a−1. We observed spatially heterogeneous glacier elevation and mass changes between 1955 and 2000, and more negative values between 2000 and 2013, with an acceleration in ice thinning rates starting in 2010, which coincides with the severe drought. Our results provide key information to improve glaciological and hydrological projections in a region where water resources are under pressure

    Co-Registration Methods and Error Analysis for Four Decades (1979–2018) of Glacier Elevation Changes in the Southern Patagonian Icefield

    Get PDF
    The main goal of this paper is to compare two co-registration methods for geodetic mass balance (GMB) calculation in 28 glaciers making up the Upper Santa Cruz River basin, Southern Patagonian Icefield (SPI), from 1979 to 2018. For this purpose, geospatial data have been used as primary sources: Hexagon KH-9, ASTER, and LANDSAT optical images; SRTM digital radar elevation model; and ICESat elevation profiles. After the analyses, the two co-registration methods, namely M1, based on horizontal displacements and 3D shift vectors, and M2, based on three-dimen-sional transformations, turned out to be similar. The errors in the GMB were analyzed through a k index that considers, among other variables, the error in elevation change by testing four interpolation methods for filling gaps. We found that, in 63% of the cases, the relative error in elevation change contributes 90% or more to k index. The GMB throughout our study area reported that a loss value of −1.44 ± 0.15 m w. e. a−1 (−3.0 Gt a−1) and an ice thinning median of −1.38 ± 0.11 m a−1 occurred within the study period. The glaciers that showed the most negative GMB values were Upsala, with an annual elevation change median of −2.07 ± 0.18 m w. e. a−1, and Ameghino, with −2.31 ± 0.22 m w. e. a−1.Fil: Vacaflor, Paulina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Lenzano, MarĂ­a Gabriela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Vich, Alberto Ismael Juan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Lenzano, Luis Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentin

    Detection of crustal uplift deformation in response to Glacier Wastage in southern Patagonia

    Get PDF
    The Southern Patagonian Icefield (SPI) is the largest continuous ice mass in the Southern Hemisphere outside Antarctica. It has been shrinking since the Little Ice Age (LIA) period, with increasing rates in recent years. An uplift of crustal deformation in response to this deglaciation process has been expected. The goal of this investigation is to analyze the crustal deformation caused by ice retreat using time-series data from continuous GPS stations (2015–2020) in the northern area of the SPI. For this purpose, we installed two continuous GPS stations on rocky nunataks of the SPI (the GRCS near Greve glacier and the GBCS close by Cerro Gorra Blanca). In addition, ice elevation changes (2000–2019) were analyzed by the co-registration of the SRTM digital elevation model and ICESat elevation data points. The results of the vertical components are positive (36.55 ± 2.58 mm a−1), with a maximum at GBCS, indicating the highest rate of crustal uplift ever continuously recorded in Patagonia; in addition, the mean horizontal velocities reached 11.7 mm a−1 with an azimuth of 43°. The negative ice elevation changes detected in the region have also accelerated in the recent two decades, with a median (Formula presented.) (elevation change) of −3.36 ± 0.01 m a−1 in the ablation zone. The seasonality of the GPS signals was contrasted with the water levels of the main Patagonian lakes around the SPI, detecting a complex interplay between them. Hence, the study sheds light on the knowledge of the crustal uplift as evidence of the wastage experienced by the SPI glaciers.Fil: Lenzano, MarĂ­a Gabriela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Rivera, AndrĂ©s. Universidad de Chile.; ChileFil: Durand, Marcelo. Universidad Nacional de TucumĂĄn. Facultad de Ciencias Exactas y TecnologĂ­a; ArgentinaFil: Vacaflor, Paulina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Carbonetti, Micaela Alejandra. Ministerio de Defensa. Instituto Geografico Nacional; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Departamento de GeorreferenciaciĂłn Satelitaria; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Lannutti, Esteban DamiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Gende, Mauricio Alfredo. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Departamento de GeorreferenciaciĂłn Satelitaria; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Lenzano, Luis Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentin

    The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002–2017

    Get PDF
    We use the complete gravity recovery and climate experiment (GRACE) Level-2 monthly time series to derive the ice mass changes of the Patagonian Icefields (Southern Andes). The glacial isostatic adjustment is accounted for by a regional model that is constrained by global navigation satellite systems (GNSS) uplift observations. Further corrections are applied concerning the effect of mass variations in the ocean, in the continental water storage, and of the Antarctic ice sheet. The 161 monthly GRACE gravity field solutions are inverted in the spatial domain through the adjustment of scaling factors applied to a-priori ice mass change patterns based on published remote sensing results for the Southern and Northern Patagonian Icefields, respectively. We infer an ice mass change rate of −24.4 ± 4.7 Gt/a for the Patagonian Icefields between April 2002 and June 2017, which corresponds to a contribution to the eustatic sea level rise of 0.067 ± 0.013 mm/a. Our time series of monthly ice mass changes reveals no indication for an acceleration in ice mass loss. We find indications that the Northern Patagonian Icefield contributes more to the integral ice loss than previously assumed.Laboratorio de MeteorologĂ­a espacial, AtmĂłsfera terrestre, Geodesia, GeodinĂĄmica, diseño de Instrumental y AstrometrĂ­
    • 

    corecore