1,764 research outputs found

    Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    Full text link
    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, Indium Arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only few techniques were developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.Comment: 9 pages, 5 figure

    Parallel quantized charge pumping

    Full text link
    Two quantized charge pumps are operated in parallel. The total current generated is shown to be far more accurate than the current produced with just one pump operating at a higher frequency. With the application of a perpendicular magnetic field the accuracy of quantization is shown to be << 20 ppm for a current of 108.9108.9 pA. The scheme for parallel pumping presented in this work has applications in quantum information processing, the generation of single photons in pairs and bunches, neural networking and the development of a quantum standard for electrical current. All these applications will benefit greatly from the increase in output current without the characteristic decrease in accuracy as a result of high-frequency operation

    Single-electron current sources: towards a refined definition of ampere

    Get PDF
    Controlling electrons at the level of elementary charge ee has been demonstrated experimentally already in the 1980's. Ever since, producing an electrical current efef, or its integer multiple, at a drive frequency ff has been in a focus of research for metrological purposes. In this review we first discuss the generic physical phenomena and technical constraints that influence charge transport. We then present the broad variety of proposed realizations. Some of them have already proven experimentally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum metrology of electrical quantities, whereas some others are currently "just" wild ideas, still often potentially competitive if technical constraints can be lifted. We also discuss the important issues of read-out of single-electron events and potential error correction schemes based on them. Finally, we give an account of the status of single-electron current sources in the bigger framework of electric quantum standards and of the future international SI system of units, and briefly discuss the applications and uses of single-electron devices outside the metrological context.Comment: 55 pages, 38 figures; (v2) fixed typos and misformatted references, reworded the section on AC pump

    Semiconductor nanostructures engineering: Pyramidal quantum dots

    Full text link
    Pyramidal quantum dots (QDs) grown in inverted recesses have demonstrated over the years an extraordinary uniformity, high spectral purity and strong design versatility. We discuss recent results, also in view of the Stranski-Krastanow competition and give evidence for strong perspectives in quantum information applications for this system. We examine the possibility of generating entangled and indistinguishable photons, together with the need for the implementation of a, regrettably still missing, strategy for electrical control

    Spectrographic Microfluidic Memory

    Get PDF
    Recent advancements in micro- and nanoscale fluidic manipulation have enabled the development of a new class of tunable optical structures which are collectively referred to as optofluidic devices. In this paper we will introduce our recent work directed towards the development of a spectrographic optofluidic memory. Data encoding for the memory is based on creating spectrographic codes consisting of multiple species of photoluminescent nanoparticles at discrete intensity levels which are suspended in liquids. The data cocktails are mixed, delivered and stored using a series of soft and hard-lithography microfluidic structures. Semiconductor quantum dots are ideally suited for this application due to their narrow and size tunable emission spectra and consistent excitation wavelength. Both pressure driven and electrokinetic approaches to spectral code writing have been developed and will be experimentally demonstrated here. Novel techniques for data storage and readout are also discussed and demonstrated

    A highly efficient single photon-single quantum dot interface

    Full text link
    Semiconductor quantum dots are a promising system to build a solid state quantum network. A critical step in this area is to build an efficient interface between a stationary quantum bit and a flying one. In this chapter, we show how cavity quantum electrodynamics allows us to efficiently interface a single quantum dot with a propagating electromagnetic field. Beyond the well known Purcell factor, we discuss the various parameters that need to be optimized to build such an interface. We then review our recent progresses in terms of fabrication of bright sources of indistinguishable single photons, where a record brightness of 79% is obtained as well as a high degree of indistinguishability of the emitted photons. Symmetrically, optical nonlinearities at the very few photon level are demonstrated, by sending few photon pulses at a quantum dot-cavity device operating in the strong coupling regime. Perspectives and future challenges are briefly discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel
    • …
    corecore