33 research outputs found

    Tuning The Optical, Charge Injection, and Charge Transport Properties of Organic Electronic Devices

    Get PDF
    Since the early 1900's, synthetic insulating polymers (plastics) have slowly taken over the role that traditional materials like wood or metal have had as basic components for construction, manufactured goods, and parts. Plastics allow for high throughput, low temperature processing, and control of bulk properties through molecular modifications. In the same way, pi-conjugated organic molecules are emerging as a possible substitute for inorganic materials due to their electronic properties. The semiconductive nature of pi-conjugated materials make them an attractive candidate to replace inorganic materials, primarily due to their promise for low cost and large-scale production of basic semiconducting devices such as light-emitting diodes, solar cells, and field-effect transistors.Before organic semiconductors can be realized as a commercial product, several hurdles must be cleared. The purpose of this dissertation is to address three distinct properties that dominate the functionality of devices harnessing these materials: (1) optical properties, (2) charge injection, and (3) charge transport. First, it is shown that the electron injection barrier in the emissive layer of polymer light-emitting diodes can be significantly reduced by processing of novel conjugated oligoelectrolytes or deoxyribonucleic acid atop the emissive layer. Next, the charge transport properties of several polymers could be modified by processing them from solvents containing small amounts of additives or by using regioregular and enantiopure chemical structures. It is then demonstrated that the optical and electronic properties of Lewis basic polymer structures can be readily modified by interactions with strongly electron-withdrawing Lewis acids. Through red-shifted absorption, photoluminescence, and electroluminescence, a single pi-conjugated backbone can be polychromatic. In addition, interaction with Lewis acids can remarkably p-dope the hole transport of the parent polymer, leading to a two-orders of magnitude increase in the hole mobility. Finally, the hole, electron, and double carrier transport in solar cell devices are studied in a bid to examine the correlations between bulk morphologies and free carrier recombination.The sum of these works help to create new pathways for the synthesis and design of new pi-conjugated materials and device architectures. All of this is in hopes of achieving higher performance and more stable devices to rival inorganic systems

    ์œ ๊ธฐ๋ฐœ๊ด‘์†Œ์ž๋ฅผ ์œ„ํ•œ ์—ด ํ™œ์„ฑ ์ง€์—ฐํ˜•๊ด‘ ๋ฐœ๊ด‘์ฒด ๋ฐ ์œ ๊ธฐํƒœ์–‘์ „์ง€๋ฅผ ์œ„ํ•œ ์ „์ž ์ฃผ๊ฐœ ๋ฌผ์งˆ๊ณผ ์€๋‚˜๋…ธ์ž…์ž์˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2021.8. ํ™์ข…์ธ.์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž(OLEDs)๋Š” 1987๋…„ ์ฒซ ๋ฐœ๊ฒฌ ์ดํ›„ ๊พธ์ค€ํ•œ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ์œผ๋ฉฐ ์ƒ์šฉํ™”์— ์„ฑ๊ณตํ•˜์—ฌ ํ˜„์žฌ ๋Œ€๋ฉด์ ์˜ TV ๋ถ€ํ„ฐ ์Šค๋งˆํŠธํฐ, ๊ทธ๋ฆฌ๊ณ  ์Šค๋งˆํŠธ ์‹œ๊ณ„ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ํŒจ๋„ ๋””์Šคํ”Œ๋ ˆ์ด์— ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ํ˜•๊ด‘ ๋ฐœ๊ด‘์ฒด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” ์ตœ๋Œ€ ๋‚ด๋ถ€ ์–‘์žํšจ์œจ์ด 25%๋กœ ์ œํ•œ๋˜๋Š” ๋‹จ์ ์„ ๊ฐ–๊ณ  ์žˆ์ง€๋งŒ ์ธ๊ด‘ ๋ฐœ๊ด‘์ฒด๋Š” ์ค‘๊ธˆ์†์˜ ์Šคํ•€๊ถค๋„ ๊ฒฐํ•ฉ์— ์˜ํ•ด ์‚ผ์ค‘ํ•ญ์˜ ์—ฌ๊ธฐ์ž๋ฅผ ์ด์šฉํ•  ์ˆ˜ ์žˆ์–ด ์ตœ๋Œ€ 100%์˜ ๋‚ด๋ถ€ ์–‘์žํšจ์œจ์„ ์ทจํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ธ๊ด‘ ๋ฐœ๊ด‘์ฒด์— ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๊ณ ๊ฐ€์˜ ๋ฐฑ๊ธˆ์ด๋‚˜ ์ด๋ฆฌ๋“ ๊ณ„์—ด์˜ ์ค‘๊ธˆ์† ๋ฌผ์งˆ์€ ์ƒ์šฉํ™”์— ์žˆ์–ด ๊ฒฝ์ œ๋ ฅ์ด ๋–จ์–ด์ง€๊ณ , ๋”ฐ๋ผ์„œ ์ƒˆ๋กœ์šด ๋Œ€์ฒด๋ฌผ์งˆ์˜ ๋„์ž…์ด ํ•„์š”ํ•˜๋‹ค. ์ค‘๊ธˆ์†์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ์—ด ํ™œ์„ฑ ์ง€์—ฐ ํ˜•๊ด‘(TADF) ๋ฐœ๊ด‘์ฒด ๋˜ํ•œ ๋‹จ์ผํ•ญ๊ณผ ์‚ผ์ค‘ํ•ญ์˜ ์—ฌ๊ธฐ์ž๋ฅผ ๋ชจ๋‘ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๊ธฐ์— ์ด๋Š” ์ธ๊ด‘ ๋ฐœ๊ด‘์ฒด๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌผ์งˆ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์—ด ํ™œ์„ฑ ์ง€์—ฐ ํ˜•๊ด‘ ๋ฐœ๊ด‘์ฒด๋Š” ์—ญ ๊ณ„๋ฉด ์ „์ด(RISC)์— ์˜ํ•ด ์‚ผ์ค‘ํ•ญ์— ์œ„์น˜ํ•œ 75%์˜ ์—ฌ๊ธฐ์ž๋ฅผ ๋‹จ์ผํ•ญ์œผ๋กœ ์ด๋™์‹œ์ผœ ๋ชจ๋“  ์—ฌ๊ธฐ์ž๋ฅผ ๋ฐœ๊ด‘์— ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ํŠนํžˆ ์ƒ‰ ์ˆœ๋„์™€ ํšจ์œจ, ์•ˆ์ •์„ฑ์ด ์ /๋…น์ƒ‰ ๋ฐœ๊ด‘์ฒด๋ณด๋‹ค ๋‚ฎ์€ ์ฒญ์ƒ‰์˜ ๋ฐœ๊ด‘์ฒด์— ์ ์šฉ์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ฃผ๋กœ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด์— ์ฒซ๋ฒˆ์งธ ํŒŒํŠธ์—์„œ๋Š” ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์— ์‚ฌ์šฉ๋˜๋Š” ์ฒญ/๋…น์ƒ‰ ์—ด ํ™œ์„ฑ ์ง€์—ฐ ํ˜•๊ด‘ ๋ฐœ๊ด‘์ฒด๋ฅผ ๊ฐœ๋ฐœ ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์œ ๊ธฐ ํƒœ์–‘์ „์ง€(OSCs)๋Š” ํƒœ์–‘๊ด‘์ด๋‚˜ ์ธ๊ณต์˜ ๋น›์„ ์ „๊ธฐ ์—๋„ˆ์ง€๋กœ ๋ณ€ํ™˜์‹œํ‚ค๋Š” ๊ธฐ์ˆ ๋กœ์„œ ๋งค์žฅ๋Ÿ‰์ด ํ•œ์ •๋œ ๊ธฐ์กด์˜ ์ฃผ ์—๋„ˆ์ง€์›์ธ ํ™”์„์—ฐ๋ฃŒ๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ ์œ„ํ•ด ๊พธ์ค€ํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์œ ๊ธฐ ํƒœ์–‘์ „์ง€๋Š” ํฌ๊ฒŒ ๋‘๊ฐ€์ง€ ์ข…๋ฅ˜๋กœ ๋ถ„๋ฅ˜ ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ ํ•˜๋‚˜๋Š” ์‹๋ฌผ์˜ ๊ด‘ํ•ฉ์„ฑ์—์„œ ์˜๊ฐ์„ ๋ฐ›์€ ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€(DSCs)์™€ ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ๊ด‘ ๊ธฐ์ „ ํšจ๊ณผ๋ฅผ ํ™œ์šฉํ•œ ์œ ๊ธฐ ๊ด‘ ๊ธฐ์ „ ์†Œ์ž(OPVs) ์ด๋‹ค. ๊ธฐ์กด์˜ ๋ฃจํ…Œ๋Š„ ๊ธฐ๋ฐ˜์˜ ๊ฐ์‘์ฒด๋ฅผ ์‚ฌ์šฉํ•œ ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€๋Š” ํก๊ด‘ ๊ณ„์ˆ˜๊ฐ€ ๋‚ฎ๊ณ , ๊ฐ€๊ฒฉ์ด ๋น„์‹ธ๋ฉฐ ์ •์ œ๊ฐ€ ํž˜๋“ค๋‹ค๋Š” ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ์œ ๊ธฐ๋ฌผ์„ ์—ผ๋ฃŒ๋กœ ์‚ฌ์šฉํ•œ ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€๊ฐ€ ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค. ์œ ๊ธฐ ๊ด‘ ๊ธฐ์ „ ์†Œ์ž๋Š” ์‹ค๋ฆฌ์ฝ˜/๋ฌด๊ธฐ ํƒœ์–‘์ „์ง€์˜ ๋Œ€์ฒด๊ธฐ์ˆ ๋กœ์„œ ๋†’์€ ํก๊ด‘ ๊ณ„์ˆ˜์™€ ๊ณต์ •์˜ ์šฉ์ด์„ฑ, ๊ฒฝ์ œ์  ์ด์ ์— ์žˆ์–ด ํฐ ์žฅ์ ์„ ๋ณด์ธ๋‹ค. ๋‘๋ฒˆ์งธ ํŒŒํŠธ์—์„œ๋Š” ํก๊ด‘ ํšจ์œจ์„ ๋†’์ด๋Š” ๋…ธ๋ ฅ์„ ํ†ตํ•œ ๊ณ ์„ฑ๋Šฅ์˜ ์œ ๊ธฐํƒœ์–‘์ „์ง€๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ณ ์„ฑ๋Šฅ์˜ ์œ ๊ธฐํƒœ์–‘์ „์ง€๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ผ๋‘์— ๋‘์–ด์•ผ ํ•  ์ถ”๊ฐ€์ ์ธ ์š”์†Œ๋“ค์ด ๋‘๊ฐ€์ง€ ์กด์žฌํ•œ๋‹ค. ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€์˜ ์•ก์ฒด ์ „ํ•ด์งˆ ์‚ฌ์šฉ์— ์˜ํ•œ ๋‚ฎ์€ ์•ˆ์ •์„ฑ ๋ฌธ์ œ์™€ ์—ฌ๊ธฐ์ž์˜ ์งง์€ ํ™•์‚ฐ ๊ฑฐ๋ฆฌ๋กœ ์ธํ•œ ์ œํ•œ๋œ ์†Œ์ž์˜ ๋‘๊ป˜๊ฐ€ ์†๊ผฝํžŒ๋‹ค. ์ „์ž์˜ ๊ฒฝ์šฐ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ๊ตฌ์กฐ์˜ ๊ฐ์‘์ฒด์™€ ๊ณ ์ฒด ์ •๊ณต ์ด๋™๋ฌผ์งˆ์˜ ์กฐํ•ฉ์„ ํ†ตํ•ด ๊ณ ์ฒดํ˜• ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€(ssDSCs)๋ฅผ ๊ฐœ๋ฐœํ•จ์œผ๋กœ์จ ๊ทน๋ณตํ•˜์˜€๋‹ค. ํ›„์ž๋Š” ์œ ๊ธฐ ํƒœ์–‘์ „์ง€ ๋‚ด์— ๊ธˆ์† ๋‚˜๋…ธ์ž…์ž๋ฅผ ๋„์ž…ํ•˜์—ฌ ๊ทธ๊ฒƒ์˜ ๊ตญ๋ถ€์  ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช…(LSPR) ํšจ๊ณผ๋ฅผ ํ™œ์šฉ, ์†Œ์ž์˜ ๋‘๊ป˜๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ด‘์ž ํก์ˆ˜์œจ ์ฆ๊ฐ€๋ฅผ ์ด๋ฃจ๋Š” ๋ฐฉ๋ฒ•์ด ํ•ด๊ฒฐ์ฑ… ์ค‘ ํ•˜๋‚˜๋กœ ์ œ์‹œ๋˜์—ˆ๋‹ค. ์„ธ๋ฒˆ์งธ ํŒŒํŠธ์—์„œ๋Š” ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€์— ์€ ๋‚˜๋…ธ์ž…์ž๋ฅผ ๋„์ž…ํ•˜์—ฌ ํšจ์œจ์„ ์ฆ๋Œ€ ์‹œํ‚ค๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ ํ•˜์˜€๋‹ค. Part I ์—์„œ๋Š” ๊ณ ํšจ์œจ์˜ ์ฒญ/๋…น์ƒ‰ ์—ด ํ™œ์„ฑ ์ง€์—ฐ ํ˜•๊ด‘ ๋ฌผ์งˆ์˜ ๊ฐœ๋ฐœ์— ์ค‘์ ์„ ๋‘์—ˆ๋‹ค. ๊ณ ํšจ์œจ์˜ ์œ ๊ธฐ ๋ฐœ๊ด‘ ์†Œ์ž๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž‘์€ ๊ฐ’์˜ ๋‹จ์ผํ•ญ-์‚ผ์ค‘ํ•ญ๊ฐ„์˜ ์ „์œ„์ฐจ์ด(ฮ”EST) ์™€ ์›ํ™œํ•œ ๋ถ„์ž๋‚ด ์ „ํ•˜ ์ „๋‹ฌ(ICT)์ด ์ค‘์š”ํ•˜๋‹ค. ๊ฒฌ๊ณ ํ•œ ๋ถ„์ž๊ตฌ์กฐ์˜ ์„ค๊ณ„๋กœ ์ „ํ•˜์˜ ๋น„๋ฐœ๊ด‘ ๊ฐ์‡ ์œจ์„ ์ค„์ด๊ณ  ๊ธธ๊ณ  ํ‰ํ‰ํ•œ ๋ถ„์ž๊ตฌ์กฐ๋กœ ๋ฌผ์งˆ์˜ ์ˆ˜ํ‰ ๋ฐฐ์น˜์œจ์„ ๋†’์—ฌ ์ „๋ฉด ๋ฐœ๊ด‘์„ ํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ์œ ๋„ํ•˜๋Š” ๊ฒƒ ๋˜ํ•œ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹จ์ผํ•ญ-์‚ผ์ค‘ํ•ญ๊ฐ„์˜ ์ „์œ„์ฐจ์ด, ๊ณ ํœ˜๋„์—์„œ์˜ ํšจ์œจ๊ฐ์†Œ์œจ, ๋น„๋ฐœ๊ด‘ ๊ฐ์‡ ์œจ์„ ์ค„์ด๋Š” ๋™์‹œ์— ๋ถ„์ž๋‚ด ์ „ํ•˜์ „๋‹ฌ๊ณผ ๋ฐœ๊ด‘ ํšจ์œจ์„ ์ฆ๊ฐ€์‹œ์ผœ ๋†’์€ ์™ธ๋ถ€์–‘์ž ํšจ์œจ์„ ๋ณด์ด๋Š” ์œ ๊ธฐ ๋ฐœ๊ด‘ ์†Œ์ž ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋‘๊ฐœ์˜ ์ „์ž์ฃผ๊ฐœ์™€ ๋ณด๋ก  ์ „์ž๋ฐ›๊ฐœ๋ฅผ ํฌํ•จํ•˜๋ฉฐ ๋ถ„์ž๋‚ด ์ „ํ•˜์ „๋‹ฌ์„ ์ตœ๋Œ€ํ™” ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋’คํ‹€์–ด์ง„ ๊ตฌ์กฐ์˜ CCDMB, PCDMB ๋ฌผ์งˆ์„ ๊ณ ์•ˆํ•˜์˜€๊ณ  ๊ทธ์ค‘ ๊ฐ•ํ•œ ์ „์ž์ฃผ๊ฐœ์ธ ํŽ˜๋…น์‚ฌ์ง„๊ธฐ๋ฅผ ๊ฐ€์ง„ PCDMB๋ฌผ์งˆ์€ 0.13 eV์˜ ์ž‘์€ ๋‹จ์ผํ•ญ-์‚ผ์ค‘ํ•ญ ์ „์œ„ ์ฐจ์ด ๊ฐ’์„ ๋ณด์˜€์œผ๋ฉฐ ํšจ์œจ์ ์ธ ์—ญ ๊ณ„๋ฉด ์ „์ด๊ฐ€ ์ผ์–ด๋‚ฌ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. PCDMB๋ฅผ ๋ฐœ๊ด‘์ฒด๋กœ ์‚ฌ์šฉํ•œ ์†Œ์ž๋Š” (0.21, 0.45)์˜ CIE 1931 ์ƒ‰ ์ขŒํ‘œ๋ฅผ ๋ณด์˜€์œผ๋ฉฐ 22.3%์˜ ๋†’์€ ํšจ์œจ์„ ๊ธฐ๋กํ–ˆ๋‹ค. ๋ถ„์ž์˜ ๊ฒฌ๊ณ ํ•จ์„ ๊ทน๋Œ€ํ™” ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ „์ž์ฃผ๊ฐœ์™€ ์ „์ž๋ฐ›๊ฐœ๋ฅผ ์Šคํ”ผ๋กœ ๊ตฌ์กฐ๋กœ ์—ฐ๊ฒฐ์‹œํ‚จ CBZANQ์™€ PXZANQ๋ฌผ์งˆ์ด ๊ณ ์•ˆ๋˜์—ˆ๊ณ  ๊ฐ„๋‹จํ•œ ๋‘ ๋‹จ๊ณ„์˜ ๋ฐ˜์‘์„ ํ†ตํ•ด ํ•ฉ์„ฑ๋˜์—ˆ๋‹ค. ์ „์ž๊ฐ€ ์›ํ™œํ•˜๊ฒŒ ์ด๋™ํ•˜์ง€ ์•Š๋Š” ์Šคํ”ผ๋กœ ๊ตฌ์กฐ์˜ ๋„์ž…์œผ๋กœ ๋ถ„์ž์˜ ๊ฒฌ๊ณ ํ•จ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ตœ๊ณ  ์ค€์œ„ ์ ์œ  ์ „์ž๊ถค๋„ (HOMO)์™€ ์ตœ์ € ์ค€์œ„ ๋น„์ ์œ  ์ „์ž๊ถค๋„(LUMO)์˜ ํšจ์œจ์ ์ธ ๊ณต๊ฐ„์  ์ „ํ•˜ ๋ถ„๋ฆฌ๋ฅผ ์ด๋ฃจ์—ˆ๋‹ค. PXZANQ ๋ฐœ๊ด‘์ฒด๋ฅผ ์ด์šฉํ•œ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” 528 nm์—์„œ ๋น›์„ ๋ƒˆ์œผ๋ฉฐ 22.1%์˜ ์†Œ์ž ํšจ์œจ์„ ๋ณด์˜€๊ณ , ์ด๋Š” ์ง€๊ธˆ๊นŒ์ง€ ์•Œ๋ ค์ง„ ์ „์ž์ฃผ๊ฐœ-์Šคํ”ผ๋กœ-์ „์ž๋ฐ›๊ฐœ ๊ตฌ์กฐ์˜ ์—ด ํ™œ์„ฑ ์ง€์—ฐ ํ˜•๊ด‘ ๋ฌผ์งˆ ์ค‘ ๊ฐ€์žฅ ๋†’์€ ํšจ์œจ์„ ๊ธฐ๋กํ–ˆ๋‹ค. Part II ์—์„œ๋Š” ๋‘๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ์œ ๊ธฐํƒœ์–‘์ „์ง€์ธ ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€์™€ ์œ ๊ธฐ ๊ด‘ ๊ธฐ์ „ ์†Œ์ž์˜ ๊ด‘ ๋ณ€ํ™˜ ํšจ์œจ์„ ์ฆ๊ฐ€ ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ผ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์œ ๊ธฐ ๋ถ„์ž์˜ ๋„“์€ ํŒŒ์žฅ ์˜์—ญ๋Œ€์—์„œ์˜ ํƒœ์–‘ ์ŠคํŽ™ํŠธ๋Ÿผ ํก์ˆ˜๋Š” ๋‹จ๋ฝ์ „๋ฅ˜(JSC)์˜ ์ฆ๊ฐ€์— ์˜ํ–ฅ์„ ๋ผ์น˜๊ณ  ๋ถ„์ž์˜ ์—๋„ˆ์ง€ ์ค€์œ„์™€ ์†Œ์ž์˜ ๊ตฌ์กฐ๋Š” ๊ฐœ๋ฐฉ์ „์••(VOC)๊ณผ ๊ณก์„ ์ธ์ž(FF)์— ์˜ํ–ฅ์„ ์ฃผ๋ฉฐ ์ด ์„ธ๊ฐ€์ง€ ์š”์ธ์€ ํƒœ์–‘์ „์ง€์˜ ํšจ์œจ์„ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์š” ์ธ์ž๋“ค์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด ์„ธ๊ฐ€์ง€ ์ธ์ž๋“ค ์ค‘ ๋‹จ๋ฝ์ „๋ฅ˜์˜ ์ฆ๊ฐ€์— ์ง‘์ค‘ํ•˜์˜€์œผ๋ฉฐ ๋†’์€ ๊ด‘ ํก์ˆ˜์œจ์„ ํ†ตํ•œ ๋†’์€ ๋‹จ๋ฝ์ „๋ฅ˜๋ฅผ ๋ณด์ด๋Š” ๋ถ„์ž๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋…ธ๋ ฅํ•˜์˜€๋‹ค. ํƒœ์–‘์ „์ง€์—์„œ ์ž์ฃผ ๋„์ž…๋˜์ง€ ์•Š์€ ํ‰ํ‰ํ•œ ํ€ด๋‚˜ํฌ๋ฆฌ๋ˆ ์œ ๋„์ฒด๋ฅผ ์ด์šฉํ•œ ๊ธด ์ฝ˜์ฅฌ๊ฒŒ์ด์…˜์„ ๊ฐ€์ง„ ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€์˜ ์—ผ๋ฃŒ๋ฌผ์งˆ๊ณผ ์œ ๊ธฐ ๊ด‘ ๊ธฐ์ „ ์†Œ์ž์˜ ์ „์ž์ฃผ๊ฐœ ๋ฌผ์งˆ์„ ๊ณ ์•ˆํ•˜๊ณ  ์—ฐ๊ตฌํ•˜์˜€๋‹ค. Part III ์—์„œ๋Š” ์€ ๋‚˜๋…ธ์ž…์ž๋ฅผ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€์— ๋„์ž…ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ํƒœ์–‘์ „์ง€์˜ ๊ด‘ ํก์ˆ˜์œจ์€ ์†Œ์ž์˜ ํ™œ์„ฑ์ธต์˜ ๋„“์ด์™€ ๋‘๊ป˜์— ๋น„๋ก€ํ•˜์ง€๋งŒ ์ด๊ฒƒ์˜ ์ฆ๊ฐ€๋Š” ์†Œ์ž์˜ ์ €ํ•ญ ๋˜ํ•œ ์ฆ๊ฐ€์‹œ์ผœ ๊ด‘ ์ „ํ™˜ํšจ์œจ์„ ๊ฐ์†Œ์‹œํ‚ค๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ํŒŒํŠธ์—์„œ๋Š” ์€ ๋‚˜๋…ธ์ž…์ž๋ฅผ ํ‹ฐํƒ€๋Š„ ์‚ฐํ™”๋ฌผ ์ธต์— ๋„์ž…ํ•˜์—ฌ ํ™œ์„ฑ์ธต์˜ ๋‘๊ป˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š์œผ๋ฉด์„œ ๊ตญ๋ถ€์  ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช…์— ์˜ํ•œ ํก์ˆ˜์˜ ์ฆ๊ฐ€๋ฅผ ๊พ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์€ ๋‚˜๋…ธ์ž…์ž์™€ ๋‹ค๊ณต์„ฑ ํ‹ฐํƒ€๋Š„ ์‚ฐํ™”๋ฌผ๊ณผ์˜ ์ง‘์„ฑ ํšจ๊ณผ์— ์˜ํ•œ ํ‘œ๋ฉด์˜ ๊ฑฐ์น ๊ธฐ๋ฅผ ์™„ํ™”์‹œ์ผœ ์›ํ™œํ•œ ์ „ํ•˜์ „๋‹ฌ์„ ๋„๋ชจํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ์€ ๋‚˜๋…ธ์ž…์ž์˜ ์ „์œ„๊ฐ€ ํ‹ฐํƒ€๋Š„ ์‚ฐํ™”๋ฌผ์˜ ์ „๋„๋Œ€์™€ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ๋ฌผ์งˆ์˜ ์ „์œ„๋ณด๋‹ค ๋‚ฎ๊ฒŒ ์œ„์น˜ํ•˜์—ฌ ์ „ํ•˜๊ฐ€ ๊ฐ‡ํžˆ๋Š” ๊ตฌ๊ฐ„์„ ์ƒ์„ฑํ•˜์—ฌ ํšจ์œจ์˜ ๊ฐ์†Œ๋ฅผ ์ดˆ๋ž˜ํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋„์ž…๋œ ์€ ๋‚˜๋…ธ์ž…์ž์˜ ์–‘์— ๋”ฐ๋ฅธ ๋น›์˜ ํก์ˆ˜์œจ๊ณผ ์ „ํ•˜์˜ ๊ฐ‡ํž˜, ํ‘œ๋ฉด์˜ ๊ฑฐ์น ๊ธฐ์˜ ๋ณ€ํ™” ์‚ฌ์ด์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ํ•ต์‹ฌ์–ด: ์œ ๊ธฐ ๋ฐœ๊ด‘ ์†Œ์ž, ์—ด ํ™œ์„ฑ ์ง€์—ฐ ํ˜•๊ด‘, ์œ ๊ธฐ ํƒœ์–‘์ „์ง€, ์—ผ๋ฃŒ ๊ฐ์‘ํ˜• ํƒœ์–‘์ „์ง€, ์œ ๊ธฐ ๊ด‘ ๊ธฐ์ „ ์†Œ์ž, ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€, ๊ธˆ์† ๋‚˜๋…ธ์ž…์ž.Organic light-emitting diodes (OLEDs) have drawn considerable attention since the first report in 1987 and were successfully applied to commercialization in various fields of panel displays including large-screen televisions, smart phones, and smart watches. Conventional fluorescent dopant-based OLED emitters can only achieve a maximum internal quantum efficiency (IQE) of up to 25%. On the other hand, phosphorescence emitters which can harvest triplet excitons utilizing spin-orbit coupling of heavy metal atoms can reach a maximal IQE of up to 100%. However, the high cost of commonly used heavy metal atoms such as platinum or iridium increases the cost of commercial products and alternative materials are required accordingly. Metal-free thermally activated delayed fluorescence (TADF) emitters have been considered as alternatives to phosphorescence emitters because they can utilize not only singlet but also triplet excitons by converting 75% of excitons in the lowest triplet excited state (T1) to the lowest singlet excited state (S1) through reverse intersystem crossing (RISC). The first part of the thesis describes the development of efficient blue-green TADF emitting materials for OLEDs. Organic solar cells (OSCs) are capable of converting light energy (sunlight or artificial light) into electrical energy and thus have gained continuous recognition as a potential alternative to conventional energy sources such as fossil fuels. There are two kinds of organic solar cells, dye-sensitized solar cells (DSCs) and organic photovoltaic cells (OPVs). Conventional ruthenium-based sensitizers for DSCs have several drawbacks; low absorption coefficient, high material cost, and difficulty in purification. Therefore, metal-free organic sensitizers with high light-harvesting ability are continuously developed as an attractive alternative. OPVs are a promising substitute to silicon/inorganic solar cells owing to their high absorption coefficient, ease of fabrication, and low manufacturing cost. One way to realize high-efficiency OSCs is to develop dyes having high light harvesting ability. The second part of the thesis is focused on designing organic dye materials for DSCs and electron donor materials for OPVs with high light-harvesting ability. There are two major problems to be solved to achieve highly efficient DSCs. One is instability of DSCs employing liquid electrolyte, and the other is insufficient light harvesting by limited thickness of the active layer of devices considering the short exciton diffusion length (~10 nm). The former can be overcome by adopting perovskite-structured sensitizers with solid hole transporting materials to form solid state DSCs (ssDSCs). The latter can be solved by introducing metallic nanoparticles (NPs) into OSCs which can increase the light absorption by the localized surface plasmon resonance (LSPR) without increasing the thickness of the device. The introduction of Ag-NPs into perovskite based ssDSCs is discussed in the third part of the thesis. Part I is focused on designing highly efficient blue-green TADF OLED emitters. To achieve high external quantum efficiency (EQE) of TADF OLED emitters, it is vital to fulfill a small singlet-triplet energy difference (ฮ”EST) value for efficient RISC and efficient intramolecular charge transfer (ICT) for increased emission. In addition, rigid structures are required to decrease non-radiative decay sites, and long, planar structures should be considered to increase the horizontal dipole orientation which can affect forward-emission and thus enhance light out-coupling efficiency. This part presents several ways to decrease ฮ”EST, efficiency roll-off, and non-radiative decay rate, but increase the ICT character and photoluminescence quantum yield (PLQY) for highly efficient TADF emitters. Two twisted donor (D)-acceptor (A) type structures (CCDMB and PCDMB) composed of double electron donors and a trivalent boron acceptor were designed to maximize the ICT character. PCDMB with a strong phenoxazine donor showed a small ฮ”EST value of 0.13 eV, resulting in effective RISC and triplet harvesting. PCDMB-based devices showed green emission with Commission Internationale de lโ€™ร‰clairage (CIE) of (0.21, 0.45) and a high maximum EQE of 22.3%. Two rigid spiro-type D-ฯƒ-A TADF emitters (CBZANQ, PXZANQ) were designed and synthesized via a simple two-step route. To maximize the rigidity of the emitter structure, spiro-type D-ฯƒ-A structures have been exploited, resulting in efficient spatial separation of the HOMO and LUMO. The PXZANQ-based OLED devices with a DPEPO host exhibited the maximum emission at 528 nm with a high EQE of 22.1% and small roll-off. The EQE of PXZANQ-based devices was among the highest in D-spiro-A type TADF emitters Part II describes efforts toward increasing power conversion efficiency (PCE) of DSCs and OPVs by improving light-harvesting efficiency. One major way to increase short-circuit current (JSC) is to harvest a wide range of solar spectrum by planar and long conjugated molecules. Other ways to improve PCE is to increase open circuit voltage (VOC) and fill-factor (FF) by adjusting energy levels of layers. This part is focused on ways to obtain high JSC values by increasing the light-harvesting efficiency utilizing organic sensitizers for DSCs and electron donor materials for OPVs based on a planar quinacridone (QA) ฯ€-bridge in common. Part III investigates the effect of silver (Ag)-NPs on the PCE of perovskite solar cells. The light harvesting of solar cells highly depends on the width and thickness of the active layer. However, increasing those factors may be inevitably accompanied by enhanced device resistance which might decrease the device PCE. Ag-NPs were embedded into TiO2 layer to enhance the light absorption without increasing the thickness of the device via the localized surface plasmon resonance (LSPR) effect. Furthermore, the aggregation of Ag-NPs with mesoporous TiO2 induced the morphology change of TiO2 layer which is advantageous for efficient charge transfer. However, the energy level of Ag-NPs lower than both perovskite sensitizer and conduction band of TiO2 caused charge trapping site which hampered the efficient charge transfer. Consequently, it is important to optimize the loading levels of Ag-NPs for high-efficiency solar cell devices. The interrelations of optical absorption, charge trapping, and surface roughness of TiO2 layer of perovskite solar cells with different concentrations of neat Ag-NPs were demonstrated. Keyword : Organic light emitting diodes, thermally activated delayed fluorescence, organic solar cells, dye-sensitized solar cells, organic photovoltaics, perovskite solar cells, metallic nanoparticles.Part I. Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes ๏ผ‘ 1.1. Study Background ๏ผ’ 1.1.1. OLEDs in our life ๏ผ’ 1.1.2. History of OLEDs ๏ผ’ 1.1.3. Brief structure of OLED devices ๏ผ“ 1.1.4. Efficiency of OLEDs ๏ผ” 1.1.5. Thermally activated delayed fluorescence (TADF) ๏ผ• 1.1.6. Outline for thesis ๏ผ‘๏ผ‘ 1.2. The Effect of the Electron-Donor Ability on the OLED Efficiency of Twisted Donor-Acceptor Type Emitters ๏ผ‘๏ผ“ 1.2.1. Introduction ๏ผ‘๏ผ“ 1.2.2. Experimental Section ๏ผ‘๏ผ” 1.2.3. Results and discussion ๏ผ‘๏ผ™ 1.2.4. Conclusion ๏ผ“๏ผ“ 1.3. Introduction of hydrogen-bonding on TADF emitting materials. ๏ผ“๏ผ” 1.3.1. Introduction ๏ผ“๏ผ” 1.3.2. Results and Discussion ๏ผ“๏ผ” 1.4. Screenings of rigid and planar TADF materials. ๏ผ“๏ผ— 1.4.1. Introduction ๏ผ“๏ผ— 1.4.2. Experimental Section ๏ผ“๏ผ— 1.4.3. Results and Discussion ๏ผ”๏ผ• 1.5. SpiroType TADF Emitters Based On Acridine Donors and Anthracenone Acceptor. ๏ผ•๏ผ• 1.5.1. Introduction ๏ผ•๏ผ• 1.5.2. Experimental Section ๏ผ•๏ผ– 1.5.3. Results and Discussion ๏ผ•๏ผ™ 1.5.4. Conclusion ๏ผ–๏ผ™ REFERENCES ๏ผ—๏ผ‘ Part II. Highly Efficient Organic Materials for Organic Solar Cells ๏ผ—๏ผ– 2.1. Introduction ๏ผ—๏ผ— 2.1.1. Necessity of organic solar cells (OSCs). ๏ผ—๏ผ— 2.1.2. Efficiency of OSCs ๏ผ—๏ผ˜ 2.1.3. Outline for thesis ๏ผ—๏ผ™ 2.2. Organic sensitizers for dye-sensitized solar cells (DSCs) ๏ผ˜๏ผ‘ 2.2.1. Background ๏ผ˜๏ผ‘ 2.2.2. The novel organic sensitizers based on planarquinacridone ฯ€spacer for highly efficient dye-sensitized solar cells. ๏ผ˜๏ผ” 2.3. Electron donor materials for organic photovoltaic cells (OPVs) ๏ผ™๏ผ– 2.3.1. Background ๏ผ™๏ผ– 2.3.2. A solution processable quinacridone-based electron donor materials for bulk-heterojunction organic solar cells. ๏ผ‘๏ผ๏ผ REFERENCES ๏ผ‘๏ผ‘๏ผ’ Part III. Metallic Nanoparticles in Solar cells. ๏ผ‘๏ผ‘๏ผ– 3.1. Backgrounds ๏ผ‘๏ผ‘๏ผ— 3.1.1. Introduction ๏ผ‘๏ผ‘๏ผ— 3.1.2. Purpose of metallic NPs in solar cells ๏ผ‘๏ผ‘๏ผ˜ 3.1.3. History of metallic NPs in solar cells. ๏ผ‘๏ผ’๏ผ 3.2. Correlations of optical absorption, charge trapping, and surface roughness of TiO2 photoanode layer loaded with neat Ag-NPs for efficient perovskite solar cells ๏ผ‘๏ผ’๏ผ’ 3.2.1. Abstract ๏ผ‘๏ผ’๏ผ’ 3.2.2. Introduction ๏ผ‘๏ผ’๏ผ’ 3.2.3. Experimental Section ๏ผ‘๏ผ’๏ผ• 3.2.4. Results and Discussion ๏ผ‘๏ผ’๏ผ˜ 3.2.5. Conclusion ๏ผ‘๏ผ“๏ผ™ REFERENCES ๏ผ‘๏ผ”๏ผ Abstract in Korean (๊ตญ๋ฌธ์ดˆ๋ก) ๏ผ‘๏ผ”๏ผ– ๊ฐ์‚ฌ์˜ ์ธ์‚ฌ ๏ผ‘๏ผ”๏ผ™๋ฐ•

    5th International Symposium Technologies for Polymer Electronics - TPE 12: 22. - 24. May 2012, Rudolstadt/Germany ; Proceedings

    Get PDF
    Version notice: There are minor differences between the printed and online version

    Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    Get PDF
    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs\u27 performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs\u27 attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs

    Organic light-emitting diodes with doped charge transport layers

    Get PDF
    Organische Farbstoffe mit einem konjugierten pi-Elektronen System zeigen รผberwiegend ein halbleitendes Verhalten. Daher sind sie potentielle Materialien fรผr elektronische und optoelektronische Anwendungen. Erste Anwendungen in Flachbildschirmen sind bereits in (noch) geringen Mengen auf dem Markt. Die kontrollierte Dotierung anorganischer Halbleiter bereitete die Basis fรผr den Durchbruch der bekannten Halbleitertechnologie. Die Kontrolle des Leitungstypes und der Lage des Fermi-Niveaus erlaubte es, stabile pn-รœbergรคnge herzustellen. LEDs kรถnnen daher mit Betriebsspannungen nahe dem thermodynamischen Limit betrieben werden (ca. 2.5V fรผr eine Emission im grรผnen Spektralbereich). Im Gegensatz dazu bestehen organische Leuchtdioden (OLEDs) typischerweise aus einer Folge intrinsischer Schichten. Diese weisen eine ineffiziente Injektion aus Kontakten und eine relative geringe Leitfรคhigkeit auf, welche mit hohen ohmschen Verlusten verbunden ist. Andererseits besitzen organische Materialien einige technologische Vorteile, wie geringe Herstellungskosten, groรŸe Vielfalt der chemischen Verbindungen und die Mรถglichkeit sie auf flexible groรŸe Substrate aufzubringen. Sie unterscheiden sich ebenso in einigen fundamentalen physikalischen Parametern wie Brechungsindex, Dielektrizitรคtskonstante, Absorptionskoeffizient und Stokes-Verschiebung der Emissionswellenlรคnge gegenรผber der Absorption. Das Konzept der Dotierung wurde fรผr organische Halbleiter bisher kaum untersucht und angewandt. Unser Ziel ist die Erniedrigung der Betriebsspannung herkรถmmlicher OLEDs durch den Einsatz der gezielten Dotierung der Transportschichten mit organischen Molekรผlen. Um die verbesserte Injektion aus der Anode in die dotierte Lรถchertransportschicht zu verstehen, wurden UPS/XPS Messungen durchgefรผhrt (ultraviolette und Rรถntgen-Photoelektronenspektroskopie). Messungen wurden an mit F4-TCNQ dotiertem Zink-Phthalocyanin auf ITO und Gold-Kontakten durchgefรผhrt. Die Schlussfolgerungen aus den Experimenten ist, das (i) die Fermi-Energie sich durch Dotierung dem Transportniveau (also dem HOMO im Falle der vorliegenden p-Dotierung) annรคhert, (ii) die Diffusionspannung an der Grenzflรคche durch Dotierung entsprechend verรคndert wird, und (iii) die Verarmungszone am Kontakt zum ITO sehr dรผnn wird. Der Kontakt aus organischem Material und leitfรคhigem Substrat verhรคlt sich also ganz analog zum Fall der Dotierung anorganischer Halbleiter. Es entsteht ein stark dotierter Schottky-Kontakt dessen schmale Verarmungszone leicht durchtunnelt werden kann (quasi-ohmscher Kontakt). Die Leistungseffizienz von OLEDs mit dotierten Transportschichten konnte sukzessive erhรถht werden, vom einfachen 2-Schicht Design mit dotiertem Phthalocyanine als Lรถchertransportschicht, รผber einen 3-Schicht-Aufbau mit einer Elektronen-Blockschicht bis zu OLEDs mit dotierten 'wide-gap' Lรถchertransport-Materialien, mit und ohne zusรคtzlicher Schicht zur Verbesserung der Elektroneninjektion. Sehr effiziente OLEDs mit immer noch niedriger Betriebsspannung wurden durch die Dotierung der Emissionsschicht mit Molekรผlen erhรถhter Photolumineszenzquantenausbeute (Laser-Farbstoffe) erreicht. Eine optimierte LED-Struktur weist eine Betriebsspannung von 3.2-3.2V fรผr eine Lichtemission von 100cd/m2 auf. Diese Resultate entsprechen den zur Zeit niedrigsten Betriebsspannungen fรผr OLEDs mit ausschlieรŸlich im Vakuum aufgedampften Schichten. Die Stromeffizienz liegt bei ca. 10cd/A, was einer Leistungseffizienz bei 100cd/m2 von 10lm/W entspricht. Diese hohe Leistungseffizienz war nur mรถglich durch die Verwendung einer Blockschicht zwischen der dotierten Transportschicht und der Lichtemissions-Schicht. Im Rahmen der Arbeit konnte gezeigt werden, dass die Dotierung die Betriebsspannungen von OLEDs senken kann und damit die Leistungseffizienz erhรถht wird. Zusammen mit einer sehr dรผnnen Blockschicht konnte einen niedrige Betriebsspannung bei gleichzeitig hoher Effizienz erreicht werden (Blockschicht-Konzept).Organic dyes with a conjugated pi-electron system usually exhibit semiconducting behavior. Hence, they are potential materials for electronic and optoelectronic devices. Nowadays, some applications are already commercial on small scales. Controlled doping of inorganic semiconductors was the key step for today's inorganic semiconductor technology. The control of the conduction type and Fermi-level is crucial for the realization of stable pn-junctions. This allows for optimized light emitting diode (LED) structures with operating voltages close to the optical limit (around 2.5V for a green emitting LED). Despite that, organic light emitting diodes (OLEDs) generally consist of a series of intrinsic layers based on organic molecules. These intrinsic organic charge transport layers suffer from non-ideal injection and noticeable ohmic losses. However, organic materials feature some technological advantages for device applications like low cost, an almost unlimited variety of materials, and possible preparation on large and flexible substrates. They also differ in some basic physical parameters, like the index of refraction in the visible wavelength region, the absorption coefficient and the Stokes-shift of the emission wavelength. Doping of organic semiconductors has only been scarcely addressed. Our aim is the lowering of the operating voltages of OLEDs by the use of doped organic charge transport layers. The present work is focused mainly on the p-type doping of weakly donor-type molecules with strong acceptor molecules by co-evaporation of the two types of molecules in a vacuum system. In order to understand the improved hole injection from a contact material into a p-type doped organic layer, ultraviolet photoelectron spectroscopy combined with X-ray photoelectron spectroscopy (UPS/XPS) was carried out. The experimental results of the UPS/XPS measurements on F4-TCNQ doped zinc-phthalocyanine (ZnPc) and their interpretation is given. Measurements were done on the typical transparent anode material for OLEDs, indium-tin-oxide (ITO) and on gold. The conclusion from these experiments is that (i) the Fermi-energy comes closer to the transport energy (the HOMO for p-type doping), (ii) the built-in potential is changed accordingly, and (iii) the depletion layer becomes very thin because of the high space charge density in the doped layer. The junction between a doped organic layer and the conductive substrate behaves rather similar to a heavily doped Schottky junction, known from inorganic semicondcutor physics. This behavior favors charge injection from the contact into the organic semiconductor due to tunneling through a very small Schottky barrier (quasi-ohmic contact). The performance of OLEDs with doped charge transport layers improves successively from a simple two-layer design with doped phthalocyanine as hole transport layer over a three-layer design with an electron blocking layer until OLEDs with doped amorphous wide gap materials, with and without additional electron injection enhancement and electron blocking layers. Based on the experience with the first OLEDs featuring doped hole transport layers, an ideal device concept which is based on realistic material parameters is proposed (blocking layer concept). Very high efficient OLEDs with still low operating voltage have been prepared by using an additional emitter dopant molecule with very high photoluminescence quantum yield in the recombination zone of a conventional OLED. An OLED with an operating voltage of 3.2-3.2V for a brightness of 100cd/m2 could be demonstrated. These results represent the lowest ever reported operating voltage for LEDs consisting of exclusively vacuum sublimed molecular layers. The current efficiency for this device is above 10cd/A, hence, the power efficiency at 100cd/m2 is about 10lm/W. This high power efficiency could be achieved by the use of a blocking layer between the transport and the emission layer

    Data-driven Organic Semiconductor Discovery

    Get PDF

    2014 Status Report on Organic Light Emitting Diodes (OLED)

    Get PDF
    Organic light emitting diodes (OLED) are promising candidates for general illumination, since they offer the possibility to realize large area light sources which can even be transparent and flexible. The energy-saving potential of OLEDs is similar to that of LEDs, but the two technologies differ in a number of ways. The present report introduces the basics of the OLED technologies and its latest developments. It also describe the emerging markets, industry landscape and standardisation requirementsJRC.F.7-Renewables and Energy Efficienc

    Synthesis and Characterization of Hole-Transporting and Electroluminescent Polymers

    Get PDF
    This thesis describes research on synthesis and characterization of electroluminescent and hole-transporting polymers for applications in organic light-emitting diodes (OLEDs). The first part of the project focuses on the synthesis of derivatives of the electroluminescent polymer poly(para-phenylenevinylene) (PPV) using ring-opening metathesis polymerization (ROMP) of substituted barrelenes. Barrelenes (a certain kind of bicyclic olefins) have been prepared through multi-step synthetic procedures, and the existing synthetic route was extended to barrelenes without electron-withdrawing groups. ROMP of barrelenes was explored because this polymerization can be living, which allows the preparation of well-defined polymeric products. A new version of a soluble PPV derivative was prepared via this route. The second part of the project focuses on hole-transporting (HT) polymers. A range of HT polymers were prepared via ROMP and anionic polymerization to explore the influence of different hole mobility and different ionization potential on the performance of a two-layer OLED. OLED devices were fabricated using spin-casting and vacuum vapor deposition, and were characterized in terms of current-voltage behavior and light output. A photo-crosslinkable hole transport layer was demonstrated. The HT polymers have been found to yield improved OLEDs by comparison to analogous small-molecule materials due to better film coverage and better film morphology. The device performance has been found to improve with increasing ionization potential of the hole transport polymer. An optimized device was fabricated, which showed 20 Lm/W efficiency. The best HT polymer was modified further to improve the operational stability of the device by improving the interfacial contact to the anode. A better adhesion to the conducting glass was achieved by preparing trimethoxysilane-containing copolymers via radical polymerization, and developing a procedure to cross-link these copolymers to the anode surface. The appendix describes a project unrelated to the general topic of materials for OLEDs. It presents a study on four chiral molybdenum-based ROMP-initiators with regard to their ability to yield highly stereoregular polymers.</p
    corecore