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ABSTRACT 

VISUALIZAING AND CONTROLLING CHARGE TRANSPORT IN CONJUGATED POLYMER NETWORKS 
AND FILMS 

 
MAY 2014 

 
ANDREW R. DAVIS,  

 
B.S., UNIVERSITY OF VIRGINIA 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Kenneth R. Carter 

 
The desire for more commercially feasible flexible electronic plastics has led to the development 

of increasingly complex conjugated polymer architectures and device geometries. Through 

these efforts, tremendous advances have been made in the design and performance of 

electronic devices fabricated with solution-processable semiconducting polymers. However, 

none of these materials have yet reached commercial maturity, so the opportunity for their 

further exploration from both a fundamental science and an application-driven point of view 

motivates this dissertation. 

 Chapter 1 presents a background introduction to many of the concepts, ideas, and 

existing research necessary to set the context of this dissertation’s work. The first component of 

this work (Chapters 2-6) investigates thiol-ene cross-linked conjugated polymer networks. By 

installing vinyl functionalities in poly(fluorene) molecules at chain ends (Chapters 2 and 3) and 

along the polymer backbone (Chapters 4 and 5), the polymers can be rapidly and efficiently 

cross-linked by photo-reaction with thiol cross-linkers into highly tunable semiconducting 

polymer networks. It is shown that the thiol-ene cross-linking reaction allows for a new 

molecular handle on modifying interchain electronic communication via network density, which 



 

ix 

is visualized using characteristic and unambiguous photoemission from low-energy fluorenone 

species. Light emitting diodes fabricated using these networks as an emissive layer show 

enhanced color stability compared to as-spun counterparts, and the robustness of the networks 

allows for solution processing of multiple stratified emissive layers for controlling color 

emission. Furthermore, the highly efficient thiol-ene cross-linking reaction is shown to work as 

an effective means for grafting poly(fluorene)s onto functionalized surfaces. 

 This work’s second component in Chapter 7 details the direct visualization of charge 

carrier density in polymeric thin film transistors using Modulation-Amplified Reflectance 

Spectroscopy (MARS) measurements. Owing to the unique changes in optical behavior following 

the formation of a charged state within the conjugated polymer film, optical spectroscopy 

coupled to a CCD camera offers a powerful visualization tool for observing and mapping charges 

across large areas as they interact with electrodes, defects, and film morphologies in active 

devices. The MARS technique illuminates the spatial distribution of carriers in electronic 

polymer films, allowing direct spatial visualization of charge density and film defects. 

 Finally, a brief concluding comment on this work and an outlook for the field in general 

is presented in Chapter 8. 
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CHAPTER 1 

CONJUGATED POLYMERS AND CHARGE TRANSPORT IN ORGANIC MOLECULES 

The overall inspiration and goal of the research presented here is to take advantage of 

the inherent polymeric nature of conjugated polymers to enable new ways of thinking about, 

using, and designing conjugated polymers for fundamental research and applied uses. More 

specifically, this dissertation is focused on using discrete, controllable molecular architectures to 

investigate how molecular connectivity in conjugated polymer thin films and networks affects 

their semiconducting properties. At the time of writing, those issues have not been the topic of 

any systemic investigations with conjugated polymers despite being a unique property and 

variable inherent to covalently bound polymer semiconductors in contrast to their inorganic 

counterparts. Both interchain connectivity within networks as well as surface-binding 

connectivity in grafted systems will be discussed. Additionally, the optical changes characteristic 

of electronic charges and excited states in a semiconducting polymers will be leveraged to 

visualize electronic phenomena in these molecules. 

A general introduction is presented in this chapter to give a brief overview of the 

context and background for some of the concepts necessary to understand the work presented 

in this dissertation. Each chapter additionally contains a more specific introduction for those 

particular topics.  

1.1 Introduction to Conjugated Polymers 

Semiconductivity was strictly the domain of metals and inorganic materials for 

effectively half a century following the invention of the transistor at Bell Labs in the early 20th 

century.(1) However, by the end of the century, a new class of materials was proven to possess 

semiconducting and current-carrying capabilities: conjugated organic molecules. While arguably 
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known since the late 1800s with the electropolymerization of aniline into an ill-defined insoluble 

blue powder which was likely polyaniline,(2) the promise of conjugated polymers as wholly new 

semiconducting materials was cemented by the awarding of the 2000 Nobel Prize in Chemistry 

to Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa for their work on conjugated 

polacetylenes in 1970s.(3-6) The number of publications on conjugated polymers, now 

numbering over 2000 new publication annually, has steadily increased every year since their 

award, and major electronics companies have begun pursuing the commercialization of organic 

electronic devices, displays, and solar cells with over 3000 organizations in 2013 pursuing 

organic electronics.(7) 

 

Figure 1.1: (A) Example of historically important conjugated polymers polyacetylene and 
polyaniline. (B) Structures of polyaniline in variously doped forms. 

The polymers mentioned above – polyacetylene and polyaniline – are shown in Figure 

1.1 as structures typical of conjugated polymers. The basic working principle of conjugated 
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polymers as semiconducting materials is the delocalization of electronic charge through the 

covalently bonded polymer backbone, which is in marked contrast to the band-theory of 

inorganic semiconductors.(8, 9) This delocalization is most commonly accomplished through 

alternating saturated and unsaturated carbon-carbon bonds which leads to extended, 

overlapping π-orbitals, however a number of additional motifs involving heteroatoms and non-

covalent interactions (e.g., coordination of organic molecules with metallic species) have been 

similarly explored.(10) Despite not adhering to the traditional band model of semiconductivity, 

hole transport in conjugated polymers is often described as occurring through the “valence 

band”-like highest occupied molecular orbital (HOMO) energy levels, while electrons are 

transported through the “conduction band”-like lowest unoccupied molecular orbital (LUMO) 

energy levels.  

 

Figure 1.2: Rough comparison of the conductivities of conjugated polymers with conventional 
conductors, semiconductors, and insulators. Adapted with permission from Moliton and 
Hiorns, Polym. Int., 53, 1397-1412 (2004). Copyright 2004 Society of Chemical Industry.(8)  

Figure 1.2 shows a selection of approximate conductivities for typical electronic and 

insulating systems. Like inorganic semiconductors, conjugated polymers can be chemically 
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doped to achieve a wide range of conductivity and energy levels. By far polyaniline, first 

identified and described in the 1980s by the research group of MacDiarmid from the Nobel-

winning trio, remains the most common example of this behavior. Through acidic doping of the 

conjugated backbone, semiconducting polyaniline can be reversibly converted to a more 

conductive form, illustrated in Figure 1.1B.(11) Colloquially referred to as the leucoemeraldine 

and emeraldine base forms of polyaniline, respectively, the chemical changes associated with 

this doping can be more broadly defined as the conversion between non-degenerative benzoid 

and quinoid bonding arrangements. These two states are further discussed in Sections 1.6 and 

1.7, but it is worthwhile here to note that similar conversions have been observed in a range of 

conjugated polymers other than polyaniline, including polythiophenes and polypyrroles.(8) 

1.2 Device Applications of Conjugated Polymers 

The semiconducting nature of conjugated polymers allows for their use in any 

conventional semiconducting application with few exceptions.(8) Some conjugated polymer and 

organic small molecules have seen limited commercialization, and widespread development of 

cheap, flexible polymer electronics is an attractive goal. But even without widespread 

commercialization, many of these devices serve important roles in advancing the fundamental 

understanding of how optoelectronic phenomena behave in these materials in varying 

electronic architectures. 

Polymer light emitting diodes (PLEDs) and photovoltaics (PVs) both rely on a vertical 

stack of thin organic films sandwiched between two electrodes, where one is generally a low 

work function metal (e.g. Ca or Al) and the other is a transparent conductive electrode (e.g. 

indium tin oxide) to allow for light to transmit in or out of the device. In a simplistic view, PLEDs 

and PVs operate via similar but opposite charge transport modes under an applied voltage. In 
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PLEDs holes and electrons are injected from each electrode which then meet, recombine as 

excitons, and relax via emission of light. In PVs incident light induces the formation of an 

exciton, which then dissociates into holes and electrons that are extracted by each electrode. In 

both cases, one or more semiconducting organic layers are vertically sandwiched between the 

two electrodes. 

 

Figure 1.3: Typical multilayer structure for organic and polymeric light emitting diodes. 
Reprinted with permission from Tang and VanSlyke, Appl. Phys. Lett., 51, 913-915 (1987). 
Copyright 1987, AIP Publishing LLC.(12) 

For organic LEDs (including polymers), while electroluminescent behavior was known 

nearly since the discovery of organic semiconductors, the critical work of Tang and VanSlyke 

introduced multiple organic layers which pushed unrealistic operating conditions (driving 

voltages in excess of 100V) to much more reasonable values with orders of magnitude 

improvements in brightness and efficiency.(12) The design of hole/electron transport and 

blocking layers, shown in Figure 1.3, led to orders of magnitude improvements in brightness and 

luminous efficiency. These layers serve to transport their respective charges, funneling them 

into the emissive layer where subsequent charge blocking layers ensure holes and electrons 
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recombine and emit light in the desired luminescent layer. Both PLEDs and polymeric PVs 

benefit from multiple layers dedicated to specific electronic tasks. In PVs, similar layers lead to 

significant improvements in the extraction of charges. In PVs, there is often an additional desire 

for interdigitation-like contact between dedicated hole and electron transporting layers on the 

order of the photo-generated exciton diffusion length (generally on the order of 10 nm) to 

increase the interfacial area between those layers, thus extracting more current.(13) 

Conjugated polymers can also serve as the active semiconducting layer in thin film 

transistors (TFT), identical in operation to their inorganic TFT counterparts.(10, 13) In these 

devices, illustrated in Figure 1.4, a thin semiconducting organic layer is deposited on a dielectric-

coated conductive gate electrode. Application of a voltage to the gate electrode (VG) induces 

capacitor-like charges to form along a thin sheet at the interface between the semiconducting 

polymer film and dielectric insulator. Source and drain electrodes in contact with the organic 

semiconductor layer can then be biased with a drain voltage VD to drive current through the 

device. Thus the gate voltage acts as a switch to amplify (or turn off) current and charge flow 

between the source and drain electrodes. 

 

Figure 1.4: Schematic illustration of a thin film transistor, with semiconducting polymer layer 
shown in blue.  

These two device architectures – the vertical stack of PLEDs and PVs and the horizontal 

transport of TFTs – will be important in the following chapters of this work. However, an even 
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wider range of device applications exist for conjugated polymers, including electrochromic 

devices, fluorescent and electronic sensors, organic lasers, and thermoelectric materials.(14) 

The above examples of devices and applications for CPs make their versatility clear. 

However, as of 2014, strikingly few of these polymeric devices have been successfully 

commercialized. The reasons for this are simple: performance and reliability. The underlying 

challenges are numerous, charge mobility in conjugated polymers approaches that of 

amorphous silicon in only the extreme best cases, and mobilities are more commonly orders of 

magnitude lower than in silicon.(13) Positively charged holes are generally more stable than 

electrons due to deeper, redox-resistant energy levels of the highest occupied molecular orbital 

(where they reside) as well as by typical organic chemistry arguments of carbocation versus 

carbanion stability on hydrocarbon scaffolds.(16) This significantly limits device architectures 

(particularly those relying on p-n junctions or electron transport). Furthermore, the 

environmental stability and longevity of these materials is historically unreliable. For LEDs, a 

minimum of 10,000 hours of operation is typically required. In the case of PVs, the industry 

standard is 25 years of operation is required. While some polymers show adequate lifetime, 

many of the best performing polymers begin to lose their properties within minutes of 

operation. The contrasting success of inorganic semiconductor devices, which superficially 

operate in an identical manner, is an obvious indication that problems remain to be solved for 

electronic polymer devices. Understanding and controlling these effects is one overarching goal 

of this dissertation. 

1.3 Effects of Morphology and Polymer Architecture on Electronic Properties 

 Despite their weaknesses, conjugated polymers offer a remarkable advantage over 

inorganic semiconductors: solution processibility. A conjugated polymer backbone is generally 
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insoluble on its own, but non-conjugated side-chains can easily be incorporated as solubilizing 

components. Throughout many years of study, a nearly inexhaustible range of side-chains have 

been investigated, from alkyl to hydrophilic to zwitterionic, with structures ranging from linear 

to branched to cyclic to dendritic. This has allowed for CP processing from polar, non-polar, 

organic, aqueous, and orthogonal solvents as desired.(13, 17-20) 

 One reason so many solubilizing side-chains have been studied is their dramatic effect 

on solid state morphology and charge transport. A quintessential example is the hexyl side-chain 

of poly(3-hexylthiophene) (P3HT). P3HT has become a benchmark material in polymer-based 

TFTs and PVs with its easily characterized semi-crystalline nature and relatively high hole 

mobility. Numerous studies have examined the role of side chains other than the hexyl group on 

poly(thiophene)s by varying the alkyl length, branching, and regularity.(21-23) Perhaps 

unintuitively, shorter linear alkyl side-chains have occasionally been reported to result in worse 

electronic performance despite presumably denser chain packing and interaction.  With the 

same conjugated poly(thiophene) backbone, varying the side-chain architecture can 

demonstrably affect UV-vis absorption,(21) carrier mobility,(24) and even the HOMO and LUMO 

energy levels.(22)  The hexyl group is often reported to provide the most marked performance 

improvements in alkylated poly(thiophene)s, such that P3HT remains the benchmark 

poly(thiophene) system, but it is not at all challenging to find conflicting reports about which 

side-chain configurations perform the best in identical devices. (21, 25) Poly(thiophene) is 

mentioned here due to its popularity in the literature, but these general concerns have been 

observed in effectively all conjugated polymers in which solubilizing side-chains are employed, 

such as in poly(fluorene)s which are particularly relevant to this dissertation.(26)  

With conflicting performance reports, it follows that processing conditions themselves 

can also affect the morphology and performance of chemically identical polymers. A wide range 
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of processing conditions all have influence on the final conjugated polymer morphology and 

device performance: processing solvent, polymer concentration, thermal annealing, vapor 

annealing, etc. (27-33) A few examples from widely extensive literature illustrate how organic 

solar cells fabricated from identical conjugated materials performed with over double the 

efficiency when spin-coated from dichlorobenzene at short vs. long coating times,(30) and the 

π-π* transition energy in thin films of alkoxy-functionalized poly(phenylene vinylene) 

dramatically increased when processed from a high vapor pressure solvent compared to one 

with low vapor pressure.(28) Understanding processing conditions is clearly a critical concern 

when designing conjugated polymer-based application. 

1.4 Cross-Linking Conjugated Polymer Thin Films 

A particular draw of conjugated polymers is their solution processibility; however, the 

advantage of solubility is simultaneously a disadvantage. As described in section 1.2, the most 

efficient semiconducting devices are designed with multiple stacked layers, such as dedicated 

hole transport, electron transport, and emissive layers in PLEDs. In these designs, fully solution-

processed devices require orthogonal solvents for the deposition of each layer in order to 

prevent disruption of any previously coated films. Realistically, this constraint allows for only 

two or maybe three layers, and even then specially designed and synthesized polymers are 

necessary to achieve orthogonal solubilities. 

Cross-linking has been one approach to solve the difficulties of solution processing 

multiple layers of fully soluble materials. By using soluble cross-linkable polymers, a thin 

semiconducting polymer film can be deposited from solution, cross-linked to an insoluble state, 

and then subsequent films can be processed from the same initial solvent. Researchers have 
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studied both thermal curing and photo curing routes to achieve robust cross-linked conjugated 

polymer films.(34-41) 

In addition to their solvent-processing benefits, cross-linked conjugated polymer films 

offer some control over undesirable changes in morphology over time which can lead to 

degraded performance. An early example particularly relevant to the work in following chapters 

was reported by Klärner and co-workers.(35) In their work, cross-linked poly(fluorene) 

demonstrated superb color stability compared to an un-cross-linked counterpart which was 

shown to evolve an undesirable low-energy green photoemission following annealing. This 

control over morphological and optoelectronic stability is elaborated further in Chapter 2, as are 

previously explored thermal and photo-initiated cross-linking routes. 

Curiously, no studies to date examine correlations between network connectivity and 

charge transport in cross-linked conjugated polymers achieved by any chemistry. As discussed in 

Section 1.3, similar aspects of molecular architecture and processing are known to have 

significant effects on the optoelectronic properties of conjugated polymers. Thus, one goal of 

this dissertation is to explore the relationships of architecture and performance in cross-linked 

systems using the highly efficient and selective thiol-ene reaction. 

1.5 Thiol-Ene Cross-Linking for Network Formation 

Thiol-ene and thiol-yne chemistry, in which a thiol reacts with an unsaturated carbon-

carbon bond to form a new thio-ether bond, have been known in some form since 1905.(42) In 

the subsequent century, thiol-ene chemistry has been applied to biological systems and 

hydrogels, drug design, three-dimensional photolithography, particle ligand and surface 

modification, fabrication of high glass transition temperature and low stress networks, and 

functionalization of countless polymers.(43-46) 
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This wide range of applied chemistry is in no small part due to the remarkable ease, 

efficiency, and selectivity of the thiol-ene reaction. In recent years, these properties have 

earned the reaction a seat at the table with similar vaunted reactions termed “click chemistry”. 

Particularly noteworthy is the photo-initiated thiol-ene click reaction. In this reaction, exposure 

to UV radiation (particularly low wavelength 254 nm emission) initiates the thiol-ene reaction by 

homolytic cleavage of the S-H bond to form a thiyl radical which then adds to an unsaturated 

carbon-carbon bond via radical chemistry.(47) Thiol-ene reactions can thus be accomplished 

without the need of a dedicated photo initiator. Furthermore, the reaction mechanism is known 

to proceed even in the presence of oxygen, leading to particularly facile reaction without the 

need for rigorous atmospheric control.(45) 

A general reaction scheme for the radical thiol-ene reaction is illustrated in Figure 1.5. In 

this reaction, photo generation of the thiyl radical (either by self-initiation or by reaction with an 

added photoinitiator) proceeds to form a new thio-ether bond by selectively reacting with an 

unsaturated carbon-carbon bond. This carbon-carbon bond can either by internal or terminal in 

the reacting “ene”. The resulting carbon-centered radical on the newly formed species extracts 

a proton from a free thiol, and the cycle begins anew.  
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Figure 1.5: Reaction cycle for photoinitiated radical thiol-ene click reaction. 

A number of studies have investigated the effects of varying monomer structure, 

functionality, and the thiol to “ene” ratio on the reactivity and final properties of thiol-ene cross-

linked networks.(45, 48, 49) The structure of the unsaturated ene is most commonly varied due 

to synthetic convenience, and a broad summary of these results are shown in Figure 1.6. 

Generally fewer reports exist regarding variable thiol structure on curing and network 

properties. However, in general alkyl thiols are more reactive than thiol acetates which are in 

turn more reactive than aromatic thiols.(46)  This owes to the relative stability of the 

electrophilic thiyl radical. The general trends for the reactivity of enes is intuitive given the 

radical reaction illustrated in Figure 1.5 and the electrophilic nature of the thiyl radical: electron 

donating groups increase reactivity while electron withdrawing groups decreases reactivity. Also 

intuitively, higher functionality enes (hence denser networks) on cyclic or tethered architectures 

yield more rigid networks with higher glass transition temperatures and larger elastic modulii 

than lower functionality, linear enes. 
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Figure 1.6: General summary of reactivity and network property trends for thiol-ene 
molecules and networks fabricated from “ene” monomers of varying architecture. Trend data 
from References (48, 49). 

In the vast array of thiol-ene and conjugated polymer literature to date, exactly two 

reports outside the work of this dissertation have investigated the thiol-ene reaction as applied 

to conjugated polymers.(50, 51) Both of these studies have reacted a mono-functional thiol with 

the internal “ene” of phenylene-vinylene and phenylene-ethynylene type polymers, leading to a 

reduction in overall conjugation length and resulting in higher energy band gaps. While 

providing an interesting handle to tune optoelectronics, these reactions do not result in cross-

linked networks given the mono-functionality of the investigated thiols. 
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Figure 1.7: Example of thiol-ene chemistry used to modify the emissive properties of 
conjugated poly(phenylene vinylene) by reaction with an internal alkene. Reprinted with 
permission from Pogantsch and co-workers, Adv. Func. Mater., 15, 403-409 (2005). Copyright 
2005 Wiley-VCH. 

1.6 Charge Transport in Organic Semiconductors 

Semiconducting polymer devices have seen only a fraction of the operational success as 

their inorganic counterparts, as mentioned in Section 1.2. One of the most significant 

differences between organic and inorganic semiconductors is the mechanism of charge 

formation and transport. In conjugated polymers, charges exist as discretely localized species 

existing as an inseparable coupling of charge and structural deformation of the polymer 

backbone.  
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Figure 1.8: Illustration of a charged state in a conjugated organic matrix, where hexagons 
represent the carbon-carbon σ-bonding of an aromatic benzene-like ring, and circles represent 
their respective delocalized π-electron cloud. Republished with permission of CRC Press, from 
“Charge Transport in Oligomers” in Organic Field-Effect Transistors, Gilles Horowitz, CRC Press 
2007(9); permission conveyed through Copyright Clearance Center, Inc. 

Unsurprisingly, such a localized inhomogeneous phenomenon of charge formation does 

not fit well with the classical band theory of charge transport in crystalline inorganic 

semiconductors which relies on a multitude of overlapping indistinct atomic interactions.(52) In 

contrast, a single charged state in conjugated polymers greatly polarizes the electron clouds of 

its neighbors, illustrated in Figure 1.8 (hence the term “polaron”). A number of alternative 

models for organic charge transport have been explored in the literature.(9) The most 

prominent of these are Marcus-like theories which rely on the ease of polarization and 

reorganization of the semiconductor matrix(53) and various hopping theories(54, 55) which 

describe charge transport through more disorganized materials as the intermolecular 

interactions between localized but separated band-like states.  

The specific details, advantages, and shortcomings of these models are not particularly 

relevant to this dissertation and can be found in the references cited above. However, the fact 
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that they all agree on slow, localized charges accompanied by structural changes in the polymer 

backbone is indeed important for some of the work presented here. These mechanisms of 

charge transport, which are qualitatively different than the highly mobile, highly delocalized 

holes and electrons in inorganic semiconductors, are a fundamental reason why the 

performance of organic semiconductors is so different than their inorganic counterparts. 

1.7 Optically Imaging Charged States in Organic Semiconductor Thin Films 

A unique advantage of the low mobility and localized, backbone-altering structure of 

charged states in conjugated polymers is their distinct, spectroscopically-obervable effect on the 

optical behavior of charge-carrying molecules. This contrasts to tedious non-optical tools like 

Kelvin probe force microscopy in which electric fields and charge distributions are mapped 

across an active device surface using an electrically charged probe tip.(56, 57) Specifically, 

researchers have taken advantage of changes in light transmission or absorption when a 

conjugated polymer goes from the neutral “benzoid” structure to the charge-carrying “quinoid” 

structure (Figure 1.9A). These molecular configurations were briefly discussed in Section 1.1 in 

regard to polyaniline, but any conjugated polymer built on a cyclic aromatic monomer 

undergoes similar changes. This transition has been deliberately accomplished via both chemical 

doping shown in Figure 1.9B(58) as well as by electric field-induced charge formation (e.g., field-

effect transistors or capacitors) shown in Figure 1.9C.(59)  
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Figure 1.9: (A) Illustration of the neutral benzoid and charge-carrying quinoid molecular 
bonding configurations in example conjugated polymer poly(3-hexylthiophene). (B) 
Spectroscopic identification of the chemically-induced benzoid and quinoid forms of 
polyaniline. Reprinted Synthetic Metals, vol. 72, Lee, Heeger, Cao, “Reflectance spectra of 
polyaniline”, pp. 25-24, Copyright 1995, with permission from Elsevier.(58) (C) Differential 
optical transmission spectroscopy showing the difference between the electric field-induced 
benzoid and quinoid states in poly(3-hexylthiophene). Reprinted figure reproduced from 
Brown and co-workers in Physical Review B, 63, p. 125204 (2001). Copyright 2001 by the 
American Physical Society.(59) 

Following successful spectroscopic identification of the charge carrying states shown in 

Figure 1.9B and C, a handful of researchers have shown interest in using optical spectroscopy 

techniques to identify more complicated charge transport behavior in conjugated molecules and 

even spatially visualize distributions of charges. Such direct mapping techniques are 

experimentally complex and effectively impossible in non-organic systems where charged states 

are highly mobile, dynamic, and energetically indistinct. 
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Figure 1.10: Examples of organic charge carrier imaging from published literature. Charges 
have been spectroscopically mapped for small molecules such as C60

 fullerenes and pentacene 
(A,B,D), as well as conjugated polymers such as poly(3-hexylthiophene) (C). Figure A reprinted 
with permission from Zhang, Appl. Phys. Lett., 100, p. 103301 (2012). Copyright 2012, AIP 
Publishing LLC. Figure B reprinted with permission from Matsui, Appl. Phys. Lett., 95, p. 
223301 (2009). Copyright 2009, AIP Publishing LLC. Figure C reprinted with permission from Li, 
Nano Lett., 6, 224-228 (2006). Copyright 2006 American Chemical Society. Figure D reprinted 
with permission from Sciascia, Adv. Mater., 23, 5086-5090 (2011). Copyright 2011 Wiley-
VCH.(60-63) 

Figure 1.10 shows some of the few literature reports on mapping and imaging charge 

carriers in conjugated molecules. Various reports have visualized electronic phenomena in 

organic semiconductors: both hole and electron accumulation has been spectroscopically 

resolved due to their different changes in structure and therefore optical absorption (Figure 

1.10A),(60) time resolved carrier flow(61) and large grain-dominated trap sites(62) have been 

observed in pentacene thin films (Figure 1.10B, D), and carrier distributions in P3HT have been 

mapped between two perpendicular electrodes (Figure 1.10 C).(63) Figure 1.10 is representative 

of the organic charge visualization field in that most reported studies have focused on 
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conjugated small molecules or oligomers such as C60 fullerenes and pentacene, with some 

modest work on polymeric systems.(64-66) 

While a great deal has been learned from these techniques, they present disadvantages. 

A number of these and related studies have employed highly focused laser probes with small 

spot-sizes, in which the probe laser must be rastered across the area of interest to generate a 

one- or two-dimensional mapping of charge phenomena.(62, 63) Such methods are time-

consuming, particularly over large areas, and disadvantageous in high-throughput metrology 

applications. Many of these same studies also depend on measuring the differential 

transmission of an optical probe, requiring at minimum a semi-transparent device substrate and 

layer stack.(62) Such devices are often not comparable to the most commonly employed device 

architectures built on opaque substrates (metals and inorganics). Similarly difficult architectural 

concerns arise in studies using the differential optics resulting from a piezo-like dielectric layer 

which responds to changes in electric field correlating to changes in carrier density.(61) While 

remarkably clever, it is difficult to translate these measurements to more practical, widespread 

device architectures. 

There are no theoretical constraints on why more conventional non-transmissive device 

architectures (such as the ubiquitous Si/SiO2 gate/dielectric pair) cannot be used in optical 

visualization studies, nor why a small probe size of a laser is required for an optical probe. For 

these reasons, another goal of this dissertation is to develop a more robust, wide-area, rapid 

tool for the visualization of the unique optical changes that occur in semiconducting organic 

materials when carrying charge. These advantages could conceivably allow for more general 

insight into important phenomena occurring across the entire electronic polymer device as the 

whole area could ideally be imaged simultaneously on common device architecture.  
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1.8 Outline of the Dissertation 

The introduction presented in this chapter offered the background concepts and work 

necessary to understand the goals and approaches of the research described in this dissertation, 

whose focus is on the visualization and control of charge transport in conjugated polymers. A 

brief history of conjugated polymers was presented, placing them in context with other 

semiconducting materials and applications. This was followed by additional details on the 

processing of these materials which has been known to affect their behavior and an overview of 

thiol-ene click chemistry as a tool for fabrication cross-linked networks. A more detailed 

description of the mechanism of charge transport in conjugated polymers was then presented 

to provide a sense of how those mechanisms might be controlled and observed.  

Chapters 2-5 describe the synthesis, characterization, and thiol-ene network-forming 

capabilities of alkene-functionalized poly(fluorene)s. The effect of these networks’ architecture 

is then observed on the polymers’ electronic properties, and charge transport is abstractly 

visualized by careful observation and measurement of fluorescent behavior. Chapter 6 expands 

the thiol-ene reaction in poly(fluorene)s to surface grafting applications. Chapter 7 

demonstrates the direct spatial visualization of charged states in polymeric thin film transistors 

using modulation-amplified reflectance spectroscopy. Finally, Chapter 8 offers a brief summary 

and outlook following the results of this dissertation. 
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CHAPTER 2 

SEMICONDUCTING POLYMER NETWORKS VIA THIOL-ENE PHOTO-CLICK CHEMISTRY* 

2.1 Introduction 

Cross-linking semiconducting polymers into a robust insoluble network is an attractive 

route to improving their functional performance, longevity, and processability. In this chapter, 

thiol-ene click chemistry is explored to form robust, device-compatible cross-linked films of a 

conjugated polymer (CP). Poly(dialkyl fluorene)s are a class of material that has been extensively 

investigated for use in polymer light-emitting diode (PLED) applications due to their deep blue 

emission, chemical and thermal stability, ease of functional tuning at the bridging 9-position, 

and high photoluminescent and electroluminescent yields.(1-3) One drawback of poly(fluorene)s 

is the exhibition of a broad green emission band between 500 and 550 nm which has been 

attributed to the formation of aggregates and/or the generation of ketone defects over time 

and under annealing conditions.(4-7) Cross-linking of CP films has been shown in the literature 

to provide more stable emission, presumably due to polymer chains being “locked” into 

position, significantly reducing their tendency to re-align during annealing or device 

operation.(8) Cross-linking also allows for the formation of dual-layer devices where the robust 

cross-linked layer will not be dissolved during solution processing of a second layer. Additionally, 

cross-linking enables the incorporation of a wide range of chemical functionality that can be 

imbedded in the polymer during curing. 

Several methods can be found in the literature describing the cross-linking of CP films. 

The thermally-intiated free-radical autopolymerization of styrene is widely known, and there is 

already a considerable amount of work exploiting this chemistry to cross-link 4-phenyethenyl 

                                                           
* Portions of this chapter have been reprinted with permission from Davis, Maegerlein, Carter, J. 
Am. Chem. Soc. 133, 20546 (2011). Copyright 2011 American Chemical Societry. 



 

27 

end-capped CPs such as poly(fluorene)s,(9-11) poly(phenylene vinylene)s,(12) triarylamines,(13, 

14) and heteroleptic iridium complexes.(15) Examples of these styrene-functionalized CPs 

previously used for thermal cross-linking are shown in Figure 2.1.  

 

Figure 2.1: Examples of previously studied thermally cross-linkable conjugated polymers. 

While the thermal autopolymerization chemistry is attractive as it requires no additional 

cross-linking reagents and no side products are anticipated, curing requires an oxygen-free 

environment at elevated temperatures (above 150 °C) and reaction times up to several hours. 

To circumvent these concerns, several different UV-initiated cross-linking chemistries have been 

investigated with various CPs allowing for curing at lower temperatures and with shorter 

reaction times. UV-initiated curing gives the added benefit for photo-patterning, providing the 

potential for the fabrication of materials with more complex architectures. One popular 

example found in the literature is the acrylate group, readily polymerized by a radical 

mechanism which can be initiated photochemically.(16, 17) Oxetanes, strained four-member 

cyclic ethers that can undergo cationic ring-opening polymerization, have similarly been used as 
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cross-linkable functional groups provided a suitable initiator is added,(18) and bromine-

terminated side chains have been employed to cross-link poly(thiophene)s.(19) Examples of 

free-radical sensitive monomers and pre-polymers used in the systhesis of these systems are 

shown in Figure 2.2. While UV-initiated cross-linking removes the need for high heat and long 

reaction times, the curing procedures require some mechanism for initiation. Generally this is 

achieved by adding a photo-acid or –radical generator (PAG/PRG) to the reaction mixture which 

acts as an initiator upon UV exposure. It is easy to imagine that this small molecule additive may 

result in deleterious effects including residual initiator and/or undesired side products. 

 

Figure 2.2: Examples of previously studied photo-curable conjugated molecules. 

This chapter describes the investigation of a previously unexplored cross-linking 

chemistry for CPs that takes advantage of the low curing temperatures and quick processing 

time provided by UV-curing but proceeds by click chemistry to avoid the problems related to 

systems utilizing photo-acid/base generators or uncontrolled radical initiators. Thiol-ene click 

chemistry has grown tremendously in popularity over the past few years and has been shown to 

posses various advantages such as rapid reaction rates, minimal oxygen inhibition, and high 



 

29 

yields.(20-26) Because the initiation proceeds by UV-induced homolytic cleavage of the S-H 

bond, thiol-ene chemistry is advantageous for CP cross-linking as it does not require high 

temperatures such as those needed for the thermal initiation of 4-phenylethenyl groups and 

mitigates potential issues with residual photointiator additives. Furthermore, thiol-ene 

chemistry is well-suited to patterning by photolithography as shown by Hagberg et al.(27) 

Specifically under investigation here is the use of thiol-ene chemistry to photochemically cross-

link a thin film of 4-phenylethenyl end-capped poly(dihexyl fluorene) (xDHF). Additionally, cross-

linked PLED devices are fabricated to demonstrate the use of this chemistry in active devices. 

2.2 Experimental Section 

2.2.1 Materials 

4-bromostyrene, 2,7-dibromo-9,9-dihexyl-9H-fluorene (DBDHF), 2,2’-bipyridyl (BPY), 

1,5-cyclooctadiene (COD), tetrahydrofuran (THF), pentaerythritol tetrakis-(3-

mercaptopropionate), and Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) 

(PEDOT:PSS) were purchased from Sigma-Aldrich Company. DBDHF was recrystallized from 

ethanol prior to use. The active Ni-(0) coupling reagent, bis(1,5-cyclooctadiene)nickel(0) 

[Ni(COD)2], was purchased from Strem Chemicals and handled under inert atmosphere. 

Anhydrous toluene and dimethylformamide (DMF), stored under nitrogen over molecular 

sieves, were purchased from Sigma Aldrich Company. All reagents were used as received unless 

otherwise noted. Silicon substrates were purchased from University Wafers. Indium tin oxide 

(ITO)-coated glass was purchased from Thin Film Devices, Inc (sheet resistance 20 Ω/sq). All 

reactions were run under dry N2 unless otherwise noted. 
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2.2.2 Instrumentation 

 All nuclear magnetic resonance (NMR) spectra were acquired on a Bruker AF 300 (300 

MHz) spectrometer and internally referenced via residual solvent signal [CHCl3: 
1H) 7.26 ppm; 

13C) 77.00 ppm]. All chemical-shift values are given in ppm. Gel permeation chromatography 

(GPC) was performed in THF at room temperature with 1.0 mL/min elution rate. A Waters R403 

differential refractometer and three PLgel columns (105, 104, and 103 Å) calibrated with narrow 

molecular weight polystyrene standards were used. Differential scanning calorimetry (DSC) was 

performed on a Thermal Analysis (TA) Q-2000 in T-zero aluminum pans using modulated DSC at 

3 °C/min. Thermal gravimetric analysis was performed using a Perkin-Elmer TGS-2, under 

nitrogen atmosphere with a heating rate of 10 °C/min. 

Film thicknesses were measured by contact profilometry using a Dektak 150 

profilometer. UV-Vis spectra were recorded in 1cm path-length quartz cuvettes. Fluorescence 

measurements were taken on a Perkin-Elmer LS-50B. Infrared spectroscopy of polymer films 

were performed on a Nicolet 6700 FT-IR spectrometer with a Harrick grazing angle ATR 

accessory (GATR). 

2.2.3 Microwave Reactor 

Microwave heating was performed in a SmithCreator™ single-mode microwave cavity 

producing continuous radiation at a frequency of 2.45 GHz (Personal Chemistry, Inc). Reactions 

were conducted under nitrogen in 35 mL, heavy-walled pyrex glass reaction vials sealed with 

silicone caps fitted with a silicone septum. Reaction mixtures were stirred internally with a 

magnetic stir bar during the irradiation. 
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2.2.4 Polymerization of Styrene End-capped 2,7-dibromo-9,9-dihexyl-9H-fluorene (xDHF) 

 Cross-linkable, end-capped homopolymer (xDHF) was synthesized by the nickel (0)-

mediated polymerization of 2,7-dibromo-9,9-dihexyl-9H-fluorene (DBDHF) and 4-bromostyrene 

via microwave heating. DBDHF (300 mg, 0.609 mmol, 1 equiv.) and 2,2’-dipyridyl (257 mg, 1.645 

mmol, 2.87 equiv.) were added to a 35 mL microwave vial. In a glove box, Ni(COD)2 (409 mg, 

1.487 mmol, 2.44 equiv.) and a stirbar were added to the vial which was then sealed. 4-

bromostyrene (12.2 μL, 0.06 mmol, 0.125 equiv.), COD (191 μL, 1.554 mmol, 2.55 equiv.), and 15 

mL dry toluene/DMF (3:1 v/v) were injected and the vial was degassed and backfilled with 

nitrogen three times. The reaction was heated in a microwave at 100 °C for 30 min after 30 sec 

of pre-stirring. After reaction, the polymer solution was filtered through a syringe filter (0.45 

μm) and precipitated by adding dropwise into 300 mL methanol and concentrated HCl (98:2 

v/v). The crude polymer was dissolved in minimal THF and reprecipitated into methanol. The 

recovered light yellow precipitated was dried overnight under vacuum (170mg, 81% yield). 1H 

NMR (300 MHz, CDCl3) δ 7.86-7.68 (40H, aromatic); 6.84, 5.86, 5.32 (dd 1H, d 1H, d1H, vinyl 

endcaps); 2.11, 1.14, 0.80 (24H, 72H, 60H, alkyl chain). DP via 1H NMR = 13; Mn via GPC 10400; 

PDI 2.31. 

2.2.5 Film Coating and Cross-linking 

Silicon wafers were solvent rinsed sequentially with hexanes, acetone, THF, water, and 

2-propanol, then dried under a stream of nitrogen. Subsequently, the substrate was soaked in a 

piranha bath (5:1 concentrated sulfuric acid:30% hydrogen peroxide) at 100 °C for 30 minutes, 

rinsed thoroughly with DI water, and dried under nitrogen. xDHF solutions were made by 

dissolving 15 mg polymer in 500 µL CHCl3 then adding 500 µL toluene. In the case of thermally 

cross-linkable films, no further reagents were added. In the case of UV-curable films, the 
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tetrafunctional cross-linker, pentaerythritol tetrakis-(3-mercaptopropionate), was added in a 

stoichometric amount (1:2 vinyl:thiol) as a solution in toluene. Solutions were spin-coated onto 

the cleaned wafers at 2000 rpm for 60 seconds. Thermal cross-linking was carried out on a 

hotplate at 200 °C for 45 min under a nitrogen atmosphere to form an insoluble layer. UV cross-

linking was accomplished at 85 °C for 5 min in a nitrogen atmosphere under 365 nm light unless 

noted otherwise, forming an insoluble layer. All films were rinsed with THF and dried under a 

stream of nitrogen to ensure all uncross-linked material was removed from the surface. 

2.2.6 Device Fabrication 

 Polymer light emitting diodes (PLEDs) were fabricated using xDHF as the active emitting 

layer. ITO-coated glass was first solvent cleaned and subsequently treated with O2 plasma for 3 

minutes. Poly(ethylene-dioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS) (1.3wt% in H2O, 

Aldrich) was then spin-coated at 4000 RPM and dried under N2 at 150°C for 30 minutes. 

Solutions of xDHF were then spun from a mixed solution of chloroform and toluene containing 

pentaerythritol tetrakis-(3-mercaptopropionate) tetra-functional cross-linker, such that the ratio 

of S-H groups to xDHF vinyl groups was 2:1 to ensure complete cross-linking. UV cross-linked 

devices were then heated to 85°C under N2 and exposed to a 365 nm UV light source for 5 min. 

Thermally cross-linked devices were cured at 200°C under N2 for 1 hour. All cross-linked devices 

were then rinsed with THF and dried under vacuum overnight. As spun devices were simply 

placed under vacuum overnight directly following spin-coating. In order to ensure all devices 

had comparably thick active layers, spin-coating speeds for the active layer solution was varied 

for each treatment to account for losses in thickness during curing. Devices were completed by 

the thermal evaporation of 15 nm Ca cathodes capped with 100 nm Al at pressure <10-5 Torr 
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with active areas of 0.15 cm2. Devices were tested in air using a Kiethley 2602 Sourcemeter and 

a calibrated Ocean Optics USB4000 UV–vis spectrometer.  

Patterned PLEDs were fabricated using a photo-mask during UV curing of the xDHF layer 

to selectively cross-link xDHF circles. Substrates were rinsed in THF to remove uncrued xDHF, 

and a solution of poly(fluorene-co-benzothiadiazole) in chloroform was subsequently spun on 

the substrates. Drying, cathode deposition, and testing were completed as above. 

2.3 Results and Discussion 

2.3.1 Synthesis 

 

Figure 2.3: Synthesis of xDHF via Yamamoto coupling. 

xDHF was synthesized by conventional Yamamoto coupling of 2,7-dibromo-9,9-dihexyl-

9H-fluorene with the addition of 4-bromostyrene as an end-capping species with good yield 

(81%) (Figure 2.3). 1H NMR of synthesized xDHF (Figure 2.4) showed the desired product with 

clearly visible vinylic proton resonances (δ = 5.3, 5.9, 6.8 ppm) from the end-groups. Molecular 

weight and degree of polymerization (DP) of xDHF was calculated by taking the ratio of these 

vinylic proton signals to the methylene proton of the 9-position hexyl chain α to the fluorene 

backbone [fluorene–(CH2)-(CH2)4-CH3] and were found to be Mn = 4500 kDa and DP = 13. The 

considerably larger molecular weight of Mn = 10400 determined from gel permeation 

chromatography (GPC) can be explained by the rigid nature of poly(fluorene) compared to 

polystyrene standards. The relatively low molecular weight was chosen to allow for a greater 

cross-linking density (since cross-linking occurs at the chain ends) as well as to limit 
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polydispersity which is known to adversely affect PLED performance.(28) Furthermore, the 

modest glass transition temperature Tg of xDHF at 85°C (by differential scanning calorimetry) as 

well as its high thermal stability are factors that prove advantageous for cross-linking by 

arguments of increased chain mobility as discussed later. 

 

Figure 2.4: 1H NMR spectrum of xDHF showing terminal vinyl signals used for end-capping 
confirmation and calculation of molecular weight. 
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2.3.2 Cross-Linking of xDHF Films 

 

Figure 2.5: Schematic showing a thiol-ene click reaction between the vinyl group of end-
capped poly(9,9-dihexyl fluorene) (xDHF) and one thiol group of pentaerythritol tetrakis(3-
mercaptopropionate) (SH-4), with full cross-linking illustrated below. 

The overall thiol-ene reaction scheme enabling cross-linking of xDHF is illustrated in 

Figure 2.5. Cross-linking of xDHF films was achieved by spin-coating a solution containing both 

xDHF and a tetra-functional thiol cross-linker, pentaerithritol tetrakis(3-mercaptopropionate) 

(SH-4). An excess of SH-4 (thiol:vinyl = 2:1) was used to ensure that the maximum number of 

vinyl end groups could find a cross-linker during the thiol-ene click reaction. Upon exposure of 

the film to UV light, homolytic cleavage of the S-H bond followed by radical reaction with a vinyl 

end group of xDHF resulted in a cross-linked film. Curing was simple and reproducible via 

exposure to UV light for as little as 1 min. at the polymer’s Tg of 85°C. These conditions are 

notably milder than thermal cross-linking previously reported for 4-phenylethenyl end-capped 
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poly(fluorene)s.(9-11) Extent of cross-linking was monitored qualitatively by a combination of 

FTIR, film thickness measurements, differential scanning calorimetry (DSC) and film insolubility. 

Figure 2.6 shows the FTIR spectra of the xDHF films before and after cross-linking, where 

the vinyl C-H peaks at 908 cm-1 and 988 cm-1 as well as the S-H peak of free thiol at 2577 cm-1 are 

all observed to decrease in intensity following curing. This clearly corresponds to a successful 

click event where a C-S-C linkage is formed between SH-4 and xDHF vinyl end groups. 

 

Figure 2.6: FTIR spectra of xDHF films before and after UV cross-linking. The reduction of the 
vinyl C-H bending peaks and thiol S-H stretching peak is indicative of successful cross-linking 
through the vinyl end groups of xDHF. 

Following successful cross-linking, films were observed to be insoluble in solvents that 

were good for the pre-cured resin (e.g., THF, CHCl3). However, decreased film thicknesses were 

observed both immediately after curing and again when rinsed with solvent. Thus, initial 

decrease in thickness following curing must be due to both shrinkage during network formation, 

as well as the loss of some non-cross-linked material. Film thicknesses after cross-linking and 

solvent rinsing are shown in Figure 2.7 as a function of substrate temperature during curing. 

Reduced film thicknesses observed with decreasing temperature are indicative of material loss 

due to reduced extent of cross-linking. As the films are heated below Tg (85 °C) during curing, 

chain mobility is reduced such that the xDHF end-groups are less likely to encounter an active 
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thiol cross-linker during the brief UV exposure. Curing at 75 °C resulted in a cross-linked film that 

was roughly half as thick as one cured at 85 °C, and curing at 65 °C showed no measurably cross-

linked xDHF film. Curing at temperatures above 85 °C did not significantly increase final film 

thickness, suggesting that the full extent of cross-linking can be achieved at Tg of the polymer. 

All processing was well below the polymer’s decomposition temperature of 450 °C as measured 

by thermogravimetric analysis. 

 

Figure 2.7: Thicknesses of xDHF films as a function of curing temperature. Dashed line shows 
the initial film thickness as spun from CHCl3 at 2000 RPM. 

Cross-linking of xDHF was additionally investigated using photo calorimetry and 

modulated DSC. Photo calorimetry results (Figure 2.8) show how rapid the UV-initiated reaction 

occurs, with completion in only 6 seconds upon exposure to 365 nm light (6 mW/cm2) with the 

sample held at an isotherm of 85 °C. This is consistent with the very rapid rates of thiol-ene 

polymerization previously reported.(24-26) Curing with 254 nm light, which more efficiently 

cleaves the S-H thiol bond, would likely lead to even more effective cross-linking. The inset of 

Figure 2.8 shows high temperature modulated DSC results for a previously UV-cross-linked 

sample (solid line) and pristine xDHF (dashed line). The exotherm near 150 °C for the pristine 
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xDHF confirms cross-linking achieved by the auto-initiation of xDHF end-capping groups. The 

lack of a similar exotherm for the UV-cured xDHF provides further evidence that all accessible 

cross-linking sites have reacted during UV curing. As evidenced by FT-IR data, it appears that 

some residual vinyl functionality does exist in the cured xDHF films. Again, the most reasonable 

conclusion is that once incorporated into the cross-linked network, these unreacted vinyl groups 

lack the necessary mobility to reach similarly unreacted end groups. 

  

Figure 2.8: Photo DSC response of xDHF with cross-linking thiol upon exposure to 365 nm UV 
light. Inset: High temperature modulated DSC response of pristine xDHF (dashed line) and UV-
cured xDHF (solid line). 

The UV-vis absorption and photoluminescence (PL) of the xDHF polymer are shown in 

Figure 2.9. Both UV-vis absorption and PL were found to red-shift from solution state to solid 

film, as would be expected upon the formation of lower energy states in the aggregated solid 

state. Furthermore, UV cross-linking of the xDHF film was not found to adversely affect emissive 

behavior, with cured and uncured films showing an identical peak emission at 424 nm. In fact, 

UV curing of the spun films seems to somewhat suppress lower energy emissions, likely due to 

xDHF chains being locked into a rigid matrix preventing rearrangement to lower energy 

aggregate states. In order to confirm the advantageous effects of thiol-ene cross-linking on 
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emissive color stability, various xDHF films were examined under high temperature annealing 

conditions (Figure 2.10). When annealed in nitrogen for 1 hr at 150 °C, as spun films of pristine 

xDHF and xDHF mixed with SH-4 both show increasing green emission near 520 nm. Thus the 

presence of the unreacted small molecule cross-linker is not alone sufficient to inhibit 

aggregation. Thermally cross-linked films (with no added thiol cross-linker) show a large peak at 

520 nm both before and after annealing. Since thermal cross-linking necessitated heating of a 

pristine xDHF above 150 °C, introduction of lower energy aggregates during the curing 

procedure is inevitable. Thus it is not surprising that a large amount of green emission is 

observed in the pre-annealed film. By comparison, UV-initiated thiol-ene cross-linked films show 

no increased green emission even after high temperature annealing. The low curing 

temperature coupled with formation of a rigid cross-linked matrix is thus effective at preventing 

aggregation, consistent with other studies of poly(fluorene) networks.(9-11) 

 

Figure 2.9: UV-vis absorption (left) and photoluminescence (PL) of xDHF in both the solution 
and solid state. PL is also shown for the thiol-ene cross-linked xDHF film. 
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Figure 2.10: Photoluminescence of various xDHF films before (solid lines) and after (dashed 
lines) annealing at 150 °C under N2. Spectra are shown for (A) as-spun xDHF, (B) xDHF 
thermally pre-cured at 200 °C, (C) xDHF film cast with added thiol (no curing), and (D) xDHF 
film with added thiol pre-cured under UV. 

2.3.3 Light Emitting Diodes and Patterned Structures 

Thiol-ene cross-linking chemistry is additionally shown to be fully compatible with 

organic electronic devices. Figure 2.11 and Figure 2.12 show the current density-voltage-

luminance (J-V-L) and electroluminescence (EL) behavior of PLEDs fabricated using xDHF as an 

active layer. Devices were compared using xDHF either directly as spun, cross-linked via UV 

exposure as described above, or cross-linked thermally at elevated temperatures without added 

SH-4 (under N2 by autoinitiation of styrenic end groups).  
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Figure 2.11: Current density (J) and luminance (L) response for PLEDs with xDHF as the active 
layer as a function of operating voltage. Devices were fabricated with either as spun xDHF, 
thermally cross-linked xDHF, or UV-initiated thiol-ene cross-linked xDHF. 

 

 

Figure 2.12: Electroluminescence (EL) profiles of various PLEDs using xDHF as the emissive 
layer. Devices were fabricated with either as spun xDHF, thermally cross-linked xDHF, or UV-
initiated thiol-ene cross-linked xDHF. PLED structure was ITO/PEDOT:PSS/xDHF/Ca/Al in all 
cases. 

J-V-L behavior of the PLEDs shows that cross-linking does not significantly affect turn-on 

voltages of the devices, with all devices turning on near 15 V, a somewhat high operating 

voltage, but one that is consistent among tested devices. The UV cross-linked xDHF PLEDs were 
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found to display comparable brightness to as spun or thermally cross-linked devices, especially 

at lower operating voltages. Device performance would no doubt be improved with further 

optimization of film and cathode thicknesses. Relatedly, it is possible that higher molecular 

weight xDHF would also improve device performance. However, this would potentially come at 

the cost of poorer curing properties due to dilution of the reactive vinyl end groups. 

The EL profiles retain the same general lineshape following curing, suggesting that thiol-

ene cross-linking does not degrade emissive color. One difference between devices is 

particularly noteworthy: devices fabricated via thiol-ene cross-linking do not show the increased 

secondary peak emission that is evident with thermal cross-linking, similar to the above 

photoluminescent behavior. This undesired green emission has long been reported in 

poly(fluorene) emission,(4-6) and it is not surprising that the high temperature of thermal curing 

at 200 °C increases its intensity due to the formation of low energy aggregates and/or 

fluorenone defects. The more moderate temperatures required for UV-initiated thiol-ene 

chemistry allow for cross-linking of the active film without introduction of this undesired green 

emission. 

 

Figure 2.13: Image of a photo-patterned xDHF film on Si (A) and PLED (B) with the device 
structure ITO/PEDOT:PSS/xDHF(circles)/PFBT/Ca/Al. For PLEDs, emission from only the PFBT 
regions was observed at lower voltages (left device), while emission across the entire device 
was seen at larger operating voltages (right two devices). 
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Finally, the opportunity for using UV curable xDHF as a photo-patternable active layer 

was demonstrated in both a thin film of xDHF on a silicon wafer and in a multicolor PLED (Figure 

2.13) using an arbitrary photo-mask to create patterned CP films. Figure 2.13A shows the 

resulting fluorescent pattern after cross-linking on Si, where the bright blue regions are areas of 

cross-linked polymer visibly fluorescing under UV light. Dark regions were masked (and thus not 

cross-linked) during curing, and the uncured xDHF was easily rinsed away with THF, leaving no 

emissive polymer. The ability to use a photo-mask to create any desired CP pattern is a 

significant advantage of the thiol-ene chemistry over thermally activated cross-linking systems. 

Using the same photo-mask, circular patterns of xDHF were fabricated on an ITO 

substrate and a bi-layer device was created via the subsequent spin-coated deposition of 

poly(dihexylfluorene-co-benzothiadiazole) (PFBT) from chloroform. The preservation of the 

xDHF patterns after an additional processing step in chloroform (a good solvent for uncured 

xDHF) further proves their robustness. It is interesting to note that at low operating voltages (< 

15 V), electroluminescence was observed only in the PFBT-coated regions (left device, Figure 

2.13B). With increased operational voltage (> 15 V), the entire device was seen to emit (right 

devices, Figure 2.13B). Since single-layer xDHF devices were observed to turn on at 

approximately 15 V, this behavior is primarily due to differences in energy levels between xDHF 

and PFBT. As measured by cyclic voltammetry, HOMO/LUMO levels of xDHF were found to be 

5.39 and 2.42 eV respectively compared to PFBT HOMO/LUMO energies of 5.9 and 3.2 eV.(29) 

Given the 2.9 eV work function of the calcium cathode, we expect a lower energy barrier for 

charge carrier injection into the PFBT layer than the xDHF layer. This could explain the partial 

emission we observed below 15 V. 
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2.4 Conclusions 

The work in this chapter demonstrated the use of UV-initiated thiol-ene cross-linking of 

4-phenylethenyl end-capped poly(dihexyl fluorene). This is the first reported use of thiol-ene 

click chemistry to form cross-linked emissive CP networks. Characteristic of click chemistry, 

network formation is simple and rapid, with curing accomplished in a matter of seconds at 

modest temperatures that are not detrimental to emissive color. Furthermore, cross-linking was 

shown to enhance color stability at high temperature. Additionally, cross-linked CP films are fully 

compatible with electroluminescent devices, and their performance is comparable to uncured 

devices. Photo-curing of these films provides the advantage of patternability, and it was shown 

that an arbitrary pattern can be generated in the xDHF layer by use of a photo-mask (results 

unachievable with thermally cross-linkable chemistries). This allows for a new chemical avenue 

toward pixilated multicolor displays. Chapter 3 of this work will investigate this chemistry as 

applied to lower band gap copolymers, and Chapters 4 and 5 will investigate the effects of 

alternative cross-linked network architectures on the physical and optoelectronic properties of 

poly(fluorene) networks. 
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CHAPTER 3 

APPLICATIONS FOR END-CHAIN CROSS-LINKABLE CONJUGATED POLYMERS† 

3.1 Introduction 

Cross-linked films of conjugated polymers (CPs) have been a topic of considerable 

interest in the past few decades.(1-6) The attractiveness of CPs as highly processable 

semiconducting materials for light-emitting, solar energy harvesting, and electronic applications 

largely stems from their solution processibility.(7-10) This property allows for easy spin-coating, 

spraying, and inking of films directly onto a variety of rigid and flexible substrates. However, the 

same ease of solution processing leads to difficulties in building multilayer and patterned 

devices, which can greatly improve device performance.(11, 12) Covalent cross-linking of CP 

films offers one solution to this problem.(13) By making the semiconducting layers robust and 

solvent-resistant after processing, a path is opened for more complicated fabrication processing. 

Additionally, the “locking” of polymer chains into position has been shown to improve certain 

electronic characteristics by significantly reducing their tendency to re-align during device 

operation.(14) Cross-linking also enables the incorporation of a wide range of chemical 

functionality that can be imbedded in the polymer during curing. 

Figure 3.1 shows an example using cross-linkable CPs with varying emissive color for 

multilayer solution-processed light emitting diodes, where the effect of layer order plays a 

dramatic role in determining the final observed device color.(15) For this reason, it is clearly 

desirable to have a wide range of cross-linkable CPs so that processing order is not limited by 

which materials can be made insoluble by cross-linking.  

                                                           
† Portions of this chapter have been reprinted with permission from Koyuncu, Davis, Carter, 
Chem. Mater. 24, 4410 (2012). Copyright 2012 American Chemical Societry. 
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Figure 3.1: Effect of layering order on the observed color of cross-linked multilayer polymer 
light emitting diodes. Figure reproduced with permission from Klaus Meerholz in Organic Light 
Emitting Devices. Synthesis, Properties and Applications., p. 309, 2006. Copyright Wiley-VCH 
Verlag GmbH & Co. KGaA.(15) 

This chapter aims to investigate thiol-ene cross-linked CPs with variable band gaps and 

emissive colors by the introduction of heterocycles in the CP backbone. Chapter 2 described the 

first use of thiol-ene click chemistry to form electroluminescent networks from a poly(dihexyl 

fluorene) homopolymer.(16) However, with only a blue-emitting cross-linkable polymer, fine 

tuning of devices’ energy levels by mixing or layering with other CPs was very limited. The thiol-

ene literature has clearly established that the electron withdrawing or donating effects of 

heteroatoms and extended conjugation can greatly affect the rates and efficiencies of the 

photo-induced thiol-ene click reaction.(17) These same heteroatoms, when incorporated into 

aromatic rings, are perhaps the most popular method for tuning the band gaps and 

optoelectronic properties of CPs.(18, 19) For this reason, this chapter details the concerns of 

achieving effective thiol-ene cross-linking with CPs incorporating heterocycles for optoelectronic 

tuning. Emission from newly synthesized and cross-linked polymers incorporating heterocycles 

is shown to cover the entire visible range, with device performances equal to non-cross-linked 

devices. 
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3.2 Experimental Section 

3.2.1 Materials 

 4-Bromostyrene, 9,9-dioctyl-9H-fluorene-2,7-diboronic acid bis(1,3-propanediol) ester, 

2,1,3-benzothiadiazole, 1H-benzotriazole, tetrahydrofuran (THF), (4-vinylphenyl)boronic acid, 

tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4), sodium carbonate (Na2CO3), hydrobromic 

acid (HBr), bromine (Br2), sodium borohydride (NaBH4), selenium dioxide (SeO2), 1-

bromohexane, potassium tert-butoxide ((CH3)3COK) and poly(3,4-

ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were purchased from Sigma-

Aldrich Company. All reagents were used as received unless otherwise noted. Silicon substrates 

were purchased from University Wafers. Indium tin oxide (ITO)-coated glass was purchased 

from Thin Film Devices, Inc. (sheet resistance 20 Ω/sq). All reactions were run under dry N2 

unless otherwise noted. The monomers, 4,7-dibromo-2,1,3-benzothiadiazole,(20) 4,7-dibromo-

2,1,3-benzoselenadiazole,(21, 22) and 4,7-dibromo-2-hexyl-2H-1,2,3-benzotriazole(23) were 

prepared by previously published procedures. 

3.2.2 Instrumentation 

All nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Avance 400 

(400MHz) spectrometer and internally referenced via residual solvent signal [CHCl3: 
1H 7.26 

ppm; 13C 77.00 ppm]. All chemical-shift values are given in ppm. Gel permeation 

chromatography (GPC) was performed in THF at room temperature with 1.0 mL/min elution 

rate. A Waters R403 differential refractometer and three PL gel columns (105, 104, and 103 Å) 

calibrated with narrow molecular weight polystyrene standards were used. Differential scanning 

calorimetry (DSC) was performed on a Thermal Analysis (TA)Q-2000 in T-zero aluminum pans 

using modulated DSC at a heating rate of 3 °C/min. Thermal gravimetric analysis was performed 
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using a Perkin-Elmer TGS-2, under nitrogen atmosphere with a heating rate of 10 °C/min. Film 

thicknesses were measured by contact profilometry using a Dektak 150 profilometer. UV-Vis 

spectra were recorded in 1-cm path length quartz cuvettes by using a Shimatszu UV 3600 

spectrophotometer. Fluorescence measurements were taken on a PTI QM-30 

spectrophotometer. CV measurements were taken on BAS Epsilon electrochemical workstation. 

These measurements were carried out under argon atmosphere, and the electrochemical cell 

included an Ag wire as reference electrode, Pt wire as counter electrode and glassy carbon as 

working electrode immersed in 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as 

the supporting electrolyte. 

Photo calorimetry was performed using the above TA Q-2000 instrument with a TA 

photocalorimeter accessory (PCA) using a 365 nm UV source. Photo calorimetry response was 

measured at a constant temperature of 90 °C with 6 mW/cm2 exposure intensity (identical to 

thin film curing conditions). The instrument was calibrated by running a model UV-initiated 

thiol-ene reaction of 9-vinylcarbazole with pentaerythritol tetrakis(3-mercaptopropionate). 

Extent of reaction calculated from heat flow in the photo calorimeter agreed with extent of 

reaction found by NMR measurement of the model system following curing. 

3.2.3 Synthesis of Styrene End-Capped Tunable Band Gap Polymers (xPFN, xPFS, xPFSe) 

The synthetic pathway for the cross-linkable conjugated copolymers is shown in Figure 

3.1. The copolymers were synthesized utilizing 9,9-dioctyl-9H-fluorene-2,7-diboronic acid 

bis(1,3-propanediol) ester in the presence of dibromo benzodiazole-based heterocycles using 

conventional Suzuki coupling polymerization. For example, dibromo monomer (1 mol 

equivalent), 9,9-dioctyl-9H-fluorene-2,7-diboronic acid bis(1,3-propanediol) ester (1 mol 

equivalent), and Pd(PPh3)4 (5 mol%) were added into a degassed mixture of aqueous sodium 
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carbonate (K2CO3, 2M in H2O) and THF (4:1 THF:water). The mixture was refluxed at 80 °C for 12 

h under nitrogen. 4-Bromostyrene (0.123 mol equivalent) was added to the reaction as an end-

capping reagent and refluxed 4 hours. Finally, 4-vinylphenyl boronic acid (0.123 mol equivalent) 

was added as the second end-capping reagent and stirred for another 4 hours. At the end of the 

reaction, the reaction mixture was cooled to room temperature, filtered, and poured into a 

large volume of methanol. The precipitated polymer was filtered again and dried in a vacuum 

oven. For final purification, soxhlet extraction was performed with methanol and then 

chloroform for 24 h. 

xPFN: 1H NMR (400 MHz, CDCl3) δ 8.24-7.31 (C-H, aromatic); 6.76, 5.84, 5.28 (dd 1H, d 

1H, d1H, vinyl end-caps); 4.85 (N-CH2); 2.24-0.79 (C-H, alkyl chain). 

xPFS: 1H NMR (400 MHz, CDCl3) δ 8.42-7.40 (C-H, aromatic); 6.79, 5.86, 5.32 (dd 1H, d 

1H, d1H, vinyl end-caps); 2.13-0.75 (C-H, alkyl chain). 

xPFSe:11H NMR (400 MHz, CDCl3) δ 8.08-7.33 (C-H, aromatic); 6.86, 5.88, 5.34 (dd 1H, d 

1H, d1H, vinyl end-caps); 2.11-0.80 (C-H, alkyl chain). 

3.2.4 Cross-Linking of Conjugated Polymer Thin Films 

Cross-linking was achieved using a solution of the cross-linkable polymer and tetra-

functional cross-linker pentaerythritol tetrakis(3-mercaptopropionate) at a molar ratio of 2:1 

thiol:vinyl functional groups as determined by 1H NMR. Solutions were prepared at 10 mg/mL of 

polymer in a 1:1 mixture of CHCl3 and toluene. Solutions were then spin-coated on silicon 

substrates at 2000 rpm for 60 seconds and illuminated by a handheld UV lamp (365 nm, 6 

mW/cm2) for 2 minutes under N2 atmosphere at 90°C. The resulting films were then rinsed with 

CHCl3 to remove uncured material. 
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3.2.5 Device Fabrication and Characterization 

Polymer light emitting diodes (PLEDs) were fabricated on indium-tin-oxide (ITO)-coated 

glass using the cross-linkable polymers with general device structure of ITO/PEDOT:PSS (20 

nm)/polymer(s)/Ca (30 nm)/Al (100 nm). ITO was first cleaned by sonication in three sequential 

solvents (water, acetone, isopropanol), followed by 2 minutes of O2 plasma treatment. A 

mixture of PEDOT:PSS and a small amount of DMSO (1 wt%) was spin-coated on the ITO at 4000 

RPM, and the substrates were baked at 150°C for 1 hr. Polymer solutions with pentaerythritol 

tetrakis(3-mercaptopropionate) (composition same as above section) were then immediately 

spin-coated on the substrates at 3000 RPM. They were then either placed immediately under 

vacuum in the case of non-cured devices, or they were cross-linked as described above, rinsed 

with CHCl3, and then placed under vacuum (cured devices). Cross-linked devices were then 

illuminated by a handheld UV lamp for 2 minutes under N2 atmosphere at 90°C and rinsed with 

chloroform. For multilayer devices, additional polymer layers were spin-coated over the 

previously cured layer, illuminated by UV with the same conditions, and rinsed with CHCl3. 

Coated substrates were then placed in vacuum overnight. Non-cross-linked substrates were 

simply placed under vacuum with no UV or rinsing treatment. Devices were completed by the 

thermal evaporation of calcium (30 nm) and aluminum (100 nm) at pressure <10-5 Torr. Devices 

were tested in air using a Kiethley 2602 Sourcemeter and a calibrated Ocean Optics USB4000 

UV–Vis spectrometer. 
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3.3 Results and Discussion 

3.3.1 Synthesis 

 

Figure 3.2: Synthetic schemes for creating thiol-ene cross-linkable conjugated polymers with 
tunable band gaps (dashed box) and subsequent cross-linking conditions to form conjugated 
networks. i.) Pd(PPh3)4, K2CO3, H2O/THF, reflux 12 hr; 4-bromostyrene, reflux 4 hr; 4-vinyl 
phenyl boronic pinacol ester, reflux 4 hr. R = octyl; R’ = hexyl, unless noted otherwise. 

Figure 3.2 shows the thiol-ene cross-linking scheme similar to that described in Chapter 

2 for building conjugated polymers networks with tunable band gaps. In this instance, donor-

acceptor copolymers were synthesized using standard Suzuki cross-coupling polymerization and 

end-capped with styrenic units. For comparison, styrene end-capped poly(dihexyl fluorene) 

homopolymer (xPF) was synthesized as previously described.(16) 
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A major advantage of this synthetic approach is its relative simplicity. New monomers 

do not need to be arduously synthesized. Instead, conventional boronic ester-functionalized 

dialkyl fluorene and dibromo benzodiazole-based heterocyclic monomers used in standard 

coupling polymerizations can be directly employed. In these experiments, the dibromo 

benzodiazole-based heterocycles were chosen for their ease of tuning the polymers’ band gap 

by simple substitution at the 2-position. Pd-catalyzed Suzuki coupling polymerizations were used 

to synthesize all reported polymers, with vinyl end-group functionality installed by adding 4-

bromostyrene and 4-vinylphenyl boronic acid at the end of the reaction. This route should be 

compatible with all similar metal-catalyzed coupling polymerizations (e.g., Suzuki, Sonogashira, 

etc.).  

Physical properties of the polymers are summarized in Table 3.1. The structure and 

molecular weight of uncured polymers were determined from 1H NMR and gel permeation 

chromatography (GPC). 1H NMR of synthesized poly(fluorene)-based tunable band gap polymers 

exhibited the desired products with clearly visible vinylic proton resonances (δ = 5.30, 5.86, 6.79 

ppm) from the end-groups. Molecular weight and degree of polymerization (DP) of polymers 

were calculated by taking the ratio of these vinylic proton signals to the methylene proton of the 

9-position octyl chain α to the fluorene backbone [-(CH2)-(CH2)6-CH3], similar to the previous 

chapter. Comparing Mn calculated from 1H NMR and GPC, the degree of polymerization 

determined by GPC is larger (Table 3.1). This discrepancy can be explained by the rigid nature of 

the tunable band gap polymers compared to that of the polystyrene GPC standards. The 

molecular weight was purposely kept low to allow for greater cross-linking density (since cross-

linking occurs at the chain ends). Upon adding acceptor molecules, the Tg of the polymers 

decreases moderately (compared to the fluorene homopolymer). The values were measured as 

85°C, 80°C, 68°C, and 73°C for xPF, xPFN, xPFS and xPFSe respectively. The enhanced molecular 
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mobility along the chain axes arising from the varying heteroatom sizes likely increases the chain 

mobility and decreases Tg values. Thus S- and Se- containing polymers exhibit different glass 

transitions determined by the bulkiness of the pendant group.  

Table 3.1: Physical properties of synthesized 4-phenylethenyl end-capped polymers. aDegree 
of polymerization (DP) calculated from NMR data. bDecomposition temperature reported for 
5% weight loss by thermogravimetic analysis. 

Polymer GPC DPa Tg (°C) Decomposition 
Temp. (°C)b 

Mn (103 
g/mol) 

Mw (103 
g/mol) 

PDI 

xPF 10.4 24.0 2.31 13 85 419 
xPFN 4.7 12.1 2.55 5 80 400 
xPFS 6.1 11.8 1.92 8 68 386 
xPFSe 2.8 6.6 2.37 3 73 359 

3.3.2 Optical and Electrochemical Properties.  

Table 3.2: Electrochemical and optical characteristics of synthesized cross-linkable polymers. 
aPF data reproduced from previous report on thiol-ene cross-linkable poly(dihexyl 
fluorene).(16)  *Calculated by the subtraction of the optical band gap from the HOMO level. 

Polymer Reduction 
Onset 
Potential 
(V) 

Oxidation 
Onset 
Potential 
(V) 

HOMO 
(eV) 

LUMO 
(eV) 

Electrochem. 
Band Gap 
(eV) 

Optical Band 
Gap (eV) 

xPFa - 1.26 -5.54 -2.71* - 2.83 
xPFN -1.52 1.27 -5.55 -2.79 2.76 2.60 
xPFS -1.17 1.41 -5.69 -3.11 2.58 2.48 
xPFSe -1.03 1.45 -5.73 -3.25 2.48 2.29 

A summary of the optical and electrochemical band gaps of the polymers in this chapter 

is shown in Table 3.2, as determined from both UV-Vis (Figure 3.3) and cyclic voltammetry (CV) 

(Figure 3.4) data. Table 3.2 shows successful control over the band gap of the various 

semiconducting polymers achieved by the substitution on the heterocyclic ring. The optical band 

gap (Eg) values were calculated from their low energy absorption edges (onset) where Eg = 

1241/onset.(24) LUMO energy levels were calculated by the addition of the optical band gap to 

the HOMO level. Electrochemical HOMO and LUMO energy levels of the polymers were 
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calculated according to the inner reference ferrocene redox couple E(Fc/Fc+) = +0.52 V (vs. Ag 

wire) in dichloromethane by using the formula EHOMO = –e(Eox – EFc) + (–4.8 eV) where Eox is the 

measured potential of oxidation onset and EFc is the ferrocene redox potential.(25)  

 

Figure 3.3: UV-Vis and photoluminescence of the 4-phenylethenyl end-capped conjugated 
polymers in solution (A,B) and thin film (C,D) states. 

The UV-Vis absorption and photoluminescence (PL) of the pristine polymers are shown 

in Figure 3.3 both for solution and thin film states. The acceptor moieties on the polymer chain 

influenced the absorption bands of the polymers significantly, as confirmed by CV 

measurements. The broad featureless peak absorption wavelength max originates from the 

intramolecular charge transfer interaction between the electron donor fluorene and all electron 

acceptor moieties.(21, 26) Due to the formation of fluorene-donor and benzodiazole-acceptor 

conjugated structure, characteristically broad charge transfer bands were observed at 402 nm, 
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427 nm, and 441 nm respectively for xPFN, xPFS and xPFSe in the UV-Vis absorption spectra. A 

greater red shift was observed in the charge transfer band of xPFSe in comparison to xPFN and 

xPFS due to the weaker electron-withdrawing character of selenium.(27-29) Similar results were 

obtained from the fluorescence measurements. Excitation at the polymers’ absorption maxima 

(max= 402 nm for xPFN, max= 427 nm for xPFS, and max= 441 nm for xPFSe) resulted in strong 

emission bands peaking at 460 nm, 537 nm and 562 nm with Stokes’ shifts of 58 nm, 110 nm 

and 121 nm, respectively. While benzotriazole-based xPFN polymer showed cyan emission color, 

the benzothiadiazole and benzoselenadiazole based polymers showed yellow-green and orange 

emission colors, respectively. UV-Vis and photoluminescence of the synthesized polymers are in 

agreement with literature data for the same polymer structures without 4-phenylenthenyl end-

capping.(26, 30, 31) Thus, starting with the blue emission of poly(fluorene), color was tuned 

across the visible spectrum by the substitution of different acceptor moieties. Additionally, 

typical red shifting was observed on the polymer coated films in both UV-Vis absorption and PL 

measurements due to solid state aggregation and - stacking effects. 
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Figure 3.4: Cyclic voltammograms of the 4-phenylethenyl end-capped conjugated polymers.  

As expected, the electrochemistry measurements shown in Figure 3.4 are in agreement 

with the UV-vis data above. The role of the acceptor units on the redox behavior of 

poly(fluorene)-based doner/acceptor systems were investigated by cyclic voltammetry 

measurements in 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) dissolved in 

methylene chloride. It was found that these systems exhibited both anodic and cathodic redox 

behaviors. During anodic scans, xPFN, xPFS and xPFSe exhibited semi-reversible oxidation waves 

with onset potentials observed at 1.27 and 1.41 and 1.45 V, respectively. The higher oxidation 

potential of xPFSe was attributed to higher electron attraction as compared to xPFS and xPFN. 

During cathodic scans, the reduction potentials were strongly influenced by the 

electron-withdrawing character of the heteroatoms of the acceptor moieties. xPFS and xPFSe 

had good reversible reduction couples at -1.35/-1.22V and -1.27/-1.12V while xPFN showed an 

irreversible peak at -1.86V. The larger observed negative peak potential for the formation of 

radicalic anions of xPFN can be ascribed to higher electron density of the acceptor group when 
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compared to xPFS and xPFSe. These results clearly suggested that the acceptor moiety in xPFN, 

xPFS and xPFSe polymers play a key role in tuning the polymers’ redox behavior and the 

interaction between donor and acceptor components of the system. 

3.3.3 Thin Film Thiol-Ene Cross-Linking 

Illustration of thin film cross-linking chemistry is shown in Figure 3.2. Briefly, thiol-ene 

cross-linking of 4-phenylethenyl functionalized polymers was accomplished by first spin coating 

a thin film (ca. 50 nm) from a solution containing both the cross-linkable polymer and tetra-

functional thiol cross-linker pentaerythritol tetrakis(3-mercaptopropionate). After spin-coating 

the film was then heated to just above its Tg in order to promote chain mobility(16) and exposed 

to 365 nm UV light at 6 mW/cm2 for 2 minutes. Cross-linking was confirmed qualitatively by 

rinsing the cured films with chloroform or THF (both are good solvents for the uncured 

polymers). The thiol-ene cross-linked polymer films were found to be insoluble in these solvents. 

Furthermore, FT-IR measurements confirmed thiol-ene reaction with reduction in both the vinyl 

C-H and thiol S-H signals.  As observed previously with xPF,(16) thiol-ene cross-linking did not 

significantly affect the UV-Vis and photoluminescent characteristics of the polymers. 
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Figure 3.5: Photo calorimetry response of the thiol-ene cross-linking of the conjugated 
polymers during UV curing. Lamp turn-on is at t=0 seconds. 

Thiol-ene network formation was also monitored using photo calorimetry, shown in 

Figure 3.5. Upon UV exposure, all network-forming systems reached peak heat flow (maximum 

polymerization rate) in less than 20 seconds, which corresponds well with the known timescale 

of UV-initiated thiol-ene reactions.(32-36) The similarity of curing kinetics between these 

conjugated polymers and previously known non-conjugated thiol-ene systems suggests that a 

rigid conjugated molecule does not hinder thiol-ene reaction.  The slight differences in curing 

time can be attributed to the dynamics of each individual system (i.e. different molecular 

weight, Tg, etc.). Curing appeared to be independent of the individual polymer matrices’ 

absorption of 365 nm light considering their varied absorption to the exposure wavelength (see 

Figure 3.3). The photo calorimetry curves are not entirely smooth, which can be attributed to 

measurement artifacts due to the difficulty in accurately measuring the small heat flows of the 

considerably low mass thin film samples. 
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Calculating the heat evolved during photo reaction and comparing it to the known heat 

of reaction for thiol-ene polymerizations revealed that all networks here reached less than 10% 

total thiol-ene conversion. The presence of residual vinyl and thiol signals in FT-IR 

measurements corroborates this observation. Low thiol-ene conversion is a topic for future 

investigations, which we initially suspect is due to the solid-state, solvent free conditions of 

thiol-ene reaction. As discussed here, regardless of the low conversion, cross-linked films were 

still found to be solvent resistant and amenable for device applications.  

3.3.4 Polymer Light-Emitting Diodes 

Polymer light emitting diodes (PLEDs) were fabricated from the 4-phenylethenyl 

functionalized polymers with the general structure ITO/PEDOT:PSS (20 nm)/polymer/Ca (30 

nm)/Al (100 nm). Figure 3.6 shows the electroluminescence (EL) spectra of PLEDs with a single 

cross-linked emissive polymer layer along with photographs of the cross-linked single-layer 

devices during operation. A wide range of the color space was accessible using just the four 

cross-linkable polymers synthesized in this report. Thiol-ene cross-linking was not found to 

affect the P EDs’ emissive colors, showing negligible changes in E  spectra from non-cross-linked 

PLEDs fabricated using the analogous polymers (Figure 3.7). 
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Figure 3.6: Electroluminescence (EL) spectra and photographs of PLEDs consisting of 
single layer cross-linked polymers. 

 

 
Figure 3.7: Comparison of electroluminescence (EL) spectra between cross-linked (solid) and 
non-cross-linked (dashed) PLEDs. 

Current density-voltage-luminance (J-V-L) response of the same single layer PLEDs is 

shown in Figure 3.8. All devices required 8 V or less to turn on. Briefly, xPFN and xPFS gave the 

best performances (lowest turn-on voltage and highest brightness), likely due to the close 
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alignment of their LUMO levels (3.1 and 2.8 eV, respectively) with the work function of the 

calcium cathode (2.9 eV). Their greater affinity for electron transport also likely improved 

current density and brightness. We observe that xPF and xPFN PLEDs have nearly identical 

performance before and after thiol-ene cross-linking, but xPFS and xPFSe devices appear to be 

affected by cross-linking. Both xPFS and xPFSe devices show increased current density when 

cross-linked, with minimal changes in brightness.  

 
Figure 3.8: Comparison of J-V-L behavior between cross-linked (squares) and non-cross-linked 
(triangles) PLEDs fabricated from a) xP-F b) xPF-N, c) xPF-S, and d) xPF-Se. 

 The wide range of band gaps now available as cross-linkable semiconducting moieties 

offered the capability to fabricate more complex device architectures. To exploit this 

opportunity, the robust electroluminescent films were used to build multilayer devices by 

solution processing. Blending of multiple emissive species is one way to achieve white and 
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multicolor emission in PLEDs. However, blended active layers often result in energy transfer to 

the low energy emissive states (usually the emitter with the smallest band gap) which can lead 

to bathochromic shifts in electroluminescence or even complete quenching of emission. A 

multilayered emissive architecture would alleviate this problem by separating different emitting 

species, reducing charge transfer processes.(37-39)  

 

 
Figure 3.9: Electroluminescence spectra of multilayer and blended PLEDs incorporating 
xPFN and xPFSe (see text for device structures). EL spectra for single layer xPFN and 
xPFSe PLEDs are also shown. 

 
Figure 3.9 shows the electroluminescence of solution-processed PLEDs fabricated by 

both layering and blending xPFN (cyan emitter) with xPFSe (orange emitter), along with 

schematics of the two device structures. The spectra of single layer xPFN and xPFSe PLEDs are 

also overlaid. The layered device was fabricated by spin-coating and then cross-linking xPFSe, 

with subsequent solution deposition and curing of xPFN. This approach is not possible without 

cross-linking due to the pristine polymers’ similar solubilities. The blended system was spin cast 

from CHCl3 with approximately 4:1 weight ratio of xPFN:xPFSe to mimic the content of xPFN and 

xPFSe in the layered devices (where thickness of the xPFN layer was approximately 4 times 

thicker than the xPFSe layer).  
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Emissive colors are summarized in Table 3.3. As expected, a cross-linked blend of the 

two emitters (structure: ITO/PEDOT:PSS/xPFN+xPFSe (15 nm)/Ca/Al) shows that the emission is 

dominated by energy transfer to xPFSe, with only a small secondary peak observable near 475 

nm. In contrast, the device fabricated from cross-linked bilayers (structure: 

ITO/PEDOT:PSS/xPFSe(8 nm)/xPFN(30 nm)/Ca/Al) shows dramatically increased emission near 

475 nm, indicating reduced charge transfer from xPFN to xPFSe. CIE 1931 chromaticity for the 

layered system (0.306, 0.348) confirms that it is a much better white emitter than the blend 

system (0.374, 0.481) at equivalent driving current. And while both designs are clearly not 

optimized, the cross-linked layered PLED also achieved better luminance efficiencies at higher 

brightness values. This data clearly shows the advantage offered by the solution-processed 

bilayer system achieved by thiol-ene cross-linking, which gives a total color profile unattainable 

by mixing. This has serious implications for new chemical routes to process high-complexity 

device structures such as white emitting PLEDs. 

Table 3.3: Turn-on voltage, emission peaks, and CIE 1931 color parameters of PLED devices 
operated at 100 mA/cm2. 

Device Turn-on Voltage (V) λEL, peak (nm) CIEx CIEy 

ITO/PEDOT:PSS/xPF/Ca/Al 7 425, 445 0.147 0.125 
ITO/PEDOT:PSS/xPFN/Ca/Al 6 478, 507 0.144 0.343 
ITO/PEDOT:PSS/xPFS/Ca/Al 3 536 0.404 0.574 
ITO/PEDOT:PSS/xPFSe/Ca/Al 5 572 0.529 0.413 
ITO/PEDOT:PSS/xPFSe/xPFN/Ca/Al 
(layered) 

6 472, 553 0.306 0.348 

ITO/PEDOT:PSS/xPFSe+xPFN/Ca/Al 
(blended) 

7 470, 561 0.374 0.481 

3.4 Conclusions 

In conclusion, a series of tunable band gap conjugated polymers was synthesized for use 

in thiol-ene click cross-linking reactions. Thiol-ene click chemistry was used to obtain cross-

linked tunable band gap polymers giving the ability to tune the band gap as well as the emission 
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colors. The fabricated devices gave PLEDs ranging in color from blue to orange with moderately 

low turn on voltages. Multilayer devices were prepared and demonstrated effective color 

separation and improved color characteristics compared to blends or copolymers. In subsequent 

chapters, the effect of various cross-linking architectures on the conjugated networks’ 

optoelectronic properties will be explored through thiol-ene compatible side-chains on 

poly(fluorene) derivates. 
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CHAPTER 4 

SYNTHESIS OF SIDE-CHAIN CROSS-LINKABLE POLY(FLUORENE)S AND THEIR NETWORK 

FORMATION 

4.1 Introduction 

A growing amount of research has explored cross-linking conjugated polymers (CPs) in 

order to promote or arrest particular structural changes in CP thin films, as discussed in 

Chapters 1-3. A number of applicable chemistries have been investigated, including thermally-

initiated end-groups,(1-6) electropolymerizable conjugated moieties,(7-9) and photo-initiated 

side-groups and end-groups such as acrylates,(10, 11) oxetanes,(12) and azides(13). While these 

efforts have demonstrated a number of device-level property improvements, none offer a facile 

route for systemically controlling and probing network connectivity. Thermally cross-linked 

systems offer little if any control over the timing of reaction initiation and thus offer systems 

with ill-defined cross-links. In most UV curable systems proceeding by radical initiation and 

propagation, side reactions from the radical chemistry can leave residual small molecules and 

side products with indeterminate connectivity or termination. Since the semiconducting nature 

of these materials so acutely depends on their packing and morphology, there is clearly a hole in 

the existing literature regarding the precise control of network architecture and its effect on the 

charge transport properties of cross-linked conjugated molecules.  

Studies detailed in Chapters 2 and 3 have explored the uses of thiol-ene chemistry for 

cross-linking conjugated polymer networks and have shown that the thiol-ene photo-click 

reaction does not inhibit electroluminescent CP device performance and is fully compatible with 

a range of CP structures.(14, 15) The thiol-ene reaction is particularly advantageous over other 

photo-curing chemistries owing to its rapid and efficient conversion at relatively mild 
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temperatures, tolerance to impurities and other functional groups, and initiator-free reaction 

when exposed to the proper wavelength of light.(16-19) Furthermore, thiol-ene cross-linking 

results in chemically well-defined connections, and the availability of a large variety of thiol-

cross-linkers enables a range of potential architectures for any given vinyl-functionalized 

molecule. Owing to its high efficiency and selectivity, the thiol-ene reaction is thus an ideal 

candidate to explore the influences specific network architectures in cross-linked CP thin films.  

This chapter details the synthesis of new poly(fluorene) derivatives with vinyl-

terminated side-chains of variable lengths which are solution processed with multi-functional 

thiol cross-linkers and cured under UV irradiation. Using FTIR, contact profilometry, and photo 

calorimetry measurements, the choice of cross-linker and polymer architectures and their 

effects on network formation in the semiconducting cross-linked poly(fluorene) thin films are 

explored. 

4.2 Experimental Section 

4.2.1 Materials 

5-bromo-1-penetene was purchased from Alfa Aesar. 11-bromo-1-undecene, 

tetrabutylammonium bromide, 9,9-dihexylfluorene-2,7-diboronic acid bis(1,3-propanediol) 

ester, potassium tert-butoxide, tetrakis(triphenylphosphine) palladium(0), and Aliquat 336 were 

purchased from Aldrich Chemical Company. Solvents, sodium hydroxide, and silica were 

purchased from Fischer Scientific. All chemicals were used as-received without further 

purification. Reactions were carried out under N2 in conventional glassware unless noted 

otherwise.  
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4.2.2 Instrumentation 

All nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Avance 400 

(400MHz) NMR spectrometer and internally referenced via residual solvent signal [CHCl3 
1H 7.26 

ppm; 13C 77.00 ppm]. All chemical-shift values are given in ppm. Gel permeation 

chromatography (GPC) was performed with an Agilent 1260 system in THF at 40 °C with 1.0 

m /min elution rate. A refractive index detector, 5 μm guard column, three P  gel columns (2 

Agilent Mixed-C 5 μm columns and 1 Agilent Mixed-D 5 μm column), and narrow molecular 

weight polystyrene standards were used. Differential scanning calorimetry (DSC) was performed 

on a Thermal Analysis (TA) Q-2000 in T-zero aluminum pans using modulated DSC at a heating 

rate of 3 °C/min. Film thicknesses were measured by contact profilometry using a Dektak 150 

profilometer. UV-Vis spectra were recorded in 1-cm path length quartz cuvettes by using 

Shimatszu UV 3600 spectrophotometer. Fluorescence measurements were taken on a Perkin-

Elmer LS-50B. Infrared spectroscopy of polymer films were performed on a Nicolet 6700 FT-IR 

spectrometer with a Harrick grazing angle ATR accessory (GATR). 

4.2.3 Synthesis of 9,9-dialkenyl-2,7-dibromofluorene Monomers  

Di-alkenyl side-chain functionality was installed on 2,7-dibromofluorene by typical 

nucleophilic substitution at the fluorene 9-position with bromoalkenes. Specifically, the 

dipentenyl and diundecenyl monomers were synthesized using 5-bromo-1-pentene and 11-

bromo-1-undecene.  

General reaction: 2,7-dibromofluorene (2.5 g, 7.7 mmol) previously synthesized by 

established procedures(20) was dissolved in 50 mL of a 1:1 mixture of toluene and 50% aqueous 

NaOH in a condenser-equipped 150mL round bottom flask. Tetrabutylammonium bromide (0.2 

g, 0.65 mmol) was also added as a phase transfer reagent. The bromoalkene (14.4 mmol) was 
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then added dropwise, with the solution turning to a deep purple color. The solution was heated 

to reflux under N2 and reacted for 17h. Upon cooling, the product was extracted using ethyl 

acetate. The organic phase was then neutralized and washed with 1M HCl, whereupon it turned 

yellow in color, and was further washed with brine. Collection of the organic phase and 

evaporation of solvent yielded a dark orange oil. Product was purified by column 

chromatography using 9:1 hexane:ethyl acetate as an eluent, and solvent was removed by 

evaporation. 

 

9,9-Dipentenyl-2,7-dibromofluorene 

Product was isolated as a viscous yellow oil after purification by column 

chromatography and initial solvent removal. Extended drying under vacuum yielded off-white 

solid crystals (2.87 g, 81% yield). 1H NMR (400 MHz, CDCl3) δ 7.44-7.30 (m, 6H, aromatic), 5.56 

(m, 2H, vinyl), 4.88 (m, 2H, vinyl), 4.84 (m, 2H, vinyl), 1.94-1.82 (m, 8H, alkyl), 0.69 (m, 4H, alkyl) 

ppm. 13C NMR (100 MHz, CDCl3) δ 152.1 (aromatic), 139.1 (aromatic), 138.3 (vinyl), 130.3 

(aromatic), 126.2 (aromatic), 121.6 (aromatic), 121.2 (aromatic), 114.7 (vinyl), 55.5 (quaternary), 

39.6, 33.8, 22.9 ppm. 

 

9,9-Diundecenyl-2,7-dibromofluorene 

Product was isolated as a viscous yellow oil after purification by column 

chromatography and recrystallized from methanol to yield off-white solid crystals (4.11 g, 85% 

yield). 1H NMR (400 MHz, CDCl3) δ 7.60-7.30 (m, 6H, aromatic), 5.85-5.75 (m, 2H, vinyl), 5.0-4.90 

(m, 4H, vinyl), 2.03-1.89 (m, 8H, alkyl), 1.35-1.05 (m, 24H, alkyl), 0.57 (b, 4H, alkyl) ppm. 13C NMR 

(100 MHz, CDCl3) δ 152.5 (aromatic), 139.3 (aromatic), 139.1 (vinyl), 130.2 (aromatic), 126.2 
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(aromatic), 121.5 (aromatic), 121.1 (aromatic), 114.1 (vinyl), 55.6 (quaternary), 40.2, 33.8, 29.8, 

29.5, 29.4, 29.2, 29.1, 28.9, 23.6 ppm. 

4.2.4 Synthesis of Dialkenyl/Dihexyl Alternating Poly(fluorene)s (xPF-5 and xPF-11)  

Alternating poly(fluorene) copolymers xPF-5 and xPF-11 were synthesized by 

microwave-assisted Suzuki-Miyauara cross-coupling of 9,9-dialkenyl-2,7-dibromofluorenes and 

9,9-dihexylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester. Fine-tuning of reaction 

conditions, as informed by Hunt and co-workers(21) and summarized in Table 4.1, was required 

to minimize unwanted Heck coupling side products.  

General procedure: 9,9-Dialkenyl-2,7-dibromofluorene (0.3 mmol), 9,9-dihexylfluorene-

2,7-diboronic acid bis(1,3-propanediol) ester (0.3 mmol), potassium tert-butoxide (1.8 mmol), 

sodium chloride (0.85 mmol), and Pd(PPh3)4 (0.015 mmol) were added along with a stir bar to a 

10 mL microwave vial and capped under Ar atmosphere. A N2-sparged 3: 1 mixture of 

tetrahydrofuran and water (4 mL) with a few drops of phase-transfer reagent Aliquat 336 was 

then added to the vial, and the contents were stirred until all solids were dissolved. The solution 

was subsequently degassed by a freeze-pump-thaw procedure and allowed to warm back to 

room temperature. The vial was then heated and held at 60 °C in a microwave reactor for 1.5h. 

The product was precipitated by pouring into stirring acidic methanol, yielding the crude 

polymer. After filtering, the polymer was purified by dissolving in CHCl3 and reprecipitating from 

MeOH. Final products were then filtered and vacuum-dried. 

 

Di-pentenyl/Dihexyl Poly(fluorene) (xPF-5) 

xPF-5 was obtained as an off-white powder (160 mg) in 85 % yield. 1H NMR (400 MHz, 

CDCl3) δ 7.85-7.28 (m, 12H, aromatic); 5.64 (m, 2H, vinyl), 4.91-4.87 (m, 4H, vinyl); 2.15 (b, 8H, 



 

76 

alkyl); 1.91 (b, 4H, alkyl); 1.14-0.79 (b, 30H, alkyl). Mn via GPC in tetrahydrofuran: 8.4 kg/mol vs 

PS standards (DP=11), PDI: 2.6. 

 

Di-undecenyl/Dihexyl Poly(fluorene) (xPF-11) 

xPF-11 was obtained as an off-white powder (223 mg) in 93% yield. 1H NMR (400 MHz, 

CDCl3) δ 7.90-7.60 (m, 12H, aromatic); 5.79 (m, 2H, vinyl), 5.05-4.81 (m, 4H, vinyl); 2.30-1.85 (m, 

11H, alkyl); 1.40-0.65 (b, 45H, alkyl) ppm. Mn via GPC in tetrahydrofuran: 9.4 kg/mol vs PS 

standards (DP=12), PDI: 2.5. 

4.2.5 General Procedure for Thin Film Cross-Linking 

Cross-linkable poly(fluorene) derivatives were dissolved in chloroform at a 

concentration 20 mg/mL. A volume of stock solution containing multifunctional thiol in toluene 

(10 mg/mL) was then added to achieve the desired thiol:vinyl molar ratio, and a balance of 

toluene was finally added to achieve a final polymer concentration of 10 mg/mL. This ensured 

that the processing solutions were comparable for any given thiol:vinyl loading. These solutions 

were then spin-coated at 3000 RPM on clean glass substrates. Spun films were then placed 

under a quartz cover dish and covered with a N2 blanket. Substrates were heated above their 

glass transition temperature, held for 5 min., and cured via exposure to 254 nm UV light via 

handheld lamp (1.5 mW/cm2) for 2 min. Cured films were then rinsed with CHCl3 and dried 

under vacuum. 

4.2.6 Photo Calorimetry  

Photo calorimetry was performed with a TA Q-2000 instrument with a TA 

photocalorimeter accessory (PCA) using a broad-band UV source. Solutions of poly(fluorene)s 

and thiol as prepared above were drop cast into aluminum T-zero DSC pans and dried in the 
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dark. Photo calorimetry response was measured during curing at a constant temperature of 90 

°C with 1 mW/cm2 exposure intensity. Calibration of the instrument was confirmed by running a 

model UV-initiated thiol-ene reaction of 9-vinylcarbazole with pentaerythritol tetrakis(3-

mercaptopropionate) until completion and comparing heat evolved to theoretical thiol-ene 

reaction enthalpies.  

4.3 Results and Discussion 

4.3.1 Synthesis of Cross-linkable Poly(fluorene)s 

 

Figure 4.1: (A) Synthetic route for side-chain cross-linkable poly(fluorene) derivatives xPF-5 
and xPF-11. (B) Structure of previously synthesized end-chain cross-linkable poly(dihexyl 
fluorene) XDHF. 

To access control of network structure and connectivity, poly(fluorene)s were 

synthesized which could be cross-linked through alkenyl side-chains of varying lengths (Figure 

4.1). In general, dialkenyl functionality was installed on the 2,7-dibromofluorene monomer by 
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typical nucleophilic substitution reaction at the fluorene 9-position. Yields were good with no 

mono-functional defects observed by NMR after column purification (typical spectra shown in 

Figures 4.2 and 4.3). Polymerization of this monomer with a diboronic acid-based 

dihexylfluorene via Suzuki-Miyaura cross coupling afforded the desired side-chain functionalized 

copolymers. However, it is important to note that special considerations were necessary to 

avoid unwanted Pd-catalyzed Heck coupling between the dibromo and dialkenyl monomer 

functionalities. Informed by results from Hunt and co-workers on competing cross-coupling 

reactions,(21) cross-coupling reactions using lower temperatures in a THF/H2O mixture with 

KOtBu base plus added NaCl salt consistently produced linear polymer with respectable 

molecular weights. Subsequent 1H NMR confirmed that the alkenyl groups were present after 

polymerization. A more thorough summary of unsuccessful polymerization conditions can be 

found in Table 4.1 

 
Figure 4.2: 1H NMR spectra of 9,9-diundecenyl-2,7-dibromofluorene monomer. 
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Figure 4.3: 13C NMR spectra of 9,9-diundecenyl-2,7-dibromofluorene monomer. 

Table 4.1: Reaction conditions explored for optimizing Suzuki vs Heck cross-coupling reactions 
in with di-alkenyl dibromofluorene monomers. Procedures (proc.): 1) 1:1 toluene:H2O + 
Na2CO3; 2) 1:1 THF/H2O + KOtBu + NaCl. 

Monomer 
/method  

Proc. Temp. 
(°C)  

Time 
(hr)  

Mn 
(g/mol) 

Ð Fluorenes  
(DP)  

Yield  

xPF-11, 
microwave  

1  110  2  -- --  --  0%  

xPF-11, oil bath  1  100  48  --  --  2 (DP 1)  0%  

xPF-5, oil bath 
(slow addition)  

1  100  6  --  --  2 (DP 1)  0%  

xPF-5, 
microwave 

1  100  0.5  --  --  2 (DP 1)  0%  

xPF-5, 
microwave  

2  60  1  5300  1.71  16 (DP 8)  66%  

xPF-5, 
microwave 

2  60  1.5  9200  2.10  30 (DP 15)  84%  

xPF-11, 
microwave  

2  60  1.5  9400  2.42  24 (DP 12)  93%  
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Polymer sizes and glass transition temperatures, Tg, obtained from differential scanning 

calorimetry (DSC) are reported in Table 4.2. The polymers are all of comparable size with chain 

lengths above the conjugation length of poly(fluorene)s. It is useful to note that the Tg of the 

polymer systems decreases as the length of the alkene side chain is increased. As reported 

previously,(14) thiol-ene photo-curing of poly(fluorene) thin films is only successful when 

performed at temperatures above the polymer’s Tg. Therefore, the data here suggests that 

careful tuning of the polymer Tg by side-chain length could allow for conjugated polymers which 

are photo-curable at even more modest temperature conditions than previously explored. 

Table 4.2: Summary of number average molecular weight Mn, dispersity Ð, and glass transition 
temperatures Tg of synthesized polymers. 

Polymer Mn 

(g/mol) 
Number Avg. 

Fluorene 
units per 

chain 

Ð Tg 

(°C) 

XDHF 10400 31 2.3 85 

xPF-5 8400 26 2.6 98 
xPF-11 9400 23 2.5 45 
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Figure 4.4: Solution and solid state photoluminescence (PL) of cross-linkable poly(flourene) 
derivatives, excited at 365 nm. 

Photoluminescence (PL) of the vinyl-functionalized poly(fluorene)s at 365 nm excitation 

is shown in Figure 4.4. Previously synthesized homopolymer XDHF, with a fully dihexyl 

functionalized backbone, is shown for comparison.(14) All polymers show effectively 

indistinguishable emissive behavior in dilute CHCl3 solution as expected from their identical 

conjugated fluorene backbones. The PL spectra all broaden and red-shift when measured in the 

thin film state, and significant differences between the polymers’ P  become evident. The 

alkenyl side-chain copolymers show increased intensity from the lower energy PL peak at 450 

nm compared to styrene end-capped XDHF, possibly due to electronic interactions of the 

conjugated backbone with the unsaturated alkene side chains. This secondary peak emission 

increases in intensity as the alkene side chain length increases from xPF-5 to xPF-11. The precise 

reason for this increase is unknown, but it could be a result of increased planarization of the 

molecules arising from the reduced steric needs of the shorter side chains in the solid state. This 

would relate well to reported helical conformations of dialkyl fluorene homopolymers and the 
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observed dependencies of the secondary emission peak on stresses during processing and on 

intramolecular, rather than intermolecular, excitation events.(22, 23)  

4.3.2 Photocured Network Architecture and Kinetics 

 

Figure 4.5: Illustration of the alkene-functionalized polymers and thiol cross-linkers used for 
fabricating thiol-ene cross-linked semiconducting networks. After spin coating from mixed 
chloroform/toluene solutions, thin films of polymer and cross-linker could be photo-cured by 
exposure to 254 nm at temperatures above their Tg. 

With the side-chain functionalized polymers synthesized, a number of variables were 

available for tuning network connectivity: polymer side-chain length, thiol cross-linker 

functionality, and relative thiol:vinyl molar loading in the spin-coated thin films. Figure 4.5 
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illustrates the general procedure for fabricating cross-linked semiconducting thin films. 

Homogenous solutions containing both cross-linkable polymer and thiol cross-linker could be 

spin coated as uniform films approximately 20-50 nm in thickness with no observed evidence of 

phase separation. Exposed films were entirely insoluble to all solvents after UV radiation 

exposure at 254 nm for as few as 120 seconds under a N2 blanket at temperatures above the 

polymer Tg. This proved particularly advantageous with xPF-11 systems, whose low Tg (47 °C) 

allowed for photo-curing below 60 °C. All attempts to cross-link films at temperatures below 

their respective Tg were unsuccessful. 

FTIR measurements of the final cured, reacted networks provided further insight into 

the cross-linked nature of the semiconducting thin films (Fig. 4.6). The vinyl C-H absorption at 

905 cm-1 proves to be the most useful analytical signal to gauge thiol-ene reactivity, since these 

thin films have relatively low thiol loading (generally less than 1 mg). Thus changes and 

disappearance of the 2550 cm-1 S-H thiol mode are difficult to conclusively analyze since the 

thiol S-H absorption is known to be particularly weak.(24, 25).  
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Figure 4.6: FTIR spectra of fully cured xPF-5 and xPF-11 networks. 
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First, the effect of SH-2 versus SH-4 on vinyl group reaction is explored. The vinyl peaks 

for both xPF-5 and xPF-11 are reduced much more readily when cross-linked with the di-

functional SH-2 cross-linker than with SH-4, suggesting that the SH-2 thiols remain considerably 

more reactive during network formation than the SH-4 thiols. This makes intuitive sense, as 

unreacted thiols in the bulky tethered SH-4 likely become inaccessible as the network starts 

forming. Conversely, the flexible non-tethered SH-2 thiols can continue to react after the 

network begins to vitrify. In both systems cured with SH-2, IR absorption from the vinyl group is 

greatly diminished as the thiol:vinyl loading is increased beyond 1:1. This is not the case with SH-

4, where even an abundance of thiols results in residual vinyl groups after curing. Furthermore, 

residual weak thiol signal (while quantitatively difficult to assess) can still be seen at smaller 

cross-linker loadings with SH-4 where the same signal has disappeared in the SH-2 cross-linked 

samples with the same molar amount of thiol loading (e.g. 1:2 thiol:vinyl ratio for xPF-5 cured 

with SH-4 and SH-2). 

Comparison of the short side-chain xPF-5 and long side-chain xPF-11 also sheds light on 

the nature of the final poly(fluorene) networks. Greater residual vinyl groups appear to be 

present in xPF-5 compared to xPF-11 after network formation with di-functional SH-2. This can 

be assumed to be the result of the solubilizing hexyl chains within each repeat unit, which 

effectively screen the shorter pentenyl groups of xPF-5 from reacting once chain mobility is 

reduced during curing. It is more difficult to assess any differences when xPF-5 and xPF-11 are 

cured with tetra-functional SH-4, where the residual vinyl signals do not appear to react 

particularly differently. There is evidence of reduced conversion in xPF-5 versus xPF-11 as seen 

in the residual weak S-H band. Residual thiol is only observable beyond 2:1 thiol:vinyl molar 

loading in xPF-11, but in xPF-5 there appears to be a small presence of unreacted thiol at 1:1 
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thiol:vinyl molar loading. This would indicate a similar trend as SH-2-cured samples, where the 

shorter xPF-5 reactive side-chains leave more unreacted thiols in the final network. 

Photo DSC was additionally used to probe the effect of the initial thiol:vinyl ratio and 

thiol functionality on the kinetics of network formation. Solutions of cross-linkable 

poly(fluorene)s and either tetra-functional pentaerythritol tetrakis(3-mercapopropionate) (SH-4) 

or di-functional 3,6-dioxa-1,8-octanedithiol (SH-2) thiol cross-linkers were drop cast into DSC 

sample pans and dried in the dark. Low sample masses (less than 3mg) and thin films were used 

to mimic device processing conditions. 

 

Figure 4.7: Extent of thiol conversion after 20 min. exposure to 1mW/cm2 UV exposure as 
measured by heat evolved during photo DSC curing. Inset shows total measured heat evolved 
during 20 min. of photo-curing (254 nm at 1 mW/cm2). 

Figure 4.7 shows the extent of thiol conversion after 20 min. of photo-curing at 1 

mW/cm2 UV intensity as measured by photo calorimetry. Percent conversion was calculated 

from the total heat evolved during the photo calorimetry experiment as compared to calculation 

of quantitative reaction enthalpies informed by literature (~70 kJ/mol for a thiol and terminal 

aliphatic -ene).(26) The largest thiol conversions occur with the xPF-11 systems, which are all 
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consistently higher than those in xPF-5 networks. This result is in agreement with the IR data 

above, intuitively explained by the longer, more flexible undecenyl side-chains of xPF-11 which 

can continue to encounter reactive thiols as the network vitrifies.  Curiously, we observe that in 

all cases the thiol conversion is reduced by half for every doubling of thiol concentration in the 

film. That is, it appears once a fixed, initial amount of thiol reacts with vinyl groups, rapid 

network vitrification inhibits the further conversion of excess reactive groups. Such a regular 

and systematic inverse dependence of conversion on loading suggests that vitrification of these 

conjugated thiol-ene networks occurs very rapidly. 

Influences of the thiol cross-linker structure on network curing can be seen by the total 

heats of curing (Fig. 4.7, inset). In particular, heat evolved from the SH-4 cross-linked system 

continually increases (with xPF-5) or initially increases and then plateaus (with xPF-11) as the 

thiol content increases. The increase in cuing enthalpy at thiol:ene ladings greater than 1:1 in 

xPF-5 suggests the system becomes highly constrained and is dependent on a thiol proximity 

when the film is cast (i.e. within reach of a short pentenyl side-chain as the network vitrifies, 

which increases as more thiol is added). The xPF-11 film shows fairly constant reaction 

enthalpies as thiol content is increased, as the longer side-chains are not similarly inhibited. 

Both situations arise from the tethered nature of SH-4 which presumably leaves many free thiols 

inaccessible once the initial thiol-ene reactions begin. In contrast, reaction enthalpies with di-

functional SH-2 cross-linker markedly decrease beyond 1:1 thiol:vinyl molar loading which 

implies that excess cross-linker can serve to inhibit reaction in this case since the non-tethered 

more flexible SH-2 encourages greater and more thorough initial reaction. 

It is worth noting that all measured reaction enthalpies are considerably lower than 

theoretical thiol-ene reaction enthalpies for this system. This is likely due to required 

experimental constraints. Low sample masses (less than 3 mg) and thin films were used to 
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mimic device processing conditions, leading to very small reaction enthalpies, which are further 

complicated by environmental heating from the UV light source during photo calorimetry 

operation. Thus, comparison of measured heat flow between experimental samples is likely 

more insightful than comparisons with theoretical thiol-ene reaction enthalpies. 

In all cases and thiol loadings, insoluble cross-linked films remained after curing and 

rinsing with chloroform. Insolubility and network vitrification are no doubt enhanced by the 

rigidity and inherently modest solubility of the conjugated polymer backbones, which lock into a 

high molecular weight insoluble film once just a few cross-links occur within the amorphous 

alkyl regions between chains.  

 

 

Figure 4.8: Thickness of processed poly(fluorene) networks (solid symbols) and fraction of 
remaining film compared to as-spun film thickness (open symbols), measured as functions of 
thiol functionality and loading. 
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Figure 4.8 shows contact profilometry measurements of processed film thicknesses 

following photo reaction, solvent rinsing, and vacuum drying. It is clear that the bulky SH-4 tetra-

thiol provides significant volumetric contribution to the polymer film, while the SH-2 di-thiol 

does not. Both xPF-5 and xPF-11 cured films increase linearly in thickness as a function of SH-4 

content, while cured polymer networks remain effectively constant in thickness as more di-thiol 

is added. Comparing the cured, solvent-rinsed network thickness (following subsequent drying) 

to the pre-cured film thicknesses (Fig. 4.8, right axis) reveals effectively no loss of material or 

network contraction in most cases. The one notable exception is for the xPF-5/di-thiol network, 

which shows considerable shrinkage of approximately 20%. These results imply an increasingly 

dense conjugated polymer network as more di-thiol as added.. This behavior can be rationalized 

by considering the di-thiol cross-linker reacting with the short pentenyl side-chains. Since these 

side-chains are shorter than the adjacent co-monomer’s dihexyl side-chains, it is likely that 

during curing the conjugated polymer segments are pulled closer and tighter than their as-

coated morphology dictated by the hexyl side-chains. 

The combination of FTIR, photo calorimetry, and profilometry data all support the 

conclusion that choice of side-chain length and cross-linker geometry can be used to tune thin 

film network architecture. A short flexible di-thiol like SH-2 results in a denser, more completely 

reacted conjugated network, while the tetra-functional SH-4 cross-linker can lead to a less 

connected and more dilute (yet still vitrified and fully insoluble) poly(fluorene) network. 
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4.3.3 Network Photoluminescence 

 

Figure 4.9: (A) Schematic cartoon representation of the salient details of each network 
component (end-chain vs short side-chain vs long side-chain reactivity, and thiol 
functionality). (B) Photoluminescence (PL) of poly(fluorene) films before and after network 
formation with dithiol SH-2 and tetrathiol SH-4 as a function of vinyl:thiol (mol:mol) loading, 
indicated in legends. 

Figure 4.9 shows the photoluminescence (PL) of the as-spun poly(fluorene) films 

(without thiol) and the photo-cured networks as prepared and illustrated in Figure 4.5. Subtle 

changes in the PL spectra show how network connectivity can affect the optoelectronic 

properties of the final conjugated network. As thiol content increases with the shorter side-

chain xPF-5, the secondary PL peak at 450 nm broadens and disappears, and the green emission 

mode at 520 nm (commonly attributed to emission from deleterious oxidative fluorene defects, 

enhanced by polymer packing and interchain communication between defect sites(27-29)) 

changes as well. Curiously, the change of these two peaks depends on thiol functionality. With 

the bulky SH-4, both peaks decrease in intensity as more thiol is added, perhaps indicative of 
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reduced interchain electronic communication or backbone planarization. By contrast, xPF-5 

films cross-linked with SH-2 do not follow a clear trend in PL intensity changes, possibly due to 

more complex optoelectronic interactions dictated by the more tightly constrained network (as 

discussed above). 

The longer side-chain xPF-11 PL shows little dependence on thiol loading, especially with 

the di-functional SH-2 thiol, perhaps owing to the longer cross-linkable side chains which can 

flex through the curing network without distorting the conjugated packing. Likewise, the end-

functional XDHF PL spectra show a marked change upon thiol cross-linking with SH-4 compared 

to an as-spun film, but otherwise the system shows only a weak dependence on thiol loading. 

Regardless of network connectivity, cross-linking of these materials unambiguously 

leads to a reduction in the vibronic character in the PL spectra. This could be advantageous to 

device fabrication design, as mentioned previously regarding unwanted low-energy emissions in 

poly(fluorene) materials. Thus, the cross-linked emissive behavior shown here could be useful in 

eliminating unwanted low-energy emissions or non-radiative relaxation modes in 

electroluminescent devices. These observed effects on PL spectra show that cross-linking 

content and network architecture via thiol functionality can be used to fine-tune emissive 

behavior. Since photo induced emission is a relatively localized event in the film, we expect 

these subtle morphological changes to play a much more significant role in current carrying 

devices such as PLEDs and thin film transistors where interchain charge transport is a crucial 

aspect of device operation. The observed PL changes here are quite subtle, and future work will 

more closely examine the role cross-linking architecture plays in optoelectronic behavior. 
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4.4 Conclusions 

This chapter has described the photo-initiated thiol-ene curing of conjugated 

poly(fluorene) networks using polymers with a variety of cross-linkable alkenyl side-chains and 

multi-functional thiol cross-linkers. Through a combination of photo calorimetry, IR, and 

thickness measurements, the thiol-ene reaction has been identified as a new, molecular-level 

handle for pushing and pulling polymer chains beyond their as-spun state. Large, bulky cross-

linkers like SH-4 allow for volumetric dilution of the network, while shorter flexible cross-linkers 

allow for pulling polymer chains closer together than their as-spun morphology, particularly 

when coupled with short reactive polymer side-chains. These results can be easily generalized to 

a range of cross-linkers and polymer architectures. In the next chapter, changes in solid state 

photoluminescence will be exploited to further identify the subtle effects of conjugated network 

architecture on the materials’ optoelectronic behavior. 
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CHAPTER 5 

FLUORENONE INORPORATION INTO CROSS-LINKABLE POLY(FLUORENE)S FOR ASSESSING 

NETWORK OPTOELECTRONICS 

5.1 Introduction 

Cross-linking of conjugated polymers into semiconducting networks has been 

investigated via numerous chemical routes in order to open new possibilities for solvent 

processing, luminescent color stability, and morphological control.(1-6) The previous chapters 

have shown the thiol-ene photo-click reaction to be especially attractive for fabricating 

semiconducting electroluminescent polymer networks owing to the reaction’s high speed and 

efficiency, functional group tolerance, and initiator-free reaction.(7, 8) This high fidelity reaction 

has allowed for discrete control over poly(fluorene) network connectivity in cross-linked thin 

films which is difficult to achieve via other cross-linking chemistries. While many studies have 

tracked the influence of monomer and polymer connectivity on the formation and macro-scale 

properties of thiol-ene networks,(9-12) no reports have attempted to couple conjugated cross-

linked architecture with optoelectronic and charge transport properties.  

This chapter turns to the fluorenone moiety as a new diagnostic handle. Fluorenone, 

with a ketone at the 9-position of an aromatic fluorene unit, has been observed to act as a low-

energy charge trapping and recombination site when present in poly(fluorene) systems, showing 

a characteristic broad green photo- and electro-luminescence around 520 nm. The specific 

effects of fluorenone defects on the optoelectronic properties of poly(fluoene)s have been 

extensively studied through both the environmental oxidation of poly(fluorene) by heat(13) and 

light(14, 15) as well through deliberate incorporation of fluorenone molecules into model 

polymers and oligomers during synthesis.(13, 16-18)  The referenced studies have shown that 
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even a few molar percent of fluorenone present in poly(fluorene) is enough to suppress those 

polymers’ usual blue luminescence and introduce a dominant green emission. Figure 5.1 shows 

how the relative amount of fluorenone in the copolymer poly(dialkyl fluorene-co-fluorenone) 

increases low energy green emission and decreases high energy fluorene emission. A range of 

compelling data (including but not limited to Figure 5.1) supports the argument that low-energy 

fluorenone emission arises from isolated on-chain defect emission, but at the same time, 

relative intensity of this emission is unquestionably influenced by defect concentration and 

polymer packing in the solid state where excitation energy can much more efficiently transfer 

from high-energy fluorenes to the low-energy fluorenone species.(15, 16) Recent work in this 

field from Rathnayake and co-workers (shown in Figure 5.2) is especially applicable to variably 

cross-linked poly(fluorene) networks, since they demonstrate that fluorenone emission is 

sensitive to the concentration and relative dilution of the conjugated molecules.(18) These 

studies indicate that fluorenone emission is considerably affected by how readily excited states 

along the poly(fluorene) backbone can find and migrate to a fluorenone moiety. Thus changes in 

the relative amounts of green fluorenone and blue poly(fluorene) emission intensity are 

excellent indicators of relative fluorenone concentration and chain packing.  
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Figure 5.1: Effect of increasing fluorenone content on the solution photoluminescence (PL) 
spectra in a poly(fluorene-co-fluorenone) copolymer. Reprinted with permission from Becker , 
Adv. Func. Mater., 16, 364-370 (2006). Copyright 2006 Wiley-VCH. 

 

Figure 5.2: Effect of fluorenone incorporation in conjugated small molecules and polymers on 
photoluminescence spectra at high (H) and low (L) concentration in solution. Adapted with 
permission from Rathnayake, Chem. Mater., 19, 3265-3270 (2007). Copyright 2007 American 
Chemical Society. 

The above literature reports have inspired the current work which uses fluorenone 

emission as a diagnostic handle in cross-linked poly(fluorene) networks, where the intensity of 
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the low energy fluorenone emission serves as a colorimetric network connectivity sensor. This 

chapter describes the synthesis of thiol-ene cross-linkable poly(fluorene)s similar to those 

reported previously.(19) The notable synthetic difference is the deliberate inclusion of a small 

amount of fluorenone into the backbone of the poly(fluorene) derivatives. These polymers 

prove to be highly useful in characterizing the effect of cross-linked network architecture on 

interchain charge communication within the conjugated network. Insight from this 

characterization is then used to inform the design of improved-efficiency optoelectronic devices. 

5.2 Experimental Section 

5.2.1 Materials 

2,7-dibromo-9-fluorenone, 9,9-dihexylfluorene-2,7-diboronic acid bis(1,3-propanediol) 

ester, potassium tert-butoxide, tetrakis(triphenylphosphine) palladium(0), and Aliquat 336 were 

purchased from Aldrich Chemical Company. Solvents, sodium hydroxide, and silica were 

purchased from Fischer Scientific. All chemicals were used as-received without further 

purification. Reactions were carried out under N2 in conventional glassware unless noted 

otherwise.  

5.2.2 Instrumentation 

All nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Avance 400 

(400MHz) NMR spectrometer and internally referenced via residual solvent signal [CHCl3 
1H 7.26 

ppm; 13C 77.00 ppm]. All chemical-shift values are given in ppm. Gel permeation 

chromatography (GPC) was performed with an Agilent 1260 system at 40 °C with 

tetrahydrofuran (THF) as the eluent with 1.0 mL/min elution rate. A refractive index detector, 5 

μm guard column, three P  gel columns (2 Agilent Mixed-C 5 μm columns and 1 Agilent Mixed-D 
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5 μm column), and narrow molecular weight polystyrene standards were used. Differential 

scanning calorimetry (DSC) was performed on a Thermal Analysis (TA) Q-2000 in T-zero 

aluminum pans using modulated DSC at a heating rate of 3 °C/min. Film thicknesses were 

measured by contact profilometry using a Dektak 150 profilometer. UV-Vis spectra were 

recorded in 1-cm path length quartz cuvettes by using a Shimatszu UV 3600 spectrophotometer. 

Fluorescence measurements were taken on a Perkin-Elmer LS-50B. Infrared spectroscopy of 

polymer films was performed on a Nicolet 6700 FT-IR spectrometer with a Harrick grazing angle 

ATR accessory (GATR). 

5.2.3 Synthesis of 9,9-dialkenyl-2,7-dibromofluorene Monomers 

9,9-dipentenyl- and 9,9-diundecenyl-2,7-dibromofluorene monomers were synthesized 

as reported in Chapter 4 and a companion study.(19) In brief, 2,7-dibromofluorene (2.5 g, 7.7 

mmol) was dissolved in 50 mL of a 1:1 mixture of toluene and 50% aqueous NaOH in a 

condenser-equipped 150mL round bottom flask along with tetrabutylammonium bromide (0.2 

g, 0.65 mmol) as a phase transfer reagent. The desired bromoalkene (14.4 mmol) was then 

added, and the solution was heated to reflux under N2 and reacted for 17h. After cooling, the 

product was extracted using ethyl acetate. The organic phase was then neutralized and washed 

with 1M HCl, whereupon it turned yellow in color, and was further washed with brine. 

Collection of the organic phase and evaporation of solvent yielded a dark orange oil. Product 

was purified by column chromatography using 9:1 hexane:ethyl acetate as an eluent, and 

solvent was removed by evaporation. 
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5.2.4 Polymerization of Fluorenone-Containing Alkene/Alkyl Side-Chain Poly(fluorene) 
Copolymers (xPF/O-5 and xPF/O-11) 

General procedure: 9,9-Dialkenyl-2,7-dibromofluorene (0.293 mmol), 2,7-dibromo-9-

fluorenone (0.007 mmol), 9,9-dihexylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester (0.3 

mmol), potassium tert-butoxide (1.8 mmol), sodium chloride (0.85 mmol), and Pd(PPh3)4 (0.015 

mmol) were added along with a stir bar to a 10 mL microwave vial and capped under Ar 

atmosphere. An N2-sparged 3: 1 mixture of tetrahydrofuran and water (4 mL) with a few drops 

of phase-transfer reagent Aliquat 336 was then added to the vial, and the contents were stirred 

until all solids were dissolved. The solution was subsequently degassed by a freeze-pump-thaw 

procedure and allowed to warm back to room temperature. The vial was then heated and held 

at 60 °C in a microwave reactor for 1.5h. The product was then precipitated by pouring into 

stirring acidic methanol, yielding the crude polymer. After filtering, the polymer was purified by 

dissolving in CHCl3 and reprecipitating from MeOH. Final products were then filtered and 

vacuum-dried. 

Di-pentenyl/Dihexyl Fluorenone-Containing Poly(fluorene) (xPF/O-5) 

xPF/O-5 was obtained as a yellow-white powder (116 mg) in 61% yield. 1H NMR (400 

MHz, CDCl3) δ 7.86-7.65 (m, 12H, aromatic); 5.65 (m, 2H, vinyl), 4.94-4.89 (m, 4H, vinyl); 2.16 (b, 

6H, alkyl); 1.94 (b, 4H, alkyl); 1.15 (b, 10H, alkyl), 0.91-0.080 (b, 12H, alkyl) ppm. Mn via GPC in 

tetrahydrofuran: 9.4 kg/mol vs PS standards (DP=15), PDI: 2.9. 

Di-undecenyl/Dihexyl Fluorenone-Containing Poly(fluorene) (xPF/O-11) 

xPF/O-11 was obtained as a yellow-white powder (210 mg) in 88% yield. 1H NMR (400 

MHz, CDCl3) δ 7.86-7.70 (m, 12H, aromatic); 5.78 (m, 2H, vinyl), 5.00-4.94 (m, 4H, vinyl); 2.13-

1.92 (b, 15H, alkyl); 1.30-1.15 (b, 40H, alkyl); 0.98-0.81 (b, 20H, alkyl) ppm. Mn via GPC in 

tetrahydrofuran: 7.9 kg/mol vs PS standards (DP=10), PDI: 2.6. 
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5.2.5 Polymerization of Alkene/Alkyl Side-Chain Poly(fluorene) Copolymers (xPF-5 and xPF-11) 

Fluorenone-free alkene/alkyl side-chain copolymers xPF-5 and xPF-11 were synthesized 

as reported in Chapter 4 and a companion study.(19) 

 

5.2.6 General Procedure for Thin Film Cross-Linking 

Cross-linkable poly(fluorene) derivatives were dissolved in chloroform at a 

concentration 20 mg/mL. A volume of stock solution of multifunctional thiol in toluene (10 

mg/mL) was then added to achieve the desired thiol:vinyl molar ratio, and a balance of toluene 

was finally added to achieve a polymer concentration of 10 mg/mL. These solutions were then 

spin-coated at 3000 RPM on clean glass substrates. Coated substrates were then heated above 

the polymers’ glass transition temperature under a N2 blanked, held for 5 min., and cured via 

exposure to 254 nm UV light via handheld lamp (1.5 mW/cm2) for 2 min. through a quartz cover 

dish. Cured films were then rinsed with CHCl3 and dried under vacuum. 

 

5.2.7 Device Fabrication and Measurement 

Polymer Light Emitting Diodes (PLEDs) 

PLEDs were fabricated with the general architecture of ITO/ Poly(ethylene-

dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/emissive polymer/Ca/Al. ITO-coated glass 

was first solvent cleaned via sonication and subsequently treated with O2 plasma for 3 minutes. 

PEDOT/PSS (1.3wt% in H2O, Aldrich) was then spin-coated at 4000 RPM and dried under N2 at 

150°C for 30 minutes. Solutions of cross-linkable polymers were then spun from a mixed 

solution of chloroform and toluene containing thiol cross-linker (either tetra-functional SH-4 or 

di-functional SH-2) at prescribed vinyl:thiol mol:mol ratios and cross-linked as described above. 

As spun and uncured devices were simply placed under vacuum overnight directly following 
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spin-coating. In order to ensure all devices had comparably thick active layers, spin-coating 

speeds for the active layer solution was varied for each treatment to account for losses in 

thickness during curing. Devices were completed by the thermal evaporation of 15 nm Ca 

cathodes capped with 100 nm Al at pressure <10-5 Torr with active areas of 0.15 cm2. Devices 

were tested in air using a Kiethley 2602 Sourcemeter and a calibrated Ocean Optics USB4000 

UV–vis spectrometer.  

Thin Film Transistors 

Top-contact thin film transistors were fabricated on highly doped Si/SiO2 (200nm) 

substrates. The Si substrates were sequentially cleaned using H2O, acetone, and IPA, and they 

were then exposed to O2-plasma for 2 min. to further clean the surface and install reactive 

hydroxyl groups. Plasma-treated films were then placed in a vapor chamber with 

octadecyltrichlorosilane (OTS) for 8hr at 80°C to improve final device performance. Upon 

removal from OTS vapor, substrates were rinsed with toluene and dried under N2. Polymer 

solutions containing thiol cross-linkers were spin-coated at 3000 RPM and cured as described 

above. Au source/drain were deposited by thermal evaporation through a shadow mask 

( =80μm, W=2400μm) at pressure less than 10-5 Torr. All devices were subsequently measured 

under vacuum. 

Field effect hole mobilities were extracted from IV measurements in the saturation 

regime using the conventional relationship: 

   
 

  
                

where ID is the saturated drain current, W is the device channel width, L is the device channel 

length, μsat is the saturation-regime hole mobility, Ci is the film capacitance per unit area, VG is 

the applied gate voltage, and Vth is the threshold voltage. 
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5.3 Results and Discussion 

5.3.1 Synthesis of Cross-Linkable Fluorenone-Containing Poly(fluorene)s  

 
Figure 5.3: Synthesis of fluorenone-containing poly(fluorene)s xPF/O-5 and xPF/O-11 via 
Suzuki-Miyaura cross-coupling. 

The synthesis of thiol-ene cross-linkable poly(fluorene) derivatives by copolymerization 

of alkenyl side-chain fluorene and di-hexyl fluorene monomers has been introduced previously 

in Chapter 4. This chemistry is easily adapted to the synthesis of poly(fluorene)s containing 

fluorenone in the conjugated backbone by including 1 mol% of 2,7-dibromo-9-fluorenone in the 

monomer feed, as shown in Figure 5.3. These new poly(fluorene) derivatives could be photo-

chemically cross-linked through either short pentenyl side-chains (xPF/O-5) or longer undecenyl 

side-chains (xPF/O-11). Pristine polymers without fluorenone incorporation (xPF-5 and xPF-11) 

were synthesized as described previously. In both fluorenone-free and fluorenone-containing 
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polymers, optimized Suzuki-Miyauara reaction conditions as informed by previous studies(19, 

20) were employed to minimize Heck coupling of the alkenes with the aryl bromide monomers 

which, uncontrolled, yielded self-cross-linked, insoluble, unusable materials. 

Table 5.1: Summary of polymer size, dispersity Ð, and glass transition temperature Tg of 
alkene/alkyl side-chain poly(fluorene)s both with and without fluorenone incorporation. 

 
Polymer Mn 

(kg/mol) 
Number Avg. 

Fluorene units 
per chain 

Ð Tg (°C) 

xPF-5 8.4 26 2.6 108 
xPF-11 9.4 23 2.5 45 

xPF/O-5 9.4 30 2.9 99 
xPF/O-

11 
7.9 20 2.6 46 

 
Table 5.1 summarizes the physical size properties of the polymers as obtained from 

Suzuki-Miyauara coupling. All polymers were of comparable size, with a number average of 20-

30 continuous fluorene units in the conjugated polymer backbone. These numbers are all well 

above the conjugation length of poly(dialkyl fluorene)s (~10 fluorene units),(21) allowing for 

meaningful comparison of the optoelectronic behavior between different polymers. Assuming 

an equal reactivity of the dialkenyl dibromofluorene (0.98 equiv.) and dibromofluorenone 

monomers (0.02 equiv.) during polymerization, these degrees of polymerization statistically 

result in approximately one fluorenone unit per four or five poly(fluorene) molecules. The low 

amount of fluorenone incorporated was chosen for two reasons: first, so that the strong 

fluorenone emission and charge trapping would not wholly overwhelm high-energy fluorene 

emission, and second, so that most poly(fluorene) chains would not have fluorenone present. 

This is crucial in using fluorenone as a colorimetric sensor for network connectivity so that the 

enhancement or inhibition of interchain electronic communication arising from network 

connectivity could be observed (i.e., fluorescence can occur from both high energy fluorene and 

low energy fluorenone, instead of simply from the charge trapping fluorenone). The low loading 
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of fluorenone (overall 1 mol% relative to di-functional fluorene units) is not assessable by NMR, 

however FTIR absorption spectra (Figure 5.4) and the photoluminescence spectra discussed in 

the following sections unambiguously confirm successful incorporation of fluorenone into the 

polymers. The differences in glass transition temperature (Tg) values can most likely be 

attributed to the slight variation in molecular weights and dispersities between polymer 

samples.  

 
Figure 5.4: FTIR of pristine xPF-11 and fluorenone-containing xPF/O-11. Successful 
incorporation of fluorenone into the polymer is evidenced by the carbonyl peak at 1710 cm-1 
seen only in the xPF/O-11 sample. 
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Figure 5.5: (A) Structures and digital photograph of pristine alkene/alkyl copolymers (xPF-5 
and xPF-11) and fluorenone-containing alkene/alkyl copolymers (xPF/O-5 and xPF/O-11). 
Photo shows the materials’ observed fluorescence when exposed to 365 nm UV light as 
solutions in CHCl3 and as thin films. (B) Associated photoluminescence (PL) spectra of pristine 
copolymers (xPF-5 and xPF-11) and the fluorenone-containing copolymers (xPF/O-5 and 
xPF/O-11) under 365 nm photo excitation. 

Figure 5.5A shows the structure of fluorenone-free and fluorenone-containing 

copolymers, along with a photograph of their fluorescence when photo excited at 365 nm. The 

dramatic effect of just 1 mol% of fluorenone n the monomer feed on the resulting polymer’s 

photoemission is clearly seen by eye in the thin film samples. The fluorenone-free xPF-5 and 

xPF-11 polymers and the fluorenone-containing xPF/O-5 and xPF/O-11 polymers all fluoresce 

bright blue in the solution state, characteristic of high-energy fluorene backbone emission. In 

contrast, the fluorenone-containing xPF/O-5 and xPF/O-11 show dramatically distinct green 

fluorescence in the solid state, while the fluorenone-free xPF-5 and xPF-11 retain their 

characteristic blue fluorescence. This lower energy green emission in the solid state is a clear 

indication of successful fluorenone incorporation during synthesis.  

The solution state photoluminescence (PL) spectra in Figure 5.5B reveal effectively 

identical emission for all species regardless of fluorenone content. Only in the aggregated solid 
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state does the green emission from the fluorenone species become evident, confirming visual 

evidence. While the solid state PL spectra are dramatically affected by fluorenone incorporation, 

UV-vis absorption spectra with the same polymers show effectively no difference (Figure 5.6). 

These observations suggest that photoexcitation occurs along the π-π* transition in polyfluorene 

and low energy green emission occurs only via energy transfer to the fluorenone following 

photo excitation of the high energy fluorene backbone. This agrees with excitation data from 

Kulkarni and co-workers who only observe fluorenone π-π* absorption at 450 nm with high 

fluorenone content (10 mol%), yet observe low energy green PL at all dilute fluorenone 

loadings.(16) In the dilute solution state, the fluorenone-free poly(fluorene) chains dominate the 

PL spectra owing to their statistical abundance. In the solid state, efficient interchain electronic 

communication facilitates the migration of excitation energy to the infrequent low-energy 

fluorenone groups. This sensitivity of photoemissive color to interchain contact is the basis of 

using fluorenone as an optoelectronic connectivity sensor in the following experiments. 

 
Figure 5.6: UV-vis absorption spectra of fluorenone-containing xPF/O-5 and xPF/O-11 
compared to their fluorenone-free counterparts xPF-5 and xPF-11. Solution measurements 
were made in chloroform, and thin film measurements were made from films spin-coated 
from chloroform. 
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5.3.2 Network Formation and Optical Properties 

Given the considerable changes in xPF/O-5 and xPF/O-11 PL spectra between dilute and 

aggregated states, PL measurements were next investigated as a colorimetric detector of 

interchain electronic communication in cross-linked conjugated polymers with varying network 

architecture. Photo-curing and thin film network formation were achieved as described in 

Chapter 2-4. In general, thiol-ene compatible conjugated polymers were spin-coated from a 

solution containing a thiol cross-linker (structures are shown in Figure 5.7). Spun thin films were 

then cured under N2 by exposure to 254 nm UV light at temperatures above their Tg. PL spectra 

of the cured semiconducting networks were then measured. 

 
 
Figure 5.7: Illustration showing how network density and connectivity could affect electronic 
communication in cross-linked poly(fluorene) networks. Fluorenone-containing chains are 
represented in green, and fluorenone-free chains are represented in blue. Photo excitation of 
a tightly bound network allows for efficient migration of an excited species to a fluorenone 
moiety with subsequent photo emission. A diluted loosely bound network prohibits such 
effective charge trapping and recombination. 
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Figure 5.7 illustrates the principle of using network connectivity to affect the facility of 

interchain electronic communication in conjugated polymer networks. By using a short, flexible 

cross-linker like the di-functional thiol 3,6-dioxa-1,8-octanedithiol (SH-2), the network can be 

cross-linked with high density and contraction, while a bulkier tethered tetra-function thiol like 

pentaerythritol tetrakis(3-mercaptopropionate) (SH-4) provides significant volumetric 

contribution to the network and can act as a diluents as described in Chapter 4. By incorporating 

fluorenone-containing poly(fluorene)s into the cross-linked network (illustrated in green), 

photoluminescence from either the low-energy fluorenone sites or high energy poly(fluorene) 

backbone could be correlated with network architecture. 

 
Figure 5.8: Photoluminescence (PL) of fluorenone-containing dipentenyl xPF/O-5 (A,C) and 
diundecenyl xPF/O-11 (B,D) cross-linked films as a function of thiol content for tetra-
functional and di-functional thiol cross-linkers. Excitation wavelength for all samples was 365 
nm. 
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Figure 5.8 shows photoluminescence (PL) spectra of short side-chain xPF/O-5 and long 

side-chain xPF/O-11 polymer networks cured with the two different thiol cross-linkers, 

demonstrating how the fluorenone emission can be used as colorimetric indicator of network 

architecture. The strong emission at 520 nm arising from fluorenone incorporation is clearly 

evident in all network configurations. The relative intensity of this emissive mode compared to 

the blue poly(fluorene) PL emission between 400 and 450 nm serves as metrology tool for 

assessing network density and interchain communication in the conjugated networks. 

Comparing the PL spectra from the tetra-thiol- to the di-thiol-cured systems most clearly 

shows the effect of network architecture on the conjugated materials’ optoelectronic 

properties. As the amount of tetra-thiol is increased, the fluorenone PL emission in the xPF/O-5 

and xPF/O-11 networks greatly decreases, indicating increasingly poor interchain charge 

communication similar to the dilute solution state poly(fluorene)s in Figure 5.5. By contrast, the 

networks cured with the shorter, linear di-thiol shows the exact opposite behavior. Fluorenone 

PL emission increases as more cross-linker is added, suggesting more tightly packed 

poly(fluorene) chains with better interchain electronic communication. While this increase is 

slight and not as dramatic as the changes observed in the tetra-thiol-cured networks, it clearly 

opposes the phenomenon occurring in the tetra-thiol networks. 

The short side-chain xPF/O-5 networks (Fig. 5.8A,C) display considerably greater PL 

sensitivity overall than the long side-chain xPF/O-11 networks (Fig. 5.8B,D), whether cured with 

either SH-2 or SH-4. This is an intuitive result of the longer flexible undecenyl side-chains being 

able to conform and distort through the network during curing, leading to less influence on the 

conjugated poly(fluorene) backbone. In contrast, the pentenyl side-chains are shorter than 

adjacent di-hexyl side-chains in the xPF-5 copolymer, and so they more efficiently push and pull 

the conjugated backbone when reacted into the thiol-ene network. 
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Unexpectedly, a curious increase of the low-energy fluorenone emission in the polymer 

thin films occurs upon addition of any amount thiol-cross-linker compared to as-spun films 

without any added thiol. The exact cause of this increased low-energy emission is still an open 

question, possibly arising from hydrogen-bonding interactions between the thiols and ketone of 

the fluorenone groups leading to subtle and complex morphological changes. 

The PL data here encouragingly suggest that clever choice of cross-linker in a photo-

cured conjugated polymer network can be used to tune the desired optoelectronic properties 

from a single cross-linkable semiconducting polymer. A larger more rigid cross-linker, such as 

SH-4, can be used to discourage chain packing and crystallization, as would be advantageous in 

amorphous polymer applications. A smaller more flexible cross-linker, such as SH-2, can be used 

to the opposite effect, pulling conjugated polymer chains closer together to encourage facile 

charge transport, as would be desired in a polymer thin film transistor. 

5.3.3 Cross-Linked Poly(fluorene) Semiconducting Devices 

Cross-linked polymer light emitting diodes (PLEDs) were fabricated from the systems 

described above to investigate how the network’s structural influence on optoelectronics might 

translate to device design. PLEDs were fabricated with xPF-5 owing to the greater sensitivity of 

the pentenyl side-chain system to cross-linker structure as seen in Figure 5.8. Current density 

and luminance of a number of devices are shown in Figure 5.9 and reveal performance behavior 

that can indeed be tuned by cross-linking architecture. In particular, the more tightly connected 

network, xPF-5 cured with the short linear SH-2 di-thiol, resulted in devices which were twice as 

bright with three times the luminous efficiency compared to as-spun xPF-5 devices containing 

no cross-linker. In contrast, xPF-5 network devices cured with the bulky SH-4 cross-linker 

showed poor performance with low cross-linker loading or did not work at all at high cross-
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linker loading. In all cases, the cross-linked devices showed an increase in blue emission and 

shifted overall toward white electroluminescence (Figure 5.10).  

 
Figure 5.9: Current density-voltage (A) and luminance-voltage (B) output of best performing 
xPF-5 PLEDs. 

 
Figure 5.10: Electroluminescence (EL) spectra of xPF-5 PLEDs cross-linked with varying network 
architecture indicated in legend. 

Close examination of the current density-voltage (J-V) and luminance-voltage (L-V) 

behavior of the cured xPF-5 PLEDs provide even further insight into the effect of network 

architecture on charge transport and recombination. PLEDs incorporating as spun films of xPF-5 

without any thiol show higher overall current density than any device incorporating thiol. In 
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these cases the lack of insulating thiol cross-linker increases current flow through xPF-5 chains 

to some degree and improves charge mobility. However despite decreasing current density, 

devices cured with SH-2 at modest thiol loading (up to 1:1 molar vinyl:thiol) consistently display 

brighter luminance and lower turn-on voltages than the un-cured, thiol-free devices. A summary 

of device performance over multiple samples is listed in Table 5.2. 

As more thiol is loaded into the thin film, device performance becomes less consistent 

(although the best performing cross-linked devices still outperform films without thiol as well as 

films incorporation un-cured thiols). Addition of too much SH-2 leads to a significant reduction 

in both current density and device brightness. Cross-linked devices cured with the tethered SH-4 

thiol show similarly reduced performance at even low loading (1:4 molar thiol:vinyl) or devices 

that produced no visible electroluminescence at high loading (4:1 molar thiol:vinyl). Both cases 

are clearly the result of incorporating too much insulating material into the semiconducting 

poly(fluorene) network. 

Table 5.2: Performance summary of thiol-ene cross-linked pentenyl side-chain poly(fluorene) 
xPF-5 in light emitting diodes. 

xPF-5 Device Turn On 
Voltage 

(V) 

Brightness at 
12 V (cd/m2) 

Max. Efficiency (10-2 

cd/A) 

No SH 7.5 33 ± 7 0.9 ± 0.1 
SH-2 [1]:[4] 6.5 56 ± 3 2.9 ± 0.8 
SH-2 [1]:[1] 7.0 23 ± 13 1.0 ± 0.6 
SH-2 [4]:[1] 8.5 11 ± 6 1.1 ± 0.4 
SH-4 [1]:[4] 9.5 10 ± 3 0.6 ± 0.1 
SH-4 [4]:[1] n/a n/a n/a 

 
 

The mechanism for the devices’ performance improvement when cured with SH-2 could 

be due to a few factors. Aggregates and excimers are generally considered to reduce PLED 

emissive performance via self-quenching, and work by Rathnayake and co-workers has shown 

that addition of an insulating, dilatory matrix can improve PLED brightness.(22) However, PL 
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measurements in Figure 5.8 suggest increased aggregation and excited state energy transfer 

despite the improved performance of those PLEDs. Clearly chain packing and aggregation are 

not unequivocally detrimental to PLEDs. Some studies have demonstrated that “weak” 

aggregates can indeed improve and blue-shift electroluminescent properties as charge transport 

is enhanced in the conjugated polymer thin films without compromising photo-emissive 

emission.(23, 24) This is particularly compelling since the referenced studies cite the benefit of 

long amorphous side chains, similar to those in the poly(fluorene) systems here. It is also 

possible that the insulating nature of the thiol cross-linker improves the balance of hole and 

electron mobilities which would further contribute to luminescent enhancements as long as the 

insulating component (i.e., thiol loading) is not too great.  

Cross-linked xPF-5 was additionally incorporated into thin film transistors (TFTs) to serve 

as a hole-conducting layer under field effect operation, with results summarized in Table 5.3. 

Devices did not show as pronounced performance improvement and variation as the PLEDs, 

likely due to the typically lackluster performance of the highly amorphous poly(fluorene)s in 

TFTs in general. However, field-effect behavior was clearly recorded in cross-linked films. As 

with the PLEDs, adding an excess of the bulky SH-4 tetra-thiol resulted in significant degradation 

of electronic properties due to the large content of insulating material. These results confirm 

that modest thiol incorporation does not inhibit charge transport, and we are looking forward to 

exploring thiol-ene influence on higher mobility, more crystalline conjugated polymer devices. 

Table 5.3: Performance of variably cross-linked xPF-5 in thin film transistors. 

Cured xPF-5 with cross-
linker thiol:vinyl loading 

(mol:mol) 

Turn-On Voltage 
(V) 

On/Off Drain 
Current Ratio 

Field Effect Hole Mobility 
(10-7 cm2/V s) 

None -29.0 34.5 0.3 
SH-4 [1]:[4] -28.5 29.2 0.6 
SH-4 [4]:[1] 0.6 4.8 1 
SH-2 [1]:[4] -25.5 17.2 0.3 
SH-2 [4]:[1] -27.7 39.2 0.2 
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These operational device results clearly show how the thiol-ene reaction can be used as 

a molecular-level handle with the same conjugated polymer to push and pull polymer chains 

beyond their as-spun morphologies. While these devices are far from optimized and clearly do 

not yet show performance worthy of commercialization, these results are exciting since they 

reveal network architecture to be a new molecular handle on device performance. The results 

optimistically suggest that thiol-ene and similar high-fidelity cross-linking chemistries can be 

used to tune conjugated film structure and morphology in ways that are impossible to 

accomplish through other annealing routes. 

5.4 Conclusions 

In this chapter, a small amount of the low-energy emissive fluorenone species was 

incorporated into the backbone of thiol-ene curable poly(fluorene)s as a colorimetric detector 

to assess the effect of cross-linked conjugated network architecture on the optoelectronic 

properties of variously scaffolded poly(fluorene) networks. By tracking the characteristic, highly 

packing-dependent green emission of fluorenone, it was shown that the thiol-ene reaction can 

be used a powerful handle on molecular packing which in turn influences the interchain 

electronic communication in conjugated polymer thin films. Chain packing and charge transport 

was found to decrease in networks cured with a bulky tetrathiol, while a shorter linear dithiol 

resulted in a tight, contracted network which increased electronic communication and excited 

state trapping at the fluorenone recombination sites. Driven by brightness improvements in 

electroluminescent devices, these results offer a fully generalizable approach to influencing 

optoelectronic properties of conjugated systems using thiol-ene click chemistry to fine-tune 

their packing and electronic communication. 
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CHAPTER 6 

PHOTO GRAFTING VINYL-CONTAINING POLY(FLUORENE)S ONTO THIOL-FUNCTIONALIZED 

SURFACES‡ 

6.1 Introduction 

Over the past two decades, the structural and chemical details of organic/organic and 

organic/inorganic interfaces in organic electronic devices have been found to have immense 

impact on device performance.(1-3) This has led to considerable research into surface 

modification techniques that improve ordering at the interface, beneficially shift metal work 

functions, or improve device longevity. These effects have been observed through the use of 

self-assembled monolayers (SAMs)(4-6) or with thin interlayer materials such as zwitterionic 

species,(7) conjugated polyelectrolytes,(8, 9) or inorganic materials(10).  

 

                                                           
‡ Portions of this chapter have been reprinted with permission from Davis, Carter, Langmuir 
(2014, accepted). Copyright 2014 American Chemical Societry. 
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Figure 6.1: Illustration of grafting-from and grafting-to processes, with examples of conjugated 
polymer grafting selected from published literature. Adapted with permission from (as 
indicated in figure): Marshall, Macromolecules 43, 2127-2144 (2010). Copyright 2010 American 
Chemical Society; Doubina, Langmuir 28, 1900-1908 (2020). Copyright 2012 American 
Chemical Society; Alonzo, Nanoscale 5, 9357-9364 (2013). Copyright 2013 Royal Society of 
Chemistry; Paoprasert, J. Mater. Chem. 20, 2651-2658 (2010). Copyright 2010 Royal Society of 
Chemistry. 

For this reason, the covalent bonding of semiconducting polymers directly to inorganic 

and organic surfaces is of particular interest due to a potentially high degree of control over 

surface ordering and chemistry. Figure 6.1 shows examples of “grafting from” and “grafting to” 

approaches from published studies where conjugated polymers were attached to surfaces via 

popular grafting chemistries. Particular “grafting from” success with poly(fluorene) has been 

achieved via Yamamoto polymerization from a surface bound monomer(11) and polyacetylene 

via tungsten-catalyzed microwave polymerization from an acetylene-functionalized surface.(12) 

Additional grafting-from surface-initiated polymerization success has been seen with the growth 
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of polyvinylcarbazole brushes via free radical polymerization(13) as well as poly(thiophene) and 

poly(phenylene) brushes via Kumada-type polymerizations.(14-19)  Typically, high coverage of 

conjugated polymers on surfaces via “grafting to” – either by bonding along the polymer chain 

or by bonding as a brush from the chain end – is difficult due to their relatively rigid nature. 

Furthermore, very few studies quantitatively report grafting densities, and previous experience 

from the Carter laboratory and others have often yielded patchy, non-uniform surface coverage 

of conjugated polymers through either grafting method.(14, 17) There has been modest but 

increasing success in recent years using “grafting to” approaches, primarily employing reactive 

silanes or alkyne-azide chemistry, to attach conjugated polymer chains directly to a reactive 

surface.(20-23) 

Inspired by the successes of alkyne-azide click chemistry compared to the general 

difficulties of conjugated polymer grafting, the thiol-ene reaction could provide an efficient 

route to functionalize surfaces with conjugated polymers. As detailed in previous chapters, 

photo-initiated thiol-ene chemistry is highly efficient and tolerant of impurities, giving the 

reaction a wide range of applicability and interest.(24-27) The efficiency of this reaction may be 

useful in accomplishing the historically difficult task of grafting conjugated polymers to surfaces. 

Chapters 2-5 have demonstrated that conjugated polymers can easily be functionalized to 

include alkene moieties, and these polymers were shown to be amenable to rapid initiator-free 

cross-linking reactions with multi-functional thiols to form robust electronically-active 

networks.(28, 29) Expanding on this work, this chapter describes the successful photo-induced 

thiol-ene surface grafting of end-group and side-chain functionalized conjugated poly(fluorene)s 

and investigates the effect of that surface tethering on their optoelectronic properties. 
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6.2 Experimental Section 

6.2.1 Materials 

All materials were purchased from Sigma-Aldrich Company and used without further 

purification unless otherwise noted. Pd(PPh3)4 and Ni(COD)2 were purchased from Strem 

Chemicals and handled under inert atmosphere. Silicon substrates (B-doped, 0.01-0.018 ohm-

cm, 200nm thermally grown SiO2) were purchased from University Wafers. 

6.2.2 Instrumentation 

All nuclear magnetic resonance (NMR) spectra were acquired on a Bruker AF 400 MHz 

spectrometer and internally referenced via residual solvent signal [CHCl3: 
1H) 7.26 ppm; 13C 

NMR) 77.00 ppm]. All chemical shift values are given in ppm. Gel permeation chromatography 

(GPC) was performed with an Agilent 1260 system at 40 °C with tetrahydrofuran (THF) as the 

eluent with 1.0 m /min elution rate. A refractive index detector, 5 μm guard column, three PL 

gel columns (2 Agilent Mixed-C 5 μm columns and 1 Agilent Mixed-D 5 μm column), and narrow 

molecular weight polystyrene standards were used. Differential scanning calorimetry (DSC) was 

performed on a Thermal Analysis (TA) Q-2000 in T-zero aluminum pans using modulated DSC at 

3°C/min. 

Fluorescence measurements were taken on a Perkin-Elmer LS-50B using a front surface 

attachment for thin film measurements. Infrared spectroscopy of polymer films were performed 

on a Nicolet 6700 FT-IR spectrometer with a Harrick grazing angle ATR accessory (GATR). 

6.2.3 Synthesis of 2,7-dibromo-9,9-dipentenyl-9H-fluorene 

The side-chain vinyl functionalized monomer, 2,7-dibromo-9,9,dipentenyl-9H-fluorene, 

was synthesized from 2,7-dibromo fluorene as described in Chapter 4. 2,7-dibromofluorene (2.5 
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g, 7.72 mmol) and tetrabutylammonium bromide (0.21 g, 0.085 mmol) were dissolved 50 mL of 

1:1 mixture of toluene and 50% NaOH. The solution was sparged with N2 and stirred for 5 min. 

Bromopentene (2.3 g, 15.4 mmol) was slowly added dropwise and the solution was observed to 

turn deep purple. Reaction was refluxed for 17 hr. The organic phase was extracted with ethyl 

acetate, neutralized, and washed with 1M HCl and brine, where the solution turned deep yellow 

in color. Solvent was removed by evaporation to yield a dark yellow oil which was purified by 

column chromatography (9:1 hexane:ethyl acetate; difunctional product Rf = 0.84). Final product 

was crystallized from MeOH as an off-white solid in 81% yield (2.87 g). 1H NMR (400 MHz, CDCl3) 

δ 7.44-7.30 (m, 6H, aromatic), 5.56 (m, 2H, vinyl), 4.88 (m, 2H, vinyl), 4.84 (m, 2H, vinyl), 1.94-

1.82 (m, 8H, alkyl), 0.69 (m, 4H, alkyl) ppm. 13C NMR (400 MHz, CDCl3) δ 152.1 (aromatic), 139.1 

(aromatic), 138.3 (vinyl), 130.3 (aromatic), 126.2 (aromatic), 121.6 (aromatic), 121.2 (aromatic), 

114.7 (vinyl), 55.5 (quaternary), 39.6, 33.8, 22.9 ppm. 

6.2.4 Polymerization of Side-Chain Functionalized Poly(fluorene) (pPF) 

Alternating 9,9-dihexyl/dipentenyl poly(fluorene) copolymer pPF was synthesized by 

conventional Pd-catalyzed Suzuki-Miyaura coupling as described in Chapter 4. 2,7-dibromo-9,9-

dipenetenyl-9H-fluorene (301 mg, 0.65 mmol) and 9,9-dihexylfluorne-2,7-diboronic acid bis(1,3-

propanediol) ester (328 mg, 0.65 mmol) were added to a round bottom flask containing 

Pd(PPh3)4 (22 mg, 0.02 mmol) under Ar. Solids were dissolved in 10mL 3:1 mixture of 

toluene:2M potassium carbonate with a few drops of Aliquat 336 added as a phase transfer 

agent, and the reaction flask was placed under vacuum and backfilled with N2 (x3).  Reaction 

was refluxed for 48 hours, turning dark purple and beginning to fluoresce under UV after 1 hr. 

Product was isolated in 60% yield as a light yellow powder following precipitation from acidic 

methanol. 1H NMR (400 MHz, CDCl3) δ 7.85-7.28 (m, 12H, aromatic); 5.64 (m, 2H, vinyl), 4.91-
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4.87 (m, 4H, vinyl); 2.15 (b, 8H, alkyl); 1.91 (b, 4H, alkyl); 1.14-0.79 (b, 30H, alkyl). Mn via GPC in 

tetrahydrofuran: 3.5 kg/mol vs PS standards (DP=6), PDI: 2.7. 

6.2.5 Polymerization of Styrene End-Capped Poly(fluorene) (xPF) 

End-capped poly(dihexyl fluorene) xPF was synthesized as previously reported.(28) 

Briefly, 2,7-dibromo-9,9-dihexyl-9H-fluorene was polymerized via Ni(0)-mediated Yamamoto 

coupling with 0.125 equiv. of 4-bromostyrene added as an end-capping agent. Product was 

isolated in good yield as a grey powder after precipitation from acidic methanol. DP = 13 via 1H 

NMR; Mn via GPC 10400; PDI 2.31. 

6.2.6 Mercaptosilanization 

Highly doped Si substrates with 200nm of thermally grown SiO2 were sequentially rinsed 

with water, acetone, and isopropanol. Substrates were then treated with O2 plasma for 2 min 

and immediately immersed in 5 vol.% 3-mercaptopropyltriethoxysilane in anhydrous toluene. Si 

substrates were allowed to react for 4 hr at 40 °C. Functionalized surfaces were then removed, 

rinsed with toluene and ethanol, and dried under N2. 

6.2.7 Thiol-Ene Surface Grafting of Poly(fluorene) Derivatives 

Solutions of xPF and pPF in CHCl3 (5 mg/mL) were spin-coated on thiol-functionalized Si 

substrates at 3000 RPM. The polymer-coated surfaces were then placed under N2 at 100 °C and 

exposed to 254 nm light for 2 min. through a quartz cover dish. UV exposed films were then 

rinsed in CHCl3 for 30 seconds to reveal the surface grafted polymer layer. For photo-patterning, 

an arbitrary photomask was placed over the spin-coated films prior to UV exposure. 
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6.2.8 Device Fabrication 

Top-contact thin film transistors were fabricated on highly doped Si/SiO2 (200 nm) 

substrates. The substrates were sequentially cleaned using H2O, acetone, and IPA, and they 

were then exposed to O2-plasma for 2 min. to clean the surface and install reactive hydroxyl 

groups. Surfaces were functionalized with 3-mercaptopropyltriethoxysilane as above. pPF was 

then spin-coated at 3000 RPM (5 mg/mL CHCl3 solution) and either grafted as described above 

or placed under vacuum for non-grafted devices. Au source/drain were then deposited by 

thermal evaporation via shadow mask (W/L=30) at pressures <10-5 Torr. Octadecyltrichlorosilane 

(OTS) functionalized devices were prepared by vapor treating the plasma-cleaned Si/SiO2 

substrates with OTS in a sealed vessel for 8 hr. After OTS exposure, substrates were rinsed with 

toluene and dried under N2, pPF was coated as above, and electrodes were evaporated. All 

devices were measured under vacuum. 

6.3 Results and Discussion 

6.3.1 Synthesis of Thiol-Ene Compatible Poly(fluorene)s 

Polymers investigated for thiol-ene grafting were poly(fluorene) derivatives with vinyl 

functionality installed either as styrene-type units at the chain ends or as terminal alkenes at the 

9-position in the fluorene repeat unit In order to assess the effects of surface connectivity on 

film properties. End-functionalized poly(dihexyl fluorene) (xPF) was synthesized via Yamamoto 

coupling as previously reported and described in Chapter 2.(28) Side chain-functionalized 

polymer of alternating dipentenyl-dihexyl fluorene (pPF) was synthesized via Suzuki-Miyaura co-

polymerization of 2,7-dibromo-9,9-dipentenylfluorene and a 9,9-dihexylfluorene boronic ester 

as detailed in Chapter 4, shown in Figure 6.2. 
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Figure 6.2: Synthesis of alkene-functionalized poly(fluorene) derivatives for surface grafting via 
thiol-ene reaction. Reaction conditions: i.) Tetrabutylammonium bromide (0.01 equiv.), 50 mL 
1:1 toluene: 50% aqueous NaOH. Reflux 17h. ii.) Pd(PPh3)4 (0.03 equiv.), 10mL 3:1 toluene:2M 
aqueous K2CO3, Aliquat 336. Reflux 48h. 

Lower molecular weight pPF (3.5 kg/mol) than described previously was easily isolated, 

with 1H NMR similarly showing good preservation of vinyl functionality. The lower molecular 

weight was chosen to allow for improved grafting density. For xPF, the relative amount of 4-

bromostyrene end-capping agent added to the reaction was chosen so that both xPF and pPF 

averaged approximately 12 fluorene units per chain. 

6.3.2 Thiol-Ene Surface Grafting 

Treatment of Si substrates with O2 plasma is known to afford a hydrophilic surface rich 

in hydroxyl groups.(30, 31) Subsequent condensation reaction of these surfaces in dilute 

solutions of (3-mercaptopropyl)triethoxysilane yields the desired surface functionalized with 

free thiol reactivity as described by Pallavicini and co-workers.(32) It is likely that the thiol-

functionalized layer is not a perfect monolayer as it is notably difficult to prevent trialkoxy 

silanes from forming multilayers on hydroxylated Si surfaces. However, surfaces appear clean 

and pristine by eye following silane reaction, and AFM measurements reveal a surface clean of 

islanding and other multilayer artifacts. Furthermore, surface contact angles below 90° are 



 

127 

characteristic of surface-bound free thiols,(33) and so these surfaces are sufficiently 

functionalized for grafting needs. 

 

Figure 6.3: (a) Schematic representation of grafting process. (b) Water contact angle 
measurements for (left to right): pristine thiol-treated wafers; as-spun polymer; cured polymer 
after rinsing in CHCl3. (c) Grazing-angle FT-IR measurements of alkyl C-H stretch (top) and 
aromatic C-H modes (bottom) for pristine thiol-treated wafers, as-spun polymer, and cured 
polymer after rinsing in CHCl3. 

Figure 6.3 follows the photo-induced initiator-free grafting procedure as illustrated in 

Figure 6.3a with characterization at each step by contact angle (Figure 6.3b) and grazing-angle 

FT-IR (Figure 6.3c). Briefly, alkene-containing poly(fluorene)s were spin-coated from chloroform 

onto thiol-functionalized wafers. Coated wafers were then cured by exposure to 254 nm UV 

light for 2 min under nitrogen atmosphere at 100°C (above the polymers’ glass transition 

temperatures: xPF Tg=85 °C, pPF Tg=95 °C as measured by DSC).  
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Success of the grafting reaction was first confirmed by static water contact angle (Fig. 

6.3b) which increased from 84.4° for the thiol-treated Si substrate to 103.1° following polymer 

spin-coating, consistent with a hydrophobic polymer coating. After UV exposure and rinsing in 

CHCl3, no film could be observed by eye on the substrate. However, subsequently measured 

contact angles of the cured and rinsed surfaces decreased only slightly to 97.1°, indicating a thin 

hydrophobic polymer coating remained bound to the surface.  

Grazing angle FT-IR measurements (Fig. 6.3c) revealed two sharp C-H bands at 2920 cm-1 

and 2850 cm-1 from the symmetric alkyl C-H stretch in the mercaptopropyl layer after surface 

functionalization. Direct observation of the thiol S-H band was not possible due to the thin 

surface coverage and the known weakness of the S-H absorption.(34, 35) A broadening of the 

alkyl C-H band occurs after polymer coating and is consistent with polymers’ long alkyl side 

chains compared to the propyl group of the mercaptopropyl layer. This broad band remains 

even after continuously soaking the films in solvent over 3 days. Additional aromatic signals 

between 1500-1300 cm-1 behave similarly and are also indicative of surface-bound 

poly(fluorene).  

Confirmation of the thiol-ene reaction was also evident from the vinyl IR signals of the 

poly(fluorene) films (Figure 6.4). The vinyl C-H absorption at 910 cm-1 is clearly evident in spun 

and UV-exposed poly(fluorene) films since numerous unreacted vinyl groups remain in the bulk 

(the second expected vinyl signal near 990 cm-1 is lost in the intense Si-O-Si band). After rinsing, 

this peak has fully disappeared indicating that the vinyl functionalities of the surface-bound 

poly(fluorene)s have been significantly reduced during reaction. This suggests that the 

abundance of free thiol groups on the Si surface are sufficient to consume all of the vinyl 

functionality of the poly(fluorene) chains ultimately bound to the substrate. Given the short 

reaction time, this further suggests that the extent of thiol-ene grafting is limited by the amount 
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of vinyl groups which are present at the surface rather than being limited by the presence of 

thiols. 

 
Figure 6.4: Grazing-angle FT-IR showing the vinyl C-H peaks for (a) spun and UV-exposed xPF 
and pPF films, and (b) UV-exposed and rinsed grafted xPF and pPF films. 

6.3.3 Effects of Surface Grafting on Optoelectronic Properties of Poly(fluorene)s 

Figure 6.5 shows photoluminescence (PL) measurements at various stages of the 

grafting process for both xPF and pPF, normalized to the as-spun film PL. Characteristic 

poly(fluorene) emission is seen at ~420 nm for as-spun and cured films. This peak remains with 

weakened intensity after solvent rinsing and does not disappear even after soaking the 

substrate in a good solvent for 3 days. These observations further supports the presence of a 

robust, surface bound poly(fluorene) film. The presence of physically adsorbed polymer on the 

substrate can be discounted since no appreciable PL response is observed after rinsing as-spun 

films without UV curing. Neither is any appreciable PL observed when the curing procedure is 

performed on alkene-free poly(dihexyl fluorene) on the thiol-functionalized surfaces, clearly 

indicating the necessity of alkenes for successful grafting. 
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Figure 6.5: Photoluminescence (PL) of surfaces after various processing steps for xPF (blue) and 
pPF (red).  

Peak PL emissions of xPF is slightly red-shifted after exposure to UV but before rinsing 

away uncured material, as expected from the annealing-like processing temperature of 100 °C. 

Similar red-shifting is not observed for pPF, likely due to the side-chain grafts which greatly limit 

chain mobility once formed. The PL of both end-chain and side-chain grafted poly(fluorene) 

films is blue-shifted compared to the as-spun films, with grafted xPF blue-shifting 3 nm (420 nm 

to 417 nm) and grafted pPF blue-shifting 5 nm (421 nm to 416 nm). It is only after removal of 

the non-grafted polymer does the blue-shift in PL become apparent, implying that only the 

surface-grafted chains contribute to the blue-shifted signal. In all cases, PL of grafted polymer 

was blue-shifted back to values observed in dilute solution as well (Table 6.1). These reductions 

in peak emission wavelength are comparable to the 1-10 nm shifts reported when reducing the 

number of conjugated polymer repeat units to just below the critical conjugation length,(36) 

and the polymers reported here are just at the edge of their own critical conjugation length. This 
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data then indicates that covalently bonding the poly(fluorene) chains to a rigid substrate must 

lead to some distortion of the polymer backbone, reducing its effective conjugation length.  

Table 6.1: Peak photoluminescence (PL) emission wavelengths for solutions and surfaces 
excited at 365nm. 
 
System xPF peak PL λ (nm) pPF peak PL λ (nm) 

Dilute solution (CHCl3) 417 416 
As-spun 420 421 
UV exposed and cured 422 421 
Cured and rinsed 417 416 
 
Table 6.2: Summary of thicknesses, grafting coverage, and amounts of polymer removed from 
surface-grafted xPF and pPF sample. aRinsing is accomplished with washing in CHCl3 for 30 
seconds. bSoaking is accomplished by fully immersing pre-rinsed grafted films in CHCl3 for 3 
days. 

Polymer Thickness via AFM (nm) Grafting Coverage 
(1013 chains/cm2) 

Extracted unbound 
polymer 
(10-13 mol) 

As-spun Grafted (post-
rinse) 

via AFM Rinsinga Soakingb 

xPF 10 6 8.1 4.2 14.7 
pPF 11 3 2.8 4.3 16.3 
 

Table 6.2 summarizes the thicknesses of spun films and the resultant solvent-rinsed 

grafted layers, as well as calculated surface coverage and amount of polymer removed from the 

grafted coatings. For xPF and pPF respectively, approximately half and one-third of the as-spun 

film thickness remains as an insoluble grafted film after processing as measured by AFM. These 

grafted film thicknesses correlate to surface grafting densities of 8.1x1013 xPF chains/cm2 and 

6.7x1013 pPF chains/cm2, calculated in a similar manner described by Paoprasert and co-

workers.(23) The grafted poly(fluorene) films have similarly low overall thickness as the cited 

report owing to limitations in grafting to chemistries. Since both xPF and pPF are highly 

photoluminescent, grafting densities can alternatively be estimated by comparing PL intensity to 

calibrated concentrations of each polymer (Figure 6.6). Doing so yields modest surface densities 

of 1.1x1011 cm-2 and 2.5x1010 cm-2 for xPF and pPF respectively. These numbers clearly 
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underestimate surface density since they are calibrated against dilute solution PL, and solid 

state emission will at least partially quench in the aggregated state. Regardless, the 

measurements offer a useful lower bound on grafted xPF and pPF surface density and 

additionally confirm that xPF achieves a greater grafting density than pPF.  

 

Figure 6.6: Determination of poly(fluorene) surface grafting density (a) and residual uncured 
polymer (b) from photoluminescence (PL) calibration curves. 

Both calculations agree that end-chain grafted xPF achieves nearly four times the 

surface packing of side-chain grafted pPF. Indeed, given the two polymers’ comparable size, the 

thicker films of xPF suggest a more brush-like grafting compared to pPF which is likely bound to 

the thiol-functionalized substrate as a mat instead of brushes, reducing overall grafting density 

and blocking the surface from additional thiol-ene reactions after grafting first begins. This 

particular grafting architecture can also explain the trends in blue-shifted PL observed in Figure 

2. Repeated surface tethering along the backbone of pPF may distort the conjugated backbone 

slightly, giving rise to its more pronounced PL blue-shift despite lower overall grafting density. 

Table 6.2 also reports the amount of non-crosslinked material removed from the 

surface-bound networks via rinsing and soaking with chloroform (illustrated in Figure 6.6). For 

both xPF and pPF, roughly four times as much material was removed from the cured films via 

extended soaking as from the initial rinse. This is likely due to significant interpenetration of 

uncured polymer into the surface-grafted layer as it is only during extended solvent soaking that 
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the non-grafted material is dissolved and removed. One would expect that a majority of 

ungrafted polymer would be removed by an initial rinse if there was not significant 

interpenetration. This is clearly not the case and could have interesting implications for the 

design of electronic devices with surface-bound layers which can interact effectively with the 

bulk conjugated polymer due to interpenetrating chains. 

6.3.4 Applications of Surface Grafted Poly(fluorene)s.  

 

Figure 6.7: Demonstration of thiol-ene surface grafting for (a) photo patterning and (b) thin 
film transistor applications compared to additional device processing conditions. 

Use of thiol-ene surface grafting is now feasible as an additional tool for surface and 

device processing, with examples shown in Figure 6.7. Due to the efficient photo-initiation of 
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the thiol when exposed to 254 nm UV light, use of a shadow mask during photo curing of xPF 

and pPF films on thiol functionalized Si wafers provides for clean replication of an arbitrary 

pattern (Figure 6.7a). The initiator-free reaction and short wavelength suggests this process 

would be amenable for efficient high resolution spatial grafting of conjugated polymers without 

any residual small molecules, which would be beneficial for semiconducting devices. Also shown 

is a thiol-functionalized substrate which was coated with conventional poly(dihexyl fluorene) 

without reactive end capping or side chain functionality, exposed to UV curing conditions, and 

rinsed with chloroform. As mentioned previously, this control easily demonstrates the need for 

both a reactive alkene and thiol for effective thiol-ene photo-grafting.  

Figure 6.7b shows a proof of concept regarding how surface grafting could be used to 

modify or control electronic device performance. A thiol-functionalized Si/SiO2 substrate with 

surface grafted pPF was fabricated into a thin film transistor (TFT) architecture by thermal 

evaporation of Au source and drain electrodes. For comparison, similar devices were fabricated 

using bulk pPF films spun on thiol-functionalized Si/SiO2 without any photo-curing (i.e., leaving 

unreacted thiols) as well as bulk pPF films processed on octadecyltrichlorosilane (OTS) treated 

Si/SiO2 which is a ubiquitous modification technique for improving organic TFT performance. 

Measurements were averaged over at least three devices in each configuration, and typical 

outputs are shown in Figure 6.7. While the current-voltage (IV) behavior does not follow ideal 

field-effect behavior in any of the devices, clear differences between the configurations are 

immediately evident in the IV curves. The photo-grafted devices were found to perform 

comparably to those fabricated on OTS treated substrates. Thus surface grafting potentially 

offers an attractive alternative to standard performance-improving OTS surface treatments,(5, 

37) giving similar improvements in carrier mobility and on/off drain current ratios. The 

particularly low hole mobilities (on the order of 10-7 to 10-6 cm2/V s) are not surprising for 
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homopolymers of dialkyl fluorenes which are rarely reported in the literature and generally 

show low charge mobility due to the polymer’s considerably amorphous character.(38) 

However, direct comparison of these mobilities is still insightful for examining the role of surface 

chemistry on charge transport. Films of pPF processed but not cured on free thiol-functionalized 

surfaces fared much worse. No clear gating of current was observed, and charge mobilities were 

consistently the lowest of all tested devices. An import insight for any future thiol-ene based 

electronic devices is obtained by observing the detrimental effect of free thiol on charge 

transport along a thin film interface. These poor performances are likely due to the highly 

polarizable and dynamic S-H bond, and the evidence here shows that reacting those groups via 

thiol-ene chemistry can provide beneficial improvements in device electronics. Future 

expansions on this work could involve extending the thiol-ene grafting reaction to more 

crystalline, higher mobility conjugated polymers. 

6.4. Conclusions 

In this chapter, thiol-ene chemistry is used to graft semiconducting polymers to 

surfaces, rapidly forming uniform thin films of surface-bound conjugated polymers. End-chain 

reactive polymers can achieve grafting densities nearly four times as large as side-chain reactive 

polymers at the cost of a reduction in effective conjugation length, likely due to deformation of 

the polymer backbone during grafting. The highly efficient thiol-ene click reaction allows for 

spatial grafting and control of surface morphology that rivals the beneficial effects of standard 

alkyl-silane surface modification approaches in organic thin film transistors. The results raise 

hope that this approach could be another avenue to lead to improved control of polymer 

ordering at electrode interfaces for understanding and enhancing electronic device 

performance.  
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CHAPTER 7 

SPATIAL IMAGING OF CHARGE DENSITY IN CONJUGATED POLYMER FILMS USING 

MODULATION-AMPLIFIED REFLECTANCE SPECTROSCOPY (MARS)§ 

7.1 Introduction 

Semiconducting polymers have enabled the development of a remarkable new class of 

optoelectronic devices, including flexible solar cells, roll-to-roll electronics, and organic 

transistors. However, charge transport in conjugated molecules is a complex phenomenon that 

remains an open scientific question with a range of mechanistic theories, slowing the 

commercial development of organic optoelectronics(1-5). Development of charge-carrier 

visualization tools for organic semiconductors is essential both for fundamental explorations of 

carrier transport in organic thin films and for smartly engineering high efficiency organic devices. 

Chapter 1 summarized the unique properties of conjugated organic molecules that allow 

for optical observations and outlined some of the recent developments in charge visualization 

tools and their practical disadvantages. Recent charge modulated spectroscopy studies have 

tracked electronic interactions and carrier formation in conjugated organic molecules by probing 

the optical changes that occur when a charge-carrying species is formed (6-17). A handful of 

complementary experiments have shown that these and similar tools can provide spatial 

mapping of electronic and charge-related phenomena (18-23). However, these techniques 

generally rely on indirectly detecting carrier density, probe rastering, or modulation of an elastic 

polymer dielectric.  None of these efforts provide a rapid, large-area, high resolution method of 

visualizing charge carrying species in organic materials and devices. In this chapter, a novel 

modulated reflectance spectroscopy technique is described and used to spatially and temporally 

                                                           
§ Portions of this chapter have been reprinted with permission from Davis, Pye, Katz, Hudgings, 
Carter, Adv. Mater. (2014, accepted). Copyright 2014 Wiley-VCH. 
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examine carrier transport in large area thin film devices, carrier depletion in strongly biased 

organic devices, and the interaction of carriers with the inevitability of device defects.  

7.2 Experimental Section 

7.2.1 Materials 

Regioregular poly(3-hexylthiophene) (P3HT) was purchased from Rieke Metals, Inc. and 

used as received. Si substrates (resistivity = 0.01-0.08 Ω-cm) with 200 nm thick SiO2 layer were 

purchased from University Wafers. Octadecyltrichlorosilane was used as received from Sigma-

Aldrich. 

7.2.2 Device Fabrication and Testing 

Top-contact thin film transistors were fabricated on Si/SiO2 (200 nm) substrates. The 

substrates were sequentially cleaned using H2O, acetone, and IPA, and they were then exposed 

to O2-plasma for 2 min. to further clean the surface and install reactive hydroxyl groups. 

Substrates were then vapor treated with octadecyltrichlorosilane (OTS) in a sealed vessel for 8hr 

to improve final device performance. After OTS exposure, substrates were rinsed with toluene 

and dried under N2. P3HT was spun from CHCl3 solutions (3mg/mL) at 3000 RPM, and devices 

were immediately dried under vacuum overnight. Films were annealed at 150°C for 30 min. in 

an Ar-filled glovebox, and Au source/drain were deposited by thermal evaporation through a 

shadow mask ( =80μm, W=2400μm). All devices were subsequently measured under ambient 

conditions. 
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7.2.3 CCD Measurement and Processing 

In the experimental setup for measuring ∆R/R, the tested device is placed in a standard 

optical microscope and illuminated at nearly normal incidence using commercial LED light 

sources. Light reflected from the device surface is imaged by a connected CCD camera. To 

obtain a change in reflectance during operation, the device is modulated with frequency f, and 

the CCD camera is phase-locked and modulated at 4f. This allows for ‘four bucket’ lock-in 

processing of reflected light, where four images are captured during each oscillation period and 

are used to extrapolate modulation amplitude ∆R, dc image (base reflectivity) R0, and relative 

phase. Figure 7.1 illustrates the phase-locked signal input to the device and CCD camera for four 

bucket processing, and Equations 7.1-7.8 detail the mathematical processing of CCD output for 

mapping direct reflectivity (R0), normalized change in reflectivity (∆R/R0), and relative phase 

change (φ) in tested devices. Typical processed measurement outputs are shown in Figure 7.2. 

Reference 24 (Farzaneh et al.) contains a more detailed description of the optical processing(24) 

and advantages of four bucket processing. 

 

Figure 7.1: Illustration of the phase-locked modulated electrical input to device and CCD 
camera (with period T) allowing for four-bucket processing. 

Equation 7.1: Reflectance intensity over first quarter of modulation period. 

              
   

 

 

Equation 7.2: Reflectance intensity over second quarter of modulation period. 
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Equation 7.3: Reflectance intensity over third quarter of modulation period. 

              
    

   

 

Equation 7.4: Reflectance intensity over fourth quarter of modulation period. 

              
 

    

 

Equation 7.5: Change in reflectivity during on/off modulation. 

        
  

   
        

         
  

Equation 7.6: Baseline reflectivity of tested device. 

        
 

 
              

Equation 7.7: Normalized change in reflectivity during on/off modulation. 

       

       
    

        
         

 

           
 

Equation 7.8: Phase shift of reflectivity during device testing. 

         
 

 
      

           
           

 

 
Figure 7.2: Output following a typical MARS measurements, showing (A) dc signal direct 
reflectivity (R0), (B) relative phase (φ), and (C) ∆R/R0 signal for modulated gate voltage (square 
wave, 0 V to -20 V) with grounded top electrodes. 
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7.3 Results and Discussion 

7.3.1 Modulation-Amplified Reflectance Spectroscopy (MARS) 

To explore charge mapping in organic thin film transistors (TFTs), a modulation-

amplified reflectance spectroscopy (MARS) imaging technique is developed for high resolution, 

two dimensional mapping of charge carrier density (Figure 7.3A). In a MARS measurement, a 

modulated voltage is applied across one pair of transistor electrodes, either the gate-source 

electrodes or the drain-source electrodes, while the other pair is held at a constant voltage. All 

biases are applied relative to a grounded source electrode. An external LED (10 mW, 740nm) 

constantly illuminates a top contact, hole carrying Si(gate)/SiO2/poly(3-hexylthiophene) (P3HT) 

TFT, and the reflected light is recorded with a CCD camera phase-locked to the voltage 

modulation as shown in Figure 7.1 to obtain a two-dimensional mapping of differential 

reflectivity ∆R/R. Pixel-by-pixel lock-in amplification provides very high signal resolution 

(∆R/R~10-4; typical processing output is shown in Fig. 7.2). Using this technique, two-

dimensional amplitude and phase images of ∆R/R across the surface of the TFT can be obtained 

in under 10 minutes, with a theoretical spatial resolution up to 250 nm(24).  
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Figure 7.3: (A) Experimental setup for MARS imaging of TFTs. (B) Schematic of hole polaron 
formation in P3HT. (C) ∆R/R spatial map and (D) line trace under modulated gate bias (VG = 10 
Hz square wave, 0V to -20V; VD=0V). Probe LED = 740 nm at 10 mW. 

Figure 7.3B shows the localized structural change associated with hole polaron 

formation in P3HT that gives rise to the measured ∆R/R contrast. Illumination by probe  ED at 

740 nm is known from transmission experiments to strongly interact with this charge carrying 

mode (10, 11). While this technique images the net reflected light from the test structures, the 

∆R/R contrast arises from the variable absorption of the  ED light as transmitted through the 

P3HT and reflected off the Si substrate back into the CCD camera (Figure 7.4). This reflection 

mode allows for imaging standard devices fabricated with no special geometric or transmittance 

considerations as needed for typical differential transmission measurements(18). Furthermore, 

the measured differential reflectivity spectrum for devices biased off versus in the hole 

accumulation regime (Figure 7.5) is consistent in sign and shape with prior differential 

transmission measurements (10, 11), confirming observation of charge carrying states.  
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Figure 7.4: ∆R/R for a P3HT TFT built on a transparent ITO gate/PMMA dielectric substrates. 
No signal contrast is seen when placed above a light absorbent stage (A), compared to 
contrast observed when placed on a reflective stage (B). Signal in (B) is significantly 
attenuated compared to Si/SiO2 devices due to the thicker dielectric layer (~1 μm) and longer 
light path which goes through both the semitransparent ITO and PMMA layers before 
reflecting off the back stage. Contrast in (A) and (B) have been enhanced through image 
processing to aid in visualization. 

 
Figure 7.5: Differential reflection spectrum of a capacitor-like P3HT device (structure: 
Si/SiO2/P3HT/Au) with semi-transparent 15 nm Au top electrode. Spectrum shows the change 
in device reflectance when the back Si electrode is biased off (0V) and on (-20V, for hole 
accumulation in P3HT) relative to grounded top Au electrode. Negative ∆R/R below 2.0 eV 
owes to increased polaron absorption and positive ∆R/R above 2.0 eV owes to neutral state 
bleaching. 

Further experimental evidence (Figures 7.6-7.10) confirms that imaging contrast indeed 

arises from changes in the distribution of charge-carrying species. As expected for a hole 

transporting material, modulating VG at negative voltages (inducing hole transport) induces clear 

uniform signal, while modulating at positive voltages (inducing electron transport) results in no 
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distinct signal (Figure 7.6). Replacement of the gold source and drain electrodes with a low work 

function metal like aluminum results in an order of magnitude lower ∆R/R signal with a 

corresponding drop in drain current (Figure 7.7). This reflects the larger barrier for hole injection 

into P3HT from Al than from Au. As expected, no ∆R/R signal is observed if the P3HT layer is 

replaced with an insulating polymer, nor is a signal observed during device modulation if the 

probe LED is turned off, negating the possibility that light is being emitted from the polymer 

layer (Figure 7.8). Signal strength is also drastically reduced when measuring the same device if 

it has been left exposed to ambient atmosphere for a period of days (Figure 7.9). The fact that 

∆R/R signal strength is strongly correlated with factors which are known to affect drain current 

(gate voltage, electrode metal choice, presence of a semiconducting layer, prolonged device 

exposure to atmosphere, and chemical modification of the dielectric interface via monolayer 

formation discussed below) points to charge carrier density as the primary contrast agent, which 

is particularly confirmed in Figure 7.10 where peak ∆R/R signal intensity at varying operating 

voltages correlates very strongly with the measured TFT drain current. 

 
Figure 7.6: ∆R/R map of P3HT TFT under (A) hole formation (VG = square wave -20V to -40V) 
and (B) electron formation (VG = square wave +20V to +40V) conditions. The non-zero ∆R/R 
signal for the positively modulated VG is observed only around one electrode and likely arises 
from edge effect artifacts due to the large magnitude of the gate-source bias. 
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Figure 7.7: Effect of replacing Au source (S) and drain (D) electrodes with Al electrodes . Drain 
current (A) and ∆R/R intensity (B) (modulated VD = square wave, 0V to -20V; constant VG=-
10V) both decrease by approximately an order of magnitude when Al is used instead of Au, 
primarily due to the energy barrier associated with charge injection. 

 

 
Figure 7.8: ∆R/R signal with no probe LED (A) and a non-semiconducting polymer 
(polystyrene) replacing P3HT (B) (modulated VG = square wave, 0V to -20V; constant VD=0V). 
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Figure 7.9: IV curves and ∆R/R measurements (modulated VD = square wave, 0V to -20V; 
constant VG=0V) for a freshly prepared device and a device left exposed to ambient conditions 
for 7 days. 

 
Figure 7.10: (A) In-channel line traces of ∆R/R at varying modulated gate voltages. (B) 
Comparison of peak in-channel ∆R/R signal (symbols) overlaid with device IV behavior (line) as 
a function of gate voltage. 

7.3.2 Mapping Charge Density in Semiconducting Polymer Thin Films 

The charge density maps obtained by MARS are in excellent agreement with both 

conventional bulk current-voltage (IV) characterization and TFT theory. Strong spatial ∆R/R 

contrast is observed as the gate voltage is negatively modulated with the source and drain 
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grounded (Figure 7.3C-D). The symmetric signal distribution is consistent with the expectation 

that a negative gate bias applied to a hole-transporting TFT while the source and drain are 

grounded should form a uniformly distributed injected hole layer at the 

semiconductor/dielectric interface.  Additionally, ∆R/R increases linearly with the modulation 

depth of the gate voltage (Figure 7.10), in agreement with a simple capacitive model of charge 

formation(18) where the total charge density Q across the dielectric interface can be 

approximated by Q = Ci(VG-Vth) where Ci is the areal capacitance, VG is the applied gate voltage, 

and Vth is the threshold voltage. This allows for translating the measured ∆R/R intensity to an 

approximate total charge density in the P3HT film, whose values on the order of 0.1 μC/cm2 

compare favorably to literature (3, 6, 20). A particularly interesting feature that has not been 

previously reported is the large charge density measured beyond the electrodes outside of the 

channel arising from the paddle gate extending beyond the electrode-defined channel. 

The ability of MARS to monitor the linear and saturation regimes of transistor operation 

is clearly demonstrated in Figure 7.11. In the linear regime with a DC drain bias |VD| well below 

the magnitude of the gate voltage modulation |VG|, the charge distribution and drain current 

both respond linearly to changes in |VD|. As |VD| exceeds |VG|, the charge distribution ceases 

changing and reaches a saturated shape (Figure 7.11A) concurrently with drain current 

saturation, consistent with literature understanding of TFT behavior (25, 26). In Figure 7.11B, 

the slope of the measured ∆R/R distribution across the channel starting from the source to the 

in-channel ∆R/R minimum is plotted versus |VD|. This characterization of the carrier distribution 

shape closely follows the measured IV transfer curves, directly increasing with drain voltage 

magnitude at low |VD|, and then saturating at larger |VD| as current saturates.  

As expected, the charge distribution begins to decrease from the source electrode 

toward the drain as the magnitude of the drain voltage is increased. However, regardless of 
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|VD|, charge densities increase and spatially converge as they approach the drain electrode 

within the channel. Line traces from a larger area MARS mapping shown in Figure 7.11C clarify 

this phenomenon: as |VD| increases, charge density decreases rapidly to zero adjacent to the 

drain outside of the TFT channel, while the region outside the grounded source is relatively 

independent of drain bias. Given this constant plateau of charge density adjacent to the drain 

solely within the channel (which additionally was found to increase with |VD| for thick-film top 

contact devices), we qualitatively conclude that within the channel we are observing slow-

moving space-charge limited carriers as they are pulled through the bulk of the P3HT and 

extracted from the channel. 
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Figure 7.11: (A) ΔR/R line traces across the channel of a P3HT TFT under various operating 
conditions. (B) Slope of ∆R/R in the channel shown as a function of VD and overlaid with the 
device’s output current. Dashed line shows a rough guide to the eye, delineating linear and 
saturation regimes. (C) Expanded view of a large-area MARS line trace of an operational TFT 
showing the region outside the source-drain channel.  

7.3.3 Time-Resolved Mapping of Charge Density 

MARS is further capable of temporal charge density mapping since it is a lock-in 

amplified technique, enabling exploration of a wide range of organic electronic behavior that is 

not accessible using conventional bulk IV curve measurements. Figure 7.12 shows the ∆R/R 

signal spreading outside the conductive channel as VG is modulated from 2 Hz up to 12.5 Hz 

(square wave, 0 to -20V). As expected, the carrier signal spreads farther laterally along the 

semiconductor/dielectric interface as frequency is decreased, corresponding to increased 

migration time across the surface. To a first approximation, the electrostatic drift distance d was 

calculated to be          (dashed theory line in Figure 7.12) where μ is the hole mobility 
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extracted from saturation-regime IV curves (3.4·10-4 cm2/V s), V is the applied bias, and t is time 

(1/f) (25). Field effect hole mobilities were extracted from IV measurements in the saturation 

regime using the conventional relationship: 

Equation 9: Saturation-regime drain current in a thin film transistor. 

   
 

  
              

       

where ID is the saturated drain current, W is the device channel width, L is the device channel 

length, μsat is the saturation-regime hole mobility, Ci is the film capacitance per unit area, VG is 

the applied gate voltage, and Vth is the threshold voltage. 

Plotting the full-width half-maximum distance of ∆R/R spread as a function of f reveals 

good agreement with the predicted electrostatic drift at frequencies above 8Hz (i.e., 1/f 

timescales faster than 125 ms). The increasing deviation at longer times could be due to the 

cumulative effects of local traps, grain boundaries, and defects inhibiting efficient carrier 

mobility. 

Additionally, the time resolved spatial imaging allows us to empirically evaluate carrier 

mobility using the same electrostatic drift relationship referenced above. Instead of fixing the 

mobility value to the calculated saturation-regime field effect mobility, we can set the mobility μ 

as a free variable and find the best fit of the electrostatic drift equation to the data in Figure 

7.12. Doing so yields a hole mobility of 2.4·10-4 cm2/V·s, which is lower (but still in decent 

agreement) compared to the value extracted from current-voltage data. This lower value again 

suggests that charge transport over long distances is being hindered by defects and grain 

boundaries. By measuring the charge diffusion over varying length scales and time frames, 

MARS offers a powerful visual and empirical tool for assessing carrier mobilities which 

compliments traditional calculations. 
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Figure 7.12: Frequency dependence of MARS signal in TFTs with modulated VG. (A) Spatial map 
of ∆R/R signal outside of a grounded Au electrode with increasing modulation frequency f. (B) 
Plot of ∆R/R FWHM distance as a function of f. Dashed line indicates expected carrier spread 
from electrostatic drift (see text). ∆R/R line traces are shown in the inset. Testing: VG = square 
wave 0V to -20V, VD=0V. 
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7.3.4 Imaging defects in organic thin film devices 

 

 
Figure 7.13: Schematic drawings (A,D,G), ∆R/R mapping (B,E,H), and IV curves with VDrain = -
40V (C,F,I) for various device defects. Represented are physical defects via scratching (A-C), 
surface chemical defects via non-uniform OTS treatment (D-F), and electrical (crosstalk) 
defects from an adjacent, non-isolated thin film Au resistor (G-I). Dark spots in (E) are physical 
artifacts not related to chemical treatment.  

To investigate how carriers spatially interact with device architecture and defects, three 

types of artifacts were deliberately introduced into sample transistors shown in Figure 7.13: a 

physical defect (Figure 7.13A-C), a surface treatment defect (Figure 7.13D-F), and an electrical 

“crosstalk” defect (Figure 7.13G-I). In Figure 7.13B, the effect of a scratch on the P3HT is most 

visible outside the channel where the defect clearly screens the direct flow of carriers from the 

electrodes out across the dielectric interface, with the far side of the scratch remaining dark. A 

scratch within the channel is also clearly identified by a lack of ∆R/R signal. Because both the 
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source and drain are grounded as |VG| is modulated, signal appears on both sides of the scratch 

within the channel. The IV curve (Figure 7.13C) confirms that little current flows through a 

channel when scratched. 

Chemical treatment of substrate surfaces with self-assembling molecules like 

octadecyltrichlorosilane (OTS) before organic semiconductor deposition is known to affect 

polymer morphology and device performance(27). We fabricated a partially treated surface to 

mimic a surface treatment defect (Figure 7.13D-F) in which half of the SiO2 surface of the 

channel was masked when vapor treated with OTS during fabrication. Noticeably weaker MARS 

signal is revealed in the region lacking OTS, indicative of reduced carrier density. It is important 

to note that the ∆R/R map is sensitive enough to detect subtle surface differences between fully 

and partially OTS-treated surfaces that are difficult to interpret from IV measurement data 

alone. Spatial mapping of the carrier distribution clearly reveals that these differences are due 

to heterogeneity within the chemically treated TFT channel. 

Finally, the effect of electrical fields generated by neighboring structures was examined 

in order to simulate crosstalk-type events between poorly-isolated devices in integrated designs 

(Figure 7.13G-I). A rectangular-shaped Au pad was deposited adjacent to the source and drain 

and then independently biased as a simple resistor (Figure 7.13G). Imaging of the modulated 

TFT with the Au resistor turned “on” (+2V, 2mA) shows clear crosstalk between the devices with 

increased spread of carriers throughout the semiconducting P3HT in contrast to the “off” 

resistor (0V, 0mA) (Figure 7.13H). The only observable difference in bulk electrical 

characterization is a very subtle increase in threshold voltage by 5V (Figure 7.13I), likely due to 

the positive electric field of the resistor interacting with the gate across the dielectric. With no 

other appreciable change in IV behavior, this small shift in threshold voltage could be nearly 

impossible to interpret without the visual clues offered by MARS. 
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7.4 Conclusions 

MARS imaging takes advantage of the optical changes associated with the presence of 

charged species in organic semiconductors in a powerful way, allowing for rapid two-

dimensional spatial mapping of charge densities in a thin semiconducting polymer film. The 

ability to track carrier saturation, dynamically image charge distributions, and map the influence 

of device artifacts, such as the first ever visualization of charge buildup at the drain owing to the 

access resistance of a top contact architecture, allows for facile exploration of organic charge 

transport phenomena which will aid in answering many of the still open questions surrounding 

the precise nature of charge transport in organic materials. 
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CHAPTER 8 

CONCLUSIONS AND OUTLOOK 

The work presented in this dissertation demonstrates how polymeric properties and 

architectures can be used in new ways to control and visualize the electronic properties of 

conjugated polymer materials and devices. The photo-initiated thiol-ene reaction is shown to be 

an excellent route to controlling the architecture of cross-linked conjugated polymer networks, 

owing to the reaction’s high efficiency, fidelity, and tolerance to a wide range of impurities and 

functional groups. By tuning the architecture of the cross-linker and the reactive polymer side 

chains, the network spacing and interchain communication can easily be controlled, with visual 

fluorescent evidence illuminating the subtle but highly impactful changes in charge 

communication. Furthermore, the unique nature of charge formation and transport along a 

polymeric backbone was used to directly visualize and map charge densities across an operating 

semiconducting device using commercially available, off-the shelf hardware and optics. These 

achievements are clear illustrations of how the polymeric nature of semiconducting polymers 

can be used in powerfully advantageous ways. 

Conjugated polymers are ultimately polymers. To treat them as historical 

semiconducting materials, with regards to either device architecture, chemistry, or charge 

transport behavior, is to unreasonably abandon decades of knowledge on polymer materials 

and to discount potential handles for improving their application uses. These materials may 

never reach the vaunted properties of silicon, germanium, or related alloys, but those inorganic 

semiconductors cannot be cross-linked, processed, or morphologically tuned in any comparable 

way to polymers. Combining the best elements of both the semiconducting and polymeric 

properties of conjugated polymers will likely be the most meaningful approach to realizing 

useful and commercializable semiconducting polymer materials. 



 

161 

BIBLIOGRAPHY 
 
S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf, "Organic semiconductors for solution-

processable field-effect transistors (OFETs)." Angewandte Chemie (International ed. in 
English) vol. 47 (2008):  4070-4098. 

 
J. Alonzo et al., "Assembly and organization of poly(3-hexylthiophene) brushes and their 

potential use as novel anode buffer layers for organic photovoltaics." Nanoscale vol. 5 
(2013):  9357-9364. 

 
T. Arai, M. Tanaka, H. Kawakami, "Porphyrin-containing electrospun nanofibers: positional 

control of porphyrin molecules in nanofibers and their catalytic application." ACS 
applied materials & interfaces vol. 4 (2012):  5453-5457. 

 
D. Aspnes, J. Rowe, "Resonant nonlinear optical susceptibility: Electroreflectance in the low-field 

limit." Physical Review B vol. 5 (1972):  4022-4030. 
 
A. Baba, K. Onishi, W. Knoll, R. C. Advincula, "Investigating Work Function Tunable Hole-

Injection/Transport Layers of Electrodeposited Polycarbazole Network Thin Films." The 
Journal of Physical Chemistry B vol. 108 (2004):  18949-18955. 

 
A. Babel, S. a. Jenekhe, "Alkyl chain length dependence of the field-effect carrier mobility in 

regioregular poly(3-alkylthiophene)s." Synthetic Metals vol. 148 (2005):  169-173. 
 
Z. Bao, J. Locklin, Organic Field-Effect Transistors.  (CRC Press, Boca Raton, FL, 2007). 
 
H. Bässler, "Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation 

Study." Physica Status Solidi B vol. 175 (1993):  15-56. 
 
M. S. Bayerl et al., "Crosslinkable hole-transport materials for preparation of multilayer organic 

light emitting devices by spin-coating." Macromolecular Rapid Communications vol. 20 
(1999):  224-228. 

 
P. M. Beaujuge, J. R. Reynolds, "Color Control in pi-Conjugated Organic Polymers for Use in 

Electrochromic Devices." Chemical Reviews vol. 110 (2010):  268-320. 
 
K. Becker et al., "On-Chain Fluorenone Defect Emission from Single Polyfluorene Molecules in 

the Absence of Intermolecular Interactions." Advanced Functional Materials vol. 16 
(2006):  364-370. 

 
J. M. Behrendt et al., "Hybrid inorganic–organic composite nanoparticles from crosslinkable 

polyfluorenes." Journal of Materials Chemistry C vol. 1 (2013):  3297. 
 
M. Berggren et al., "Light-emitting diodes with variable colours from polymer blends." Nature 

vol. 372 (1992):  444-446. 
 
V. N. Bliznyuk et al., "Electrical and Photoinduced Degradation of Polyfluorene Based Films and 

Light-Emitting Devices." Macromolecules vol. 32 (1999):  361-369. 



 

162 

 
L. D. Bozano et al., "Electroluminescent devices based on cross-linked polymer blends." Journal 

of Applied Physics vol. 94 (2003):  3061-3068. 
 
C. Brabec, V. Dyakonov, U. Scherf, Organic Photovoltaics - Materials, Deice Physics, and 

Manufacturing Technologies.  (John Wiley & Sons, Hoboken, NJ, 2008). 
 
J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, "Charge-Transfer and Energy-Transfer 

Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture." Chemical 
Reviews vol. 104 (2004):  4971-5004. 

 
P. Brown, H. Sirringhaus, M. Harrison, M. Shkunov, R. Friend, "Optical spectroscopy of field-

induced charge in self-organized high mobility poly(3-hexylthiophene)." Physical Review 
B vol. 63 (2001):  125204. 

 
P. Brown et al., "Effect of interchain interactions on the absorption and emission of poly(3-

hexylthiophene)." Physical Review B vol. 67 (2003):  1-16. 
 
 . B rgi, T. J. Richards, R. H. Friend, H. Sirringhaus, "Close look at charge carrier injection in 

polymer field-effect transistors." Journal of Applied Physics vol. 94 (2003):  6129. 
 
A. J. Campbell, D. D. C. Bradley, H. Antoniadis, "Dispersive electron transport in an 

electroluminescent polyfluorene copolymer measured by the current integration time-
of-flight method." Applied Physics Letters vol. 79 (2001):  2133-2135. 

 
I. H. Campbell et al., "Controlling charge injection in organic electronic devices using self-

assembled monolayers." Applied Physics Letters vol. 71 (1997):  3528-3530. 
 
M. Campoy-Quiles et al., "Morphology evolution via self-organization and lateral and vertical 

diffusion in polymer:fullerene solar cell blends." Nature materials vol. 7 (2008):  158-
164. 

 
L. A. Carpino, "Convenient Preparation of (9-Fluorenyl)methanol and Its 2,7-Dihalo Derivatives." 

Journal of Organic Chemistry vol. 45 (1980):  4250-4252. 
 
M. L. Chabinyc et al., "Short channel effects in regioregular poly(thiophene) thin film 

transistors." Journal of Applied Physics vol. 96 (2004):  2063. 
 
J.-F. Chang, H. Sirringhaus, M. Giles, M. Heeney, I. McCulloch, "Relative importance of polaron 

activation and disorder on charge transport in high-mobility conjugated polymer field-
effect transistors." Physical Review B vol. 76 (2007):  1-12. 

 
J.-F. Chang et al., "Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating 

from High-Boiling-Point Solvents." Chemistry of Materials vol. 16 (2004):  4772-4776. 
 
A. Charas, L. Alcácer, A. Pimentel, J. P. Conde, J. Morgado, "Observation of field-effect in a cross-

linked polyfluorene semiconductor." Chemical Physics Letters vol. 455 (2008):  189-191. 
 



 

163 

C.-C. Chen, M.-Y. Chiu, J.-T. Sheu, K.-H. Wei, "Photoresponses and memory effects in organic 
thin film transistors incorporating poly(3-hexylthiophene)/CdSe quantum dots." Applied 
Physics Letters vol. 92 (2008):  143105. 

 
J.-J. Chen, K. N. Struk, A. B. Brennan, "Surface modification of silicate glass using 3-

(mercaptopropyl)trimethoxysilane for thiol-ene polymerization." Langmuir vol. 27 
(2011):  13754-13761. 

 
J. P. Chen et al., "Efficient , blue light-emitting diodes using cross-linked layers of polymeric 

arylamine and fluorene." Synthetic Metals vol.  (1999):  129-135. 
 
Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, "Synthesis of conjugated polymers for organic solar cell 

applications." Chemical reviews vol. 109 (2009):  5868-5923. 
 
R. Chesterfield, J. McKeen, C. D. Frisbie, "Organic thin film transistors based on N-alkyl perylene 

diimides: charge transport kinetics as a function of gate voltage and temperature." 
Journal of Physical Chemistry B vol. 108 (2004):  19281-19292. 

 
J.-C. Chiang, A. G. MacDiarmid, "'Polyanilin': Protonic acid doping of the emeraldine form to the 

metallic regime." Synthetic Metals vol. 13 (1986):  193-205. 
 
K. M. Coakley, M. D. McGehee, "Conjugated Polymer Photovoltaic Cells." Chemistry of Materials 

vol. 16 (2004):  4533-4542. 
 
J. Coates, in Encyclopedia of Analytical Chemistry, R. A. Meyers, Ed. (John Wiley & Sons, Inc., 

Chichester, 2000),  pp. 10815-10837. 
 
N. B. Cramer, J. P. Scott, C. N. Bowman, "Photopolymerizations of thiol-ene polymers without 

photoinitiators." Macromolecules vol. 35 (2002):  5361-5365. 
 
R. Das, P. Harrop, “Printed, Organic & Flexible Electronics: Forecasts, Players & Opportunities 

2013-2023”  (IDTechEx, 2013). 
 
A. R. Davis, K. C. Carter, "Cross-Linked Poly(fluorene) Networks with Varying Network 

Connectivity by Thiol-Ene Photo Chemistry. " submitted. 
 
A. R. Davis, J. A. Maegerlein, K. R. Carter, "Electroluminescent Networks via Photo "Click" 

Chemistry." Journal of the American Chemical Society vol. 133 (2011):  20546-20551. 
 
B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, P. W. M. Blom, "Tuning of Metal 

Work Functions with Self-Assembled Monolayers." Advanced Materials vol. 17 (2005):  
621-625. 

 
N. Doubina et al., "Surface-initiated synthesis of poly(3-methylthiophene) from indium tin oxide 

and its electrochemical properties." Langmuir vol. 28 (2012):  1900-1908. 
 
 



 

164 

L. Duan, S. J. Garrett, "An Investigation of Rigid p-Methylterphenyl Thiol Self-Assembled 
Monolayers on Au(111) Using Reflection-Absorption Infrared Spectroscopy and 
Scanning Tunneling Microscopy." Journal of Physical Chemistry B vol. 105 (2001):  9812-
9816. 

 
S. Ege, Organic Chemistry Structure and Reactivity.  (Houghton Mifflin Company, New York, 

2004). 
 
A. Facchetti, "π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications." 

Chemistry of Materials vol. 23 (2011):  733-758. 
 
A. Facchetti, M.-H. Yoon, T. J. Marks, "Gate Dielectrics for Organic Field-Effect Transistors: New 

Opportunities for Organic Electronics." Advanced Materials vol. 17 (2005):  1705-1725. 
 
M. Farzaneh et al., "CCD-based thermoreflectance microscopy: principles and applications." 

Journal of Physics D: Applied Physics vol. 42 (2009):  143001. 
 
B. Friedel, C. R. McNeill, N. C. Greenham, "Influence of Alkyl Side-Chain Length on the 

Performance of Poly(3-alkylthiophene)/Polyfluorene All-Polymer Solar Cells." Chemistry 
of Materials vol. 22 (2010):  3389-3398. 

 
M. Fukuda, K. Sawada, K. Yoshino, "Fusible Conducting Poly(9-alkylfluorene) and Poly(9,9-

dialkylfluorene) and Their Characteristics." Japanese Journal of Applied Physics vol. 28 
(1989):  L1433. 

 
T. M. Fulghum, P. Taranekar, R. C. Advincula, "Grafting Hole-Transport Precursor Polymer 

Brushes on ITO Electrodes: Surface-Initiated Polymerization and Conjugated Polymer 
Network Formation of PVK." Macromolecules vol. 41 (2008):  5681-5687. 

 
G. Fytas, H. Nothofer, U. Scherf, D. Vlassopoulos, G. Meier, "Structure and dynamics of nondilute 

polyfluorene solutions." Macromolecules vol. 35 (2002):  481-488. 
 
N. M. Gabor et al., "Hot carrier-assisted intrinsic photoresponse in graphene." Science vol. 334 

(2011):  648-652. 
 
C. G rditz, a. Winnacker, F. Schindler, R. Paetzold, "Impact of Joule heating on the brightness 

homogeneity of organic light emitting devices." Applied Physics Letters vol. 90 (2007):  
103506. 

 
W. D. Gill, "Drift mobilities in amorphous charge-transfer complexes of trinitrofluorene and poly-

n-vinylcarbazole." Journal of Applied Physics vol. 43 (1972):  5033-5040. 
 
M. Giulianini, E. R. Waclawik, J. M. Bell, N. Motta, "Temperature and electric field dependent 

mobility in poly(3-hexylthiophene) diodes." Journal of Applied Physics vol. 108 (2010):  
014512. 

 



 

165 

X. Gong et al., "Stabilized Blue Emission from Polyfluorene-Based Light-Emitting Diodes: 
Elimination of Fluorenone Defects." Advanced Functional Materials vol. 13 (2003):  325-
330. 

 
M. Grell et al., "Chain geometry, solution aggregation and enhanced dichroism in the liquid-

crystalline conjugated polymer poly(9,9-dioctylfluorene )." Acta Polymerica vol. 49 
(1998):  439-444. 

 
M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, K. S. Whitehead, "Interplay of Physical Structure and 

Photophysics for a Liquid Crystalline Polyfluorene." Macromolecules vol. 32 (1999):  
5810-5817. 

 
A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, "Synthesis of Light-Emitting 

Conjugated Polymers for Applications in Electroluminescent Devices." Chemical Reviews 
vol. 109 (2009):  897-1091. 

 
S. Haas, H. Matsui, T. Hasegawa, "Field-modulation spectroscopy of pentacene thin films using 

field-effect devices: Reconsideration of the excitonic structure." Physical Review B vol. 
82 (2010):  161301. 

 
E. C. Hagberg, M. Malkoch, Y. B. Ling, C. J. Hawker, K. R. Carter, "Effects of modulus and surface 

chemistry of thiol-ene photopolymers in nanoimprinting." Nano Letters vol. 7 (2007):  
233-237. 

 
Y. Harima, Y. Ishiguro, K. Komaguchi, I. Imae, Y. Ooyama, "Optical absorption spectrum of 

pentacene cation radicals measured by charge-modulation spectroscopy." Chemical 
Physics Letters vol. 495 (2010):  228-231. 

 
A. Heeger, N. Sariciftci, E. Namdas, Semiconducting and Metallic Polymers.  (Oxford University 

Press, Oxford, 2010). 
 
M. Helgesen, R. Sondergaard, F. C. Krebs, "Advanced materials and processes for polymer solar 

cell devices." Journal of Materials Chemistry vol. 20 (2010):  36-60. 
 
V. Ho, B. W. Boudouris, R. a. Segalman, "Tuning Polythiophene Crystallization through 

Systematic Side Chain Functionalization." Macromolecules vol. 43 (2010):  7895-7899. 
 
G. Horowitz, in Organic Field-Effect Transistors, Z. Bao, J. Locklin, Eds. (CRC Press, Boca Raton, 

FL, 2007). 
 
G. Horowitz, "Organic thin film transistors: From theory to real devices." Journal of Materials 

Research vol. 19 (2004):  1946-1962. 
 
A. Horvath, H. Bassler, G. Weiser, "Electroabsorption in COnjugated Polymers." Physica Status 

Solidi vol. 173 (1992):  755-764. 
 
A. Horvath, G. Weiser, G. Baker, S. Etemad, "Influence of disorder on the field-modulated 

spectra of polydiacetylene films." Physical Review B vol. 51 (1995):  2751-2758. 



 

166 

 
C. E. Hoyle, C. N. Bowman, "Thiol-Ene Click Chemistry." Angewandte Chemie-International 

Edition vol. 49 (2010):  1540-1573. 
 
C. E. Hoyle, T. Y. Lee, T. Roper, "Thiol-enes: Chemistry of the past with promise for the future." 

Journal of Polymer Science Part A: Polymer Chemistry vol. 42 (2004):  5301-5338. 
 
C. E. Hoyle, A. B. Lowe, C. N. Bowman, "Thiol-click chemistry: a multifaceted toolbox for small 

molecule and polymer synthesis." Chemical Society Reviews vol. 39 (2010):  1355-1387. 
 
A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, "Simultaneous IR Material 

Recognition and Conductivity Mapping by Nanoscale Near-Field Microscopy." Advanced 
Materials vol. 19 (2007):  2209-2212. 

 
L. Hung, C. Tang, M. Mason, "Enhanced electron injection in organic electroluminescence 

devices using an Al/LiF electrode." Applied Physics Letters vol. 70 (1996):  152-154. 
 
A. R. Hunt, S. K. Stewart, A. Whiting, "Heck versus Suzuki Palladium Catalyzed Cross-Coupling of 

a Vinyl Borate Ester with Aryl Halides." Tetrahedron Letters vol. 34 (1993):  3599-3602. 
 
G. R. Hutchison, M. a. Ratner, T. J. Marks, "Accurate Prediction of Band Gaps in Neutral 

Heterocyclic Conjugated Polymers." The Journal of Physical Chemistry A vol. 106 (2002):  
10596-10605. 

 
R. K. Iha et al., "Applications of Orthogonal "Click" Chemistries in the Synthesis of Functional Soft 

Materials." Chemical Reviews vol. 109 (2009):  5620-5686. 
 
T. Ito, H. Shirakawa, S. Ikeda, "Polymerization and Formation of Polyacetylene Film." Journal of 

Polymer Science Part A: Polymer Chemistry vol. 12 (1974):  11-20. 
 
G. E. Jabbour et al., "Highly efficient and bright organic electroluminescent devices with an 

aluminum cathode." Applied Physics Letters vol. 71 (1997):  1762-1764. 
 
S. Jhaveri, K. Carter, "Disubstituted polyacetylene brushes grown via surface-directed tungsten-

catalyzed polymerization." Langmuir vol. 35 (2007):  8288-8290. 
 
H. Jia, S. Gowrisanker, G. K. Pant, R. M. Wallace, B. E. Gnade, "Effect of poly (3-hexylthiophene) 

film thickness on organic thin film transistor properties." Journal of Vacuum Science & 
Technology A: Vacuum, Surfaces, and Films vol. 24 (2006):  1228. 

 
H. Kajii, K. Koiwai, Y. Hirose, Y. Ohmori, "Top-gate-type ambipolar organic field-effect transistors 

with indium–tin oxide drain/source electrodes using polyfluorene derivatives." Organic 
Electronics vol. 11 (2010):  509-513. 

 
T. Kaneko, Journal of the Chemical Society of Japan vol. 59 (1938):  1139. 
 



 

167 

N. Khanduyeva et al., "Surface engineering using Kumada catalyst-transfer polycondensation 
(KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer 
brushes." Journal of the American Chemical Society vol. 131 (2009):  153-161. 

 
C. Kim, "Fundamental benefits of the staggered geometry for organic field-effect transistors." 

Electron Device  etters, … vol. 32 (2011):  1302-1304. 
 
D. H. Kim, Y. Jang, Y. D. Park, K. Cho, "Controlled one-dimensional nanostructures in poly(3-

hexylthiophene) thin film for high-performance organic field-effect transistors." The 
journal of physical chemistry. B vol. 110 (2006):  15763-15768. 

 
H. J. Kim et al., "Solvent-Resistant Organic Transistors and Thermally Stable Organic 

Photovoltaics Based on Cross-linkable Conjugated Polymers." Chemistry of Materials 
vol. 24 (2012):  215-221. 

 
B. Kiskan, J. Weber, "Versatile Postmodification of Conjugated Microporous Polymers Using 

Thiol-yne Chemistry." Macro Letters vol. 1 (2012):  37-40. 
 
V. V. Kislyuk, O. P. Dimitriev, a. a. Pud, J. Lautru, I. Ledoux-Rak, "In-situ conductivity and UV-VIS 

absorption monitoring of iodine doping-dedoping processes in poly(3-hexylthiophene) 
(P3HT)." Journal of Physics: Conference Series vol. 286 (2011):  012009. 

 
G. Klaerner, R. Miller, "Polyfluorene Derivatives: Effective Conjugation Lengths from Well-

Defined Oligomers." Macromolecules vol. 31 (1998):  2007-2009. 
 
G. Klaerner, R. Miller, "Polyfluorene derivatives: effective conjugation lengths from well-defined 

oligomers." Macromolecules vol. 9297 (1998):  2007-2009. 
 
G. Klärner et al., "Cross-linkable Polymers Based on Dialkylfluorenes." Chemistry of Materials 

vol. 11 (1999):  1800-1805. 
 
R. J. Kline et al., "Critical Role of Side-Chain Attachment Density on the Order and Device 

Performance of Polythiophenes." Macromolecules vol. 40 (2007):  7960-7965. 
 
M. Knaapila et al., "Influence of solvent quality on the self-organization of archetypical hairy 

rods-Branched and linear side chain polyfluorenes: Rodlike chains versus “beta-sheets” 
in." Macromolecules vol. 39 (2006):  6505-6512. 

 
A. Können et al., "Organic LEDs: The Simple Way to Solution-Processed Multilayer OLEDs – 

Layered Block-Copolymer Networks by Living Cationic Polymerization." Advanced 
Materials vol. 21 (2009):  879-884. 

 
F. B. Koyuncu, A. R. Davis, K. R. Carter, "Emissive Conjugated Polymer Networks with Tunable 

Band-Gaps via Thiol-Ene Click Chemistry." Chemistry of Materials vol. 24 (2012):  4410-
4416. 

 



 

168 

F. B. Koyuncu, E. Sefer, S. Koyuncu, E. Ozdemir, "A new low band gap electrochromic polymer 
containing 2,5-bis-dithienyl-1H-pyrrole and 2,1,3-benzoselenadiazole moiety with high 
contrast ratio." Polymer vol. 52 (2011):  5772-5779. 

 
A. J. C. Kuehne et al., "Sub-Micrometer Patterning of Amorphous- and β -Phase in a 

Crosslinkable Poly ( 9 , 9-dioctylfl uorene ): Dual-Wavelength Lasing from a Mixed-
Morphology Device." Synthesis vol.  (2011):  1-7. 

 
A. P. Kulkarni, X. Kong, S. A. Jenekhe, "Fluorenone-Containing Polyfluorenes and Oligofluorenes: 

Photophysics , Origin of the Green Emission and Efficient Green Electroluminescence." 
Journal of Physical Chemistry B vol. 108 (2004):  8689-8701. 

 
O. Kwon, M. L. McKee, "Calculations of Band Gaps in Polyaniline from Theoretical Studies of 

Oligomers." The Journal of Physical Chemistry B vol. 104 (2000):  1686-1694. 
 
F. Laquai, G. Wegner, H. Bässler, "What determines the mobility of charge carriers in conjugated 

polymers?" Philosophical transactions. Series A, Mathematical, physical, and 
engineering sciences vol. 365 (2007):  1473-1487. 

 
K. Lee, A. J. Heeger, Y. Cao, "Reflectance spectra of polyaniline." Synthetic Metals vol. 72 (1995):  

25-34. 
 
P. I. Lee, S. L. C. Hsu, R. F. Lee, "White-light-emitting diodes from single polymer systems based 

on polyfluorene copolymers end-capped with a dye." Polymer vol. 48 (2007):  110-115. 
 
W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, C. H. Lin, "Exploiting optical properties of 

P3HT:PCBM films for organic solar cells with semitransparent anode." Thin Solid Films 
vol. 518 (2010):  7450-7454. 

 
H. Letheby, "XXIX. - On the production of a blue substance by the electrolysis of sulphate of 

aniline." Journal of the Chemical Society vol. 15 (1862):  161-163. 
 
D. Li, L. J. Guo, "Micron-scale organic thin film transistors with conducting polymer electrodes 

patterned by polymer inking and stamping." Applied Physics Letters vol. 88 (2006):  
063513. 

 
G. Li et al., "“Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) 

and Methanofullerenes." Advanced Functional Materials vol. 17 (2007):  1636-1644. 
 
T. Li, J. W. Balk, P. P. Ruden, I. H. Campbell, D. L. Smith, "Channel formation in organic field-

effect transistors." Journal of Applied Physics vol. 91 (2002):  4312. 
 
Z. Q. Li et al., "Infrared imaging of the nanometer-thick accumulation layer in organic field-effect 

transistors." Nano letters vol. 6 (2006):  224-228. 
 
G. Lieser et al., "Ordering, Graphoepitaxial Orientation, and Conformation of a Polyfluorene 

Derivative of the “Hairy-Rod” Type on an Oriented Substrate of Polyimide †." 
Macromolecules vol. 33 (2000):  4490-4495. 



 

169 

 
S. C. Lim et al., "Surface-treatment effects on organic thin-film transistors." Synthetic Metals vol. 

148 (2005):  75-79. 
 
W. Liu, W. Huang, C.-H. Chen, M. Pink, D. Lee, "Charge Injection and Transport in Metal-

Containing Conducting Polymers: Spectroelectrochemical Mapping of Redox Activities." 
Chemistry of Materials vol. 24 (2012):  3650-3658. 

 
S. Locci, M. Morana, E. Orgiu, a. Bonfiglio, P. Lugli, "Modeling of Short-Channel Effects in Organic 

Thin-Film Transistors." IEEE Transactions on Electron Devices vol. 55 (2008):  2561-2567. 
 
A. B. Lowe, "Thiol-ene "click" reactions and recent applications in polymer and materials 

synthesis." Polymer Chemistry vol. 1 (2010):  17-36. 
 
K. Lu et al., "with Oxetane Substituents : Synthesis , Optical , Electrochemical , and Field-Effect 

Properties." Macromolecules vol.  (2009):  3222-3226. 
 
J. M. Lupton, P. Schouwink, P. E. Keivanidis, A. C. Grimsdale, K. Müllen, "Influence of 

Dendronization on Spectral Diffusion and Aggregation in Conjugated Polymers." 
Advanced Functional Materials vol. 13 (2003):  154-158. 

 
B. B. Ma, B. J. Kim, D. A. Poulsen, S. J. Pastine, J. M. J. Fréchet, "Multifunctional Crosslinkable 

Iridium Complexes as Hole Transporting / Electron Blocking and Emitting Materials for 
Solution-Processed Multilayer Organic Light-Emitting Diodes." Advanced Functional 
Materials vol. 1460 (2009):  1024-1031. 

 
T. Manaka, S. Kawashima, M. Iwamoto, "Charge modulated reflectance topography for probing 

in-plane carrier distribution in pentacene field-effect transistors." Applied Physics 
Letters vol. 97 (2010):  113302. 

 
T. Manaka, S. Kawashima, M. Iwamoto, "Charge modulation spectroscopy for probing ambipolar 

carrier injection into pentacene field effect transistors." Physics Procedia vol. 14 (2011):  
209-212. 

 
T. Manaka, S. Kawashima, M. Iwamoto, "Evaluation of Carrier Density in Organic Field-Effect 

Transistor by Charge Modulated Spectroscopy." Japanese Journal of Applied Physics vol. 
50 (2011):  04DK12. 

 
T. Manaka, E. Lim, R. Tamura, M. Iwamoto, "Direct imaging of carrier motion in organic 

transistors by optical second-harmonic generation." Nature Photonics vol. 1 (2007):  
581-584. 

 
T. Manaka, E. Lim, R. Tamura, D. Yamada, M. Iwamoto, "Probing of the electric field distribution 

in organic field effect transistor channel by microscopic second-harmonic generation." 
Applied Physics Letters vol. 89 (2006):  072113. 

 



 

170 

N. Marshall, S. K. Sontag, J. Locklin, "Substituted Poly( p -phenylene) Thin Films via Surface-
Initiated Kumada-Type Catalyst Transfer Polycondensation." Macromolecules vol. 43 
(2010):  2137-2144. 

 
D. Marsitzky, J. Murray, J. C. Scott, K. R. Carter, "Amorphous Poly-2 , 7-fluorene Networks." 

Synthesis vol.  (2001):  4285-4289. 
 
H. Matsui, T. Hasegawa, "Visualization of accumulated charge density in operating organic thin-

film transistors." Applied Physics Letters vol. 95 (2009):  223301. 
 
K. Meerholz, C.-D. Muller, O. Nuyken, in Organic Light Emitting Devices. Synthesis, Properties 

and Applications., K. Mullen, U. Scherf, Eds. (Wiley-VCH Verlag GmbH & Co., Weinheim, 
2006). 

 
D. Meng et al., "Grafting P3HT brushes on GO sheets: distinctive properties of the GO/P3HT 

composites due to different grafting approaches." Journal of Materials Chemistry vol. 22 
(2012):  21583. 

 
A. Moliton, R. C. Hiorns, "Review of electronic and optical properties of semiconducting π-

conjugated polymers: applications in optoelectronics." Polymer International vol. 53 
(2004):  1397-1412. 

 
L. M. A. Monzon, K. Rode, M. Venkatesan, J. M. D. Coey, "Electrosynthesis of Iron, Cobalt, and 

Zinc Microcrystals and Magnetic Enhancement of the Oxygen Reduction Reaction." 
Chemistry of Materials vol. 24 (2012):  3878-3885. 

 
I. W. Moran, S. B. Jhaveri, K. R. Carter, "Patterned layers of a semiconducting polymer via 

imprinting and microwave-assisted grafting." Small vol. 4 (2008):  1176-1182. 
 
C. R. Morgan, F. Magnotta, A. D. Ketley, "Thiol / Ene Photocurable Polymers." Journal of Polymer 

Science Part A: Polymer Chemistry vol. 15 (1977):  627-645. 
 
M. Morra et al., "On the aging of oxygen plasma-treated polydimethylsiloxane surface." Journal 

of Colloid and Interface Science vol. 137 (1990):  11-24. 
 
C. R. Newman et al., "Introduction to organic thin film transistors and design of n-channel 

organic semiconductors." Chemistry of Materials vol. 16 (2004):  4436-4451. 
 
T.-Q. Nguyen, R. C. Kwong, M. E. Thompson, B. J. Schwartz, "Improving the performance of 

conjugated polymer-based devices by control of interchain interactions and polymer 
film morphology." Applied Physics Letters vol. 76 (2000):  2454. 

 
Y.-H. Niu, Q. Hou, Y. Cao, "Thermal annealing below the glass transition temperature: A general 

way to increase performance of light-emitting diodes based on copolyfluorenes." 
Applied Physics Letters vol. 81 (2002):  634. 

 



 

171 

Y.-H. Niu, M. S. Liu, J.-w. Ka, A. K. Jen, "Thermally crosslinked hole-transporting layers for 
cascade hole-injection and effective electron-blocking / exciton-confinement in 
phosphorescent polymer light-emitting diodes."  vol.  (2006):  23-25. 

 
L. O'Neill, H. J. Byrne, "Structure-Property Relationships for Electron-Vibrational Coupling in 

Conjugated Organic Oligomeric Systems." Journal of Physical Chemistry B vol. 109 
(2005):  12685-12690. 

 
D. Oberhoff, K. P. Pernstich, D. J. Gundlach, B. Batlogg, "Arbitrary density of states in an organic 

thin-film field-effect transistor model and application to pentacene devices." IEEE 
Transactions on Electron Devices vol. 54 (2007):  17-25. 

 
M. Owen, T. Gentle, T. Orbeck, D. Williams, in Polymer Surface Dynamics, J. Andrade, Ed. 

(Plenum Press, New York, 1988),  pp. 101-110. 
 
Z. A. Page, V. V. Duzhko, T. Emrick, "Conjugated Thiophene-Containing Polymer Zwitterions: 

Direct Synthesis and Thin Film Electronic Properties." Macromolecules vol. 46 (2013):  
344-351. 

 
P. Pallavicini, G. Dacarro, M. Galli, M. Patrini, "Spectroscopic evaluation of surface 

functionalization efficiency in the preparation of mercaptopropyltrimethoxysilane self-
assembled monolayers on glass." Journal of Colloid and Interface Science vol. 332 
(2009):  432-438. 

 
P. Paoprasert et al., "Grafting of poly(3-hexylthiophene) brushes on oxides using click 

chemistry." Journal of Materials Chemistry vol. 20 (2010):  2651. 
 
Y. D. Park et al., "Effect of side chain length on molecular ordering and field-effect mobility in 

poly(3-alkylthiophene) transistors." Organic Electronics vol. 7 (2006):  514-520. 
 
A. O. Patil, A. J. Heeger, F. Wudl, "Optical-Properties of Conducting Polymers." Chemical Reviews 

vol. 88 (1988):  183-200. 
 
A. Patra, Y. H. Wijsboom, G. Leitus, M. Bendikov, "Tuning the Band Gap of Low-Band-Gap 

Polyselenophenes and Polythiophenes: The Effect of the Heteroatom." Chemistry of 
Materials vol. 23 (2011):  896-906. 

 
G. K. Paul, J. Mwaura, A. A. Argun, P. Taranekar, J. R. Reynolds, "Cross-Linked Hyperbranched 

Arylamine Polymers as Hole-Transporting Materials for Polymer LEDs." Macromolecules 
vol. 39 (2006):  7789-7792. 

 
Q. Pei, Y. Yang, "Efficient Photoluminescence and Electroluminescence from a Soluble 

Polyfluorene." J. Am. Chem. Soc. vol. 118 (1996):  7416. 
 
K. Pilgram, M. Zupan, R. Skiles, "Bromination of 2,1,3-Benzothiadiazoles." Journal of Heterocyclic 

Chemistry vol. 7 (1970):  629-&. 
 



 

172 

L. S. C. Pingree, O. G. Reid, D. S. Ginger, "Electrical Scanning Probe Microscopy on Active Organic 
Electronic Devices." Advanced Materials vol. 21 (2009):  19-28. 

 
A. Pogantsch et al., "Tuning the Electroluminescence Color in Polymer Light-Emitting Devices 

Using the Thiol-Ene Photoreaction." Advanced Functional Materials vol. 15 (2005):  403-
409. 

 
R. Ponnapati et al., "Conjugated polymer network films of poly(p-phenylene vinylene) with hole-

transporting carbazole pendants: dual photoluminescence and electrochromic 
behavior." ACS Applied Materials & Interfaces vol. 4 (2012):  1211-1218. 

 
S. Pons, C. Korzeniewski, R. B. Shirts, A. Bewicks, "Field-induced infrared absorption in metal 

surface spectroscopy: the electrochemical Stark effect." The Journal of Physical 
Chemistry vol. 89 (1985):  2297-2298. 

 
T. Posner, "Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von 

Mercaptanen an ungesättigte Kohlenwasserstoffe." Berichte der deutschen chemischen 
Gesellschaft vol. 38 (1905):  646-657. 

 
L. Qiu et al., "Organic thin-film transistors with a photo-patternable semiconducting polymer 

blend." Journal of Materials Chemistry vol. 21 (2011):  15637. 
 
H. P. Rathnayake et al., "Luminescence of Molecular and Block Copolymeric Sites in a Fluorene-

Based Luminophore." Chemistry of Materials vol. 19 (2007):  3265-3270. 
 
H. P. Rathnayake, A. Cirpan, P. M. Lahti, F. E. Karasz, "Optimizing LED Properties of 2,7-

Bis(phenylethenyl)fluorenes." Chemistry of Materials vol. 18 (2006):  560-566. 
 
M. Redecker, D. D. C. Bradley, M. Inbasekaran, E. P. Woo, "Nondispersive hole transport in an 

electroluminescent polyfluorene." Applied Physics Letters vol. 73 (1998):  1565. 
 
C. Reese, Z. Bao, "Detailed Characterization of Contact Resistance, Gate-Bias-Dependent Field-

Effect Mobility, and Short-Channel Effects with Microscale Elastomeric Single-Crystal 
Field-Effect Transistors." Advanced Functional Materials vol. 19 (2009):  763-771. 

 
R. Reichlin et al., "Optical, x-ray, and band-structure studies of iodine at pressures of several 

megabars." Physical Review B vol. 49 (1994):  3725-3733. 
 
F. Rohlfing, T. Yamada, T. Tsutsui, "Electroabsorption spectroscopy on tris-(8-hydroxyquinoline) 

aluminum-based light emitting diodes." Journal of Applied Physics vol. 86 (1999):  4978. 
 
L. Romaner et al., "The Origin of Green Emission in Polyfluorene-Based Conjugated Polymers: 

On-Chain Defect Fluorescence." Advanced Functional Materials vol. 13 (2003):  597-601. 
 
L. Romaner et al., "The Origin of Green Emission in Polyfluorene-Based Conjugated Polymers: 

On-Chain Defect Fluorescence." Advanced Functional Materials vol. 13 (2003):  597. 
 



 

173 

T. M. Roper, C. E. Hoyle, D. H. Magers, in Photochemistry and UV curing: new trendd, J. P. 
Fouassier, Ed. (Research Signpost, Kerala, India, 2006),  pp. 253-264. 

 
H. A. Saadeh et al., "Polyselenopheno[3,4-b]selenophene for Highly Efficient Bulk 

Heterojunction Solar Cells." ACS Macro Letters vol. 1 (2012):  361-365. 
 
A. Sadakata et al., "Probing interfacial charge accumulation in ITO/α-NPD/Alq3/Al diodes under 

two electroluminescence operational modes by electric-field induced optical second-
harmonic generation." Journal of Applied Physics vol. 112 (2012):  083723. 

 
W. Salaneck, K. Seki, A. Kahn, J.-J. Pireaux, Conjugated Polymer And Molecular Interfaces: 

Science and Technology For Photonic And Optoelectronic Application.  (M. Dekker, New 
York, 2002). 

 
W. Salaneck, S. Stafstrom, J.-L. Bredas, Conjugated polymer surfaces and interfaces. Electronic 

and chemical structure for polymer light emitting devices.  (Cambridge University Press, 
Cambridge, 1996). 

 
U. Salzner, J. B. Lagowski, P. G. Pickup, R. A. Poirier, "Comparison of geometries and electronic 

structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, 
polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene." 
Synthetic Metals vol. 96 (1998):  177-189. 

 
N. Sariciftci, A. Heeger, Y. Cao, "Paramagnetic susceptibility of highly conducting polyaniline: 

Disordered metal with weak electron-electron interactions (Fermi glass)." Physical 
Review B vol. 49 (1994):  5988-5992. 

 
S. Sax et al., "Efficient blue-light-emitting polymer heterostructure devices: the fabrication of 

multilayer structures from orthogonal solvents." Advanced materials (Deerfield Beach, 
Fla.) vol. 22 (2010):  2087-2091. 

 
G. Scarpa, E. Martin, S. Locci, B. Fabel, P. Lugli, "Organic thin-film phototransistors based on 

poly(3-hexylthiophene)." Journal of Physics: Conference Series vol. 193 (2009):  012114. 
 
E. Scheler, I. Bauer, P. Strohrigl, "Synthesis and photopatterning of fluorene based reactive 

mesogens." Macromolecular Symposia vol. 254 (2007):  203-209. 
 
E. Scheler, P. Strohriegl, "Tailoring fluorene-based oligomers for fast photopatterning." Journal 

of Materials Chemistry vol.  (2009):  3207-3212. 
 
U. Scherf, D. Neher, in Advances in Polymer Science. (Springer, New York, 2008), vol. 212. 
 
B. J. Schwartz, "Conjugated polymers as molecular materials: how chain conformation and film 

morphology influence energy transfer and interchain interactions." Annual Review of 
Physical Chemistry vol. 54 (2003):  141-172. 

 
C. Sciascia et al., "Electric field and charge distribution imaging with sub-micron resolution in an 

organic Thin-Film Transistor." Organic Electronics vol. 13 (2012):  66-70. 



 

174 

 
C. Sciascia et al., "Sub-Micrometer Charge Modulation Microscopy of a High Mobility Polymeric 

n-Channel Field-Effect Transistor." Advanced Materials vol. 23 (2011):  5086-5090. 
 
V. Senkovskyy et al., "Conductive polymer brushes of regioregular head-to-tail poly (3-

alkylthiophenes) via catalyst-transfer surface-initiated polycondensation." Journal of the 
American Chemical Society vol. 129 (2007):  6626-6632. 

 
A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, T. E. Gould, "Ternary Thiol-Ene/Acrylate 

Photopolymers: Effect of Acrylate Structure on Mechanical Properties." Macromolecules 
vol. 40 (2007):  4901-4909. 

 
A. F. Senyurt et al., "Physical and Mechanical Properties of Photopolymerized Thiol-

Ene/Acrylates." Macromolecules vol. 39 (2006):  39-41. 
 
J. H. Seo et al., "Improved injection in n-type organic transistors with conjugated 

polyelectrolytes." Journal of the American Chemical Society vol. 131 (2009):  18220-
18221. 

 
S. E. Shaheen et al., "Energy and charge transfer in organic light-emitting diodes: A soluble 

quinacridone study." Journal of Applied Physics vol. 85 (1999):  7935-7945. 
 
Y. Shi, J. Liu, Y. Yang, "Device performance and polymer morphology in polymer light emitting 

diodes: The control of thin film morphology and device quantum efficiency." Journal of 
Applied Physics vol. 87 (2000):  4254. 

 
H. Shirakawa, S. Ikeda, "Infrared Spectra of Poly(acetylene)." Polymer Journal vol. 2 (1971):  231-

244. 
 
H. Shirakawa, T. Ito, S. Ikeda, "Raman Scattering and Electronic Spectra of Poly(acetylene)." 

Polymer Journal vol. 4 (1973):  460-462. 
 
H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, "Synthesis of electrically 

conducting organic polymers: halogen derivatives of polyacetylene, (CH) x." Journal of 
the Chemical Society, Chemical Communications vol.  (1977):  578-580. 

 
M. Shur, Physics of Semiconductor Devices.  (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990). 
 
R. M. Silverstein, G. C. Bassler, in Spectrometric Identification of Organic Compounds. (John 

Wiley & Sons, Inc., New York, 1967),  pp. 99-100. 
 
H. Sirringhaus, "Device Physics of Solution-Processed Organic Field-Effect Transistors." Advanced 

Materials vol. 17 (2005):  2411-2425. 
 
H. Sirringhaus et al., "Two-dimensional charge transport in self-organized, high-mobility 

conjugated polymers." Nature vol. 401 (1999):  685-688. 
 



 

175 

S. K. Sontag, N. Marshall, J. Locklin, "Formation of conjugated polymer brushes by surface-
initiated catalyst-transfer polycondensation." Chemical Communications  (2009):  3354-
3356. 

 
S. K. Sontag, G. R. Sheppard, N. M. Usselman, N. Marshall, J. Locklin, "Surface-confined nickel 

mediated cross-coupling reactions: characterization of initiator environment in Kumada 
catalyst-transfer polycondensation." Langmuir vol. 27 (2011):  12033-12041. 

 
J. W. Spalenka, E. M. Mannebach, D. J. Bindl, M. S. Arnold, P. G. Evans, "Spectral resolution of 

states relevant to photoinduced charge transfer in modified pentacene/ZnO field-effect 
transistors." Applied Physics Letters vol. 99 (2011):  193304. 

 
P. Stallinga. in Electrical Characterization of Organic Electronic Materials and Devices (John Wiley 

& Sons, Inc. New York, 2009), pp. 189-279. 
 
H. Sun et al., "Crosslinkable Poly ( p-phenylenevinylene ) Derivative." Polymer vol. 42 (2004):  

2124-2129. 
 
M. L. Sun et al., "Fluorene-based copolymers for color-stable blue light-emitting diodes." 

European Polymer Journal vol. 43 (2007):  1916-1922. 
 
S. M. Sze, in Physics of Semiconductor Devices. (John Wiley & Sons, Inc., New York, 1969),  pp. 

505-566. 
 
H. Tanaka, S.-i. Watanabe, H. Ito, K. Marumoto, S.-I. Kuroda, "Direct observation of the charge 

carrier concentration in organic field-effect transistors by electron spin resonance." 
Applied Physics Letters vol. 94 (2009):  103308. 

 
C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes." Applied Physics Letters vol. 51 

(1987):  913-915. 
 
K. Tashiro, M. Kobayashi, T. Kawai, K. Yoshino, "Crystal structural change in poly(3-alkyl 

thiophene)s induced by iodine doping as studied by an organized combination of X-ray 
diffraction, infrared/Raman spectroscopy and computer simulation techniques." 
Polymer vol. 38 (1997):  2867-2879. 

 
V. Thorsmølle et al., "Morphology Effectively Controls Singlet-Triplet Exciton Relaxation and 

Charge Transport in Organic Semiconductors." Physical Review Letters vol. 102 (2009):  
017401. 

 
S. P. Tiwari, K. a. Knauer, A. Dindar, B. Kippelen, "Performance comparison of pentacene organic 

field-effect transistors with SiO2 modified with octyltrichlorosilane or 
octadecyltrichlorosilane." Organic Electronics vol. 13 (2012):  18-22. 

 
A. V. Tunc et al., "Influence of molecular weight on the short-channel effect in polymer-based 

field-effect transistors." Journal of Polymer Science Part B: Polymer Physics vol. 50 
(2012):  117-124. 

 



 

176 

J. van Herrikhuyzen, A. Syamakumari, A. P. H. J. Schenning, E. W. Meijer, "Synthesis of n-type 
perylene bisimide derivatives and their orthogonal self-assembly with p-type oligo(p-
phenylene vinylene)s." Journal of the American Chemical Society vol. 126 (2004):  
10021-10027. 

 
S. Wang, S. Boussaad, S. Wong, N. J. Tao, "High-sensitivity stark spectroscopy obtained by 

surface plasmon resonance measurement." Analytical chemistry vol. 72 (2000):  4003-
4008. 

 
K. Wasapinyokul, W. I. Milne, D. P. Chu, "Photoresponse and saturation behavior of organic thin 

film transistors." Journal of Applied Physics vol. 105 (2009):  024509. 
 
K.-H. Weinfurtner, H. Fujikawa, S. Tokito, Y. Taga, "Highly efficient pure blue 

electroluminescence from polyfluorene: Influence of the molecular weight distribution 
on the aggregation tendency." Applied Physics Letters vol. 76 (2000):  2502. 

 
M. Weis, T. Manaka, M. Iwamoto, "Origin of electric field distribution in organic field-effect 

transistor: Experiment and analysis." Journal of Applied Physics vol. 105 (2009):  024505. 
 
G. Weiser, "Stark effect of one-dimensional Wannier excitons in polydiacetylene single crystals." 

Physical Review B vol. 45 (1992):  14076. 
 
Y. G. Wen, Y. Q. Liu, "Recent Progress in n-Channel Organic Thin-Film Transistors." Advanced 

Materials vol. 22 (2010):  1331-1345. 
 
G. P. Wiederrecht et al., "Visualizing charge movement near organic heterojunctions with 

ultrafast time resolution via an induced Stark shift." Applied Physics Letters vol. 100 
(2012):  113304. 

 
M. W. B. Wilson et al., "Ultrafast dynamics of exciton fission in polycrystalline pentacene." 

Journal of the American Chemical Society vol. 133 (2011):  11830-11833. 
 
H. Wu et al., "Efficient Electron Injection from a Bilayer Cathode Consisting of Aluminum and 

Alcohol-/Water-Soluble Conjugated Polymers." Advanced Materials vol. 16 (2004):  
1826-1830. 

 
C. Xia, X. Fan, M.-k. Park, R. C. Advincula, "Ultrathin Film Electrodeposition of Polythiophene 

Conjugated Networks through a Polymer Precursor Route." Langmuir vol. 17 (2001):  
7893-7898. 

 
Y. Xia et al., "Printed Sub-2 V Gel-Electrolyte-Gated Polymer Transistors and Circuits." Advanced 

Functional Materials vol. 20 (2010):  587-594. 
 
M. S. Xu, J. B. Xu, "Real-time visualization of thermally activated degradation of the 

ITO/CuPC/NPB/Alq 3 stack used in one of the organic light-emitting diodes." Journal of 
Physics D: Applied Physics vol. 37 (2004):  1603-1608. 

 



 

177 

Q. Yan, Y. Fan, D. Zhao, "Unusual Temperature-Dependent Photophysics of Oligofluorene-
Substituted Tris-Cyclometalated Iridium Complexes." Macromolecules vol.  (2011). 

 
R. Q. Yang, R. Y. Tian, Q. Hou, W. Yang, Y. Cao, "Synthesis and optical and electroluminescent 

properties of novel conjugated copolymers derived from fluorene and 
benzoselenadiazole." Macromolecules vol. 36 (2003):  7453-7460. 

 
T. Yasuda, T. Imase, S. Sasaki, T. Yamamoto, "Synthesis, solid structure, and optical properties of 

new thiophene-based alternating pi-conjugated copolymers containing 4-alkyl-1,2,4-
triazole or 1,3,4-thiadiazole unit as the partner unit." Macromolecules vol. 38 (2005):  
1500-1503. 

 
T. Yasuda, T. Imase, T. Yamamoto, "Synthesis, characterization, and optical and electrochemical 

properties of new 2,1,3-benzoselenadiazole-based CT-type copolymers." 
Macromolecules vol. 38 (2005):  7378-7385. 

 
T. Ytterdal, Y. Cheng, T. A. Fjeldly, in Device Modeling for Analog and RF CMOS Circuit Design. 

(2003). 
 
G. Yu et al., "Measurement of the energy gap in semiconducting polymers using the light-

emitting electrochemical cell." Chemical Physics Letters vol. 259 (1996):  465-468. 
 
J. Zaumseil, H. Sirringhaus, "Electron and ambipolar transport in organic field-effect transistors." 

Chemical reviews vol. 107 (2007):  1296-1323. 
 
L. Zhang, D. Taguchi, T. Manaka, M. Iwamoto, "Direct probing of selective electron and hole 

accumulation processes along the channel of an ambipolar double-layer field-effect 
transistor by optical modulation spectroscopy." Applied Physics Letters vol. 100 (2012):  
103301. 

 
L. Zhang, D. Taguchi, T. Manaka, M. Iwamoto, "Direct probing of the selective electron and hole 

accumulation at organic/organic interfaces in a triple-layer organic device by time-
resolved optical second harmonic generation." Applied Physics Letters vol. 99 (2011):  
083301. 

 
L. Zhao, X. Pang, R. Adhikary, J. W. Petrich, Z. Lin, "Semiconductor Anisotropic Nanocomposites 

Obtained by Directly Coupling Conjugated Polymers with Quantum Rods." Angewandte 
Chemie vol. 123 (2011):  4044-4048. 

 
W. Zhao, T. Cao, J. M. White, "On the origin of green emission in polyfluorene polymers: The 

roles of thermal oxidation degradation and crosslinking." Advanced Functional Materials 
vol. 14 (2004):  783-790. 
 


	VISUALIZING AND CONTROLLING CHARGE TRANSPORT IN CONJUGATED POLYMER NETWORKS AND FILMS
	Recommended Citation

	tmp.1397611316.pdf.DsHYP

