14 research outputs found

    Microlamination Based Lumped And Distributed Magnetic Mems Systems Enabled By Through-Mold Sequential Multilayer Electrodeposition Technology

    Get PDF
    Microfabricated magnetic MEMS components such as permanent micromagnets and soft magnetic structures are key enablers in various lumped and distributed systems such as energy harvesters, magnetometers, biomagnetic filters, and electromagnetic micromotors. The unique functionalities of such systems often require designers to controllably scale the relevant dimensions of a device relative to the characteristic length of a targeted application. We demonstrate in this dissertation that the developed Microlamination Technology could create two-dimensional uniform- or dual- height monolithic metallic structures with additional deterministic structural and compositional complexities along thickness direction, suitable to facilely and flexibly fabricate both lumped and distributed magnetic MEMS systems at a designer\u27s will. The utility of the Microlamination Technology is further validated through the realization of two exemplary systems based on this technology: (i) A lumped system of laminated permanent micromagnets. Microfabricated permanent magnets possessing a multilayer structure enabled by the Microlamination Technology that preserves the high energy density of thinner magnetic films, while simultaneously reducing average residual stress of the films and achieving a significant thickness are presented. The key to retain the superior magnetic properties of thin films in thick laminations is the low interface roughness between the layers, which in turn improves the coercivity of the micromagnets. (ii) A distributed system of a bi-stable vertical magnetic actuator with non-contact latching. The utilization of the Microlamination Technology translates the structural periodicity (multilayer) into magnetic-field-pattern periodicity, which in turn enables the bi-stability of the microsystem and leads to the defined latching behavior. The latching mechanism is solely based on the magneto-static interaction without the need of a mechanical stop. No external energy is needed in the latching positions. This vertical bi-stable actuator could have potential applications as valves in micro-fluidic controls, and as integral parts of micro-mirrors in optical applications

    Design, fabrication, and implementation of a wireless, passive implantable pressure sensor based on magnetic higher-order harmonic fields

    Get PDF
    A passive and wireless sensor was developed for monitoring pressure in vivo. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is an airtight chamber sealed with an elastic pressure membrane. A strip of magnetically-soft material is attached to the bottom of the chamber and a permanent magnet strip is embedded inside the membrane. Under the excitation of an externally applied AC magnetic field, the magnetically-soft strip produces a higher-order magnetic signature that can be remotely detected with an external receiving coil. As ambient pressure varies, the pressure membrane deflects, altering the separation distance between the magnetically-soft strip and the permanent magnet. This shifts the higher-order harmonic signal, allowing for detection of pressure change as a function of harmonic shifting. The wireless, passive nature of this sensor technology allows for continuous long-term pressure monitoring, particularly useful for biomedical applications such as monitoring pressure in aneurysm sac and sphincter of Oddi. In addition to demonstrating its pressure sensing capability, an animal model was used to investigate the efficacy and feasibility of the pressure sensor in a biological environment

    Wideband vibration energy harvesting using electromagnetic transduction for powering internet of things

    Get PDF
    The ‘Internet of Things-(IoT)’ envisions a world scattered with physical sensors that collect and transmit data about almost anything and thereby enabling intelligent decision-making for a smart environment. While technological advancements have reduced the power consumption of such devices significantly, the problem of perpetual energy supply beyond the limited capability of batteries is a bottleneck to this vision which is yet to be resolved. This issue has surged the research to investigate the prospect of harvesting the energy out of ambient mechanical vibrations. However, limited applications of conventional resonant devices under most practical environments involving frequency varying inputs, has gushed the research on wideband transducers recently. To facilitate multi-frequency operation at low-frequency regime, design innovations of the Silicon-onInsulator based MEMS suspension systems are performed through multi-modal activation. For continuous bandwidth widening, the benefits of using nonlinear stiffness in the system dynamics are investigated. By topologically varying the spring architectures, dramatically improved operational bandwidth with large power-density is obtained, which is benchmarked using a novel figure-of-merit. However, the fundamental phenomenon of multi-stability limits many nonlinear oscillator based applications including energy harvesting. To address this, an electrical control mechanism is introduced which dramatically improves the energy conversion efficiency over a wide bandwidth in a frequencyamplitude varying environment using only a small energy budget. The underlying effects are independent of the device-scale and the transduction methods, and are explained using a modified Duffing oscillator model. One of the key requirements for fully integrated electromagnetic transducers is the CMOS compatible batch-fabrication of permanent magnets with large energy-product. In the final module of the works, nano-structured CoPtP hard-magnetic material with large coercivity is developed at room-temperature using a current modulated electro-deposition technique. The demagnetization fields of the magnetic structures are minimized through optimized micro-patterns which enable the full integration of high performance electromagnetic energy harvesters

    MEMS-based vibrational energy harvesting and conversion employing micro-/nano-magnetics

    Get PDF
    This paper discusses the current state-of-the-art, ongoing fundamental and technical challenges and potential roadmaps for micro-scale vibration energy harvesting and power conversion devices employing micro-/nano-magnetics. Such devices are of paramount importance as powering solution for autonomous and ubiquitous sensor nodes within the emerging ``Internet of Things (IoT).'' In this paper, we have reviewed the fundamental limitations, technological needs, and breakthroughs in the mentioned areas, including materials, process integration, and device design issues. Particularly, current limitations in both the relevant soft and hard (or permanent) micro-magnets, roadmaps for a complete ``Magnetic MEMS'' solution for energy harvesting and efficient low-power conversion for ``IoT'' applications, are discussed

    Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers

    Get PDF
    Cataloged from PDF version of article.Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed. (c) 2011 Optical Society of Americ

    Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers

    Get PDF
    Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed. © 2011 Optical Society of America

    Magnetic Levitation of Polymeric Photo-thermal Microgrippers

    Get PDF
    Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation. In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by reducing the positioning error to 20.3 µm. For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties. It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited magnetic samples shows a great promise toward the fabrication of levitating MEMS devices. The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot. The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire, 125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed chamber without sacrificing the positioning accuracy

    MEMS Technologies for Energy Harvesting

    Get PDF
    The objective of this chapter is to introduce the technology of Microelectromechanical Systems, MEMS, and their application to emerging energy harvesting devices. The chapter begins with a general introduction to the most common MEMS fabrication processes. This is followed with a survey of design mechanisms implemented in MEMS energy harvesters to provide nonlinear mechanical actuations. Mechanisms to produce bistable potential will be studied, such as introducing fixed magnets, buckling of beams or using slightly slanted clamped-clamped beams. Other nonlinear mechanisms are studied such as impact energy transfer, or the design of nonlinear springs. Finally, due to their importance in the field of MEMS and their application to energy harvesters, an introduction to actuation using piezoelectric materials is given. Examples of energy harvesters found in the literature using this actuation principle are also presented

    Precision formed micro magnets: LDRD project summary report

    Full text link

    Magnetic-field-assisted electrodeposition at conically structured metal layers

    Get PDF
    Konische Mikro- und Nanostrukturen besitzen spezifische magnetische, superhydrophobe und elektrokatalytische Eigenschaften und sind deshalb von hohem Interesse für eine Vielzahl von Anwendungen. Eine einfache und kostengünstige Methode zur Synthese dieser strukturierten Schichten ist die elektrochemische Abscheidung. Neben dem Einsatz von Capping-Reagenzien (engl. Capping agents) könnten Magnetfelder das lokale Konuswachstum auf einer planaren Elektrode unterstützen. In der vorliegenden Dissertation wird die Elektroabscheidung an konisch strukturierten Metallschichten in Magnetfeldern untersucht. Je nach Ausrichtung und Stärke des Magnetfeldes können die Lorentzkraft und die magnetische Gradientenkraft die Strömung des mit Metallionen angereicherten Elektrolyts in Richtung der Konusspitze gezielt antreiben. Folglich erhöht das Magnetfeld die lokale Abscheidungsrate und fördert das Konuswachstum. Für ein grundlegendes Verständnis des Effektes werden systematische numerische und theoretische Untersuchungen für die Elektroabscheidung an mm-großen Konen unterschiedlicher Materialien, Formen und Anordnungen unter verschiedenen elektrochemischen und magnetischen Bedingungen durchgeführt. Ein parallel zur Konusachse ausgerichtetes homogenes externes Magnetfeld erzeugt durch die Magnetisierung der ferromagnetischen Konen eine magnetische Gradientenkraft, die zu einer starken Unterstützung für das Konuswachstum führt. Dabei überwiegt sie oft gegenüber der Lorentzkraft und der Auftriebskraft, die durch Elektrodenreaktionen entsteht. Diese unterstützende Wirkung wird nur geringfügig abgeschwächt, wenn sich benachbarte Konusse einander annähern. Die numerischen Ergebnisse werden durch experimentelle Daten für verschiedene Konfigurationen und Abscheidungsparameter validiert. Um den Effekt der Magnetfelder zur Unterstützung des Wachstums kleinerer konischer Strukturen im Mikro- und Nanometerbereich zu ermitteln, werden die Skalengesetze für die Geschwindigkeiten der magnetisch angetriebenen lokalen Strömungen beim Verkleinern der Konusgröße aus numerischen Simulationen abgeleitet und durch eine analytische Lösung bestätigt. Obwohl die magnetische Gradientenkraft eine günstige Strömung bei ferromagnetischen Konussen erzeugt, limitieren die kleine Größe der Strömungsregion und die nahezu konstant verbleibende Dicke der Konzentrationsgrenzschicht die Unterstützung der Magnetfelder. Diese kann jedoch durch die Anwendung gepulster Ströme sowie moderat auch durch den Einsatz stärkerer Magnetfelder weiter erhöht werden. Weiterhin wird eine einfache Modellierung entwickelt, um den Einfluss von Capping-Reagenzien bei der Abscheidung von Nano-Strukturen numerisch zu simulieren. Experimentelle Resultate der von Partnern in Krakau durchgeführten Elektroabscheidung von nanostrukturierten Ni-Schichten in magnetischen Feldern werden mittels Simulationen sowohl globalen Zellströmung als auch der lokalen Strömung analysiert. Die Betrachtung beider Aspekte liefert eine Interpretation der experimentellen Ergebnisse und ermöglicht ein besseres Verständnis der Wirkung des capping agents. Zum Schluss wird der Einfluss der Wasserstoff-Nebenreaktion einbezogen. Die numerischen Ergebnisse zeigen, dass an der Konusspitze sitzende Wasserstoffblasen das Konuswachstum verringern können. Gleichzeig wird die durch die magnetischen Kräfte getriebene Strömung die Ablösung der Wasserstoffblase geringfügig verzögern.Micro- and nano-sized conical structures possess specific magnetic, superhydrophobic and electrocatalytic properties and are therefore attractive for numerous applications. Among the various methods of manufacturing such structured layers, electrodeposition appears a simple and inexpensive method. Beside the use of capping agents, the application of magnetic fields could support the local growth of cones on a non-templated planar electrode. This dissertation investigates electrodeposition at conically structured metal layers in external magnetic fields. Depending on the direction and the intensity of the magnetic field, the Lorentz force and the magnetic gradient force can generate electrolyte flow and bring electrolyte enriched with metal ions towards the cone tips. As a result, the local deposition rate is increased and conical growth is promoted. In order to obtain a basic understanding of the magnetic field effects, systematic numerical and theoretical investigations are performed for electrodeposition at mm-sized cones of different materials, shapes and arrangements under different electrochemical and magnetic conditions. If a uniform external magnetic field is oriented parallel to the cone axis, the magnetic gradient force enabled by the magnetization of ferromagnetic cones provides a strong support for conical growth, thereby often dominating over the Lorentz force and the buoyancy force arising from electrode reactions. This supporting effect is only slightly mitigated when neighboring cones are getting closer. The numerical results shown are validated by experimental data for different configurations and deposition parameters. In order to explore the prospects of magnetic fields to enhance the growth of smaller, micro- and nanometer sized conical structures, scaling laws of the local flows driven by the magnetic forces are derived numerically and confirmed analytically for shrinking cone sizes. Although the magnetic gradient force can generate a beneficial flow at ferromagnetic cones, the small flow region and the nearly constant thickness of the concentration boundary layer limit the support of the magnetic field. Enhancements of the structuring effect are observed for pulsed deposition and, despite only moderately, at higher magnetic field intensities. Furthermore, a simplified modeling approach is developed to simulate the growth mechanism of nano-cones with respect to the influence of capping agents. Experimental results of the electrodeposition of Ni cones in magnetic fields obtained by partners in Krakow are analyzed by performing simulations of both the global cell flow and the local flows generated by magnetic fields of different orientations. This two-step approach provides an interpretation of the experimental results, and gives a deeper insight on how the capping agent influences the local growth. Finally, the impact of the hydrogen side reaction on the electrodeposition in magnetic fields is considered. The numerical results indicate that hydrogen bubbles sitting at the cone tips may damp conical growth, while the magnetic-field-driven flow imposes a weak stabilizing force on the bubble
    corecore