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Microlamination Based Lumped And Distributed Magnetic Mems
Systems Enabled By Through-Mold Sequential Multilayer
Electrodeposition Technology

Abstract
Microfabricated magnetic MEMS components such as permanent micromagnets and soft magnetic structures
are key enablers in various lumped and distributed systems such as energy harvesters, magnetometers,
biomagnetic filters, and electromagnetic micromotors. The unique functionalities of such systems often
require designers to controllably scale the relevant dimensions of a device relative to the characteristic length
of a targeted application. We demonstrate in this dissertation that the developed Microlamination Technology
could create two-dimensional uniform- or dual- height monolithic metallic structures with additional
deterministic structural and compositional complexities along thickness direction, suitable to facilely and
flexibly fabricate both lumped and distributed magnetic MEMS systems at a designer's will. The utility of the
Microlamination Technology is further validated through the realization of two exemplary systems based on
this technology:

(i) A lumped system of laminated permanent micromagnets. Microfabricated permanent magnets possessing
a multilayer structure enabled by the Microlamination Technology that preserves the high energy density of
thinner magnetic films, while simultaneously reducing average residual stress of the films and achieving a
significant thickness are presented. The key to retain the superior magnetic properties of thin films in thick
laminations is the low interface roughness between the layers, which in turn improves the coercivity of the
micromagnets.

(ii) A distributed system of a bi-stable vertical magnetic actuator with non-contact latching. The utilization of
the Microlamination Technology translates the structural periodicity (multilayer) into magnetic-field-pattern
periodicity, which in turn enables the bi-stability of the microsystem and leads to the defined latching
behavior. The latching mechanism is solely based on the magneto-static interaction without the need of a
mechanical stop. No external energy is needed in the latching positions. This vertical bi-stable actuator could
have potential applications as valves in micro-fluidic controls, and as integral parts of micro-mirrors in optical
applications.
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ABSTRACT 

MICROLAMINATION BASED LUMPED AND DISTRIBUTED MAGNETIC MEMS 

SYSTEMS ENABLED BY THROUGH-MOLD SEQUENTIAL MULTILAYER 

ELECTRODEPOSITION TECHNOLOGY 

Yuan Li 

Mark G. Allen 

Microfabricated magnetic MEMS components such as permanent micromagnets and soft 

magnetic structures are key enablers in various lumped and distributed systems such as 

energy harvesters, magnetometers, biomagnetic filters, and electromagnetic micromotors. 

The unique functionalities of such systems often require designers to controllably scale 

the relevant dimensions of a device relative to the characteristic length of a targeted 

application. We demonstrate in this dissertation that the developed Microlamination 

Technology could create two-dimensional uniform- or dual- height monolithic metallic 

structures with additional deterministic structural and compositional complexities along 

thickness direction, suitable to facilely and flexibly fabricate both lumped and distributed 

magnetic MEMS systems at a designer's will. The utility of the Microlamination 

Technology is further validated through the realization of two exemplary systems based 

on this technology:  

(i) A lumped system of laminated permanent micromagnets. Microfabricated permanent 

magnets possessing a multilayer structure enabled by the Microlamination Technology 

that preserves the high energy density of thinner magnetic films, while simultaneously 
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reducing average residual stress of the films and achieving a significant thickness are 

presented. The key to retain the superior magnetic properties of thin films in thick 

laminations is the low interface roughness between the layers, which in turn improves the 

coercivity of the micromagnets.  

(ii) A distributed system of a bi-stable vertical magnetic actuator with non-contact 

latching. The utilization of the Microlamination Technology translates the structural 

periodicity (multilayer) into magnetic-field-pattern periodicity, which in turn enables the 

bi-stability of the microsystem and leads to the defined latching behavior. The latching 

mechanism is solely based on the magneto-static interaction without the need of a 

mechanical stop. No external energy is needed in the latching positions. This vertical bi-

stable actuator could have potential applications as valves in micro-fluidic controls, and 

as integral parts of micro-mirrors in optical applications. 
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CHAPTER 1 INTRODUCTION  

1.1 Motivation  

Magnetic MEMS devices, based on the interaction between magnetic material, coils, and 

passive magnetic field sources (e.g. earth), have applications in the information 

technology, automotive, biomedical, space and instrumentation [1]. Magnetic MEMS 

devices comparing to its electrostatic counterparts, offer distinct advantages including 

large energy densities, large forces, and long actuation ranges [1-4]. 

There are multiple ways to categorize magnetic MEMS systems. For example, one way 

of categorization depends on whether a system executes an output or detects an input: the 

former being an actuator and the latter being a sensor. After all, most magnetic MEMS 

systems are either actuators or sensors, serving as the interfaces between human-

engineered systems and the external physical world [2]. For magnetic MEMS actuators, 

by utilizing certain transduction mechanisms, such as electromagnetic [5] or 

magnetostrictive [6] to mechanical, the corresponding energy is converted into 

mechanical motions. For a magnetic MEMS sensor, magnetic parameters (most 

commonly magnetic field) are detected from the environment and many 

approaches/applications have been developed for magnetic sensing, including Lorentz 

force magnetometer [7], Hall-effect gauss meter [8], permanent magnetic material based 

magnetic field sensor [9], flux-gate magnetometer [10] and so on. 

One other way to categorize magnetic MEMS systems is by the magnetic components 

incorporated inside the systems [1]. The most commonly seen magnetic components in 
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such systems include planar or three-dimensional coils (e.g. in an on-chip air-core 

inductor [11] or a flux-gate magnetometer [10]), soft magnetic films with low coercivity 

and high saturation flux density (e.g. NiFe, CoNiFe cores in a magnetic-core inductor [3, 

12] or as flux guides in a magnetic actuator [5, 13]), hard magnetic films with high 

coercivity, remanence and magnetic energy density (e.g. CoNiP, CoPt, NdFeB for field 

generation [14], force/torque exertion in a magnetometer [9], and a magnetic actuator 

[5]), and magnetostrictive films with large room-temperature magnetostriction (e.g. 

TbDyFe as a functional material in a magnetic actuator for high-frequency operations 

[6]). 

Alternatively, magnetic MEMS systems can also be categorized into lumped and 

distributed systems. One might be familiar with the term of lumped and distributed 

systems in the circuit abstraction of electrical engineering. An element could be modeled 

as a lumped element when the characteristic length (LC) of the element is small relative to 

the circuit's operating wavelength (λ), i.e. voltage across and current through the element 

does not vary. An example of the lumped element is a resistor in a DC circuit. On the 

contrary, an element could be modeled as a distributed element when the characteristic 

length (LC) of the element is large relative to the circuit's operating wavelength (λ), i.e. 

voltage across or current through the element does vary. An example of a distributed 

element is a transmission line. Similarly, in a magnetic MEMS system, if one compares 

the relative dimensions of 1) the characteristic length (LC) of an application and 2) the 

spatial wavelength (λ) of a system, a lumped system could be defined when the 

characteristic length (LC) of an application is larger than the spatial wavelength (λ) of a 
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system, i.e. the corresponding magnetic field can be modeled to have a spatially uniform 

distribution throughout the range of an application (but can be time-varying); while a 

distributed system could be defined when characteristic length (LC) of an application is 

on the order of, or even smaller than the spatial wavelength (λ) of a system, i.e. spatially 

varying magnetic field exists throughout the span of an application. As a summary, the 

definition of lumped and distributed magnetic systems discussed in the present thesis 

could be find in table 1.1. 

Table 1.1 Definition of lumped and distributed systems in magnetic devices. 

 

Commonly seen magnetic systems are lumped systems, which have the application sizes 

larger than the spatial wavelength of the system. For example, a fridge magnet on a 

refrigerator could be modeled as a lumped system, as the size of a refrigerator is much 

larger than the spatial wavelength of the magnetic field produced by a fridge magnet 

(figure 1.1(a) [15]). On the other hand, one way to consider designing a distributed 

magnetic system is to introduce a spatially periodic magnetic field with spatial 

wavelength larger or similar to an application. For example, a linear motor in a Meglev 

train (figure 1.1(b) [16]) could be treated as a distributed system, as the application 

Parameters/Conditions Magnetic systems

Characteristic Length (LC) LC of application

Wavelength (λ) Spatial λ of system

When LC=<λ Distributed system

When LC>λ Lumped system
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(rotor) is of the similar size as compared with the spatial wavelength of the magnetic field 

generated by the stator, which is composed of spatially alternating magnetic poles.  

In a similar fashion, structures/devices with multilayer architectures consisting of 

alternating layers of two or more materials leading to additional structural and 

compositional variations in the thickness direction can extend their utilizations from 

lumped to distributed systems construction. These multilayer structures have shown 

unique characteristics distinct from their single-layered counterparts, owing to the high 

density of interfaces, repeating structural periodicities, and possible interactions between 

the component layers [17, 18].  

 

Figure 1.1(a) a collection of refrigerator magnets [15] as a demonstration of lumped magnetic 

systems. (b) A schematic of a synchronous linear motor [16] as a demonstration of a distributed 

magnetic system. 

 

(a) (b)
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Both vacuum-based processes (e.g. co-sputtering [19]) and non vacuum-based processes 

(e.g. electrodeposition [20]) can be utilized for multilayer fabrication. Low processing 

temperatures, atmospheric pressures, fast deposition rates, and the convenience of 

tailoring the microstructural and the compositional properties of the deposits are the main 

advantages of the electrodeposition process as compared with the vacuum-based 

approaches [17]. For electrodeposition process, single- or multi- bath multilayer 

electrodeposition are both commonly seen, each with its own benefits (a detailed review 

can be found somewhere else [17]). Multi-bath electrodeposition technique having 

advantages such as a higher compositional contrast between component layers and a 

higher degree-of-freedom in selecting electrodeposition bathes for various desired 

component materials [21]. In this thesis, we present a multi-bath through-mold robotic-

assisted multilayer electrodeposition process with great flexibility and controllability 

using which both lumped and distributed magnetic MEMS devices could be fabricated in 

a COMS-compatible and fully integrated manner.  

In the following sections within this chapter, representative lumped and distributed 

magnetic MEMS systems from the literatures are reviewed, serving as inspiring examples 

for the further development of such systems. In particular, we are interested in  

developing a technology capable to controllably and conveniently scale the relative 

dimensions of the competing length scales (LC and λ) that defines the lumped/distributed 

systems in such a way that both types of systems could be design and fabricated facilely 

and flexibly at the designer's will. Further, we are interested in demonstrating both of 

such systems enabled by the technology for illustrations. 
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1.2 Lumped Magnetic MEMS systems 

1.2.1 Permanent magnets for energy harvesters 

Scavenging energy from oscillations produced by human bodies, vehicles and 

machineries, vibration based energy harvesters have been proposed as promising devices 

to power wireless sensor nodes (from the milliwatt to the microwatt range) as an 

alternative to batteries in the Internet of Things (IoT) era [22, 23]. One possible design of 

such energy harvesters is based on mechanical to electromagnetic transduction. The basic 

operating principles of these devices is Faraday's law of induction: the induced voltage 

(and hence generated energy) is due to the change of magnetic flux in a winding (coil). 

Such flux variation is caused by the relative mechanical movement of a magnetic source 

(e.g. a permanent magnet) respect to a winding. One of the most common designs of the 

vibration based electromagnetic energy harvesters is shown in Figure 1.2, where a 

permanent MEMS micromagnet is designed to sit on vertically movable supporting 

springs, below which microfabricated cooper coils are laid in close proximity to enhance 

the energy conversion efficiency. A key challenge for such design is the difficulty of 

integrating relative exotic permanent magnetic materials into COMS-compatible 

processes [24]. Bonded magnets (e.g. NdFeB powder dispersed in epoxy resin) [24] or 

electroplated magnets (e.g. CoNiMnP) [25], for example, have been proposed as 

approaches to meet the challenge. In the case of a vibration based electromagnetic energy 

harvester, the characteristic length scale of the application (copper coils and their 

supporting circuitry) are larger in size than the spatial wavelength of the system (the size 

of the permanent MEMS micromagnet), in order to take full advantages of the usable 
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magnetic flux (not flux density, as the Faraday's law of induction indicates) generated by 

the permanent magnet. According to the lumped/distributed magnetic system definition 

outlined in Table 1.1, the permanent MEMS micromagnet shown above is a lumped 

system.  

 

Figure 1.2 Schematic of an electromagnetic vibration harvester [6], in which bonded permanent 

MEMS micromagnet are deigned to sit on vertically movable supporting, and to be laterally 

enclosed by a planer coil in close proximity to enhance the energy conversion efficiency. 

1.2.2 Permanent magnets for magnetometers 

 

Figure 1.3 Schematics of the working principle of a permanent-magnet based magnetometer [10]. 

Structure (a) without magnetic field and (b) with a magnetic field that exerts a torque. The torque 

creates a rotational displacement that can be further measured by strain gauges for external 

magnetic field determiniation. 
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Besides MEMS accelerometers and gyroscopes, MEMS magnetometers (magnetic field 

sensors) haven become the third most widely used sensors in consumer applications such 

as smart phones and wearable electronics [9]. Various technologies have been developed 

for these small-scale magnetometers, including flux-gate, AMR, GMR, Lorentz force, 

magneostrictive and Hall effect, a detailed review can be found elsewhere [26]. 

Noticeably, an alternative approach developed recently is to utilize the interaction 

between a permanent magnet and the external magnetic field for field measurements. The 

main motivation of integrating permanent micromagnets into magnetometers is to take 

advantage of the beneficial 'magnet to magnet' (e.g. permanent magnet to earth) scaling 

law as compared with the unfavorable 'current to magnet' (e.g. current carrying wire to 

earth) scaling law as sensor sizes scale down [9, 27]. The basic concept of such devices is 

to integrate a MEMS permanent magnet with rotational degrees of freedom into the 

device, generating a torque due to the alignment of the magnetic poles of the permanent 

magnets to the that of the earth, which in turn creating a measureable rotational 

displacement that can be further detected based on various well-developed sensing 

schemes. One example to detect the measureable rotational displacement induced by the 

interaction, as reported by Ettelt et al. [9], is based on piezoresistive detection using 

suspended silicon nanowires as strain gauges (figure 1.3). Another example, as reported 

by Choi et al. [28], is based on monitoring the shifts in the resonant frequency of the 

device due to the changing effective stiffness of the beams (on which the mobile MEMS 

permanent magnet sits) as a reaction to the applied torque caused by external field (figure 

1.4). In the case of a magnetic field sensor, the characteristic length of the application 
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(the span of the to-be-measured external magnetic field such as the earth's field) can be 

assumed to be much larger than the spatial wavelength of the system (the size of the 

integrated permanent MEMS magnets). According to the lumped/distributed magnetic 

system definition outlined in Table 1.1, the permanent MEMS micromagnet shown above 

is a lumped system. 

 

Figure 1.4 Schematic of a permanent-magnet based resonant magnetometer [28], shifts in the 

resonant frequency of the device due to the changing effective stiffness of the beams are 

monitored to determine external magnetic field. 

 

1.3 Distributed Magnetic MEMS systems 

1.3.1 Soft magnetic structures for biomagnetic filters 

Magnetism combined with microfluidics has been providing ways to sort magnetically 

labeled cells with greater sensitivity, lower cost than conventional methods such as 

centrifuge method, and hence been introduced as the next generation technology for cell 

separation [29]. The basic concept of such devices is to firstly attach magnetic beads 

(most likely made of a mixture of polymer and iron oxide particles, ranging in size from 

10nm to 10μm [30]) selectively to target cells, then to flow magnetically labeled and non 
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labeled cells all together in a microfluidic channel integrated with patterned soft magnetic 

structures in an external magnetic field, so that the magnetized labeled cells would be 

captured by the magnetized soft magnetic structures and separated out. The removal of 

the trapped magnetically labeled cells could be conventionally achieved by turning off 

the external field, thanks to the low coercivities possessed by these soft magnetic traps. 

The attractive forces exerted on the magnetic beads is proportional to the magnetic field 

gradient generated by the microscale magnetic structures, and the field gradient is biggest 

near the edge of these structures [29]. In that sense, comparing to a soft magnetic 

structure with large volume, where the chunk of body volume become a 'dead' volume in 

terms of the favorable field gradient, an pattern array of soft magnetic structures with the 

same total volume would be more advantages to harness usable magnetic forces. 

Deng et al. [31] reported a magnetic filtration system (figure 1.5), using arrays of 

microfabricated nickel posts along with external field to generate high magnetic field 

gradients in a microfluidic channel to trap magnetic beads moving in the flow. The nickel 

posts were fabricated by electrodeposition through a soft-lithography defined mold, with 

a height of 7μm, a diameter of 15μm and 40μm in spacing. The beads are with diameters 

around 4.5μm. The fabricated Ni posts were then integrated into a PDMS microfluidic 

channel 50μm tall and 150μm wide, and placed into an external field of 500Gauss 

generated by nearby rare earth permanent magnets, to form the microfiltration system. 

According to the lumped/distributed magnetic system definition outlined in Table 1.1, the 

application of this system is the magnetic beads, with the characteristic length of 4.5μm 

(the diameter of the beads), smaller than the spatial wavelength of the system being 
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40μm, defined by the spacing of Ni posts. Hence, this is a distributed magnetic system. 

The utilization of the system is tested by flowing a solution containing 10
4
 beads per 

milliliter with a flow rate of 2μL/h, controlled by micromanipulators. The system showed 

a good bead-capturing capability,  with  a maximum of 50 beads trapped per post. 

 

Figure 1.5 Schematics of the fabrication sequence of a magnetic filtration system using arrays of 

microfabricated nickel posts along with external field to generate high magnetic field gradients in 

a microfluidic channel to trap magnetic beads moving in the flow [31]. (a) CAD pattern design; 

(b) PDMS mold; (c) pattern transfer to Si substrate; (d) electroplating of Ni; and (e) 

microfiltration system after the integration of the nickel posts into a PDMS fluidic channel.   
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Ko et al. [29] reported a magnetic sorting system (figure 1.6), utilizing the high magnetic 

gradient near the edge of the numerous micropores (traps) patterned on a NiFe film to 

trap magnetically labeled target cells with a high throughput (>100mL/h) for 

immunomagnet sorting applications. In order to achieve a 100X greater throughput, the 

authors converted the conventional lateral flow inside of a microfluidic channel that 

subjected to clogging into a vertical flow through numerous through-film pores on a NiFe 

film. Through-film circular pores 30μm in diameter and 30μm apart on 12μm thick NiFe 

films, for example, have been achieved by electroplating through a reusable polyimide 

master mold, followed by a mechanical peel-off of the plated films from the Cu substrate, 

without destroying micro-sized features in the master mold, as a way for cost reduction. 

A film bearing pores was then incorporated into the sorting system using a polyester film 

packaging and a fluid reservoir. A blunt syringe tip was connected to the system to pull 

the fluid out from the reservoir. According to the lumped/distributed magnetic system 

definition outlined in Table 1.1, in this system, the magnetic-nanoparticle-labeled target 

cells as an application with a 20μm characteristic size (cell diameter plus nanometer sized 

magnetic nanoparticles) is less than the spatial wavelength of the system (30μm), defined 

by the lateral spacing between the micropores. Hence the fabricated NiFe film bearing 

traps is a distributed system. By largely improving throughput from 5mL/hr to 100mL/hr 

along with the economically scalable fabrication approach, this design of magnetic 

sorting system would help to meet the need of processing of large volumes of clinical 

samples in a time efficient manner. 
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Figure 1.6 A magnetic sorting system (MagNET) [29] utilizing the high magnetic gradient near 

the edge of the numerous micropores (traps) patterned on NiFe films to trap magnetically labeled 

target cells with high throughput (>100mL/h) for immunomagnet sorting. (a) MagNET isolate 

cells targeted with functionalized magnetic nanoparticles; MagNET rotates the conventional 

microfluidic geometry (b) by 90° to form magnetic traps for vertical flow(c); (d) Micrographs of 

Track Etched Magnetic microPOre (TEMPO) devices; (e) Micrographs of MagNET devices and 

(f) a graph Summarizing relationship between % open area and % overlap for both TEMPO and 

MagNET devices. 

 

1.3.2 Permanent magnets for electromagnetic micromotors 
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Figure 1.7 Concept of rotationary synchronous micromotors [32]. 

Benefiting from large output torque, high efficiency and long operation lifetime, 

electromagnetic micromotors are suitable micro-actuators for various MEMS 

applications, for example, as pumps for microfluidic applications, and as propellers for 

micro-robots [33, 34]. The most common type of such permanent magnet micromotors is 

a three-phase, axial-flux rotational synchronous micromotor, as one example 

demonstrated by Feldmann et al. [32], shown in figure 1.7. The two most important 

components in such devices are the rotor, comprised of multipoled permanent magnets 

generating magnetic field parallel to the axis of the rotation (hence the axial flux); and the 

stator windings with microfabricated copper coils on silicon or ferrite substrates [33, 35]. 

The alternating magnetic poles can be realized either by assembling of discrete magnets 

or by impressing pole patterns into a contiguous magnet [35]. The arrangement of the 

coils and magnets allows the motor driving by three phases. Namely, the three-phase 

supply produces a rotating magnetic field in the stator windings, in turn generating a 

torque on the multipoled permanent magnets, exciting the rotor revolving near the 

synchronous speed. In the case of a synchronous micromotor, due to the equal numbered 



 

15 
 

stator and rotor poles, the characteristic length of the application (twice of the pitch of the 

stator winding poles) is equal to the spatial wavelength of the system (twice of the pitch 

of the rotor poles). According to the lumped/distributed magnetic system definition 

outlined in Table 1.1, the multipoled permanent magnets shown above is a distributed 

system.  

1.4 Research objective and dissertation structure 

The objective of this thesis is three-fold: 1) to develop a technology capable to 

controllably and conveniently scale the relative dimensions of the characteristic length of 

an application and the spatial wavelength of a device in a CMOS-compatible and fully 

integrated manner, for both lumped and distributed systems; 2) to design, build and test 

the systems using the developed technologies demonstrating the flexibility and versatility 

of the technology. 

The structure of this dissertation is shown in Figure 1.8. The present chapter reviewed the 

lumped and distributed magnetic MEMS systems, paving the way for a fabrication 

technology capable of controllably and conveniently scaling the relative dimensions of 

the competing length scales (LC and λ) that defines the lumped/distributed systems in 

such a way that both types of systems could be design and fabricated facilely and flexibly 

at the designer's will. Chapter 2 will detail the proposed fabrication technology: through-

mold robotic-assisted multilayer electrodeposition technology (Microlamination 

Technology in short). First, the concept of robotic-assisted multilayer electrodeposition 

will be discussed, followed by the demonstration of an in-house designed automated 



 

16 
 

electrodeposition system. Second, fabrication procedures of several conventional thick 

photoresist molds and a high-aspect-ratio (HAR) UV-LIGA mold will be discussed, 

intended to be used in conjunction with the robotic-assisted multilayer electrodeposition 

technology for the paradigms of lumped and distributed magnetic systems enabled by the 

fabrication technology. Chapter 3 will elaborate on a paradigmatic lumped magnetic 

system based on the Microlamination Technology: microlaminated permanent magnets 

with preserved magnetic properties. Chapter 4 will discuss the design, fabrication, and 

characterization of a paradigmatic distributed magnetic system based on the 

Microlamination Technology: a bi-stable vertical magnetic actuator with non-contact 

latching behavior. Chapter 5 will conclude this dissertation and present possible future 

works. 

 

Figure 1.8 Dissertation outline. 

Ch 1. Introduction

Ch 2. Fabrication Technology:
Through-mold sequential multilayer electrodeposition technology

HAR UV-LIGA mold 
for dual-height structures

Conventional thick mold 
for uniform-height structures

Ch 4. Distributed System
Bi-stable vertical magnetic 

actuator

Ch 3. Lumped System 
Microlaminated 

permanent magnets
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CHAPTER 2 FABRICATION TECHNOLOGY 

2.1 Technology Overview 

Through-mold robotic-assisted multilayer electrodeposition technology (Microlamination 

Technology in short) discussed in this chapter is capable of creating two-and-a-half 

dimensional (2.5D) uniform- or dual- height volumetric MEMS multilayer structures 

with precisely controlled individual layer thicknesses at the smaller scale (tens of 

nanometers to a few micrometers) and monolithic metallic structures (tens to hundreds of 

micrometers in thickness) at the larger scale. The smaller scale fine structures are an 

essential enabler for distributed systems while the larger volumetric structures provides 

the desirable extrinsic properties (e.g. sufficient force or sensitivity, which are normally 

volume-dependent) that are typically desirable [36-40] for MEMS applications.  

In this chapter, we will break down the Microlamination Technology into modular 

processes comprised of one chief technology: robotic-assisted multilayer 

electrodeposition technology, and one auxiliary technology: thick plating-mold 

fabrication technology capable of building two types of molds of interest: 1) a 

conventional thick resist mold for uniform-height structures, and 2) a high-aspect-ratio 

(HAR) UV-LIGA mold using which dual-height MEMS metallic structures separated by 

narrow gaps can be realized. For demonstration purposes, when applicable, the processes 

of the thick plating-mold fabrication technology in the present chapter will be illustrated 

in combination with single-layer nickel electrodeposition. The actual incorporation of 

multilayer structures will be deferred to Chapters 3 and 4 for actual applications.  
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2.2 Robotic-assisted Multilayer Electrodeposition Technology 

Through-mold robotic-assisted multilayer electrodeposition is conceptually 

straightforward. Electrodeposition of each individual layer of the multilayer structure 

occurs in its individual electroplating bath (a solution that normally contains metal salts, 

supporting ions, and stress-reduction agents), where sample is connected to the negative 

terminal of the power supply and a sacrificial (dissolvable) or non-sacrificial anode is 

connected to the positive terminal of the power supply (figure 2.1(a)). Upon immersing a 

sample into a bath, a closed circuit forms through the electrolyte and film growth initiates 

(metal ions in the electrolyte are reduced at the interface between the solution and the 

sample surface). The electrodeposition of one layer of material could be followed by the 

electrodeposition of another layer of materials, and further continues. Through this 

sequential and repetitive layer-by-layer deposition, volumetric structures (normally tens 

to hundreds of micron thick) comprised of thin individual layer (down to tens of 

nanometers) could be fabricated. The introduction of automatic tools such as a robotic 

arm greatly enhances the precision and consistency throughout the process and at the 

same time reduces the labor of handling. Since each layer has its dedicated bath, 

theoretically no restrictions exist for the number of materials involved or the sequence of 

the comprising layers. For demonstration purposes, two bathes corresponding to material 

A and B are shown in figure 2.1(a). Two power supplies are used to provide desired 

current densities for each material deposition, with both of their positive terminals 

connecting to the individual anodes, while negative terminals connecting to the sample. 

The three-axis robotic arm carries the sample first into bath A initiating electrodeposition 
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for material A, until the desired individual thickness achieved. After which, the robotic 

arm pulls the wafer out of the bath A and rinse in deionized water (DI water) to avoid 

cross-contamination before placing into the bath B for the B material electrodeposition.  

After rinsing in DI water, the robotic arm carries the wafer again into bath A for another 

layer of material A, so on and so forth.   

 

Figure 2.1 (a) schematic of the robotic-assisted multilayer electrodeposition system setup with 

exemplary two bathes and a rinsing DI water tank; (b) cross-sectional schematic showing a die of 

a through-mold deposited multilayer structure with A/B/A/B/A/B layers (three pairs of A/B 

multilayers), the first layer deposition of A occurs on top of a conductive seed layer, the rest of 

the layers deposited on top of the respective underlying layers. 

A schematic of an exemplary through-mold deposited multilayer structure with 

A/B/A/B/A/B layers is shown in figure 2(b). The smallest repeating unit of a certain 

sequence in a multilayer structure is called a pair, such as the example in figure 2(b), A/B 

is one pair and a total of three pairs are shown. The first layer of electrodeposition occurs 
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(b)

Mold
Material B
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Seed layer

Bath A 

Power 

Supply 1

Power 

Supply 2 Bath B 
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anode A anode B
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within an insulating mold on top of a conducting substrate (seed layer) that is connected 

to the negative terminal of the power supply. The following rounds of electrodeposition 

occur inside the mold (as long as the mold is sufficiently tall) on top of the underlying 

layers (as long as the underlying layers remains conductive after being deposited), using 

the layers underneath as an effective substrate. The individual layer thickness is 

controlled by both current density and plating time, as governed by the Faraday’s law of 

electrolysis shown in equation (1), where h is the thickness (in meters) of the deposited 

metal, η is the current efficiency (normally not 100%, due to parasitic reactions, e.g. 

hydrogen evolution at the cathode), I is the current input (in Ampere), A is the platable 

area (in meter squared, defined by mold), M molar mass of the substance (in gram per 

mole), t is the plating time (in second), z is the valency number of ions of the plated 

material (unitless), F is Faraday's constant (96485 Coulomb per mole) , ρ is the density of 

the plated material (in gram per meter cubed). Due to the fact that current efficiency 

might not always be 100%, the calculated target thickness of the deposits (h) using 

equation (2.1) might not be precise. It is recommended that a dummy sample should be 

used to experimentally verify the thickness of deposits. A common method is to assume a 

100% current efficiency to calculate the plating time to start with, and account for any 

discrepancy of theoretical and experimental thickness differences into current efficiency 

η. The plating duration could be then adjusted accordingly.  
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Figure 2.2 In-house built robotic-assisted electrodeposition system. (a) Zoomed-out view, system 

comprised of robotic arm, machine guard, power supply, bath tray, microcontroller and 

controlling software. (b) Zoomed-in view for bath tray, showing two bathes, 2 rinsing DI water 

containers, and a sample holder. 

 

 

Figure 2.3 In-house programmed LabVIEW graphical user interface (GUI). The end user can 

vary the number of pairs and plating time for both materials. While running, the interface will 

indicate location of the wafer, the current layer status in the sequence, as well as the elapsed 

plating time in each bath to the user.   

 

LabVIEW

Controlling 

Interface

Machine 

Guard 

Robotic 

Arm

Power 

Supply

Bath 1 Bath 2Microcontroller

DI (2)

(a) (b)

Sample 

Holder

Bath

Tray

Number of pairs

Plating time 

for material A

Plating time 

for material B



 

22 
 

 

An in-house built robotic-assisted electrodeposition system (referred to as the robot from 

now on) has been assembled (figure 2.2), converted from a commercially available CNC 

mill (PRO4824, CNCRouterParts). The robot is composed of six components shown in 

figure 2.2(a): (1) a robotic arm capable of moving in three axes; (2) a bath tray for 

multiple bathes and rinsing containers (DI water) as indicated in figure 2.2(b); (3) a 

programmable DC power supply (Keithley2220 dual-channel); (4) an in-house designed 

machine guard (McMasterCarr); (5) a microcontroller (Nema34, CNCRouterParts) and 

(6) a controlling PC with in-house programmed LabVIEW controlling interface. We 

choose to program the robot using LabVIEW due to friendly graphical user interface 

(GUI) LabVIEW offers for the end users in our lab, as well as to facilitate the potential 

integration of other LabVIEW-ready instruments into the electrodeposition system. The 

LabVIEW GUI for the robot is shown in figure 2.3. Three parameters need to be input by 

users: number of pairs, plating time for both materials A and B. These parameters along 

with input current densities and other plating parameters will define the microlamination 

structures to be fabricated. 

    
 

 
  

  

   
                                                             



 

23 
 

 

Figure 2.4 Fabrication sequence (side view) of conventional thick resist mold for uniform-height 

structures. (a) Sputtering of Ti/Cu/Ti seed layer on substrate (e.g. Si or glass); (b) spinning and 

patterning of the thick resist mold; (c) exposed top Ti seed layer wet-etched immediately before 

electrodeposition; (d) electrodeposition of Ni layer; and (e) optional resist mold stripping. The 

final structures all have uniform height. 

 

2.3 Thick Plating-mold Fabrication Technology 

2.3.1 Conventional Thick Resist Mold for Uniform-height Structures 

One of the common themes in the field of MEMS is the desire of microstructures with 

relatively large volumes (or large thicknesses with a given footprint, normally a few to a 

few hundred micrometers). The fundamental reason for this desire is that most likely, the 

sensitivity of a MEMS sensor or the collectable forces of a MEMS actuator relates to 

volume-dependent properties. For example, in an electrostatic MEMS stepper motor, the 

electrostatic force is directly proportional to the height of the micromachined electrodes 

[41]; in a magnetic energy harvester, it is the magnetic flux rather than the flux density is 

of importance [25]; in a micromachined compass, it is the volumetric magnetization 

NiThick resist

Cu

(a) (b)

Substrate Ti

(c) (d)

(e)



 

24 
 

rather than magnetization itself is of relevance [9]. It is hence critical to develop suitable 

technologies for volumetric microstructure fabrication. 

The traditional bulk-micromachining techniques to fabricate thick microstructures (and 

related high-aspect-ratio microstructures) include LIGA (German acronym for 

lithography, electroplating and moulding) and DRIE (silicon deep reactive ion etching) 

[42]. Thick mold fabrication is a prerequisite of the electrodeposition, and hence are of 

critical importance to LIGA structures. Conventional thick resist molds for fabricating 

uniform-height structures via electrodeposition will be discussed in this section. Various 

thick photoresists could be used to prepare the mold for this process, including 

chemically-inert resists and removable resists, the details of which are discussed below.  

The fabrication sequence (side view) of uniform-height structures via through-mold 

electrodeposition is shown in figure 2.4. A substrate (e.g. silicon or glass) was cleaned 

using Piranha Solution (3:1 volume ratio of sulfuric acid and hydrogen peroxide) 

followed by an hour-long dehydration bake in a convection oven at 110C. A seed layer 

comprising copper (300nm) sandwiched by titanium (30nm) layers was then formed 

using DC sputtering (Denton Explorer14) shown in figure 2.4(a). The top titanium layer 

serves the purpose of 1) reducing possible oxidation of the copper seed layer on which 

the plated metallic structures grow; and 2) enhancing the adhesion of the photoresist 

mold to the seed layer. The bottom titanium layer enhances the adhesion of the structures 

to the substrate. The substrate with Ti/Cu/Ti seed layer was then cleaned with solvent 

(acetone, methanol, and isopropanol), followed by an O2 descum (Technics RIE, 

110sccm O2, 100W, 30s). Both chemically-inert and removable resists can be used to 



 

25 
 

create thick molds for electrodeposition (figure 2.4(b)) depending on the applications of 

the fabricated structures and devices.  

2.3.1.1 Chemically-inert Resist 

SU8 is an epoxy based chemically amplified negative resist.  SU8 has two prominent 

properties [43]: 1) high optical transmittance beyond the wavelength of 360nm; 2) 

superior thermal and chemical resistance. The former property makes it ideal for thick, 

HAR photoresist structures with straight wall-profiles, the latter property has enabled 

permanent structures made by SU8 such as microfluidic channels [44] and microgears 

[45]. Here a procedure for a 160μm-thick SU8-2050 mold is documented. 

The resist was dispensed over the wafer manually. A two-step spinning was implemented 

to achieve a 160μm thickness with a pre-spin of 500rpm/10s and a main-spin of 

1000rpm/30s. After edge bead removal, the substrate was left to sit on a leveled surface 

for 3 minutes to aid the planarization of the resist. The wafer was then soft-baked on a 

contact hotplate (65C/7min + 95C/30min), after which the hotplate was turned off till 

the wafer reaching the room temperature (normally takes more than a few hours). The 

wafer was then exposed with a 364mJ (i-line) dose in the vacuum contact mode through 

both a chrome mask and a 360nm long-pass filter. The application of the long-pass filter 

helps to obtain vertical sidewall profile as the wavelength below 360nm shows a low 

transmittance [43]. A temperature ramping post-exposure bake (from room temperature 

to 95C at a ramping rate of 180C/h + 95C/120min + from 95C to room temperature at 

a ramping rate of -180C/h) was carried out on a contact hotplate to avoid any thermal 
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shock to the thick SU8 structures that might cause delamination. The wafer was then 

developed upside down in SU8 developer (MicroChem) followed by an isopropyl alcohol 

rinse. An absolutely clean SU8 resist stripping without any residue left behind is 

extremely hard and might be incompatible with the deposited metallic structures, that 

said, a few methods exist which were reviewed somewhere else [46].  

2.3.1.2 Removable Resists 

Table 2.1 Mold heights and stripping methods for various removable resist. 

 

Removable resists are desired especially when post-processing is needed that can only be 

carried out after stripping the resist molds. Both the cleanness of the resist removal and 

process simplicity (i.e. in some cases, wet removal using solvent is preferable over 

plasma etching due to process compatibility) are essential for these applications. Here we 

will discuss five removable resists (SPR220-7 (6.5μm), AZ4620 (12μm), AZ40XT-11D 

(20μm), NR26-25000P (50μm), and KMPR1050 (100μm))) for molds of different heights 

Resist
Documented

height
Maximum height 

w/ single spin
Stripping
method

Easiness of
fabrication

Resist wall
profile

SPR220-7
6.5μm/

4000rpm
12μm/

1000rpm
Acetone/
O2 plasma

Easy Slanted

AZ4620
12μm/

1500rpm
17μm/

1000rpm
Acetone/
O2 plasma

Easy Slanted

AZ40XT-11D 
20μm/

3000rpm
65μm/

720rpm
Acetone/
O2 plasma

Hard Near-vertical

NR26-25000P
50μm/

1500rpm
100μm/

1000rpm
Acetone/
O2 plasma

Medium Slanted

KMPR1050
100μm/

1000rpm 
100μm/

1000rpm
NMP/

O2 plasma
Hard near-vertical
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ranging over 7-100μm. These resists were selected due to three reasons: 1) their 

availability at Georgia Tech’ and Penn’s nanofabrication facilities; 2) to cover a wide 

range of mold thicknesses (a few to a hundred micrometer) for different applications; and 

3) fabrication simplicity (e.g. SPR220-7 and AZ4620, no stepping/ramping bake or post-

exposure bake) or vertical resist wall profiles (e.g. AZ40XT-11D and KMPR1050, 

important for actuator applications detailed in the Chapter 4). Their documented height 

(with the fabrication procedure in the present section), maximum height by a single spin 

(from resist manuals), resist stripping methods, easiness of fabrication, and qualitative 

sidewall profiles are summarized in Table 2.1. 

SPR220-7 is a positive photoresist capable of achieving thicknesses ranging from 5.5-

12μm [47]. The detailed process of a 6.5μm-thick plating mold is as follows. The resist 

was manually dispensed onto the substrate bearing the seed layer. A two-step spinning 

procedure with a pre-spin of 500rpm/10s and a main-spin of 4000rpm/30s was used. A 

soft bake of 110C/180s on a contact hotplate was implemented. After soft baking, the 

resist was cooled down for 10 minutes to room temperature. The wafer was then exposed 

with a dose of 380mJ (i-line) using a UV mask aligner (Karl Suss MA6) through a 

chrome mask in the vacuum contact mode. A post-exposure bake of 105C/60s was 

carried out on a contact hotplate, after which the wafer was removed and let to cool down 

to room temperature. The exposed wafer was then developed in a dedicated resist 

developer MF26A (MicroChem) for 105s at room temperature. 

AZ4620 is a positive photoresist capable of achieving thicknesses ranging from 6-17μm 

[48]. The detailed process of a 12μm-thick plating mold is as follows. The resist was 
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manually dispensed onto the substrate bearing the seed layer. A two-step spinning 

procedure with a pre-spin of 500rpm/10s and a main-spin of 2000rpm/30s was used. A 

soft bake of 90C/180s on a contact hotplate was implemented. After soft baking, the 

resist was cooled down for 10 minutes to room temperature. The wafer was then exposed 

with a dose of 1000mJ (i-line) using a UV mask aligner (Karl Suss MA6) through a 

chrome mask in the vacuum contact mode. The exposed wafer was then developed in a 

DI water diluted resist developer AZ400K (25% vol.) for 130s at room temperature. 

Thick positive photoresist AZ 40XT-11D (MicroChemicals) has been shown to have 

nearly vertical resist wall profiles [49, 50]. The detailed process of a 20μm-thick plating 

mold is as follows. The resist was manually dispensed onto the substrate bearing the seed 

layer. To achieve a 20μm thickness, a two-step spinning procedure with a pre-spin of 

500rpm/10s and a main-spin of 3000rpm/30s was used. In order to prevent the formation 

of bubbles in the resist film during the soft bake, a temperature-stepping soft bake 

(65C/60s + 95C/60s + 125C/300s + 95C/60s + 65C/60s) on a contact hotplate was 

implemented. After soft baking, the resist was cooled down for 10 minutes to room 

temperature. The wafer was then exposed with a dose of 300mJ (i-line) using a UV mask 

aligner (Karl Suss MA6) through a chrome mask in the vacuum contact mode. A post-

exposure bake of 105C/60s was carried out on a contact hotplate and let to cool down to 

room temperature. The exposed wafer was then developed in a dedicated resist developer 

AZ 726MIF (MicroChemicals) for 210-240s at room temperature. 

NR26-25000P is a negative photoresist capable of achieving thicknesses ranging from 

25-100μm [51]. The detailed process of a 50μm-thick plating mold is as follows. The 
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resist was manually dispensed onto the substrate bearing the seed layer. A two-step 

spinning procedure with a pre-spin of 500rpm/10s and a main-spin of 1500rpm/30s was 

used. A temperature-stepping soft bake (80C/240s + 150C/210s) on a contact hotplate 

was implemented. After soft baking, the resist was cooled down for 10 minutes to room 

temperature. The wafer was then exposed with a dose of 800mJ (i-line) using a UV mask 

aligner (Karl Suss MA6) through a chrome mask in the vacuum contact mode. A post-

exposure bake of 90C/300s was carried out on a contact hotplate and let to cool down to 

the room temperature. The exposed wafer was then developed in a dedicated developer 

RD6 (Futurrex). 

KMPR1050 is a chemically amplified thick negative photoresist with HAR capability and 

straight wall-profile, has been reported as an SU8 alternative for UV LIGA process with 

improved removability [52, 53]. The detailed process of a 100μm-thick plating mold is as 

follows. A two-step spinning was implemented to achieve 100μm thickness with a pre-

spin of 500rpm/10s and a main-spin of 1500rpm/30s. After edge bead removal, the wafer 

was left to sit on a leveled surface for 3 minutes to aid the planarization of the resist. The 

wafer was then soft-baked on a contact hotplate at 100C/30min. After cooling down to 

room temperature, the wafer was exposed with a 1300mJ (i-line) dose in the vacuum 

contact mode through both a chrome mask and a 360nm long-pass filter. The application 

of the long-pass filter helps to obtain vertical sidewall profile as the wavelength below 

360nm shows a low transmittance similar to SU8 [52]. A temperature stepped post-

exposure bake (65C/120s + 95C/240s + 65C/120s) was carried out on a contact 

hotplate followed by cooling to room temperature. The wafer was then developed upside 
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down in SU8 developer (MicroChem) for 7 minutes followed by an isopropyl alcohol 

rinse.  

After resist mold fabrication, prior to electrodeposition, an O2 descum process was 

carried out to remove any possible photoresist residue. The exposed top titanium layer in 

the Ti/Cu/Ti seed layer stack was wet etched (figure 2.4(c)) in a diluted hydrofluoric acid 

solution (0.25% vol.) immediately before commencement of electrodeposition. For 

demonstration purposes, conventional single-layer through-mold electrodeposition of 

nickel (figure 2.4(d)) was implemented using a DC current source with current density of 

10mA/cm
2
 in a nickel electrodeposition bath [54] consisting of 200g/L NiSO4·7H2O, 

5g/L NiCl2·6H2O, 25g/L H3BO3, and 3g/L saccharin, with a pH of 2.5-2.8. The plating 

rate was measured to be 6.5μm per hour. Plating occurred at room temperature with no 

agitation. Whenever needed the single-layer electrodeposition could be conveniently 

replaced by robotic-assisted multilayer electrodeposition using the automated multilayer 

electrodeposition system. Lastly, optional resist mold stripping can be further carried out 

and the uniform-height metallic structures (figure 2.4(e)) are readily fabricated. 

2.3.2 HAR UV-LIGA Mold for Dual-height Structures Separated by Narrow Gaps 

Vertical actuators with large stroke have been shown to play an important role in optical 

and electrical applications [55, 56]. Various transduction mechanisms have been 

proposed to realize vertical actuation, among which, electrostatic [55] and magnetic 

actuators [57] most of which rely on vertically displaced electrodes (comb fingers) or 

magnetic poles. The electrodes/magnetic poles should be microfabricated in such a way 
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that they are initially vertically misaligned, and as actuation occurs, they are snapped into 

alignment at the same vertical height level. Moreover, it is often optimal for the 

electrodes/magnetic poles to be separated by narrow gaps in order to enhance the 

actuation force [55]. This height difference in poles, together with the narrow gaps that 

separate them, normally necessitates multiple masks [55, 56]. In this section, we will 

describe a process that addresses this challenge using a single mask to create fully-

isolated, dual-height MEMS metallic structures separated by narrow gaps on a 

transparent substrate. 

The technology described here is capable of achieving dual-height MEMS metallic 

structures separated by narrow-gaps as long as four (4) design considerations are met (see 

figure 2.5(a) for illustration): 1) the thinner structure (A) and the thicker structure (B) in 

the dual-height structures are fully isolated by a continuous gap (G); 2) the thinner 

structure resides inside of the gap forming an island whereas the thicker structure resides 

on the periphery; 3) the thicker structure always has identical materials with the thinner at 

the same vertical height level; and 4) a transparent substrate is needed for the dual-height 

structures to be built on. The proposed fabrication sequence is a modified conventional 

through-mold electrodeposition: the gap area will be occupied by photoresist molds twice 

(figure 2.5(b)), whereas the remaining areas will be electroplated twice, forming the dual-

height structures. 
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Figure 2.5 (a) 3-D schematic of the exemplary dual-height structures after fabrication. Inner 

island A is the thinner structure, enclosed by a continuous white area G, the gap. On the periphery 

is the thicker structure. (b) Schematic of the structures during fabrication. The photoresist mold 

used for the through-mold electrodeposition is shown. The mold will be removed after plating, 

forming the continuous gap G of figure 2.1(a) between the dual-height structures. 

The process relies on two self-aligned steps enabled by the electrodeposited thinner 

structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask 

to electrically isolate the thinner and thicker structures, and a backside UV lithography 

utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for 

the thicker structure through-mold electrodeposition.  

A schematic of the fabrication is shown in figure 2.6. A soda lime glass slide (Corning) 

was cleaned using Piranha Solution followed by an hour-long dehydration bake in a 

convection oven at 110C. A seed layer comprising copper (300 nm) sandwiched by 

titanium (30 nm) layers was then formed using DC sputtering (Denton Explorer14).  

A

(thinner)

B

(thicker)

G

X

X’

(b)(a)

Mold
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Figure 2.6 Fabrication sequence (side view, cross-section X-X’ of Figure 2.5). (a) Sputtering of 

Ti/Cu/Ti seed layer on glass substrate and patterning positive resist mold; (b) top Ti seed layer 

wet-etched and electrodeposition of Ni layer; (c)  positive resist mold stripping followed by 

exposed seed layer wet-etching, electrically insulating the inner (thinner) structure; (d) negative 

resist spinning and backside UV exposure; (e) negative resist development, forming a self-aligned 

mold; (f) electrodeposition of Ni on the outer (thicker) structure only; and (g) negative resist mold 

stripping. 

The glass substrate with Ti/Cu/Ti seed layer was then cleaned with solvent, followed by 

an O2 descum (Technics RIE, 110sccm O2, 100W, 30s). This first lithography step was 

intended to create a photoresist mold for the first plated metallic layer that will 

functionally serve as a mask-equivalent for subsequent wet-etching and lithography steps, 

as well as structurally realize the entirety of the thickness of the thinner structure, and 

partially realize the thickness of the thicker structure. Both positive and negative 

photoresists are suitable for this lithography step, but one caveat is that due to the mask-

equivalent nature of this layer, pattern non-idealities will propagate throughout 

Ni KMPR AZ 40XT
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subsequent process steps. Hence, in general, a straighter wall-profiled photoresist with a 

thickness larger than that of the desired first plated metallic layer is preferable for this 

step. For demonstration purposes, a chemically amplified thick positive photoresist AZ 

40XT-11D (MicroChemicals) with nearly vertical resist wall profile [49, 50] was used for 

the first lithography step to create a 20μm plating mold. The detailed process for pattering 

this photoresist is can be found in section 2.3. This concludes the first lithography process 

as shown in figure 2.6(a). 

Prior to electrodeposition, an O2 descum process was carried out to remove any possible 

photoresist residue. The exposed top titanium layer in the Ti/Cu/Ti seed layer stack was 

wet etched in a diluted hydrofluoric acid solution (0.25% vol.) immediately before 

commencement of electrodeposition. Conventional through-mold electrodeposition 

(figure 2.6(b)) was implemented using a DC current source with current density of 

10mA/cm
2
 in a nickel electrodeposition bath [54]. The plating rate was measured to be 

6.5μm per hour. Plating occurred at room temperature with no agitation. The target 

thickness of this layer plating is the thickness of the thinner structure in the dual-height 

structures. After electrodeposition, the plating mold was subsequently stripped in 

acetone.  

Using the previously plated nickel layer as a wet-etching mask, the copper conductive 

layer and bottom titanium adhesion layer in the Ti/Cu/Ti seed layer stack originally 

underneath the resist mold were selectively wet etched using diluted hydrofluoric acid 

(0.25% vol.) and a saturated solution of copper sulfate in ammonium hydroxide [58], 

respectively. After wet etching (figure 2.6(c)), the inner structure (i.e. the thinner of the 
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dual-height structures) is electrically isolated from the outer structure (i.e. the thicker of 

the dual-height structures). Further, the gap between the structures has now become 

transparent due to the glass substrate. Upon this step, the plated Ni layer, along with 

remaining Ti/Cu/Ti seed layer essentially mimics a conventional chrome mask with the 

plated metal regions serving as the light-blocking pattern in a UV lithography mask.  

A second lithography step is utilized to create a thick plating mold for the remaining 

thickness of the thicker metallic structure. By using the first plated metal pattern as an 

effective mask for the backside UV exposure, the second lithography process is 

automatically self-aligned to the first lithography step. It is worthwhile to point out that a 

conventional topside alignment registration is not practical when the dual-height 

structures have a large thickness difference, since when the photoresist gets thick, the 

simultaneous focusing on the upper and lower layer could not be easily realized in a 

conventional mask aligner [59]. Other benefits of backside exposure include [59] 1) 

avoiding underexposure at the bottom of the resist which might cause resist delamination 

after development and 2) bypassing the diffraction-related resolution reduction caused by 

the uneven contact of the thick resist to the mask (due to the potential of thickness 

nonuniformity commonly seen in thick photoresists).  By shining the UV light from the 

back as shown in figure 2.6(d), the thick negative photoresist could be patterned and 

cross-linked to create a HAR mold (figure 2.6(e)) that enables a HAR gap essential for 

multiple MEMS applications. The selection considerations of the photoresist in the 

second lithography step are threefold: 1) must be a negative photoresist; 2) the resist 

thickness should well exceed the thickness difference of the dual-height structures and, 3) 
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for some applications where a fixed gap size is desired, a straight resist wall-profile is 

needed. In the application of a vertical MEMS actuator (detailed in Chapter 4), the 

removal of the second resist mold is essential for the following wet-etch steps to release 

the actuating component from the substrate, hence a negative resist with reasonable 

removability is important. For demonstration purpose, KMPR 1050 (MicroChem) with 

100µm in thickness was used for the second lithography step. To avoid poor adhesion of 

the KMPR resist mold to the glass substrate, adhesion promoters such as HMDS are 

highly recommended [60]. Prior to applying HMDS, standard surface treatments such as 

dehydration and descum steps were utilized.  The HMDS prime process was conducted in 

an HMDS prime oven (Yield Engineering Systems), followed by manual dispense of the 

KMPR1050 photoresist. The resist was dispensed over the wafer to cover all the pre-

fabricated features. A two-step spinning was implemented to achieve 100μm thickness 

with a pre-spin of 500rpm/10s and a main-spin of 1500rpm/30s. After edge bead 

removal, the glass wafer was left to sit on a leveled surface for 3 minutes to aid the 

planarization of the resist. The wafer was then soft-baked on a contact hotplate at 

100C/30min. A slightly different exposure dose for this KMPR resist mold is 

documented here as compared with the one mentioned in section 2.3, due to the 

attenuation of UV light intensity though the glass substrate for the accommodation of the 

backside exposure. The wafer was flipped upside down and backside exposed with a 

1500mJ (i-line) dose along with a 360nm long-pass filter. A temperature stepped post-

exposure bake (65C/120s + 95C/240s + 65C/120s) was carried out on a contact 

hotplate followed by cooling to room temperature. The wafer was then developed upside 
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down in SU8 developer (MicroChem) for 7 minutes followed by an isopropyl alcohol 

rinse.  

 

Figure 2.7 3-D schematics of the HAR resist molds that will define the dual-height test structures: 

(a) ring-like mold and (b) square-like mold. The height (H), length (L) and gap (G) are defined in 

the figure. 

After a typical descum process, the second layer nickel electroplating was carried out 

with the same parameters as outlined in section 2.4.4. The target height of this layer is the 

thickness difference between the thicker and thinner of the dual-height structures. The 

combined two-layer plating will finally achieve the desired thickness of the thicker 

structure. Again, since the thinner structure was electrically isolated from the current 

path, no electrodeposition occurred in the thinner structure region (figure 2.6(f)). 

The HAR KMPR resist mold is stripped in an NMP solution (PG remover, MicroChem) 

at 80C for 90 minutes with sonication. Optionally, O2 plasma could be used (225W, 

110sccm) to remove any remaining residue. The resulting dual-height structures, fully 

isolated by a narrow gap, are shown in figure 2.6(g). The single-layered Ni 

electrodeposition could be conveniently replaced by robotic-assisted multilayer 
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electrodeposition using the in-house built robot, and the application towards a vertical 

MEMS actuator will be detailed in Chapter 4. 

Table 2.2 Parameters of test structures.  

 

The most important process step in the proposed fabrication sequence is the HAR resist 

mold enabled by the backside exposure in the second lithography step through the plated 

first metallic layer. To evaluate the fabrication capability of the proposed process, two 

types of test structures, distinguished by the HAR resist mold shapes, are designed. As 

indicated in figure 2.7(a) and (b), one is a ring-like structure (with varying out-of-plane 

aspect ratio) while the other is a square-like structure (with varying in-plane and out-of-

plane aspect ratio). The height (H), length (L) and gap (G) are defined in figure 2.7 and 

the corresponding parametric variations are listed in Table 2.2 for both ring- and square- 

like test structures.  The in-plane aspect ratio is defined as the ratio of L to G for square-

like structures, whereas the out-of-plane aspect ratio is defined as the ratio of H to G for 

both test structures. The resulting microfabricated test structure images obtained from 

scanning electron microscopy (SEM, FEI Quanta 600) with a 30 tilt angle for ring- and 
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square- like structures are shown in figures 2.8 and 2.9, respectively. In all the test 

structures, for demonstration purposes, the thinner and the thicker dual-height structures 

are 5μm and 35μm in height, respectively. Figures 2.8(a), (c) and (e) demonstrate the 

ring-like HAR KMPR 1050 molds which are 100μm in height and 30 μm, 20 μm and 

10μm in gap size by the second lithography step. Figures 2.8(b), (d) and (f) show the 

corresponding dual-height structures after the second layer nickel electrodeposition and 

mold-stripping.  Similarly, figures 2.9(a), (c), (e), (g) and (i) demonstrate the square-like 

HAR KMPR 1050 molds and figures 2.9(b), (d), (f), (h) and (j) show the resulting dual-

height metallic structures.  

 

Figure 2.8 SEM images of microfabricated ring-like test structures. (top) HAR KMPR molds 

after the second lithography step, 100μm in height and (a) 30μm, (c) 20μm and (e) 10μm in gap 

sizes. (b), (d) and (f) show the corresponding dual-height (5μm and 35μm) structures after the 

second electrodeposition and mold stripping. 
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2.4 Summary 

In this chapter, the Microlamination Technology based on one chief technology (robotic-

assisted multilayer electrodeposition technology) and one auxiliary technology (thick 

plating-mold fabrication technology) was discussed. The robotic-assisted multilayer 

electrodeposition technology is capable of creating multilayer structures comprised of 

individual layers as thin as tens of nanometers while through repetitive plating, achieving 

significant overall thickness more than tens of microns thick. The thick plating-mold 

fabrication technology enables the creation of volumetric MEMS metallic structures of 

both uniform- and dual-heights using a single mask. Altogether, the application of the 

Microlamination Technology could create two-dimensional uniform- or dual- height 

monolithic metallic structures with additional deterministic structural and compositional 

complexity in the thickness direction. Utilizing this process, we will demonstrate both 

lumped and distributed magnetic systems detailed in Chapters 3 and 4.  

 

Figure 2.9 SEM images of microfabricated square-like test structures. (top) HAR KMPR molds 

after the second lithography step (a), (c), (e), (g) and (i); and the corresponding dual-height (5μm 

and 35μm) structures (b), (d), (f), (h) and (j) after the second electrodeposition and mold 

stripping. 
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CHAPTER 3 MICROLAMINATION BASED LUMPED SYSTEM: PERMANENT 

MICROMAGNETS WITH PRESERVED PROPERTIES 

3.1 Backgrounds and Motivation 

Micromachined permanent magnets play an important role in magnetic MEMS devices 

such as compasses, micromotors, microphones, and relays, due to their ability to generate 

magnetic fields (after magnetization) in the absence of external energy sources. Most 

commonly, these permanent micromagnets are positioned in a MEMS device to simply 

provide concentrated magnetic fields over the entirety of an application. One classical 

example is Faraday’s classic experiment of a moving permanent magnet generating 

current in a nearby close-looped coil. The more modern application utilizing faraday’s 

law of induction is a vibration based magnetic MEMS energy harvester [61] introduced 

in Chapter 1, where permanent MEMS micromagnets are deigned to sit on a vertically 

movable supporting spring, and to be laterally enclosed by microfabricated cooper coils 

in close proximity to enhance the energy conversion efficiency. Obviously, in such an 

application, the character length scale of the application (copper coils and their 

supporting circuitry) are larger than the spatial wavelength of the system (the permanent 

MEMS micromagnets). According to the definition in Chapter 1, the permanent MEMS 

micromagnets shown above is a lumped system. In this chapter, we will demonstrate the 

lumped system of permanent micromagnets enabled by the Microlamination Technology 

detailed in Chapter 2.  
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In spite of the ubiquitous presence in magnetic MEMS systems, incorporation of such 

micromagnets in MEMS systems is often challenging, mainly due to the lack of large-

volume, high-energy-density ((BH)max) permanent magnet components that are able to be 

deposited in a fully-integrated and CMOS-compatible manner. Such micromagnets, 

simultaneously possessing desirable magnetic properties as well as large volumes, are 

essential in applications requiring significant magnetic flux (e.g., magnetic energy 

harvesting), volumetric magnetization (e.g., micromachined compasses), and 

magnetostatic force (e.g., magnetic MEMS relays). In the previously-mentioned 

applications, properties such as total magnetic energy, rather than solely magnetic energy 

density, are required. In such applications, thin films (less a micrometer) though 

possessing superior energy densities, are less applicable for such magnetic MEMS 

systems [36-40].  

The most intuitive approach to increase the total magnetic properties of these films is to 

increase their volume; typically, for a given footprint, this translates to increasing their 

thickness, e.g., by depositing films for longer periods of time or at higher rates. However, 

two issues may arise with this simple strategy. First, it is observed that the magnetic 

properties of thin films do not simply scale with increasing thickness. Magnetic 

properties have been reported to deteriorate with continued film growth [25, 40, 62, 63], 

resulting in magnetically weakened permanent micromagnets. Secondly, in general, hard 

magnetic films possess high residual stress [4, 64]. For a film with a given level of 

residual stress, there exists a maximum depositable film thickness (inversely proportional 

to the square of the residual stress of the film) at which spontaneous film delamination 
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occurs [65]. The magnetic and mechanical deterioration of the thicker permanent 

magnetic films may limit their utility in the applications described above [27]. 

 

Figure 3.1 Illustration of the concept of laminated hard micromagnets (not drawn to scale). (a) 

The magnetic properties of thick electrodeposited magnetic films tend to decrease with thickness; 

(b) Conceptually, stacking individual films can produce thick magnets with preserved properties; 

(c) Implementation of stacking in-situ using sequential multilayer electrodeposition. 

To address these issues, we propose laminated permanent micromagnets as illustrated in 

figure 3.1. Rather than continuously grow the magnetic film to achieve a large volume 

and tolerate the reduced (BH)max that accompanies that larger volume (figure 3.1(a)), the 

stacking of multiple thin magnetic films with preserved (BH)max is investigated as an 

approach to achieve large overall magnet thicknesses while simultaneously retaining 

maximum magnetic energy density (figure 3.1(b)). In order to realize the concept of 
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laminated structures comprising stacked thin films, two approaches are possible. The first 

exploits self-assembly or guided-assembly [66]. Individual layers of functional thin films 

are released from the substrate where favorable forces such as surface tension, magnetic, 

and/or electrostatic forces are harnessed to assemble individual layers that are optionally 

subsequently further bonded together. Although this approach benefits from fabrication 

simplicity, it may be less applicable in devices requiring precise interlayer or magnet-

substrate alignment. The alternative approach proposed here exploits sequential 

multilayer electrodeposition where individual layers of relatively thin film magnets are 

electrodeposited in a multilayer fashion to achieve a laminated permanent magnetic 

structure in a stacked configuration (refer to Chapter 2 for details). One important benefit 

of this approach is that, as shown by previous studies [4, 67-69], by incorporating proper 

auxiliary thin film layers with lower or opposite-signed stress than that of the functional 

thin films in the stacked layer, the average residual stress can be reduced to enhance the 

mechanical stability of the films.  

Previously, utilizing sequential multilayer electrodeposition, we have demonstrated 

laminated soft magnetic films as magnetic cores in the application of DC-DC power 

conversion systems to suppress eddy current loss while at the same time achieving 

overall core thicknesses for high power handling capability [12, 20]. In comparison, the 

goal of the thin film lamination of permanent magnets in the present chapter is to retain 

the superior thin film permanent magnetic properties at large magnetic thickness such 

that improved total magnetic energy can be achieved in these laminated micromagnets as 

compared with their non-laminated counterparts. In considering sequential 
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electrodeposition for laminated magnet formation, it should be noted that magnetic 

properties (magnetic moments, anisotropy, coercivity and domain structure) of thin films 

are influenced by surface/interface roughness [70-73]. A layer-by-layer growth inevitably 

uses the underlying layer as an effective substrate, the surface roughness of which could 

influence the properties of the subsequently-deposited layer. Further, this effect could 

accumulate as the number of layers increases, negatively affecting the preservation of 

thin film properties. Hence, an interlamination layer (e.g. copper, figure 3.1(c)) 

electrodeposited in an alternating fashion with the magnetic layers, is investigated as an 

approach to 'reset' the deposition surface and alleviate these effects. 

3.2 Design and Optimization 

3.2.1 Material Selection 

The proposed laminated hard micromagnets are comprised of two types of component 

layers: 1) the magnetic layer - a hard magnetic material; and 2) the interlamination layer - 

a nonmagnetic layer deposited for the purpose of 'resetting' the growth of high-energy-

density magnetic films, and acting as a substrate for the deposition of subsequent 

magnetic layers.  

Candidate materials for the magnetic layer should be compatible with electrodeposition 

and preferably possess a controllable direction of magnetic anisotropy. Electrodeposition 

is of interest not only due to its relative economy and low operating temperatures, but 

more importantly, for the relatively rapid deposition rates achievable, allowing 

achievement of substantial overall thickness.  For example, high rate sputtering of NdFeB 
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thick films is 5nm/s [74] and conventional sputtering speed is less than 0.1nm/s [75]. The 

multilayer structure (figure 3.1, not drawn to scale) has magnetic films with a high aspect 

ratio of in-plane dimension to thickness, resulting in a high in-plane magnetic shape 

anisotropy. A magnetic material with controllable magnetocrystalline anisotropy could 

potentially be engineered to align the shape anisotropy (associated with shape of the thin 

film) and magneto-crystalline anisotropy (associated with preferred crystalline 

orientation), thereby boosting overall magnetic performance.  

Exemplary suitable hard magnetic materials include RE (rare earth) magnetic alloys (e.g. 

NdFeB and SmCo), equiatomic Pt-TM (Transition Metal) alloys (e.g. FePt L10 and CoPt 

L10), Co-rich hexagonal alloys (e.g. CoNiP, CoNiMnP, CoPtP) and others [36, 37]. RE 

magnetic alloys often seen in bulk-scale applications could be integrated in MEMS with 

top-down fabrication approaches [14, 63] but with restrictive processing conditions [63]. 

Equiatomic Pt-TM alloys with attractive performance commonly require either a high 

temperature deposition environment or a high temperature post-process annealing. 

Among the Co-rich hexagonal alloys, CoNiP not only can be readily electroplated 

without precious metals but also can be conveniently tuned by bath compositions [76] 

and electroplating parameters [77] to yield in-plane magnetocrystalline anisotropy with 

significant in-plane maximum energy density.  

In addition to being electrodepositable (to support a subsequent magnetic layer 

deposition), and possessing low or  opposite-signed residual stress (to reduce the average 

stress of the deposited films), it was hypothesized that the interlamination layer material 

should have excellent planarization properties such that the surface conditions of the 
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interlamination layer after deposition would largely mimic those of an original sputtered 

Cu seed layer. In this case, the accumulating surface roughness of thicker magnetic layers 

is reduced or reset due to the planarizing properties of the interlamination layer, 

potentially resulting in preserved magnetic properties. Cu plated from a commercial 

copper bath (Grobet, Clean Earth Cu-mirror solution) containing brighteners and levelers 

was chosen as the interlamination material for its low surface roughness [78].  

3.2.2 Optimization of Electrodeposition Condition 

Table 3.1 Electrodeposition conditions for CoNiP thin film 

 

Park et al. [76] showed that the magnetic properties (in-plane/out-of-plane (BH)max and 

anisotropy) of CoNiP were strongly influenced by NaH2PO2 concentrations in the bath. 

Kirkwood et al. [77] demonstrated a strong correlation between applied current density 

and c-axis orientation (perpendicular/longitudinal) to the film plane. The CoNiP 

Items Quantity

NiCl2•6H2O 0.2 (M)

CoCl2 •6H2O 0.206 (M)

NaH2PO2•H2O 0.028 (M)

NaCl 0.7 (M)

H3BO3 0.4 (M)

Saccharin 0.0048 (M)

Temperature 20-25°C

Current Density 20 mA/cm2

pH 2.2

Agitation None
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electrodeposition conditions (i.e., chloride plating bath and deposition parameters) for 

this paper were adopted from the above-mentioned papers and optimized for multilayer 

deposition to achieve significant longitudinal (in-plane) magnetic anisotropy and energy 

density. The parameters are summarized in table 3.1. The deposition pH was chosen to be 

2.2 since at this level, CoNiP thin films show simultaneously the highest in-plane 

coercivity and squareness [76]. The NaH2PO2 (phosphorous source) concentration was 

chosen to be 0.028M, as the deposited films not only shows strong hcp (100) peak from 

XRD analysis indicating a well-defined c-axis in the in-plane direction, but also exhibit 

high maximum magnetic energy density. Further increasing the NaH2PO2 concentration 

would change the preferred orientation from hcp (100) to hcp (002) [76]. A current 

density of 20mA/cm
2
 was chosen for an optimized combination of in-plane anisotropy 

(below which a decrease of hcp (100) shows up concurrently with an increase of hcp 

(002)) and in-plane coercivity (above which coercivity drops sharply). NaCl and boric 

acid operated as supporting electrolyte and pH buffer, while saccharin was used for the 

purpose of reducing deposit stress [76]. No agitation was applied and a Ni sheet was used 

as an anode for Ni ion replenishment. Due to the lack of Co ion replenishment as plating 

continued, in order to ensure compositional uniformity of each magnetic film layer in the 

multilayer structure, the bath volume was adjusted such that the consumption of Co was 

less than 1% of the total dissolved Co ions in the bath for every batch.  

3.3 Fabrication and Characterization Method 

3.3.1 Fabrication Sequence 
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Figure 3.2 illustrates the fabrication sequence of the microlaminated magnets enabled by 

the through-mold robotic-assisted multilayer electrodeposition technology, in conjunction 

with a removable thick resist mold. The details of substrate preparation (substrate 

cleaning as shown in figure 3.2(a), seed layer deposition as shown in figure 3.2(b)) as 

well as mold fabrication (figure 3.2(c)) could be found in Chapter 2 section 2.3.2. A thick 

photoresist (NR 26-25000P, Futurrex, Inc.) mold was patterned consisting of an array of 

circles, each 16mm
2
 in area (figure 3.2 (d)). The top layer of Ti within the mold was 

stripped in dilute hydrofluoric acid (2% vol.) just before electroplating commenced 

(figure 3.2(e)). For single layer films, CoNiP films were electrodeposited (with 

conditions in table 3.1) using a DC current source. For multilayer films, robotically-

assisted sequential multilayer electrodeposition comprising alternating CoNiP and Cu 

layers was carried out (figure 3.2(f)) in a dual bath system with the customized CoNiP 

bath (table 3.1) and the commercial Cu bath (using a Cu anode with a current density of 

20mA/cm
2
). Individual component layer thicknesses were controlled by the 

electrodeposition time utilizing Faraday's law of electrolysis. For samples conducting 

stress measurement, no photoresist molds were used and film deposition occurred directly 

on 4-inch Si wafers as described above.   
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Figure 3.2 Fabrication process flow (not drawn to scale): (a) solvent cleaning of a 4-inch wafer; 

(b) deposition of insulating layer of silicon dioxide and seed layer of Ti/Cu/Ti; (c) deposition and 

patterning of thick photoresist mold with its dimension shown in (d); (e) stripping of top layer of 

Ti before electroplating commenced; (f) robotically-assisted sequential multilayer 

electrodeposition of CoNiP and Cu; and (g) removal of the photoresist mold. 

3.3.2 Characterization Method 

After deposition, the photoresist mold was stripped (figure 3.2(g)) and the cross-sectional 

morphology of the resulting micromagnets was characterized by a scanning electron 

microscope (Zeiss Ultra60 FE-SEM) equipped with energy-dispersive X-ray 

spectroscopy (EDX). Surface roughness analysis was performed using atomic force 

microscopy (Bruker Icon AFM) operating in tapping mode. Crystalline structure, grain 

size and preferential orientation of the films were examined by X-ray diffraction (XRD, 

Rigaku GeigerFlex D/Max-B diffractometer) in the Bragg-Brentano geometry with Cu 

Kα radiation. Peak profile analysis was performed using X'Pert HighScore Plus and Igor 

Pro multi-peak fitting software packages. Magnetic properties were examined by a 

vibrating sample magnetometer (VSM, LakeShore, Model730).  No correction for 

Si Cu Ti PR CoNiPSiO2

(a) (b)

(e) (c)

(f) (g)

(d)

A=16mm2

Side View Top View
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demagnetization effect was applied to the data presented throughout this chapter. It 

should be noted that the magnetic volume (i.e., the sum total of all magnetic layers, 

omitting the interlamination layers) was used for the estimation of magnetic properties 

measured by VSM throughout this chapter for both single-layered magnets and 

microlaminations. For thicker single-layered micromagnets, epoxy encapsulations were 

applied to the films immediately after deposition of the films in order to temporarily 

enhance the mechanical stability for magnetic property measurement due to the large 

strain energies of these thicker single-layer films. Film stress measurements based on 

curvature of 4-inch Si wafers bearing films were carried out using a stylus profiler (KLA 

P7 3D/stress profiler). 

3.4 Single Layer CoNiP Films 

 

Figure 3.3 Typical in-plane and out-of-plane hysteresis loops of single layer 1-μm-thick CoNiP 

films. 
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Figure 3.3 shows typical in-plane and out-of-plane magnetic hysteresis loops, measured 

by VSM, of a single layer 1-µm-thick CoNiP thin film deposited using the conditions 

discussed above. As desired, the magnetic easy axis lies in the in-plane direction with an 

average coercivity of 50kA/m and maximum magnetic energy density of 23kJ/m
3
. EDX 

results showed that these films had a composition (atomic %) of 78 Co%, 13% Ni and 

9% P. Both the thin film magnetic performance and the compositions are similar to the 

values reported in the literature [76, 77]. XRD analysis of these 1-µm-thick films is 

shown in figure 3.4 and indicates that the deposited CoNiP films exhibited hcp structures, 

including hcp (100), (002), (101), (110) and (112) peaks, corresponding well with the 

literature [76, 77]. As a result of the optimized bath composition and electroplating 

conditions, comparatively strong hcp (100) and weak (002) peaks were evident as 

compared with CoNiP powder diffraction diagrams reported in the literature [79], 

indicating a well-defined hcp (100) texture with c-axis orientated mainly parallel to the 

film plane.  



 

53 
 

 

Figure 3.4 A typical XRD spectrum of single layer 1-μm-thick CoNiP films. 

 

Multiple permanent magnetic alloy systems (e.g. CoPt, CoNiMnP) show a decrease of 

maximum magnetic energy density with increasing deposited film thickness [40, 62, 63]. 

A similar trend was observed in the CoNiP alloy system, which is shown in figure 3.5. 

The energy product (BH)max decreases monotonically as the film thickness increases. In 

particular, the maximum energy density value decreased sharply between film 

thicknesses of 1-10µm, showing two "knee points" with the first at approximately 1µm 

and second at approximately 10µm. The data shown in figure 3.5 could be used as a basis 

for determining the "stacked" individual thin film thickness and the resultant number of 

layers needed for the assembly of a laminated structure. In subsequent multilayer 

electrodeposition magnet stacks fabricated in this work, the individual magnetic layer 

thickness is set to 1µm. 
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Figure 3.5 Maximum magnetic energy density as a function of film thicknesses of single layer 

CoNiP films. 

 

3.5 Laminated CoNiP Micromagnets 

Stacks of laminated CoNiP micromagnets have many geometric parameters, necessitating 

the introduction of descriptive nomenclature. The individual functional component 

(magnetic) layer thickness is defined as tCoNiP and the corresponding individual 

interlamination layer thickness is tCu. The total magnetic thickness tM is defined as the 

sum of individual functional component layer thicknesses (tM=∑tCoNiP). Similarly, the 

total interlamination layer (or interlayer for short) thickness tI is defined as the sum of 

individual interlamination layer thicknesses (tI=∑tCu). The magnetic thickness will always 

be less than or equal to the total thickness T which is defined as the sum of all functional 
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and interlayer thicknesses (T=tM+tI). Obviously, in a case of a single layer magnetic film, 

the magnetic thickness and the total thickness are equal (tM=T). Fill factor γ is defined as 

the ratio of tM to T (γ=tM/T). We introduce the notation [CoNiP(tCoNiP)/Cu(tCu)]n to 

represent the proposed microlamination structure, indicating that in the structure, CoNiP 

layers and Cu layers were deposited in an alternating fashion, with the very first layer 

deposited being CoNiP with thickness tCoNiP (directly on seed Cu), followed by a Cu layer 

with thickness tCu. We define this first CoNiP layer and the first Cu layer to be the 1st 

pair. Subsequent pairs are defined similarly, so that the nth pair is comprised of the nth 

CoNiP layer and the nth Cu layer. Hence, a [CoNiP(tCoNiP)/Cu(tCu)]n lamination 

comprises n pairs, and 2n structural layers.  

3.5.1 Fabrication Results 

A typical cross-sectional SEM image of the fabricated magnetic microlamination is 

shown in Figure 3.6(a), featuring a [CoNiP(1µm)/Cu(1µm)]10 microlamination. A short 

selective Cu wet etch using an acidified thiourea solution [54] was performed to create 

contrast between the layers; the brighter, protruding layer and darker, receding layer are 

CoNiP and Cu, respectively (see figure 3.6(b)). EDX results verified that there is no 

significant compositional fluctuation between the bottommost and topmost individual 

magnetic layers, and that the layer composition fraction resembles the single-layer case.  
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Figure 3.6 Cross-sectional SEM images of (a) a [CoNiP(1μm)/Cu(1μm)/]10 microlamination and 

(b) an enlarged view. 

 

Figure 3.7 Typical AFM scans of top layer Cu in [CoNiP(1µm)/Cu(tCu)]5 microlaminations with 

tCu equals (a) 0µm; (b) 0.25µm; (c) 0.7µm; (d) 1µm and for reference, AFM scans on (e) seed Cu 

as well as (f) 1µm single layer CoNiP. 
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3.5.2 Effect of Substrate/Interface Roughness on Resultant Magnetic Properties 

In the fabricated micromagnets, with the exception of the first CoNiP layer which was 

formed on the seed Cu, all other CoNiP layers were formed on their respective 

underlying Cu interlamination layers. Therefore, every deposited Cu interlayer served as 

the effective substrate/seed for the subsequent CoNiP layer. Studies reveal that surface, 

substrate and interface roughness have crucial implications for the physics of thin films 

and multilayer structures [71, 73]. The surface/interface condition of the Cu interlayer is 

hence crucial to the realization of the magnetic microlamination concept. In order to 

explore the underlying role of this interlayer, controlled experiments investigating the 

interface roughness were conducted in [CoNiP(1µm)/Cu(tCu)]5 microlaminations with 

fixed CoNiP layer thickness (1µm) and various Cu layer thicknesses (tCu from 0-1µm). 

The number of pairs was chosen as five for an amplified effect (assuming that for 

insufficiently thick Cu layers the roughness would accumulate as the number of layers 

increases).  

Figure 3.7(a)-(d) show some of the representative AFM scans of the very top layer (5th) 

of Cu in the [CoNiP(1µm)/Cu(tCu)]5 microlaminations with various Cu interlayer 

thicknesses. The scan size is 15µm by 15µm. Figure 3.7(e), (f) provide the reference 

scans of the seed Cu and 1µm single-layer CoNiP surface topography, respectively. 

Detailed roughness data (arithmetic average Ra and root mean squared Rq) is summarized 

in figure 3.8. The lamination data were bound by two limits: the upper limit is associated 

with the 5µm single-layer CoNiP; and the lower limit is associated with the seed Cu. As 

Cu interlayer thickness increases, both Ra and Rq decrease and plateau when tCu 
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approaches 1µm. Two observations were made from figures 3.7 and 3.8: 1) the 5µm 

single-layer CoNiP layer has the largest roughness (as expected); and 2) increasing the 

Cu interlayer thickness has a monotonically increasing planarization effect, reducing the 

surface/interface roughness towards that of the seed Cu (which is expected to be the 

lower limit).  

 

Figure 3.8 Top Cu layer roughness as a function of Cu interlayer thicknesses in 

[CoNiP(1µm)/Cu(tCu)]5 microlaminations. 
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Figure 3.9 A typical XRD spectrum of a [CoNiP(1µm)/Cu(0.7µm)]5 microlamination. 

The corresponding crystalline structure, grain size, and preferential orientation of the 

[CoNiP(1µm)/Cu(tCu)]5 microlaminations with various Cu interlayer thicknesses were 

examined by X-ray diffraction. A typical scan with large 2θ range (35°-100°) featuring a 

[CoNiP(1µm)/Cu(0.7µm)]5 microlamination is shown in figure 3.9.  The profile shown in 

figure 3.9 exhibits neither additional nor missing peaks when compared with the single 

layer CoNiP case (figure 3.4). Also, among microlaminations with various Cu interlayer 

thicknesses, the number and locations of the peaks remains unchanged (not shown, but 

can be partially seen from figures 3.9 and 3.10). A finer scan with better signal to noise 

ratio was then carried out with smaller 2θ range (35°-55°) for various Cu interlayer 

thicknesses in order to precisely portray the peak of interest: hcp (100). The hcp (100) 

was the peak of interest not only because it represents the preferred in-plane orientation 

but also because its large peak to background intensity ratio helps to reduce the possible 

fitting errors. The detailed representative finer scan profiles in figure 3.10 show that as 
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the thickness of the Cu interlayer increases, the intensity of the Cu (111) peaks (peak 

position at 2θ=43.6°) increases along with a concurrent decrease in the CoNiP (100) 

intensity. The grain size in the direction normal to the film plane was estimated from 

peak hcp (100) using the Scherrer equation (equation (3.1)) [80]. Here Dhkl is the 

crystallite size in the direction perpendicular to the lattice plane (hkl), K is a 

dimensionless crystallite shape factor with 0.9 being a good approximation [80], λ is the 

wavelength of the X-ray, Bhkl is the full-width at half-maximum (FWHM) of the peak (in 

radians), and θ is the Bragg angle of the peak. For small nanocrystallites, the peak 

broadening from the specimen dominates other error sources such as instrumental and 

stress-induced broadening [81]. Neglecting these other broadening sources, the calculated 

grain sizes as a function of interlayer Cu thicknesses are shown in figure 3.11. The 

measured nanocrystalline grain sizes vary from 16nm to 24nm, corresponding well with 

the literature [77, 79]. By comparing with Figure 3.8, a close correlation between 

interface roughness and CoNiP layer grain size can be observed. Increasing the Cu 

interlayer thicknesses, and decreasing the interface roughness, reduce the grain sizes of 

the CoNiP magnetic layers by 31%. The dotted lines represent two limiting crystal size 

scenarios, with lower limit associated with 1µm single layer case and upper limit 

associated with the 5µm single layer case. The 1µm single layer case serves as the lower 

bound due to the fact that without multilayer roughness accumulation, the grain size of 

CoNiP should only be affected by the seed Cu, which is the smoothest interface seen 

from figure 3.8. For the 5µm single layer, without any smoothing effect from 
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interlamination Cu layer, its grain size is expected to be the largest. Note that the 5µm 

single layer case is essentially the same in structure as samples comprising a 0µm Cu 

interlayer. The slight difference in their grain sizes could be due to the fact that in the 

latter case, the continuous grain growth seen in 5µm single layer is disrupted by 

removing and replacing the sample out of and into the plating bath every 1µm of 

deposition.  

 

Figure 3.10 Typical XRD spectra of [CoNiP(1µm)/Cu(tCu)]5 microlaminations with various Cu 

interlayer thicknesses. 
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Figure 3.11 Grain sizes of CoNiP as a function of Cu interlayer thicknesses in 

[CoNiP(1µm)/Cu(tCu)]5 microlaminations. 

The corresponding magnetic properties of the [CoNiP(1µm)/Cu(tCu)]5 microlaminations 

with various Cu interlayer thicknesses were characterized using VSM and the results are 

summarized in figure 3.12. It can be seen that both energy density (figure 3.12(a)) and 

coercivity (figure 3.12(b)) curves follow an inverse trend with grain size (Figure 3.11) 

and surface roughness (figure 3.8) plots: the increase of the Cu interlayer thicknesses 

(decrease of interface roughness and decrease of grain size) improves the coercivity (by 

18%) and maximum magnetic energy density (by 29%). Comparatively, the remanence 

(figure 3.12(c)) is relatively unchanged (with deviation < 7%). Moreover, special 

attention should be given to the points of 0µm Cu interlayer in figure 3.12. An important 
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implication associated with these points is that solely interrupting electrodeposition 

periodically does not improve the performance of the micromagnets; incorporation of the 

planarizing interlayers is key to the success of the proposed process. 

 

Figure 3.12 (a) Maximum magnetic energy density; (b) coercivity; and (c) remanence as a 

function of Cu interlayer thickness in [CoNiP(1µm)/Cu(tCu)]5 microlaminations. 
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The interplay between grain size and coercivity of a crystalline magnetic material could 

be understood by a theoretical model based on magnetic domain theory proposed by G. 

Herzer [82]. Some brief background information based on the Herzer's theory are 

provided here, to explain the relationship of grain size and coercivity. 

 

Figure 3.13 The structure of the Bloch wall separating domains [83]. 

 

Figure 3.14 Variation of intrinsic coercivity Hci with particle diameter (schematic) [84]. 
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Magnetic domains are subdivisions inside the magnetic material that have uniform 

magnetization. The finite regions where magnetization rotates from one direction to the 

other between neighboring domains are called domain walls. For hard materials with 

dominant crystalline anisotropy, the typical domain wall profile is of the Bloch type [85]. 

For instance, a Bloch wall separating two domains having 180-degree magnetization 

direction differences in shown figure 3.13. A magnetic particle can have various states of 

ferromagnetism. Grains with only one domain are said to be in the single domain (SD) 

state, whereas grains with two or more domains are said to be in the multidomain (MD) 

state. The variation of coercivity as a function of grain sizes in different domain states is 

shown in figure 3.14 [84]. In the MD region, as the grain size is reduced, it is typically 

found that the coercivity increases until the grain size reaches a critical dimension Ds, 

after which, the ferromagnetic materials is the SD range and the coercivity drops as grain 

sizes further reduce. This trend continues and finally lead to a zero coercivity, which is 

caused by strong enough demagnetization due to thermal effects [84]. This critical 

dimension Ds that separating the MD and SD range can be conveniently calculated by a 

parameter called ferromagnetic exchange length Lex, which is a manifestation of domain 

wall size [86]. The competition of exchange energy and magneto-crystalline anisotropy 

energy determines the size of the domain wall [83], which affects the domain states 

(single/multidomain) of an assembly of grains, and in turn varies the relationships of the 

coercivity and grain sizes of ferromagnetic materials. Qualitatively, minimizing exchange 

energy tends to rotate magnetization gradually from one domain to the other, expanding 

the thickness of the domain wall; whereas minimizing the anisotropy energy tends to 

rotate magnetization more abruptly, shrinking the domain wall size. The domain wall size 
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could be estimated by calculating the minimum of the sum of exchange and anisotropy 

energies [83]. Assuming a Bloch wall separating two domains having 180-degree 

magnetization direction differences as shown figure 3.13. The sum of exchange and 

anisotropy energy can be expressed in equation (3.2), where A is the exchange stiffness, 

K1 is the uniaxial anisotropy constant, φ is the angle between neighboring magnetic 

moments, and δ is the domain wall width. The first and second term in this equation 

corresponding to the exchange and anisotropy energy, respectively. To find the minimum 

of E, we take the derivative of E respect to  , and equate it to zero, as shown in equation 

(3.3), which gives domain wall thickness    in equation (3.4). The actual domain wall 

thickness might be influenced by geometric factors and applied fields, commonly the 

magnetocrystalline exchange length is defined in equation (3.5) [85], which governs the 

width of the transition between magnetic 

domains, where A denotes the exchange stiffness and K1 is the magneto-crystalline 

anisotropy constant. For CoNiP, A is in the range of 1.0×10
−6

 to 1.3×10
−6

erg/cm [87] 

(1.0×10
−11

 to 1.3×10
−11

J/m) and K1 is approximately 510kJ/m
3
 [37, 77]. The exchange 

length (and hence the dividing grain size Ds separating MD and SD states) is calculated to 
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be approximately 5nm for CoNiP system. This is smaller than the grain size range (16-

24nm) in our system, indicating the CoNiP grains in our system are in MD state, which 

explains the observed inverse correlation between the grain size and coercivity.  

3.5.3 Residual Stress Reduction on Laminated Micromagnets 

Many hard magnetic films exhibit increased residual stress as their magnetic hardness 

increases [4]. Additional stresses could be introduced during deposition. For example, in 

the case of CoNiP, it is believed that hydrogen evolution during hypophosphite 

(Phosphorus source in CoNiP) oxidation and the parallel chemical reduction of the metal 

ion is a cause of the tensile stress in the films [77]. Stress releasing methods in 

electroplated magnetic films have been discussed in the past, including (not limited to) 

controlling the DC current density, the concentration of stress-relieving additives in the 

electroplating bath [64], and the use of pulse-reverse plating technique [65]. While 

effective in stress reduction as these methods could be, it is well known that magnetic 

properties (magnetic anisotropy, remanence, coercivity and etc.) of the plated films are 

highly sensitive to the plating conditions such as the current densities and bath additives 

[4, 12, 77]. For some applications where the magnetic properties are predetermined (e.g. 

in-plane magnetization with high remanence), stress reduction via variation of plating 

parameters is fairly constrained. One alternative approach, is to stack the desired thin film 

with other auxiliary thin films with compensating stress conditions (very low stress or 

negative-signed stress as compared with the residual stress of the films of interest) into 

bilayer [67], sandwich [4], or multilayer [68] configurations, such that the overall stress 

condition in the deposited films is improved. Several previous studies [65, 69] have 
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shown that the average stress of a multilayer structure can be calculated (by equation 

(3.6)) as an individual-layer-thickness-weighted average stress under the assumption of 

small total film thickness (as compared with substrate thickness) and that individual layer 

material operates in the linear elastic regime. In Equation  (3.6),  σf, σCoNiP, and σCu are 

the average residual stress in the multilayer film, in the CoNiP component layers and in 

the copper component layers,  respectively; T, tCoNiP, and tCu are the same as defined 

previously.  

Table 3.2 Measured residual stress of various films. 

 

To verify the application of equation (3.6) to the [CoNiP(tCoNiP)/Cu(tCu)]n system, the 

residual stress of the deposited single layer and microlamination films were estimated 

using Stoney equation [88] (equation (3.7)), where σf denotes the average film stress; ts 

and tf are thickness of the substrate and film, respectively; R is the measured radius of 

wafer curvature by a stylus profiler, Es and νs denote the Young's modulus and Poisson's 

ratio of the substrate, respectively.  The results of the estimated residual stress of various 

Film type Thickness (µm) Measured stress* (MPa)

CoNiP, single Layer 1 170

CoNiP, single Layer 5 189

Cu, single Layer 1 -1.65

[CoNiP/Cu]5,  microlaminations [(1µm)/(1µm)]5 82.0

* Positive stress being tensile
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films are listed in table 3.2. The relatively low stressed (1.65MPa, compressive) Cu 

interlamination layer reduces the measured residual stress of the 

[CoNiP(1µm)/Cu(1µm)]5 microlamination (82.0MPa, tensile)  to approximately half that 

of a 1µm single layer (170MPa, tensile) and less than half that of a 5µm single layer 

(189MPa, tensile). Note that the measured stress value of the microlamination is very 

similar (< 2.5%) to the one calculated using equation (3.6). 

3.5.4 Highly Laminated Permanent Micromagnets 

The advantages of the micolaminated permanent magnets over their non-laminated 

counterparts can be demonstrated in two scenarios: 1) the total magnetic thickness (tM) of 

the permanent micromagnets is of concern, and 2) the total thickness (T) is of concern. 

To differentiate between the achievable energies of these two scenarios, E1 will be 

defined as the magnetic energy per unit area in the former scenario, while E2 will be 

defined as the magnetic energy per unit area in the latter scenario. 
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Figure 3.15 Comparison of the in-plane maximum magnetic energy density as a function of the 

total magnetic thicknesses (tM) for various [CoNiP(1µm)/Cu(1µm)]n microlaminations and CoNiP 

single layer films. 

Due to the high residual stresses often present in hard magnetic films as described above 

[4, 64], together with the fact that total strain energy in the films increases with 

increasing film thickness, film delamination [65] could limit the achievable total 

magnetic thickness (and therefore energy) of these small-scale integrated magnets. In this 

case, total magnetic thickness (tM) instead of total thickness (T) is the relevant/limiting 

thickness for comparing the magnetic properties of laminated and non-laminated 

magnets. The strategy of lamination design in this case is to 1) increase the mechanical 

stability (e.g. reduce average stress), and 2) retain the magnetic properties of the 

component magnetic thin film as much as possible. Both of these can be achieved by 

relatively thicker Cu interlayers (table 3.2 and figure 3.12). Here, 
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[CoNiP(1µm)/Cu(1µm)]n microlaminated magnets up to n=80 have been fabricated. 

Figure 3.15 compares the in-plane maximum magnetic energy density ((BH)max) as a 

function of total magnetic thickness (tM) for various [CoNiP(1µm)/Cu(1µm)]n 

microlaminations and CoNiP single layer films. It is evident that the (BH)max of the 

CoNiP is well-retained in the microlamination configuration up to a total magnetic 

thickness of 80µm, while a single 80 µm thick CoNiP film shows substantial degradation 

of (BH)max. (BH)max as high as 16.2kJ/m
3
 was achieved even at a large magnetic 

thickness of 80µm, an approximately 30% improvement over single layered CoNiP films 

of the same magnetic thickness. Because magnetic thickness (tM) is the limiting 

thickness, in this case, the maximum achievable total magnetic energy per unit area (E1) 

can then be defined in equation (3.5). Hence, figure 3.15 indicates that, in a given 

footprint, the laminated micromagnets show a higher achievable total magnetic energy 

over their single-layered counterparts. Although substantially improved overall, the 

properties of the magnetic layers are not completely retained in the microlamination, 

potentially due to incomplete planarization (figure 3.8), which is accentuated as the 

number of layers (n) increases. Further increasing the interlayer thickness could 

potentially further improve the performance while simultaneously further reducing the 

residual stress, at the expense of the process duration. 

For applications where the overall thickness T is constrained (e.g., in the case of 

embedded MEMS where the MEMS module resides inside a silicon trench), the 
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optimization tradeoff between allowable fill factor (γ), tolerable average residual stress 

and achievable (BH)max should be considered in the lamination design. As the total 

thickness (T) is constrained, the reduction of the total interlayer thickness (tI), though 

retaining less individual layer magnetic properties, will be compensated by the increase 

of total magnetic thickness tM (tM=T-tI) and hence may act to enhance the total achievable 

magnetic energy E2. The strategy of lamination design in this case is to balance this 

above mentioned opposing effect of the increased fill factor (γ).  A few examples of the 

possible designs of the lamination configurations are shown in figure 3.16, which 

compares the in-plane fill factor modified maximum magnetic energy density 

(γ*(BH)max) as a function of total thickness (T) for various [CoNiP(1µm)/Cu(tCu)]n 

microlaminations and CoNiP single layer films. The fill factor of each example can be 

seen in the secondary axis on right of the figure. Note that total thickness (T) instead of 

total magnetic thickness (tM) is the relevant/limiting thickness in this case, and the fill 

factor (γ) of single-layered magnetic films is 100%. Because total thickness (T) is the 

limiting thickness, in this case, the maximum achievable total magnetic energy per unit 

area (E2) can be defined in equation (3.6). As can be seen in figure 3.16, in a given 

footprint, laminated micromagnets with a proper choice of fill factor could also 

outcompete their single-layered counterparts in terms of achievable total magnetic energy 

in the case where total thickness is constrained.  
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Figure 3.16 Comparison of the in-plane fill factor modified maximum magnetic energy density 

(γ∗(BH)max) measured as a function of the total thicknesses (T) for various 

[CoNiP(1μm)/Cu(1μm)]n microlaminations and CoNiP single layer films. 

3.6 Summary 

This chapter presents an example of a lumped magnetic system enabled by the 

Microlamination Technology: laminated permanent micromagnets that preserves the high 

magnetic energy density of thinner magnetic films, while simultaneously reducing 

average residual stress of the films and achieving a significant magnetic thickness. Due to 

the preserved individual component magnetic layer properties and reduced average stress 

possessed in these films, the thick, microlaminated magnets showed an improved total 

magnetic energy as compared with their non-laminated counterparts. The key to retain 

the superior magnetic properties of thin films in thick laminations is the low interface 

roughness between the magnetic layers, which in turn reduces the grain size and 
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improves the coercivity of the magnetic component layers. Depending on the application 

of these permanent micromagnets in various MEMS devices, individual component layer 

(magnetic and non-magnetic) thicknesses and hence the fill factor could be adjusted to 

balance the achievable (BH)max, tolerable average residual stress and allowable total 

thickness constrains if required. 

  



 

75 
 

CHAPTER 4 MICROLAMINATION BASED DISTRIBUTED SYSTEM: A BI-

STABLE VERTICAL MAGNETIC ACTUATOR WITH NON-CONTACT 

LATCHING 

4.1 Backgrounds and Motivation 

Magnetic distributed system taking advantages of spatially periodic magnetostatic field 

has been seen in the application of biomagnetic filters [29], magnetic undulators [89], and 

magnetic micromotors [90] to name a few. The most common design of such distributed 

systems utilizes the periodic magnetostatic field patterns enabled by geometrically-

complex magnetic structures (e.g. alternating magnetic poles, arrays of permanent 

micromagnets). One of the strength of the Microlamination Technology is to create 

additional structural and compositional complexity in the thickness direction of the 

fabricated volumetric magnetic MEMS structures. By tuning the relative dimensions of 

the characteristic length of application to be comparable to the spatial wavelength of the 

periodic magnetostatic field, the Microlamination Technology could be extended for the 

realization of distributed systems. In this chapter, we will demonstrate a distributed 

magnetic system based on the Microlamination Technology: vertical magnetic actuators 

with bi-stability. 
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Figure 4.1 A graph of the potential energy of a bi-stable system with two local minima. [91] 

In general, a multi-stable system is a system in which two or more stable equilibrium 

configurations exist. The simplest case of a multi-stable system is a bi-stable system. 

From an energy perspective (figure 4.1), a multi-stable system has two or more local 

energy minima (bottom of the energy wells) separated by peaks (energy barriers) in its 

energy landscape. The transition from one stable state to another requires going over one 

energy barrier. The concept of multi-stability has attracted considerable research interest 

in the field of MEMS actuators in recent years, focusing on various transduction 

mechanisms induced bi- and multi- stability. Examples of the bi- and multi- stable 

MEMS actuators are shown in Table 4.1. Huang et al. [92] showed a bi-stable system 

based on chemo-mechanical transduction. Size-changeable molecules (redox-controllable 

rotaxane) are deposited on a cantilever structure. Via chemical reactions the molecules 

demonstrate the contraction and extension movements, thus warps or flattens the 

underlying cantilever beam. The latching behavior at the bi-stable states is enabled by the 

Energy Wells

Barrier
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balance between chemically induced forces from the molecules and mechanical restoring 

force from the cantilever. Charlot et al. [93] showed an electrostatically actuated bi-stable 

device. The device is based on a doubly-clamped pre-stressed buckled nanowire. By 

applying a sufficiently large driving voltage in between the nanowire and counter 

electrodes, the nanowire can be electrostatically pulled toward the desired direction. The 

latching behavior at the bi-stable states is enabled thanks to the stability of the buckled 

structure. Sarajlic et al. [41] showed a multi-stable electrostatic driven stepper motor. The 

shuttle of the stepper motor is electrically grounded, while a 3-phase voltage excitation is 

applied to the stator poles. When certain phased stator poles are activated, the originally 

misaligned shuttle/stator poles tends move into alignment due to the tangential 

electrostatic force, demonstrating one stable position. By applying a voltage to a 

misaligned phase repetitively, a stepwise motion of the shuttle can be expected, hence 

demonstrating multi-stability. Qui et al. [94] designed an electrothermally actuated bi-

stable device. The authors also utilized pre-stress buckled beams for the latching 

mechanism responsible for the bi-stability. The actuation of the device relies on the non-

uniform thermal expansion of two materials with different thermal coefficient of 

expansion. Ren and Gerhard [5] designed an in-plane bi-stable magnetic actuator. The 

actuation on a flux-conducting cantilever beam is fulfilled due to the tendency of closing 

a magnetic circuit triggered by an activation pulse in the coil. The cantilever keeps in 

contact with the pole maintaining the latching status because of the remaining flux 

supplied by a permanent magnet, until a reverse activation pulse in the coil switches the 

cantilever beam to the opposite pole.  
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Table 4.1 Examples of the bi- and multi- stable MEMS actuators 

 

Among all MEMS multi-stable actuators based on various transduction mechanism, 

Electrostatic actuators are by far the most popular type of MEMS actuators, but can 

suffer from high actuating voltage, short actuating range and/or low actuation force [3]. 

Magnetic MEMS actuators can alleviate some of these issues; however, integrating exotic 

magnetic materials in a CMOS-compatible and fully integrated manner, and/or 

fabricating dense coils, typically requires much more intensive microfabrication effort 

than their electrostatic counterparts. These complexities have hindered the technological 

progress of these small-scale magnetic actuators [1].  

Latching schemes for actuators are often desirable since they allow actuators to remain in 

defined states with no expenditure of energy. Typical approaches to magnetic actuator 

latching have involved a combination of electromagnetic actuation with electrostatic 

latching [95], or the use of a mechanical stop [96]. While effective latching can be 

realized using these approaches, there are other operation scenarios where it may be 

desirable, either due to the application or due to the desire for fabrication simplicity, 

where non-contact latching is desirable.  

Ref
Actuation

mechanism
Latching

mechanism
Stability

Distance b/w 
stable positions

Actuation 
range

[92] Chemical Chemical/Mechanical Bi- 35nm 35nm

[93] Electrostatic Mechanical (buckling) Bi- 850μm 850μm

[44] Electrostatic Electrostatic Multi- 1.4μm 52μm

[94] Electrothermal Mechanical (buckling) Bi- 137μm 137μm

[17] Electromagnetic Magnetic Bi- 100μm 100μm
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Among the various actuation mechanisms for magnetic MEMS systems, two types are 

most commonly seen [97]: in one type, actuation is induced due to the tendency of 

closing a magnetic circuit; in the other, actuation arises as Lorentz force acts on a current 

carrying wire. These two mechanisms can be invoked individually to realize the desired 

actuation, or they can be combined to achieve both actuation and latching, in an effort to 

reduce energy consumption.  An excellent example of these mechanisms can be found in 

[98], where actuation is achieved utilizing the combined effects of Lorentz force (current 

to magnet) and closing of a magnetic circuit (magnet to magnet), while latching is 

achieved by harnessing the magnetostatic force from the closing of a magnetic circuit, 

together with a mechanical stop. This process requires multiple alignment steps and a 

wafer bonding process, due to the latching and actuation mechanisms used.  

In this chapter, we propose a bi-stable vertical magnetic actuator design that utilizes only 

magneto-static force to realize latching (without any mechanical contact), and by 

integrating a current conductor and a permeable component into a single piece, we 

significantly reduce the fabrication complexity down to a single-mask process. This 

single-mask process is enabled by two recently-developed technologies: a single-mask 

process for dual-height metallic structures [99]; and a robotic-assisted magnetic 

lamination technology [78, 100]. The magnetic lamination technology in which 

permeable and non-permeable materials are sequentially electrodeposited in a multilayer 

fashion has been previously used to achieve multilayer surface/interface-property enabled 

functions and applications (e.g. microlaminated MEMS magnets with preserved magnetic 

properties [101]), and multilayer bulk-property enabled functions and applications (e.g. 
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nanolaminated inductor cores with suppressed eddy-current losses [20]). In this work, 

both the architectural sequence and the periodic magnetic field patterns of the magnetic 

multilayer are exploited to create a bistable microsystem that enables defined latching 

behaviors.  

4.2 Actuator design 

4.2.1 Operation principle 

The operation principle of the bi-stable vertical magnetic actuator is shown in cross-

sectional view in figure 4.2. For ease of understanding, consider a simplified latching 

mechanism shown in figure 4.2(a). A movable permeable piece is flanked by two fixed 

permeable pieces (with narrow gaps between the movable and the fixed pieces), and 

placed in an external magnetic field oriented in the horizontal direction. If only one 

degree of freedom of motion is available, namely the vertical direction, the movable 

piece has a tendency to align with the pair of fixed pieces to reduce magnetic potential 

energy. This serial configuration corresponds to the energy minimal state in an energy 

well, hence the stable position. If two pairs instead of one pair of fixed permeable pieces 

are stacked in the vertical direction separated by non-permeable pieces, similarly, two 

energy minimal states are created, one position nearly aligned with the bottom (latching-

down (LD) state, figure 4.2(b)) and the other nearly aligned with the top pair (latching-up 

(LU) state, Figure 4.2(e)) of the fixed permeable pieces. The near rather than the perfect 

alignment of the movable to the fixed permeable pieces is due to the interaction of the 

upper pair with the movable piece when aligned to the bottom pair of fixed permeable 
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pieces (and vice versa). The transition between one energy minimum to the other requires 

external energy input. Applying a current pulse into the movable permeable piece (i.e., 

also using it as a conductible piece) in the presence of the external magnetic field results 

in a Lorentz force which can be exploited to switch the movable piece between LU and 

LD states. Assuming the movable piece is initially in the LD state (figure 4.2(b)), a 

proper pulsed current (directed into the plane of the figure along with a left-pointing 

external field) would break the latching and initiate an upward movement (pulsing-up 

(PU) state, figure 4.2(c)). If sufficient current to overcome the energy barrier has been 

applied, the upward movement continues without additional current input due to inertia 

until it surpasses the energy barrier (unstable-equilibrium (UE) state, figure 4.2(d)), after 

which it falls into the other energy well, i.e. the LU state (figure 4.2(e)). A similar 

downward movement would involve the pulsing-down (PD) state (figure 4.2(f)) with a 

pulsed current in the opposite direction (i.e., directed out of the plane of the figure). 
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Figure 4.2 Operating principle of the bi-stable magnetic actuator (cross-sectional view). (a) A 

movable permeable piece has a tendency to latch in alignment with a pair of fixed permeable 

pieces to reduce magnetic potential energy , so to stay in an energy well. Two pairs of fixed 

permeable pieces stacked in the vertical direction separated by non-permeable pieces, and the 

movable permeable piece latched at the latching-down (LD) state (b); at the pulsing-up (LU) state 

(c) initiating upward motion due to Lorentz Force produced by a pulse of current; at the unstable 

equilibrium (UE) state (d) barely going over the energy barrier; latched at the latching-up (LU) 

state (e); and at the pulsing-down (PD) state (f) initiating downward motion due to Lorentz force 

produced by an opposite pulse of current. 
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Figure 4.3 3D design sketch of the bi-stable vertical magnetic actuator. Tri-layer (permeable/non-

permeable/permeable) Flux guide, shuttle and contact pad as marked.  A-A’ indicating the cross-

sectional cut demonstrated in figure 4.7. 

 

Should the stacking of the vertical fixed pairs of permeable pieces continue, multiple 

energy wells can be created, forming a multi-stable system that can pave the way for 

applications such as vertical stepper motors with defined stepping sizes. The vertically 

periodic magnetic flux patterns (denser in between the permeable pieces and sparser in 

between the non-permeable pieces) created by a repetitive permeable/non-permeable 

multilayer influence the energy well positions. By designing the individual layer 

thicknesses in the magnetic lamination structure, finite latching positions can be 

engineered. In this work, we focus on the bi-stable system with two pairs of fixed 

permeable pieces. The dual-function of the movable piece (conductible and permeable) 
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greatly simplifies the design, and due to the magnetic latching, no external energy is 

needed to sustain the latching positions. 

A 3D bi-stable actuator design is shown in figure 4.3. Three main components are 

presented:  1) a pair of tri-layer 'flux guides' which are the fixed permeable/non-

permeable/permeable stacks in figure 4.2; 2) a single-layer, serpentine-shaped 'shuttle' 

which is the vertically movable permeable piece in figure 4.2; and 3) a pair of contact 

pads which operate as mechanical anchors and electrical contacts. Note that the 

serpentine spring is designed to act both as a current path for the Lorentz switching force, 

as well as provide mechanical support for vertical movement of the shuttle. 

4.2.2 Material selection 

The device is fabricated on a glass substrate. Glass is utilized for its electrical insulation 

as well as optical transparency to facilitate the fabrication process. Permalloy (Ni80Fe20) 

is used as the permeable material due to its high permeability (μr=900), saturation flux 

density (Bs=1.2T) and process compatibility. The material properties of electrodeposited 

NiFe permalloy can be find in [20]. Copper is used as the non-permeable material due to 

its high electrical conductivity, which reduces possible joule heating. Joule heating could 

be detrimental in two scenarios: 1) affect the reliability of the device (thermal breakdown 

due to metal melting), especially when pinholes or other defects exist in shuttle region as 

a result of fabrication non-ideality; and 2) demagnetize the shuttle and nearby flux guides, 

if the corresponding temperature on these structures approaching to Curie temperature. 

Except for utilizing low resistivity material in the shuttle design, short pulsed current 
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instead of steady ones would reduce the Joule heating. One other method is to include 

convection cooling into the design. However, the vibration caused by the flow of air or 

other liquids might complicate the behavior of the actuator, it is hence not utilized in this 

work. 

4.2.3 Device modeling 

The proposed actuation and latching mechanism involves three forces: 1) magneto-static 

force; 2) spring force; and 3) Lorentz force. The balance between these forces determines 

the behavior of the actuator. All three forces exist during the pulsing-up and -down states 

(figures 4.2(c) and (f)). At all other states (including latching-down (figure 4.2(b)), 

latching-up (figure 4.2(e)), unstable equilibrium states (figure 4.2(d)), and anywhere in-

between, only magneto-static and spring forces are present.  

4.2.3.1 Magnetostatic force 

The magnetostatic force arises due to the magnetic interaction between the permeable 

pieces, i.e. force experienced by the Permoalloy shuttle due to the existence of nearby 

flux guides. The magnetostatic force is the force responsible for the latching mechanism 

with the benefit of zero power consumption from external energy sources while latched. 

The parameters and proper coordinate system for analysis of this device is shown in 

figure 4.4(a), with the origin lying at the symmetrical point of the device. Due to 

symmetry, the x- and z- components of the magnetostatic force are assumed to be zero, 
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and the y-component magnetostatic force (FM,y) experienced by the shuttle could be 

analytically calculated using Kelvin’s formula as shown in equation (4.1) [96, 102], 

where V and Mx are the volume and x-component magnetization of the shuttle, and Bx is 

the x-component of the magnetic flux density without the presence of the shuttle. Bx near 

the vicinity of a permeable piece with a rectangular shape (width along x axis much 

larger than height in the z axis) and placed inside an external filed in the x direction could 

be analytically calculated using equation (4.2) [103], 

assuming a 2D configuration (z dimension of the magnet infinitely long). In equation 

(4.2), tM and WM are the thickness (y direction) and width  (x direction) of the magnet, µ0 

is the vacuum permeability, M is the magnetization of the permeable piece induced by 

the external field. For non-dimensional analysis, if we introduce the non-dimensional 

parameters           ,         and aspect ratio (AR)    
  

  
  , equation (4.2) 

would be further modified into equation (4.3): 
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Figure 4.4 The 2D map of dBx/d   near the vicinity (-2<    <2; -2<  <2) of the permeable piece 

(dotted rectangular area) plotted by MATLAB using the dimensionless equation (4.3).  

As explained by equation (4.1), FM,y is fundamentally induced by the gradient of the 

magnetic flux density, with its value proportional to dBx/dy. The 2D map of dBx/d   near 

the vicinity of the permeable piece plotted by MATLAB using the dimensionless 

equation (4.3) is shown in figure 4.4. Notice that near the corners of each permeable layer, 

round-shape regions with large intensity of dBx/d    exist. In comparison, the 

dBx/d   values far from the corners are small. 
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Figure 4.5 (a) Schematic showing the proper coordinate system and dimensions. (b) 2D map 

showing dBx/dy using the dimensions of figure 3(a) with 10μm gaps without the presence of the 

shuttle. The dotted lines show the relative proximity of the shuttle edge (when presented) to the 

flux guides, with small gaps (edge at S line) and large gaps (edge at L line). (c) Simulated 

magneto-static latching force (y component) versus vertical displacement of the bi-stable 

magnetic actuator using finite-element analysis for gaps sizes 10, 20, 30, 50, and 70μm. A force 

sign convention is used such that a force along the positive y direction is deemed positive. 

 

A more precise 2D map of dBx/dy using the dimensions of figure 4.5(a) with 10μm gaps 

and without the presence of the shuttle is simulated using finite-element analysis. For all 

magnetic-related simulations, 2D models were built using COMSOL Multiphysics 
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AC/DC module (with a depth of 0.5mm, capturing the z direction extension of the shuttle 

and flux guides) to reduce the computational complexity assuming the magneto-static 

interactions everywhere else are negligible due to the intentionally designed larger gaps. 

Uniform external magnetic flux density of B0 (0.75T) is applied in the models. Similar to 

figure 4.4, based on analytical calculations, figure 4.5(b) also shows round-shape regions 

with large intensity of dBx/dy near the corner of the permeable pieces. The dBx/dy values 

far from the corners are small. This means the majority of the magneto-static force is 

exerted at the end of the shuttle should the shuttle be present. Moreover, if two vertical 

dotted lines are drawn on figure 4.5(b), indicating the relative proximity of the shuttle 

edges to the fixed flux guides, with 'S' being close to the flux guides (small gaps) and 'L' 

being far away from the flux guides (large gaps), one interesting dBx/dy sign-change 

pattern could be observed: from the direction of negative y to positive y, the sign of 

dBx/dy changes three times for the 'S' line and only once for the 'L' line. The implication 

is that if the edges of the shuttle extend in close proximity to the flux guides (i.e., small 

gaps), given that the magnetostatic force mainly arises from contributions at the end of 

the shuttle, the magnetostatic force would also exhibit three sign changes. As the edge of 

the shuttle is retracted from the flux guides (i.e., large gaps), only one sign change is 

observed. This trend can be seen quantitatively in Figure 4.5(c), where the y-component 

of the magneto-static force as a function of vertical displacement is simulated using 

finite-element analysis with a fixed shuttle width (Ws) and increasing gaps (10, 20, 30, 50 

and 70μm). A force sign convention is used such that a force in the positive y direction is 

deemed positive. Two representative gap sizes are singled out here: a 10μm gap case 

(type A device) and a 50μm case (type B device). The type A device exhibits LD and LU 
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positions indicated by the black circles, where magnetostatic forces are equal to zero in 

addition to negative slopes indicating stability. This stability (i.e. bottom of the energy 

wells) is induced by the relatively large change of dBx/dy in close proximity to the fixed 

permeable pieces. The black X marks the state of UE between them (positive 

displacement incurs positive-signed force causing further displacement, and vice versa). 

For wide gaps, such as the type B device, which only captures a single sign change of 

dBx/dy, the magnetostatic force shows a monotonic variation with vertical displacement. 

In order to design a system with bi-stability, it is now clear that the design rule in the 

lateral direction (x-direction) should be such that the gaps in between the shuttle and flux 

are sufficiently small. On the vertical direction, as can be seen from figure 4.5(b), if the 

top and bottom layers of the permeable materials of the flux guides are too closely 

stacked (i.e. insufficient thickness of non-permeable materials between the flux guides), 

the oppositely signed high-intensity dBx/dy region at the bottom corner of the top 

permeable material and the top corner of the bottom permeable material would merge, 

eliminating the bi-stability of the system. Thus, a useful design rule in the vertical 

direction (y-direction) is that the non-permeable layers should be sufficiently thick to 

magnetically decouple the top and bottom permeable layers of the flux guides. 

The above analysis considers only magnetostatic force and the effects of spring force will 

be considered in the next section; however, it is useful to point out here that spring force 

will cause the exact LD and LU positions shown in figure 4.5(c) to be displaced.   

We would like to explore here the dependence of the size of the round-shape regions with 

large intensity of dBx/dy on the aspect ratio (AR) of the permeable piece. From the above 
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discussion, it is clear that if the size of the high intensity dBx/dy region gets larger (more 

far reaching towards the shuttle), the stringent design rule on the maximum allowable 

size of the gap in between the shuttle and the flux guides could be relaxed (i.e. can be 

wider). This could be beneficial fabricationally, as the realization of HAR gap is often  

challenging in microfabricated metal electrodes. Here a series of 2D simulations using 

COMSOL Multiphysics AC/DC module were carried out by fixing the width (WM) to be 

50µm, and varying the thickness (tM) of the permeable piece (5, 10, 15, 20, 25, 30µm), 

the AR γ (tM/WM) of the permeable piece varies accordingly from 0.1-0.6. The size (α) of 

the round-shape regions with large intensity of dBx/dy is defined as the distance along x 

axis (at the corner of the permeable piece) in between the maximum intensity value of 

dBx/dy (near the corner of the permeable piece) and the location where the intensity of 

dBx/dy drops to 10% of its maximum value. The corresponding dimensional-less size of 

the round-shape regions with large intensity of dBx/dy is defined as α/WM. The 

dependence of  α/WM as a function of AR of the permeable piece are plotted in figure 4.6, 

the decrease of AR by six times (0.6 to 0.1) increases the dimensional-less size of the 

round-shape regions with large intensity of dBx/dy by five times. This simulation results 

shows the benefit of decreasing the height (or increasing the width) of the permeable 

piece in the flux guides. In this work, we chose the AR of 0.2 (tM of 5µm, and WM of 50 

µm), for a relatively large α/WM, and a reasonable tM for a relatively large magnetostatic 

latching force. 
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Figure 4.6 Simulated dimensional-less size of the round-shape regions with large intensity of 

dBx/dy near the corner of the permeable piece, as a function of aspect ratio of the piece (γ). The γ 

is defined as tM/WM, with values varying from 0.1-0.6.  

 

4.2.3.2 Spring force  

Spring design must consider the following issues: the lateral rigidity of the spring should 

be sufficiently high to produce a substantially vertical movement without slewing; and 

the vertical rigidity of the spring should be sufficiently low such that the magnetostatic 

latching force is not overwhelmed by spring force when displaced, thereby leading to 

strong latching. Both of these issues can be satisfied with a thin but wide spring cross-

section design (justified by the area moment of inertia for a rectangular section).  

With the above mentioned general design rules in place, along with the magnetostatic 

force simulation results, we finalized two types of device. A small gapped (10μm) design 
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with predicted bi-stability, type A;  and a large gapped (50μm) control design type B, 

with a prediction of no latching. The cross-sectional dimension of the shuttle, as well  as 

the flux guide dimensions are shown in figure 4.5(a). A serpentine spring is designed 

with a sufficient length for a low spring constant in the y direction (lower than the 

latching force). The FEM simulated (3D model, COMSOL Multiphysics, MEMS module) 

spring constant of both types of devices is 5.7N/m. The spring force (FS) as a function of 

vertical displacement is plotted in grey in figure 4.7(b). The asymmetrical spring force 

results from the fabrication-influenced design of the zero spring deflection position being 

at the bottom of the stack (i.e. directly on top of the substrate) instead of the middle of the 

stack. 
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Figure 4.7 (a) schematics of the passive force (sum of magneto-static force (FM) and spring 

force(FS)) and stable latching positions (LD and LU) of the bi-stable actuator.  (b) Simulated 

passive force (y component) of type A device versus vertical displacement, from which LD, LU, 

upward-passive-force-barrier (UPFB) and downward-passive-force-barrier (DPFB) could be 

determined.  A force sign convention is used such that a force along the positive y direction is 

deemed positive. 

 

4.2.3.3 Passive force analysis 

It is now possible to use the simulated magnetostatic force and spring force to determine 

the vertical latching positions (LD and LU) of the type A device, as shown schematically 
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in figure 4.7(a). The y-component sum of these two forces (Fs+FM, for simplicity, 

referred to as the 'passive force') is plotted in figure 4.7(b) in red, from which the exact 

locations of LD (also PU) and LU (also PD) are determined to be -23.1μm and 18.4μm. 

The designed actuation range would be 41.5μm. 

Another pair of important parameters that could be determined from figure 4.7(b) is the 

upward-passive-force-barrier (UPFB) and downward-passive-force-barrier (DPFB), the 

maximum amount of force that must be overcome in order to move from one latching 

position to other. The UPFB and DPFB correspond to the magnitudes of Lorentz forces 

(and hence the current pulse heights) required during the pulsing states (PU and PD). 

From figure 4.7(b), the UPFB and DPFB are determined to be -0.409mN and 0.116mN, 

respectively. The difference in the absolute values of these forces is due to the 

asymmetrical spring force. 

4.2.3.4 Lorentz force 

The Lorentz force exerted on the shuttle can be estimated using equations (4.4)-(4.7), 

assuming 1) uniform current distribution; 2) Bx(x,y,z) is unchanged over the thickness (y 

direction extent) of the thin shuttle; and 3) ignoring the fringing effects. In equations (4.4) 

and (4.5),                 and                  are the Lorentz force at PU and PD states, of which exclusive 

locations the Lorentz forces being invoked among all actuation states，                                      and 

                                       are the x-component of the magnetic flux densities (a function of x and z) 

at PU and PD,                    and                    are the mean x-component of flux densities between 

the flux guides at PU and PD states, B0 (0.75T) is the ambient magnetic flux density in 
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the remaining regions outside of the flux guides, LFG (0.5mm) is the length of the shuttle 

between flux guides in the z direction, LR (2.3mm) is the remaining shuttle length in the z 

direction that is perpendicular to the ambient field, Iz,PU and Iz,PD are the to-be-determined 

pulsedcurrent height (direction of which is along z) at the corresponding PU and PD 

states. In equations (4.6) and (4.7),           and           are the x-component of 

flux densities between the flux guides at PU and PD states, and Ws is the width of the 

shuttle (y direction) being 150μm. The x-component of the magnetic flux density versus 

lateral position between the flux guides without the presence of the shuttle were 

simulated in a 2D model, using COMSOL Multiphysics AC/DC module. The simulation 

should be conducted before the permeable shuttle is introduced [104, 105], as field set up 

or modified by the permeable piece could not result a net force on the piece itself 

(Newton's first law). The x-component of the magnetic flux density between the flux 

guides (          and          ) as a function of x throughout the width of the shuttle 

(Ws=150μm) is plotted in figure 4.6 at PU (y=-23.1μm) and PD (y=18.4μm), from which  

                   and                    are calculated to be 0.789T and 0.788T, respectively.  

                                                                                                                        

                                                                                                                        

where                              
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Figure 4.8 Simulated magnetic flux density Bx (x component) at PU (y=-23.1μm) and PD 

(y=18.4μm) states versus lateral position x in between the two tri-layer flux guides. 
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Figure 4.9 Fabrication sequence (side view, cross-section A-A’ of Figure 2) of the bi-stable 

actuator using a single mask. (a) Sputtering of Ti/Cu/Ti seed layer on glass substrate and 

patterning positive resist mold; (b) electrodeposition of NiFe layer followed by positive resist 

mold stripping ; (c) Exposed seed layer wet-etching, electrically insulating the shuttle region 

followed by negative resist spinning and backside UV exposure; (d) negative resist development, 

forming a self-aligned mold; (f) electrodeposition of Cu and NiFe sequentially on the flux guide 

region only; and (f) negative resist mold stripping followed by glass substrate wet-etching, 

releasing the shuttle from the substrate. 

 

4.2.3.5 Static force analysis 

From the static force analysis perspective, the activating Lorentz force should exceed the 

passive-force-barrier (i.e. FL,PU > UPFB and FL,PD > DPFB), in order to switch from one 

latching state to the other. Using equations (4.4) - (4.7), along with the UPFB and DPFB 
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values obtained from figure 4.7(b), the desired pulsing-up and -down current height could 

be determined to be 0.19A and -0.05A, respectively. Here a current sign convention is 

used such that a current into the plane of figure is treated as a positive current. With the 

left-pointing external magnetic field in place, a positive current generates a positive 

Lorentz force (pointing in the positive y direction).  

4.3 Fabrication sequence 

Based on the above discussion, the fabrication sequence must contemplate the realization 

of two essential features for actuator operation: dual-height structures, i.e., structures in 

which the shuttle is single-layered in contrast with nearby tri-layered flux guides; and the 

ability to separate the dual height structures by narrow gaps for proper bi-stable latching. 

Conventional multi-mask layer-by-layer fabrication is not ideal for the proposed design, 

due to increased fabrication complexity and alignment issues associated with thick, multi-

height structures [59]. The fabrication process to create dual-height magnetic structures 

separated by a narrow gap is detailed in Chapter 2, a brief process description is provided 

here for the convenience of the reader, as shown in Figure 4.9.   

A glass wafer was used as a substrate. A sandwiching titanium(30nm) / copper(300nm) / 

titanium(30nm) seed layer was then sputtered onto the substrate. An AZ40XT photoresist 

mold was formed on the seed layer and conventional through-mold electrodeposition of 

10μm Ni80Fe20 (Permalloy) layer was subsequently carried out to form the entirety of the 

shuttle and the bottom layer of the flux guides. After removing the AZ40XT mold, using 

the deposited Permalloy as an etch-mask, the titanium/copper/titanium seed layer 
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originally below the resist mold was wet-etched. Upon completion of this step, the shuttle 

and contact pad region formed an inner region electrically insulated from the outer 

regions. The area between these regions become transparent due to the removal of seed 

layer exposing the underlying glass substrate. A thick KMPR1050 photoresist was then 

spun on the wafer and utilizing the electroformed Permalloy as a lithography-mask, an 

UV exposure from the backside of the wafer followed by development created a high-

aspect-ratio (HAR, 10:1) photoresist mold for a second round of electrodeposition. The 

second round of electrodeposition comprised of a 40μm Cu layer and a 10μm Permalloy 

layer to build up the rest layers of the flux guides. Since the shuttle is electrically 

insulated to the flux guide areas, no electrodeposition would occur in the shuttle region. 

Both the Permalloy and Cu electrodeposition conditions could be find elsewhere [20]. 

After dissolving the KMPR resist mold, the wafer was subsequently immersed in the 

hydrofluoric acid solutions (6:1 volume ratio of 40% NH4F in DI water to 49% HF) to 

undercut the glass substrate and release the shuttle. The wafer was then diced using a 

green laser (IPG IX280-DXF) into individual dies.  

Two types of devices are fabricated, type A and type B. The SEM micrographs of a type 

A device (gap size of 10μm) is shown in figure 4.10(a) with an expanded view in figure 

4.10(b).  



 

101 
 

 

Figure 4.10 SEM micrographs of  the bi-stable actuator type A (a) and its enlarged view (b).  The 

single-layer NiFe shuttle with a thickness of 10µm is fully released, flanked by two tri-layer 

(Permalloy 10µm/Cu 40µm/ Permalloy 10µm) flux guides. Gaps in between shuttle and flux 

guide is 10µm wide. 

4.4 Device Characterization 

Equipments for characterizing the fabricated devices (type A and B) include a digital 

microscope, a test bench proving external magnetic field, and a current source 

(galvanostat), as shown in figure 4.11. External magnetic field of 0.75T was provided 

through a pair of NdFeB permanent magnets (K&J magnetics, grade N52) mounted on a 

3-D printed test bench (figure 4.11 insert). The field strength of 0.75T is determined 

through two methods: 1) simulated using the manufacturer's online simulator 

(https://www.kjmagnetics.com/calculator.asp) with the magnetic-property specifications 

of the magnets and the spacing between the magnets; and 2) measured using a 

Gaussmeter (Model GM2,AlphaLab, Inc). The vertical static displacement (actuation 

range) at the center of the shuttle was measured by a digital microscope (Keyence VHX-
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5000) based on focus-detection method with vertical resolution of 0.5μm. A galvanostat 

(Gamry, reference 600+) was used to provide a controlled pulsed current sequence.  

 

Figure 4.11 Experimental setup for the characterization of the bi-stable vertical magnetic actuator, 

including a digital microscope, a test bench and a galvanostat. 
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Figure 4.12 Static vertical displacement measured using digital microscope with a fixed pulse 

duration  (t1 of 10.0 ms) and various actuating current pulses (0.1, 0.3, and 0.55A in pulse height) 

for (a) Type A device (10μm gap), showing  a latching-up (LU) state 40μm from the latching-

down (LD) state could be triggered with a 0.55A pulse, followed by a return of the LD state with 

a reverse pulse of -0.1A. (b) Type B device (50µm-gap), showing no LU state regardless of the 

pulse heights. 

-20

-10

0

10

20

30

40

50

60

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

δ
(µ

m
)

I (
A

)

t (ms)

I(A) δ(µm)

-20

-10

0

10

20

30

40

50

60

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

δ
(µ

m
)

I (
A

)

t (ms)

I(A) δ(µm)(a)

(b)

t1

t1

t1

t1

t1

t1

t1

t1

t1 = 10.0 ms Type A

Type B



 

104 
 

 

Figure 4.13 Static vertical displacement measured using digital microscope with a fixed pulse 

duration  (t2 of 1.0 ms) and various actuating current pulses (0.1, 0.3, and 0.55A in pulse height) 

for (a) Type A device (10μm gap), showing  a latching-up (LU) state 40μm from the latching-

down (LD) state could be triggered with a 0.55A pulse, followed by a return of the LD state with 

a reverse pulse of -0.1A. (b) Type B device (50µm gap), showing no LU state regardless of the 

pulse heights. 
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Figure 4.14 Static vertical displacement measured using digital microscope with a fixed pulse 

duration  (t3 of 0.5 ms) and various actuating current pulses (0.1, 0.3, and 0.55A in pulse height) 

for (a) Type A device (10μm gap) and (b) Type B device (50μm gap). A current pulse width of 

0.5ms could not trigger LU state in both types of devices regardless of the pulse heights.   

A series of current pulses with various pulse heights (0.1, 0.3, and 0.55A) and pulse 

widths (10.0ms, shown in figure 4.12(a) and (b); 1.0ms, shown in figure 4.13(a) and (b); 

0.5ms, shown in figure 4.14(a) and (b)) were supplied from the galvanostat, and the 

before- and after-pulse vertical displacement were manually measured by the digital 

microscope, with the LD state (initial state) being zero displacement ( =0µm). Figure 
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4.12 shows the experiments with pulse width of 10.0 ms for type A (figure 4.12(a)) and 

type B (figure 4.12(b)) devices. The primary vertical axis records various pulse heights 

whereas the secondary vertical axis records the displacement. The horizontal axis records 

time elapsed, where even though pulse width was precisely recorded, due to the manual 

nature of the focus-detection based displacement measurement, the exact time at which 

displacement data were measured was not traceable. As can be seen from figure 4.12(a), 

for the type A device, the shuttle was initially at LD state, corresponding to the vertical 

displacement ( ) of 0µm. A current pulse of 0.1A in height and 10.0ms in width was 

firstly applied, followed by an after-pulse displacement measurement. The zero after-

pulse displacement indicates the shuttle was not switched into LU states. Sequentially 

increased pulse heights (same pulse width) were subsequently applied to the system 

followed by the after-pulse displacement measurements in a similar fashion. It was 

observed that for type A device, a current pulse height as high as 0.55A was needed in 

order to switch from the LD state ( =0µm) to the LU state ( =40µm). A negative pulse of 

-0.1A was needed to switch from the LU state ( =40µm) back to the LD state ( =0µm). 

The actuation range is hence 40µm (vertical displacement at LU state). However, for the 

type B device shown in figure 4.12(b), no LU state was observed; zero displacement 

before and after the current pulse was recorded, even though dynamic behaviors such as 

vibration can be seen when pulsing occurs. The experimental pulsing-up current height 

(0.55A) and -down current height (-0.1A) differ from the simulated values (0.19A and -

0.05A). The possible reasons of these differences might be traced back to 1) testing 

related error (e.g. misaligned magnetic field to current angle, magnetic field deviation 
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due to test bench assembly) and 2) fabrication related error (e.g. fabrication dimension 

variations). Screen shots of a video clip demonstrating the operation of the bi-stable 

actuator (10ms pulse on and 1s pulse off) can be seen in figure 4.15. The schematic of the 

LD state and the corresponding microscope image can be found in figure 4.15(a) and (b), 

respectively; the schematic of the LU state and the corresponding image is shown in 

figure 4.15(c) and (d). Similarly, experiments with a fixed pulse width of 1.0 ms for type 

A and type B devices are shown in figure 4.13(a) and (b). For the type A device, same 

current pulse heights (pulsing-up current height (0.55A) and pulsing -down current height 

(-0.1A)) and actuation range (40µm) has been recorded; and for type B device, no LU 

state was observed. An even smaller pulse width of 0.5ms, however, could not trigger LU 

state in either types of devices, shown in figure 4.14(a) and (b). This observed behavior 

may be explained by considering the shuttle as a mass-spring system, with a reduced 

amplitude response above the mechanical resonant frequency of the system (determined 

to be 1121.5Hz using COMSOL Multiphysics, MEMS module, as seen in figure 4.16).  

Utilization of a pulsed current not only reduces the possible Joule heating effect but also 

minimizes the required energy input  (I
2
Rt, where I is the pulsed current height, R=2Ω is 

the nominal resistance of the device, t is the pulse duration). The minimal required energy 

input for switching from LD to LU state is 0.6mJ, and from LU to LD is 0.02mJ. In the 

latching states, due to the magneto-static latching force, no external energy is needed to 

keep the shuttle in the designated latched positions.  
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Figure 4.15 (a) Schematic of the latching down (LD) state (side-view) and the corresponding 

digital microscope image (b) (top-view), and (c) schematic of the latching up (LU) state (side-

view) and the corresponding digital microscope image (d) (top-view). 
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Figure 4.16 Simulated first natural frequency of the shuttle. 

 

 

4.5  Summary 

A bi-stable vertical magnetic actuator with non-contact latching is presented in this 

chapter. Finite-element analysis was used to predict critical gap size leading to bi-stable 

latching behaviors. This device was fabricated utilizing two technologies developed in-

house: a single-mask process for dual-height metallic structures, and a magnetic 

microlamination technology taking advantage of the multilayer-structure-induced 

spatially varying magnetic field patterns. Bi-stable latching and vertical displacement of 
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40μm has been achieved in these MEMS actuators with small energy input and zero 

standby power consumption. 

 

  



 

111 
 

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

5.1 Summary of Conducted Research 

In accordance to the objective of this thesis, a suitable fabrication technology entitled 

Microlamination Technology was developed (Chapter 2), capable of scaling the relevant 

characteristic dimensions of devices and applications, enabling both lumped and 

distributed magnetic MEMS systems. To illustrate the utility and versatility of the 

developed technology, one paradigmatic lumped system and one paradigmatic distributed 

system were presented.  

The lumped system of permanent micromagnets (Chapter 3) comprised of laminated 

magnetic and nonmagnetic multilayer was realized that demonstrate superior magnetic 

properties comparing to their non-laminated counterparts. The underlying mechanism for 

the property enhancement of the laminated magnets was further elucidated. 

The distributed system of a bi-stable MEMS actuator (Chapter 4) with non-contact 

latching behavior was discussed, the additional structural and compositional complexity 

introduced by the Microlamination Technology was critical to scale the spatial 

wavelength of the device (lamination thickness)  similar in size to the characteristic 

length of the application (actuation range), leading to the desired distributed system. The 

design methodology of the bi-stability were also discussed in this chapter. 

5.2 Suggestions for Future Research 
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The exemplary lumped and distributed systems discussed in this thesis could be further 

expanded and strengthened. Some of the ideas for the improvements are provided in the 

following sections as suggestions for future research.  

5.2.1 Intrinsically stronger permanent magnetic material for microlaminated magnets 

Table 5.1 Microfabricated  permanent magnets for MEMS [36] 

 

We demonstrated in Chapter 3 microlaminated MEMS permanent magnets [CoNiP/Cu]n, 

enabled by the Microlamination Technology with preserved individual component 

magnetic layer (CoNiP) properties and reduced average stress possessed in films, 

showing an improved total magnetic energy as compared with their non-laminated 

counterparts. The demonstrated fabrication approach has the potential for application to 
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other permanent magnetic material systems with higher intrinsic properties to further 

increase the total magnetic energy possessed in these micromagnets. 

In searching for other candidate permanent magnetic materials for the magnetic layer, we 

should revisit the material selection guideline for the component magnetic layer: 1) be 

compatible with electrodeposition for its relative economy, low operating temperature, 

and rapid deposition rates targeting substantial overall thickness; 2) preferably possess a 

controllable direction of magnetic anisotropy; 3) have large intrinsic maximum magnetic 

energy product.  

Arnold and Wang [36] reviewed different classes of permanent magnetic materials with 

associated performance and integration tradeoffs, a summary is shown in table 5.1. Rare 

earth magnetic alloys such as NdFeB and SmCo could not be electroplated from aqueous 

plating solutions, hence even though they possess energy product as high as 400kJ/m
3
 

[106], they are not in consideration for this process. Equiatomic Platinum-Transition-

Metal alloys such as FePt L10 and CoPt L10, having attractive energy products (e.g. CoPt 

L10 with a (BH)max of 100kJ/m
3
 [107]) can be a good candidate magnetic layer material, 

as long as the required high temperature post-process annealing process (e.g. 675°C for 

30 min [107]) would not pose a threat to other integrated materials in a device. 

Noticeably, CoPt(P) exhibites strong performance (e.g. (BH)max of 69kJ/m
3
 [63]) while 

can be electrodeposited at COMS-compatible temperatures (65°C) without the need for 

post-deposition annealing [63]. Even though the platinum containing bath might limit its 

usage in price-sensitive applications, for some performance critical applications, CoPt(P) 
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could be a great candidate component magnetic layer material in realizing a new type of 

laminated MEMS micromagnets. 

5.2.2 Magnetic multi-stable actuator 

We demonstrated a MEMS actuator with bi-stability in Chapter 4 through creating 

magnetic field patterns defined by structural patterns (magnetic/nonmagnetic/magnetic 

tri-layer), enabled by the Microlamination Technology. The real strength of the 

Microlamination Technology lies in the fact that more complex yet flexible periodic 

structural patterns could be facilely and flexibly fabricated as a simple conceptual 

extension of Chapter 4, mapping to a complex magnetic field periodicity one could 

further utilized realizing MEMS multi-stable systems.  

 

Figure 5.1(a) Schematic of a multi-stable actuator featuring multilayered flux guides ([NiFe/Cu]8 

+ NiFe); (b) corresponding FEM simulated magneto-static latching force (y component) versus 

vertical displacement of the multi-stable magnetic actuator for a gap size of 10μm. The stable 

positions are marked with black circles. A force sign convention is used such that a force along 

the positive y direction is deemed positive. 
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For instance, consider simply extending the stacks of the vertical fixed pairs of permeable 

pieces in figure 4.2 from a NiFe/Cu/NiFe tri-layer into a [NiFe/Cu]n multilayer, without 

changing the single-layered NiFe shuttle, and keep all parameters the same. More than 

two energy wells will be created forming a multi-stable system that can pave the way for 

applications such as vertical stepper motors. By designing the individual layer 

thicknesses in the magnetic lamination structure, finite stepping positions can be readily 

engineered. To demonstrate such possibility, a multilayered flux guides 

([NiFe(10μm)/Cu(40μm)]8 + NiFe(10μm)) as shown in figure 5.1(a) are constructed in 

COMSOL, and using finite-element analysis to simulate magneto-static latching force (y 

component) versus vertical displacement of the multi-stable magnetic actuator for a gap 

size of 10μm (figure 5.1(b)). It can been seen that multi-stability is realized here with the 

stable positions marked in black circles. Note that similar to figure 4.4(c), only the 

magneto-static force was simulated here. With a proper spring compliance and 

corresponding actuation Lorentz force, one can design a vertical magnetic stepper motor 

with controlled stepping size. 
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