7,405 research outputs found

    Electro-thermal coupling analysis methodology for RF circuits

    Get PDF
    In this paper we present an electro-thermal coupling simulation technique for RF circuits. The proposed methodology takes advantage of well established tools for frequency translating circuits in order to significantly reduce the computational resources needed when frequencies of interest are separated by orders of magnitude.Postprint (published version

    Differential temperature sensors: Review of applications in the test and characterization of circuits, usage and design methodology

    Get PDF
    Differential temperature sensors can be placed in integrated circuits to extract a signature ofthe power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper firstdiscusses the singularity that differential temperature sensors provide with respect to other sensortopologies, with circuit monitoring being their main application. The paper focuses on the monitoringof radio-frequency analog circuits. The strategies to extract the power signature of the monitoredcircuit are reviewed, and a list of application examples in the domain of test and characterizationis provided. As a practical example, we elaborate the design methodology to conceive, step bystep, a differential temperature sensor to monitor the aging degradation in a class-A linear poweramplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how,for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamicrange is required. A circuit solution for this objective is proposed, as well as recommendations for thedimensions and location of the devices that form the temperature sensor. The paper concludes with adescription of a simple procedure to monitor time variability.Postprint (published version

    When self-consistency makes a difference

    Get PDF
    Compound semiconductor power RF and microwave device modeling requires, in many cases, the use of selfconsistent electrothermal equivalent circuits. The slow thermal dynamics and the thermal nonlinearity should be accurately included in the model; otherwise, some response features subtly related to the detailed frequency behavior of the slow thermal dynamics would be inaccurately reproduced or completely distorted. In this contribution we show two examples, concerning current collapse in HBTs and modeling of IMPs in GaN HEMTs. Accurate thermal modeling is proved to be be made compatible with circuit-oriented CAD tools through a proper choice of system-level approximations; in the discussion we exploit a Wiener approach, but of course the strategy should be tailored to the specific problem under consideratio

    Temperature-dependent Characterization of Power Amplifiers Using an Efficient Electrothermal Analysis Technique

    Get PDF
    In this paper, we propose an efficient methodology for the electrothermal characterization of power amplifier (PA) integrated circuits. The proposed electrothermal analysis method predicts the effect of temperature variations on the key performances of PAs, such as gain and linearity, under realistic dynamic operating conditions. A comprehensive technique for identifying an equivalent compact thermal model, using data from 3-D finite element method thermal simulation and nonlinear curve fitting algorithms, is described. Two efficient methods for electrothermal analysis applying the developed compact thermal model are reported. The validity of the methods is evaluated using commercially available electrothermal computer-aided design (CAD) tools and through extensive pulsed RF signal measurements of a PA device under test. The measurement results confirm the validity of the proposed electrothermal analysis methods. The proposed methods show significantly faster simulation speed comparing to available CAD tools for electrothermal analysis. Moreover, the results reveal the importance of electrothermal characterization in the prediction of the temperature-aware PA dynamic operation

    Assessment of thermal instabilities and oscillations in multifinger heterojunction bipolar transistors through a harmonic-balance-based CAD-oriented dynamic stability analysis technique

    Get PDF
    We present a novel analysis of thermal instabilities and oscillations in multifinger heterojunction bipolar transistors (HBTs), based on a harmonic-balance computer-aided-design (CAD)-oriented approach to the dynamic stability assessment. The stability analysis is carried out in time-periodic dynamic conditions by calculating the Floquet multipliers of the limit cycle representing the HBT working point. Such a computation is performed directly in the frequency domain, on the basis of the Jacobian of the harmonic-balance problem yielding the limit cycle. The corresponding stability assessment is rigorous, and the efficient calculation method makes it readily implementable in CAD tools, thus allowing for circuit and device optimization. Results on three- and four-finger layouts are presented, including closed-form oscillation criteria for two-finger device

    Aspectos de interconectividade dos moduladores de polĂ­mero

    Get PDF
    Orientador: Hugo Enrique Hernåndez-FigueroaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: As interconexÔes ópticas e elétricas são de grande interese na area de encapsulamento de circuitos integrados híbridos fotÎnicos. Baixas perdas e banda larga são necessårias para o desenvolvimento de novas tecnologías na årea. Nesta tese apresentan-se as seguintes contribuiçÔes originais: uma metodologia do modelamento de interconexÔes elétricas em encapsulamento de moduladores de polímero eletro-óptico, um dispositivo óptico compacto de banda larga para interconectar a plataforma de silício sobre isolante com a plataforma de filmes finos de polímero sobre silícioAbstract: Electrical and optical interconnects are of great interest for photonic integrated circuits with hybrid platforms. Low loss and wide band are essential for the development of new technologies in this area. In this thesis, we present the following original contributions: a methodology for modeling electrical ceramic interconnects inside an electrooptic polymer packaging, and a compact low-loss optical interconnect for the silicon-on-insulator platform to the thin-film polymer on silicon platformDoutoradoTelecomunicaçÔes e TelemåticaDoutor em Engenharia Elétrica07/2014-36CAPE

    Electro-Thermal Model for Multi-Anode Schottky Diode Multipliers

    Get PDF
    We present a self-consistent electro-thermal model for multi-anode Schottky diode multiplier circuits. The thermal model is developed for an -anode multiplier via a thermal resistance matrix approach. The nonlinear temperature responses of the material are taken into consideration by using a linear temperature dependent approximation for the thermal resistance. The electrothermal model is capable of predicting the hot spot temperature, providing useful information for circuit reliability study as well as high power circuit design and optimization. Examples of the circuit analysis incorporating the electro-thermal model for a substrateless- and a membrane-based multiplier circuits, operating up to 200 GHz, are demonstrated. Compared to simulations without thermal model, the simulations with electro-thermal model agree better with the measurement results. For the substrateless multiplier, the error between the simulated and measured peak output power is reduced from ~13% to ~4% by including the thermal effect

    Effective electrothermal analysis of electronic devices and systems with parameterized macromodeling

    Get PDF
    We propose a parameterized macromodeling methodology to effectively and accurately carry out dynamic electrothermal (ET) simulations of electronic components and systems, while taking into account the influence of key design parameters on the system behavior. In order to improve the accuracy and to reduce the number of computationally expensive thermal simulations needed for the macromodel generation, a decomposition of the frequency-domain data samples of the thermal impedance matrix is proposed. The approach is applied to study the impact of layout variations on the dynamic ET behavior of a state-of-the-art 8-finger AlGaN/GaN high-electron mobility transistor grown on a SiC substrate. The simulation results confirm the high accuracy and computational gain obtained using parameterized macromodels instead of a standard method based on iterative complete numerical analysis

    Towards a Methodology for Analysis of Interconnect Structures for 3D-Integration of Micro Systems

    Get PDF
    Functional aspects as well as the influence of integration technology on the system behavior have to be considered in the 3D integration design process of micro systems. Therefore, information from different physical domains has to be provided to designers. Due to the variety of structures and effects of different physical domains, efficient modeling approaches and simulation algorithms have to be combined. The paper describes a modular approach which covers detailed analysis with PDE solvers and model generation for system level simulation.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Nonlinear mechanisms in passive microwave devices

    Get PDF
    Premi extraordinari doctorat curs 2010-2011, àmbit d’Enginyeria de les TICThe telecommunications industry follows a tendency towards smaller devices, higher power and higher frequency, which imply an increase on the complexity of the electronics involved. Moreover, there is a need for extended capabilities like frequency tunable devices, ultra-low losses or high power handling, which make use of advanced materials for these purposes. In addition, increasingly demanding communication standards and regulations push the limits of the acceptable performance degrading indicators. This is the case of nonlinearities, whose effects, like increased Adjacent Channel Power Ratio (ACPR), harmonics, or intermodulation distortion among others, are being included in the performance requirements, as maximum tolerable levels. In this context, proper modeling of the devices at the design stage is of crucial importance in predicting not only the device performance but also the global system indicators and to make sure that the requirements are fulfilled. In accordance with that, this work proposes the necessary steps for circuit models implementation of different passive microwave devices, from the linear and nonlinear measurements to the simulations to validate them. Bulk acoustic wave resonators and transmission lines made of high temperature superconductors, ferroelectrics or regular metals and dielectrics are the subject of this work. Both phenomenological and physical approaches are considered and circuit models are proposed and compared with measurements. The nonlinear observables, being harmonics, intermodulation distortion, and saturation or detuning, are properly related to the material properties that originate them. The obtained models can be used in circuit simulators to predict the performance of these microwave devices under complex modulated signals, or even be used to predict their performance when integrated into more complex systems. A key step to achieve this goal is an accurate characterization of materials and devices, which is faced by making use of advanced measurement techniques. Therefore, considerations on special measurement setups are being made along this thesis.Award-winningPostprint (published version
    • 

    corecore