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Abstract—We present a novel analysis of thermal instabilities
and oscillations in multifinger heterojunction bipolar transistors
(HBTs), based on a harmonic-balance computer-aided-design
(CAD)-oriented approach to the dynamic stability assessment.
The stability analysis is carried out in time-periodic dynamic
conditions by calculating the Floquet multipliers of the limit
cycle representing the HBT working point. Such a computation
is performed directly in the frequency domain, on the basis of
the Jacobian of the harmonic-balance problem yielding the limit
cycle. The corresponding stability assessment is rigorous, and
the efficient calculation method makes it readily implementable
in CAD tools, thus allowing for circuit and device optimization.
Results on three- and four-finger layouts are presented, including
closed-form oscillation criteria for two-finger devices.

Index Terms—Electrothermal effects, heterojunction bipolar
transistors (HBTs), stability.

I. INTRODUCTION

HE ANALYSIS of electrothermal instabilities in semi-
T conductor devices is a classical problem, which has been
the object of discussion for decades (see [1] and [2] and the
references therein), above all with reference to bipolar transis-
tors. In particular, the development of stabilization strategies
for heterojunction bipolar transistors (HBTs) through thermal or
electrical approaches (such as thermal shunting or emitter bal-
lasting) on the basis of approximate thermal models and of a dc
stability assessment has been the object of extensive investiga-
tion (see, e.g., [3] and [4]).
In this paper, we revisit the electrothermal stability problem
through a general and rigorous approach for stability analysis
in large-signal dynamic conditions, namely, the Floquet mul-
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tiplier theory [5]. The proposed implementation, based on the
harmonic-balance technique for large-signal (quasi)-periodic
steady-state evaluation, is readily amenable to inclusion in
computer-aided design (CAD) tools for circuit analysis and can
be exploited to address more general stability problems than the
one presently considered, like the large-signal stability analysis
of power amplifiers, or the design of oscillators.

The present approach, briefly discussed in Section II, allows
one to study the stability of the solution of a nonlinear dynam-
ical system, assuming that the latter is a periodic function of
time (i.e., a limit cycle [5]). In this case, the stability analysis
corresponds to assessing the stability of the limit cycle with re-
spect to an external perturbation, which we carry out by eval-
uating the Floquet multipliers [5] of the limit cycle itself. Ac-
cording to the algorithm presented in [6], such an evaluation is
performed directly in the frequency domain, making use of the
popular harmonic-balance approach. This is a significant advan-
tage over the time-domain calculation of the Floquet multipliers,
often exploited in the more mathematically oriented literature,
because no cumbersome numerical time integration of the lin-
earized system is required.

The general methodology is used here to study the gain col-
lapse phenomenon in GaAs-based HBTs. We have previously
reported on the analysis of electrothermal induced instability in
GaAs-based HBTs under large-signal and pulsed operation [7].
In this paper, we exploit the proposed Floquet-multiplier-based
technique to show an extremely varied set of dynamical behav-
iors, for instance, versus the device layout (namely, the number
of emitter fingers). A further advantage of the present approach
is the possibility to accurately and efficiently assess the effect
of electrical or thermal stabilization techniques [8]. Two main
additions are presented here with respect to [8]. First, we add an
introduction to the stability analysis technique in order to make
this paper self-consistent and allow the reader to have a better
insight into the implementation. Furthermore, we provide in-
sights into the appearance of electrothermal oscillations, which
were reported for multifinger device layouts in [8]. A detailed
numerical analysis of the dynamic behavior of a two-finger de-
vice is added, and the onset of the oscillations is explained on
the basis of a more intuitive electrothermal circuit model. This
allows one to obtain an analytical set of stability and oscillation
conditions.

0018-9480/$26.00 © 2009 IEEE
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II. HARMONIC-BALANCE-BASED STABILITY
ANALYSIS APPROACH

The Floquet theory is a classical topic in the perturbation
analysis of nonlinear dynamical systems with a finite number of
states and can be considered as the fundamental tool for stability
analysis of time-periodic solutions. Originally devised for non-
linear systems expressed in terms of ordinary differential equa-
tions, it has recently been extended [9] to the case of differen-
tial-algebraic equations. The extension is practically relevant to
the analysis of lumped circuits, whose describing equations are
of differential-algebraic type; on the other hand, the main lim-
itation of the method lies on the fact that distributed elements
cannot be represented in such a form.

A. Survey of Floguet Stability Theory

For the sake of simplicity, we shall review in this section the
Floquet analysis in the case of a 1-D differential-algebraic equa-
tion, i.e., a nonlinear dynamical system represented by n = 1
state variables. This will allow one to introduce the proposed
numerical approach in a simple way; the general (vector) case
is treated in detail in [6]. Let us consider the following non-
linear scalar differential-algebraic equation, which has the typ-
ical form resulting from the application of the modified nodal
analysis to a lumped circuit [10]:

0 (1)) + 9 (1)) = (1) m

where x(t) is the (real) state variable of the system, s(t) is
the applied forcing term, and ¢(-) and g(-) are two nonlinear
functions of z(t) regular enough to ensure that if a periodic
solution of (1) exists, it can be developed in Fourier expan-
sion. We consider here the case of a time-periodic excitation
s(t) = s(t + T), where T is the period, assuming that a T'-pe-
riodic solution z:5(t) = xs(t + T') (the steady state of the cir-
cuit) satisfies (1). 2 s(t) is also called a limit cycle for (1). Notice
that the following perturbation theory holds also for autonomous
systems (like free-running oscillators), where s(¢) = 0, under
the assumption that a nontrivial 7T'-periodic solution is present.

The stability properties of the limit cycle are assessed by
performing a perturbation analysis of the differential-algebraic
equation around the steady-state solution, i.e., by linearizing (1)
around z5(t)

d
" [C(t)z(t)] + A(t)z(t) = 0 ()

where C(t) and A(t) are two T-periodic functions corre-
sponding to the first derivative! of ¢(z) and g(z) calculated in

xs(t)

d d
O(t) = d—q A(t) = d—g . 3)
Tlaws(t) Tlws(t)
According to [9], the solution of (2) takes the form
2(t) = et u(t) “4)

In the general n-dimensional case, the two functions are the Jacobian ma-
trices of the two nonlinear vector functions appearing in (1). Notice that, in
general, the Jacobian matrix C(t) may be not invertible.
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where u(t) is a T-periodic function and y is called the Floquet
exponent of the limit cycle x5(t). The associated Floquet multi-
plier is defined as A\ = exp(u1"). Substituting (4) into (2) yields
an equation involving, as unknowns, both p and wu(t)

(0] + nOW() + A =0, (®)
In the general n-dimensional case, there are n independent
Floquet exponents and, correspondingly, n Floquet multipliers
[9]. Notice that, for n > 1, the Floquet exponents can either
be real or complex, but in the latter case, they have to appear
in complex conjugate pairs to ensure that z(t) is real. Clearly,
(asymptotic) stability is assured only if all the Floquet exponents
have a negative real part,? i.e., if all of the Floquet multipliers are
located inside the unit circle in the complex plane. According to
[11], when one of the Floquet multipliers crosses the unit circle,
the limit cycle undergoes a bifurcation. The A = +1 case corre-
sponds to a fold bifurcation, and A = —1 is a flip (or period-dou-
bling) bifurcation, while if X is complex, the bifurcation is of
Neimark—Sacker type. Notice that, for Neimark-Sacker bifur-
cations, two Floquet multipliers always undergo the unit circle
crossing; furthermore, the presence of a non-null imaginary part
gives rise to amplitude oscillations in the solution [see (4)].

B. Harmonic-Balance Evaluation of the Floquet Multipliers

Harmonic balance is a popular numerical technique for the di-
rect frequency-domain evaluation of the steady-state solution of
nonlinear dynamic equations admitting a limit cycle [12]. Har-
monic balance is available in the vast majority of circuit simu-
lators used for RF/microwave design. The numerical algorithm
briefly discussed here (the full description can be found in [6])
is readily implementable into any harmonic-balance simulator.

According to the harmonic-balance approach [12], each real
T-periodic function «(t) is represented through a (truncated)
Fourier series

Ny
alt) = > an(t) (62)
h=0
_ &(‘07 h=20
an(t) = { Gcp, cos(hwt) + agp sin(hwt), h#0 (6b)

and the period |0, T'] is sampled into 2N g + 1 time samples ¢},.
This allows one to define the vector of the time samples

a = [a(t1)7 ) a(tQNH+1>]T (7N
and the vector of the harmonic amplitudes
& = [(co, Got, Bsty - - -y QeNgy, BNy - ®)

The two sampled representations of «(t) are related by an in-
vertible linear operator (the discrete Fourier transform operator
and its inverse [12])

a=Ta+— a=T"'a 9)

2Apart from the case of oscillators, where one of the Floquet exponents is
always zero, see [9].
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whose detailed expression can be found in [6] and [12]. Simi-
larly, the harmonic amplitudes of the time derivative (denoted
here with a dot) of «(t) are linearly related to the harmonic am-
plitudes & by means of a tridiagonal square matrix €2 (see [6]
for the expression)

a=Ta=wa (10)
where @ denotes the collection of time samples of &(t), and
w=2r/T.

Finally, we conclude these introductory remarks by consid-
ering the product of two T-periodic functions 3(t) = ¢(t)«(t).
The time samples of 3 are easily related to the time samples of
a and ¢ by means of

B = ca

where ¢ = diag{c(¢;)} is a diagonal matrix collecting the time
samples of ¢(t). Using (9), we find the harmonic amplitudes of

B(t) as

(1)

B=TB =TI 'Ta=¢ca (12)
where ¢ = I'el'™".

Using (9) —(12) into the time-sampled version of (5), we can
derive the following relation linking the harmonic amplitudes of
u(t) and the Floquet exponent p:

—(A+wQC)t = uCat (13)
where A and C are the harmonic representations [compare with
(12)] of A(t) and C(t), respectively. Notice that A and C are
already available from the last step in the numerical procedure
for the determination of z 5 (¢) if the Newton method is exploited
for the solution of the harmonic-balance problem.

Equation (13) is a generalized eigenvalue problem of size
2Ng + 1; therefore, its solution yields 2Ny + 1 values for p.
They are located in a vertical line in the complex plane (apart
from numerical errors due to truncation) [6], where the differ-
ence between the imaginary parts of any two first neighboring
values is 27 /7. As discussed in [6], numerical considerations
lead one to choose the value that is closer to the real axis as
the better approximation of the actual Floquet exponent. In the
general n-dimensional case, the size of (13) is n(2Ng + 1), and
similar remarks on the placement of the eigenvalues in the com-
plex plane hold.

III. THERMAL STABILITY OF MULTIFINGER HBTs

The stability assessment technique described in Section II
is applied to the study of the electrothermal behavior of
multifinger GaAs-based HBTs [8]. The HBT electrical
model exploits a measurement-based temperature-dependent
Gummel-Poon model [13] for forward dc operation, com-
pleted by extrinsic resistances and nonlinear base—emitter
and base-collector capacitances (see Fig. 1 for a comparison
with experimental data), coupled to an RC' thermal network
extracted from 3-D thermal simulations, which describes self-
and mutual-finger heating (see, e.g., [13]). For expediency, a
simplified low-order thermal network has been exploited to
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Fig. 1. Comparison between the measured and simulated HBT Gummel plots
for a single-finger device (data from [13]).

minimize the number of state variables. The base current of
each finger is expressed as

Ico

; _ —Eg(Ty)/(kTy) | ;vBer/(MrksTh)
iIBE = e s e -1
BT Ben(Th) [ ]

o [erme/mR T 1] (14)

where k denotes the finger index, T}, is the finger temperature,
E, is the base material energy gap, nr is the ideality factor
of the base—emitter junction, Ico exp[—Eq(T%)/(ksTy)] is the
base-emitter reverse saturation current, ng is the ideality factor
for the parasitic base current, Igg represents such parasitic cur-
rent in reverse saturation, and Sri (1) = Bo exp[AE, /ksTk)]
is the finger gain excluding the parasitic base current. AF, is
the valence-band discontinuity of the base-emitter junction. The
extrinsic resistance values are Rc = 16 2, Rg = 10.34 €2, and
Rp = 45 Q.

The temperature rise of each finger AT), = ; ATy ; is de-
composed into self-contribution and cross-contribution whose
dynamic behavior is calculated according to

dATkﬂ‘ . 1 Di

—_ ATy + =2
dt Rink,iCink,i " Cinki

15)

where AT}, ; is the temperature rise of the kth finger due to the
power p; dissipated into the 4th finger, and R¢png; and Cing s
represent the self-thermal resistance and capacitance if £ = ¢
and the mutual ones if £ # 4, respectively. The layout consid-
ered is made up of parallel and equally spaced emitter fingers
(each finger is 3 x 15 um?, and the finger spacing is 30 ym).
The substrate is GaAs (120 pm thick), with self-thermal resis-
tance being equal to 1600 K/W. For first neighboring fingers, the
mutual thermal resistance amounts to 100 K/W, while Ry, ; lin-
early scales with the inverse of distance for non-neighboring fin-
gers. The self-capacitance and mutual (first neighbors) thermal
capacitance are equal to 99 pJ/K and 28 nJ/K, respectively.
For non-neighboring fingers, the scaling is similar to the resis-
tances’. The results presented in the following are calculated op-
erating the device in small-signal conditions at a frequency of
1 MHz. Furthermore, we consider here the constant-base-cur-
rent operation because, in this case, GaAs HBTs undergo the
well-known current-collapse phenomenon. The dc bias is set by

Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 8, 2009 at 14:46 from IEEE Xplore. Restrictions apply.



3464
1 T T T —=
TEIS
—~ 0.9 e=
5 §14
0.8 s 313
8 812
0.7 8 3 mutual thermal
S 11} resistance
0.6 £
0.5+

mutual thermal
resistance:
0, 20, 40, 70, 100 K/W

6 65 7 75 8 85 9 95
Collector bias (V) 1

Principal Floquet multiplier (a.u.

01} 3 finger layout

O 1 1 1 1
6 6.5 7 7.5 8 8.5 9 9.5 10
Collector bias (V)

Fig. 2. Largest Floquet multiplier for the three-finger layout as a function of
Ve for different values of mutual thermal resistance (Is:,0 = 0.6 mA). The
inset shows the corresponding dc output characteristics (data from [8]).

a total base current Iy o, which is divided among the NV fingers
of the layout.

A. Bifurcation Issue

The classical interpretation of current-gain collapse in HBTs
[14] is based on the assumption that the uniform current solu-
tion that is valid in low-dissipation conditions undergoes a fold
bifurcation as the dissipated power increases, so that one of the
fingers becomes hotter than the other ones, thereby drawing all
of the collector current and ultimately reducing the device cur-
rent gain.

This is strictly true for Ny = 2 (see the discussion here-
inafter) but loses generality in the case of Ny > 2, provided
that thermal coupling between fingers is taken into account, as
shown in Fig. 2, where the largest Floquet multiplier for the case
of Ny = 3 and for an increasing value of coupling thermal re-
sistance is plotted as a function of the total collector bias Vi c.
The Floquet multiplier reaches +1 (i.e., a fold bifurcation) for
no thermal coupling only, while in the presence of thermal cou-
pling, the Floquet multiplier exhibits a maximum. Comparing
the Ve position of the maximum with the output dc curves
(shown in the inset of Fig 2), the correlation between the two
phenomena readily appears, thus justifying the use of the Flo-
quet multiplier maximum as a probe to ascertain the onset of
current-gain collapse. From a physical standpoint, the disap-
pearance of bifurcation depends on the fact that, for Ny > 2,
the temperature distribution is nonuniform, even at low dissi-
pated power (i.e., the central fingers are hotter than the lateral
ones), thus preventing the uniform current solution to exist.

The dynamic behavior of two- and three-finger devices can be
considered as the basis to understand what happens for a larger
number of fingers because, for Ny > 3, the instabilities are a
combination of the instability patterns occurring in the elemen-
tary cases. For instance, let us consider Ny = 4. As shown in
the upper part of Fig. 3, the dc output characteristics exhibit two
successive gain drops, whose physical interpretation can be ob-
tained by observing the partial finger currents shown in the same
photograph and comparing with the Floquet multipliers plotted
in the lower part of Fig. 3. The first gain collapse corresponds
to a maximum of the Floquet multiplier and to a first significant
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Fig. 3. (top) Total and partial dc components of collector currents for an Ny =
4 and I o = 1.8 mA. (bortom) Floquet multipliers as a function of V. Data
from [8].

difference between the currents drawn by the two inner and two
outer fingers. Further increasing V¢, a fold bifurcation appears,
in correspondence with a bifurcation between the currents in the
two inner hotter device fingers (notice that the symmetrical so-
lution becomes unstable).

B. Stabilization and Electrothermal Oscillations

From a technological standpoint, the mitigation of current-
gain collapse is often attained by increasing the thermal cou-
pling between the various fingers, thus contrasting (e.g., by in-
troducing a thermal shunt air-bridge [16] in the device layout)
the onset of a temperature imbalance among the fingers. This
technique has some advantages with respect to using an elec-
trical negative feedback, e.g., emitter or base ballasting resis-
tances that, in turn, compromise the device gain. While the case
of electrical feedback is treated in [8], we discuss here the effect
on the electrothermal dynamics of the presence of a gold air-
bridge. The air-bridge effect is approximated through a thermal
conductance matrix coupled to the substrate thermal resistance
matrix, while thermal capacitive effects associated to metalliza-
tion are assumed negligible.

We consider first the case of Ny = 2. Fig. 4 shows the V¢
dependence of the bifurcating Floquet multiplier for two dif-
ferent air-bridge thicknesses. For the thinner metal, and there-
fore for the lower thermal coupling between the fingers, the bi-
furcation is of fold type, as previously discussed (see also the
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11.9 V, and the dc

inset of Fig. 4, where the Floquet multiplier evolution in the
complex plane is detailed). As the thermal coupling is increased,
the dynamic behavior changes significantly because the bifur-
cation becomes of Neimark—Sacker type. This amounts to have
two complex conjugate Floquet multipliers, with nonzero imag-
inary part, crossing the unit circle in the complex plane, and,
therefore, to the presence of spurious oscillations. This is con-
firmed by time-domain simulations, which allow one to obtain
the results shown in Fig. 5, where we show the spectra and the
time-domain waveforms of the partial and total collector cur-
rents of the two-finger HBT with a thermal shunt thickness of
2 pm. The oscillation frequency predicted at the bifurcation
onset (Voo = 11.8 V) is 156.3 kHz, and it slightly decreases as
we move toward higher V¢ values. Notice that the frequency
of the oscillations is totally uncorrelated from the small-signal
input tone at 1 MHz. A detailed bifurcation analysis allows one
to obtain the bifurcation curves shown in Fig. 6 as a function of
air-bridge thickness, where it is shown how the dominant bifur-
cation becomes of Neimark—Sacker type for thermal coupling
corresponding to an air-bridge thickness between 1 and 1.5 pym.

A similar behavior is evidenced for the case of Ny = 3,
as shown in Fig. 7. Of course, according to the discussion in
Section III-A, for Ny > 2, the gain collapse may also be due
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to a maximum in the Floquet multipliers. An interesting remark
is that the onset of oscillations is moved toward larger thermal
coupling, and this trend is also confirmed for Ny = 4 [8].

C. Circuit Interpretation of Electrothermal Oscillations

Electrothermally induced low-frequency spurious oscilla-
tions were reported previously for bipolar devices [17], [18] and
explained on the basis of an interplay between slow electrical
dynamics (e.g., a bias-tee capacitance) external to the device
and the device thermal memory. On the other hand, in the
present case, oscillations are related to an energy exchange
among the different fingers of the device, as discussed further
on.

A simple physical interpretation of the oscillations is based
on the linearized equivalent circuit of the self-consistent device
model. In order to keep the derivation simple, and to be able to
obtain closed-form results, we limit the discussion to the case
of Ny = 2. Furthermore, since the oscillation frequency lies
well within the device bandwidth, we neglect here the electrical
device memory effects (fully included in the complete model
previously described), while we retain the reactive components
associated to the thermal network.

The stability of the dc working point of the complete HBT
electrothermal description is carried out through a linearization
of the circuit around the dc equilibrium defined by ATqy, Inqr
(k = 1, 2). The equivalent small-signal electrothermal circuit at
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the base—emitter loop of the two-finger HBT is shown in Fig. §,
where

Rsi = Ry, + (1 + Bar)Rex + ok (16)
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is the conventional input resistance of a common—emitter stage
because 7pr. = (OVBEK/DiBK)|I5q1,ATq, 18 the base—emitter
diode differential resistance. The thermal feedback is modeled
through the temperature-controlled voltage source .y, AT}, o5,
where

Myl = Mygpk + RerlBQrmsr (17)
with Mygpk — (a’UBEk/aATk)hBQhATQk and mgr =
(0Br/OATY)|151,ATq, - Since we addressed the stability
analysis of the uniform collector-current solution, the working
point and the corresponding small-signal parameters of the two
fingers will be identical. For this reason, from now on, we will
drop the finger subscript from such variables (notice, however,
that Igq = Igt,0/2 is the dc base-current value flowing in each
finger, not the total one).

For the sake of simplicity, in the following deriva-
tion, the finger dissipated power is computed by ne-
glecting the power dissipated at the base—emitter junction:
P = vegkick = veerSB(Tk)isk. Since we are dealing with a
linearized equivalent circuit, we can operate in the frequency
domain expressing the small-signal dissipated power (approxi-
mated by a first-order Taylor expansion around the dc value) as
a function of base current and temperature-rise phasors as

Dr,ss = Voc(BqiBk,ss + malpQATy ss) (18)
where Voo = Voo — 2(Rc + Rg)Bqlpq. The relationship
between the base-current variation entering each finger is given
by

. myAT o myAThe 1~
iBles = — J J — 9Bt ss 19
iB1, Rs >Rs + 5B, (19)
~ mVAT1 s m\,ATQ s 1~

ss — . - : . SS 20
B2, + s 2Rs + 5B, (20)

where gBt,ss = %31755 + ngyss is the total base-current variation
entering the device. The temperature-rise phasors are calculated
as

ATSS = Zthi)ss (21)
Where ATSS - [ATI,SS7 ATQ,SS]T7 ﬁss = [ﬁl,ss; ﬁ?,ss]Ta and Zth
is the thermal impedance matrix associated with (15).

Using (18) —(21), the temperature rise in each finger is easily
shown to be the solution of the linear system

. 1=~ 1]~
JAT = §Zth |: :|iBt,ss

1 (22)

where J is defined in (23), shown at the top of the following
page, with th s and Zth,C being the diagonal and off-diagonal
elements of Z;y,, respectively, In (23), the following parameters
have been exploited:

VocBomy

SRe (24)

o = VccmﬂIBQ 6=

Due to the decreasing behavior of the current gain () and the
diode turn-on voltage (vpg for a constant ip), the parameters
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J= N
—8(Zin,s — Zin,c) — @Zn,c

C[1- a?th,g +6(Zin,s — ?th,C)

3467

—5(23}1,5 - Zth,NC) - aZ:th,C

23
1 — aZins+ 6(Zins — Zin,c) @3)

6 and «, which are dimensionally equivalent to a conductance,
are always negative.

For autonomous oscillations to be allowed for, system (22)
should admit a nontrivial solution for ;Bt,ss = 0, and therefore,
J should be singular. Since J is symmetric, the singularity con-
dition reduces to Jy; = =£.Ji2, thus identifying odd (+4) and
even (—) oscillation modes into the circuit.

For the odd mode (ATSSJ = _ATSS’Q), the oscillation con-
dition is satisfied when

Im{Zns — Zinc} =0
(26 — @)Re{Zn,s — Zinc}t = — 1

(25a)
(25b)

while for the even mode (ATSSJ = Ajjssyg), it takes the form

Im{Zins — Zinc} =0
aRe{Zyns — Zinc} =1.

(262)
(26b)

Both oscillation modes lead to the same condition on the
imaginary part of Zth, 5 — Zth,Ca yielding an analytical expres-
sion for the spurious oscillation frequency, which results to be
dependent only on the thermal network parameters

2 2
1 Cth,SRth’S - Cth,CRth,C
SEY) .
21 \| Con,sCon,c B, 5By, o(Cin,s — Cin,c)

fosc - (27)

Such oscillation frequency corresponds to the one predicted
by the full numerical model at the bifurcation onset. On the other
hand, the conditions on the real part of Zth,S — Zﬂl?c allows
one to identify the bifurcation onset as a function of electrical
parameters, e.g., Ipq and Ve, which set the value of the dc
working point. As far as the even mode is concerned, the second
condition in (26) would require that, at the oscillation frequency,
Re{Zin11 — Zin12} < 0, ie., a thermal coupling effect that
is larger than the self-term one, which is not realizable from
a physical standpoint. Thus, the circuit may support only odd
oscillation modes, provided that conditions (25) hold. This may
be further verified by evaluating the input admittance seen at
the base-current generator, which results to be nonzero for every
biasing condition and frequency, thus indicating that the circuit
does not admit for even (common)-mode oscillations.

Starting from (25b) calculated at f = fos., some algebraic
manipulations allow one to obtain the condition for the insta-
bility onset

95 _ RinsCins + RincCine
—a= =g
Rin,s Rin,c(Cin,s — Cen,c)

Finally, by substituting 6 and « from (24), we derived
a closed-form expression for the bifurcation curve in the
(Vee, Ic(Ipq)) plane separating the stable (left of the curve)
and unstable (right) device operation regions

NS- (28)

gNs
,HQWVT
Rs

Voo, = + 2(Rc + Rg)Bqlpq.  (29)

—mglpq

A)

l5,0=0.05+2.1 mA, step 0.2 mA
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Fig. 9. Comparison between the bifurcation curves computed from the small-
signal analytical model and the curves calculated from the full numerical model
at different air-bridge thicknesses.

Fig. 9 compares the Neimark—Sacker bifurcation curve cal-
culated according to (29) against the results calculated from
the full numerical model. The analytical small-signal model de-
scribes with high accuracy the dependence of the bifurcation
onset either on the biasing conditions (Vcc, Ist o) or on the de-
vice thermal layout (air-bridge thickness).

IV. CONCLUSION

An analysis of electrothermal instabilities and oscillations in
multifinger HBTs has been presented on the basis of a CAD-ori-
ented harmonic-balance-based frequency domain implementa-
tion of the Floquet multiplier evaluation. Other than pointing
out several dynamical instability patterns, with their correlation
to the behavior of the Floquet multipliers, we have provided
a physical circuit-based interpretation of thermal oscillations,
with closed-form expressions for the oscillation frequency and
oscillation onset condition for the two-finger case.
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