88 research outputs found

    Thermal management of the LSU micro gas chromatograph

    Get PDF
    Gas chromatography is a technique widely used for the separation and analysis of gas samples. Gas chromatographs are used for environmental maintenance, monitoring sophisticated biological analyses, and to separate components from a mixture of gases for mass spectrometer analysis. There has been a tremendous interest in miniaturization of gas chromatograph systems because of the potential for portability, faster response time, lower dead volume, lower power consumption, and lower cost of operation. Conventional gas chromatography keeps the column at a constant temperature during separation, which is called isothermal analysis. Temperature programming is a mode of gas chromatography in which the column temperature is raised progressively during the course of analysis. Temperature programming facilitates separation of a wider range of components, when compared to isothermal analysis, in less time. No miniaturized gas chromatograph systems with temperature programming capability have been reported to date. A temperature programming cycle was implemented for the LSU microGC. The thermal behavior of the device was modeled using an energy-based approach to determine the thermal power requirements. Two heaters were designed, one heater gave uniform temperature distribution over the LSU microGC column, and the other gave a linear temperature gradient along the length of microGC. The heaters were fabricated by electrodepositing Ni-Cr (97.5-2.5) alloy on silicon substrates. The heaters were integrated with test microGC. A commercial PID controller was integrated with the heater and fan to direct the temperature programming for the LSU microGC. Heating and cooling ramp rates of more than 2.46 oC/sec were obtained

    Integrated microcantilever fluid sensor as a blood coagulometer

    Get PDF
    The work presented concerns the improvement in mechanical to thermal signal of a microcantilever fluid probe for monitoring patient prothrombin time (PT) and international normalized ratio (INR) based on the physical measurement of the clotting cascade. The current device overcomes hydrodynamic damping limitations by providing an internal thermal actuation force and is realised as a disposable sensor using an integrated piezoresistive deflection measurement. Unfortunately, the piezoresistor is sensitive to thermal changes and in the current design the signal is saturated by the thermal actuation. Overcoming this problem is critical for demonstrating a blood coagulometer and in the wider field as a microsensor capable of simultaneously monitoring rheological and thermal measurements of micro-litre samples. Thermal, electrical, and mechanical testing of a new design indicates a significant reduction in the thermal crosstalk and has led to a breakthrough in distinguishing the mechanical signal when operated in moderately viscous fluids (2-3 cP). A clinical evaluation has been conducted at The Royal London Hospital to measure the accuracy and precision of the improved microcantilever fluid probe. The correlation against the standard laboratory analyser INR, from a wide range of patient clotting times(INR 0.9-6.08) is equal to 0.987 (n=87) and precision of the device measured as the percentage coefficient of variation, excluding patient samples tested < 3 times, is equal to 4.00% (n=64). The accuracy and precision is comparable to that of currently available point-of-care PT/INR devices. The response of the fluid probe in glycerol solutions indicates the potential for simultaneous measurement of rheological and thermal properties though further work is required to establish the accuracy and range of the device as a MEMS based viscometer

    Effects of interface morphology and geometry on the thermoelectric properties of artificially structured ZnO-based thin-films

    Get PDF
    Thermoelectricity may play a major role in waste heat recovery of fossil fuel consuming devices. Unfortunately thermoelectric generators to date only have poor conversion efficiencies (5 %). One way to improve the efficiency is to improve the performance of the active thermoelectric material. For this the figure of merit Z is given by Z=(S^2 sigma)/kappa, where S denotes the Seebeck coefficient, sigma the electrical conductivity, and kappa; the thermal conductivity. Z can be improved by either increasing the numerator S^2 sigma; (the so called power factor) or decreasing the denominator. The typical and best understood thermoelectric materials so far are based on Te, such as Bi2Te3 or PbTe. Unfortunately, for a mass application of thermoelectric devices, estimations show that the tellurium resources will be consumed very quickly. Hence it is worth trying to develop novel thermoelectric materials which are more sustainable and “green”. Exemplarily the thermoelectric properties of ZnO as an ideal model system were investigated in the framework of this thesis. Main goal of the work was to get a better understanding of the influence of effects on the microscopic length scale (e.g. due to thin-films, grain boundaries, artificial structuring) on the macroscopic behavior of the sample. In this context the following results were found: Investigations of degenerately doped thin ZnO:Al films and subsequent annealing in air showed that at very high carrier concentrations, where the samples have metallic character, a sign reversal of S may occur. Although the sample is clearly n-type, small positive Seebeck coefficients can be measured, changing their sign with decreasing temperature. This is due to changes of the density of states at the Fermi-energy in a degenerately doped semiconductor. The energy filtering effect due to grain boundaries, e.g. the increase of the power factor with increasing carrier concentration only works to a certain extend: If the carrier concentration n exceeds a certain value, screening effects diminish the barrier height and width leading to a decrease of the power factor. Concerning the investigation of interfaces first measurements on a multilayer sample series of alternating ZnO/ZnS layers in in-plane geometry gave hints for the formation of interface layers of very high electrical conductivity between ZnO and ZnS, dominating the transport behaviour at large layer thicknesses (d > 100 nm). At smaller d, where d becomes comparable to the typical fluctuation length of the interface roughness, the transport path and hence the thermoelectric properties are strongly determined by the surface fluctuations. These results could be approved qualitatively by simulations within a Network Model (NeMo). Stronger impact on the thermoelectric parameters, especially on the thermal conductivity, were found in cross plane direction, i.e. perpendicular to the interfaces. Unfortunately measurements of multilayers in cross-plane direction are very difficult to perform. To overcome this problem lateral structuring of thin-films offers attractive possibilities. To realize bar structures of alternating materials the method of self-aligned pattern transfer was developed and employed. Measurements perpendicular to the interfaces show that the number of interfaces as well as their shape (i.e. length) and morphology has a strong influence on the power factor. Supported by numerous NeMo simulations the results indicated that the thermoelectric properties across the sample are dominated by the shortest path of electrical conductance. The transport path is strongly influenced by assuming space-charge regions of different width and conductivity. Best agreement between experiment and simulations has been achieved by replacing a certain fraction of the lowly conducting material with a highly conducting space-charge region. However, the origin of this highly conducting surface region requires further clarifications. The findings of this work suggest that due to its high Seebeck coefficients and the possibility to tune the electrical conductivity by doping, ZnO is a promising candidate for an environmentally friendly and sustainable n-type thermoelectric material. The fact that its thermal conductivity is quite high may be overcome by a combination with ZnS. However this back door shown by theory still needs to be approved by experiment.Thermoelektrizität kann eine wichtige Rolle bei der Nutzung der bei der Verbrennung fossiler Rohstoffe entstehenden Abwärme spielen. Leider weisen thermoelektrische Generatoren bisher nur geringe Wirkungsgrade (5%) auf. Eine Möglichkeit, die Effizienz zu verbessern, ist die Leistung des thermoelektrisch aktiven Materials zu verbessern. Kennzahl dafür ist der Gütefaktor Z Z=(S^2 sigma)/kappa, wobei S den Seebeck-Koeffizienten, sigma die elektrische Leitfähigkeit und kappa die thermische Leitfähigkeit bezeichnen. Z kann entweder durch Erhöhen des Zählers S^2 sigma (der sog. Leistungsfaktor) oder Verringern des Nenners verbessert werden. Die zurzeit typischen und am besten verstandenen thermoelektrischen Materialien basieren auf Tellur (Te), wie Bi2Te3 oder PbTe. Für eine breite Anwendung thermoelektrischer Bauteile zeigen allerdings Abschätzungen, dass die Tellurvorkommen schnell aufgebraucht sein werden. Somit macht es Sinn, neue nachhaltige und „grüne“ Materialien zu untersuchen. Beispielhaft wurden dafür innerhalb dieser Arbeit die thermoelektrischen Eigenschaften des idealen Modellsystems ZnO untersucht. Hauptziel dabei war es, die Auswirkungen der Effekte auf mikroskopischer Ebene (z. B. durch Dünnschichten, Korngrenzen, künstliche Strukturierung) auf das makroskopische Verhalten der Probe besser zu verstehen. In diesem Zusammenhang wurden folgende Ergebnisse gefunden: Untersuchungen an entartet dotierten - und anschließend an Luft getemperten ZnO:Al Schichten zeigen, dass bei sehr hohen Ladungsträgerkonzentrationen, bei denen die Proben metallischen Charakter aufweisen, ein Vorzeichenwechsel von S stattfindet. Obwohl die Proben klar n-Typ sind, konnten kleine positive Seebeck-Koeffizienten gemessen werden, die mit abnehmender Temperatur das Vorzeichen wechselten. Dies kann Änderungen in der Zustandsdichte am Ferminiveau dieses entarteten Halbleiters zugeschrieben werden. Der Energie-Filter Effekt bedingt durch Korngrenzen, d. h. das Ansteigen des Leistungsfaktors mit steigender Ladungsträgerkonzentration, konnte nur bis zu einem gewissen Grad beobachtet werden: Falls nämlich die Ladungsträgerkonzentration einen bestimmten Wert übersteigt, verringern sogenannte Abschirmungseffekte die Barrieren Höhe und - Breite, was wiederum zu einer Verkleinerung des Leistungsfaktors führt. Im Hinblick auf die Charakterisierung von Grenzflächen wurden erste Messungen an Übergittern aus alternierenden ZnO/ZnS Schichten in „in-plane“ Geometrie durchgeführt. Die Ergebnisse ließen auf die Ausbildung elektrisch hochleitender Grenzschichten zwischen ZnO und ZnS schließen, welche das Transportverhalten bei hohen Schichtdicken (d > 100 nm) dominieren. Zu geringeren Schichtdicken hin, wo d mit der typischen Oberflächenrauigkeit vergleichbar wird, sind die Transportpfade und damit auch die thermoelektrischen Eigenschaften stark durch Oberflächenfluktuationen bestimmt. Diese Ergebnisse konnten auch qualitativ durch Simulationen innerhalb eines Netzwerkmodells (NeMo) bestätigt werden. Ein stärkerer Einfluss auf die thermoelektrischen Parameter, insbesondere auf die Wärmeleitfähigkeit, wurde in der Literatur in „cross-plane“ Geometrie, d. h. senkrecht zur Grenze, gefunden. Unglücklicherweise sind Messungen an Übergittern in dieser Geometrie sehr schwer durchzuführen. Um dieses Problem zu umgehen bietet die laterale Strukturierung dünner Schichten attraktive Möglichkeiten. Zur Realisierung einer Stegstruktur aus abwechselnden Materialien wurde die Methode der selbstausrichtenden Strukturübertragung im Rahmen dieser Arbeit entwickelt und angewendet. Messungen senkrecht zu den Grenzen zeigen, dass die Anzahl der Grenzen sowie deren Gestalt (d. h. Länge) und Morphologie einen erheblichen Einfluss auf den Leistungsfaktor nehmen. Unterstützt von zahlreichen NeMo Simulationen zeigten die Ergebnisse, dass die thermoelektrischen Eigenschaften über die strukturierte Probe hinweg vom elektrisch kürzesten Transportpfad dominiert werden. Dieser wiederum hängt stark von der Annahme sogenannter Grenzflächenregionen verschiedener Breite und Leitfähigkeit ab. Beste Übereinstimmung zwischen Experiment und Simulationen wurde unter der Annahme erreicht, dass ein bestimmter Teil des schlecht leitenden Materials durch eine hochleitende Grenzflächenregion ersetzt wird. Der Ursprung dieser hochleitenden Region konnte jedoch noch nicht geklärt werden. Die Ergebnisse dieser Arbeit zeigen, dass aufgrund seiner hohen Seebeck-Koeffizienten und der Möglichkeiten durch Dotieren die elektrische Leitfähigkeit einzustellen, ZnO ein geeignetes Materialsystem für umweltfreundliche und nachhaltige thermoelektrische Anwendungen ist. Das Problem, dass es eine hohe Wärmeleitfähigkeit aufweist, könnte durch eine geeignete Kombination mit ZnS gelöst werden. Dieses von der Theorie gezeigte Hintertürchen konnte bislang jedoch noch nicht experimentell bestätigt werden

    Optimisation of the performance characteristics of Cu-Al-Mo thin film resistors

    Get PDF
    This thesis presents a novel approach to the manufacture of thin film resistors using a new low resistivity material of copper, aluminium and molybdenum, which under industrially achievable optimised process conditions, is shown to be capable of producing excellent temperature coefficient of resistance (TCR) and long term stability properties. Previous developments in the field of thin film resistors have mainly centred around the well established resistive materials such as nickel-chromium, tantalum-nitride and chromium-silicon-monoxide. However recent market demands for lower value resistors have been difficult to satisfy with these materials due to their inherent high resistivity properties. This work focuses on the development and processing of a thin film resistor material system having lower resistivity and equal performance characteristics to that of the well established materials. An in depth review of thin film resistor materials and manufacturing processes was undertaken before the electrical properties of a binary thin film system of copper and aluminium were assessed. These properties were further enhanced through the incorporation of a third doping element, molybdenum, which was used to reduce the TCR and improve the electrical stability of the film. Once the desired chemical composition was established, the performance of the film was then fine tuned through optimisation of critical manufacturing process stages such as sputter deposition, heat treatment and laser adjustment. The results of these investigations were then analysed and used to generate a set of optimum process conditions, suitable for repeatedly producing thin film resistors in the 1 to 10? resistance range, to tolerances of less than ±0.25% and TCR values better than ±15ppm/oC

    HeT-SiC-05International Topical Workshop on Heteroepitaxy of 3C-SiC on Silicon and its Application to Sensor DevicesApril 26 to May 1, 2005,Hotel Erbgericht Krippen / Germany- Selected Contributions -

    Get PDF
    This report collects selected outstanding scientific and technological results obtained within the frame of the European project "FLASiC" (Flash LAmp Supported Deposition of 3C-SiC) but also other work performed in adjacent fields. Goal of the project was the production of large-area epitaxial 3C-SiC layers grown on Si, where in an early stage of SiC deposition the SiC/Si interface is rigorously improved by energetic electromagnetic radiation from purpose-built flash lamp equipment developed at Forschungszentrum Rossendorf. Background of this work is the challenging task for areas like microelectronics, biotechnology, or biomedicine to meet the growing demands for high-quality electronic sensors to work at high temperatures and under extreme environmental conditions. First results in continuation of the project work – for example, the deposition of the topical semiconductor material zinc oxide (ZnO) on epitaxial 3C-SiC/Si layers – are reported too

    Scanning thermal microscopy using nanofabricated probes

    Get PDF
    Novel atomic force microscope (AFM) probes with integrated thin film thermal sensors are presented. Silicon micromachining and high resolution electron beam lithography (EBL) have been used to make batch fabricated, functionalised AFM probes. The AFM tips, situated at the ends of Si3N4 cantilevers, are shaped either as truncated pyramids or sharp triangular asperites. The former gives good thermalisation of the sensor to the specimen for flat specimens whereas the latter gives improved access to highly topographic specimens. Tip radii for the different probes are 1 m and 50 nm respectively. A variety of metal structures have been deposited on the tips using EBL and lift-off to form Au/Pd thermocouples and Pd resistance thermometer/heaters. Sensor dimensions down to 35 nm have been demonstrated. In the case of the sharp triangular tips, holes were etched into parts of the cantilever in order to provide self alignment of the sensor to the tip. On the pyramidal tips it has been shown that multiple sensors can be made on a single tip with good definition and matching between sensors. A conventional AFM was constructed in order to test the micromachined thermal probes. During scans of a photothermal test specimen using improved access thermocouple probes, 80 nm period metal gratings were thermally resolved. This is equivalent to a thermal lateral resolution of 40 nm. Pyramidal tips with a resistance thermometer/heater, which were made for the microscopy and analysis of polymers, have been showed by others to produce high resolution thermal conductivity images. The probes have also been shown to be capable of locally heating a polymer specimen and thermomechanically measuring phase changes in small volumes of material. Also presented here is a study of scanning thermal microscopy of semiconductor structures using a commercial AFM. Included are scans of several specimens using both commercial andthe new micromachined probes. Subsurface images of voids buried under a SiO2 passivation layer were taken. It is shown that contrast caused by thermal conductivity differences in the specimen may be detected at a depth of over 200 nm

    Thermal-AFM under aqueous environment

    Get PDF
    The aim of this thesis is to describe the work developing and demonstrating the use of Scanning Thermal Microscopy (SThM) in an aqueous electrically conductive environment for the first time. This has been achieved by using new instrumentation to allow conventional SThM probes to measure and manipulate the temperature of non-biological and biological samples. For the latter, the aqueous environment is crucial to allow in-vitro experimentation, which is important for the future use of SThM in the life sciences. SThM is known to be a powerful technique able to acquire simultaneous topographic and thermal images of samples. It is able to measure the microscopic thermal properties of a surface with nanoscale spatial resolution. However, SThM has traditionally been limited to use in vacuum, air and electrically inert liquids. The aqueous Scanning Thermal Microscopy (a-SThM) described in this thesis is an entirely novel technique that opens up a new field for thermal-AFM. The first challenge addressed in this work was the adaptation of a commercial Multimode Nanoscope IIIa AFM to permit electrical access to a SThM probe completely immersed in aqueous solutions. By employing a newly designed probe holder and electronic instrumentation, the probe could then be electrically biased without inducing electrochemical reactions. This approach permitted conventional microfabricated thermal probes to be operated whilst fully immersed in water. This innovation allowed SThM measurements under deionized (DI) water to be performed on a simple solid sample (Pt on Si3N4) and the results compared with in-air scans and accurate 3D Finite Element (FE) simulations. Once the validity of the technique was proven, its performance was investigated, including crucially the limit of its thermal-spatial resolution; this was investigated using nanofabricated solid samples (Au on Si3N4) with well-defined features. These results were compared to the FE model, allowing an understanding of the mechanisms limiting resolution to be developed. In order to demonstrate the advantages granted by the water’s superior thermal conductivity compared to air or other liquids, non-contact thermal images were also acquired using the same samples. The final part of this thesis was focused on extending SThM into the biological area; a completely new field for this technique. New results are presented for soft 4 samples: I-collagen gel and collagen fibrils, which were thermally manipulated using a self-heated SThM probe. This successfully demonstrated the possibility of using heat to alter a biological sample within a very well localised area while being operated for long time in an aqueous environment. The difference in force response originated from the AFM scans with different levels of self-heating further proved the robustness of the technique. Finally, the technique was employed to study MG-63 living cells: The SThM probe was left in contact with each cell for a pre-determined period of time, with and without self heating. The results demonstrated that only the heated cells, directly beneath the probe tip died, tallying with the highly localised temperature gradient predicted by FE analysis
    corecore