4,446 research outputs found

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Eras of electric vehicles: electric mobility on the Verge. Focus Attention Scale

    Get PDF
    Daily or casual passenger vehicles in cities have negative burden on our finite world. Transport sector has been one of the main contributors to air pollution and energy depletion. Providing alternative means of transport is a promising strategy perceived by motor manufacturers and researchers. The paper presents the battery electric vehicles-BEVs bibliography that starts with the early eras of invention up till 2015 outlook. It gives a broad overview of BEV market and its technology in a chronological classification while sheds light on the stakeholders’ focus attentions in each stage, the so called, Focus-Attention-Scale-FAS. The attention given in each era is projected and parsed in a scale graph, which varies between micro, meso, and macro-scale. BEV-system is on the verge of experiencing massive growth; however, the system entails a variety of substantial challenges. Observations show the main issues of BEVsystem that require more attention followed by the authors’ recommendations towards an emerging market

    Policy instruments to promote electro-mobilityiIn the Eu28: A comprehensive review

    Get PDF
    Despite its environmental benefits, the amount of Electric Vehicles (EVs) in use within the European Union 28 is still very limited. Poor penetration might be explained by certain factors that dissuade potential buyers. To balance these factors and promote electro-mobility, Member States have established incentives to increase demand. However, the various measures are scattered. This paper contributes to fill the gap in the literature by offering an overall view of the main measures. The authors will focus on measures to promote electro-mobility within the EU28 until 2014. After an in-depth and comprehensive review of the relevant measures, the authors conclude that the most important policy instruments to promote EVs are tax and infrastructure measures in addition to financial incentives for purchasing and supporting R&D projects. Regardless of the scarcity of EV registration data, the available information allows us to conclude that higher EV penetration levels appear in countries where the registration tax, the ownership tax, or both taxes have developed a partial green tax by including CO2 emissions in the calculation of the final invoice.Junta de Andalucía proyecto SEJ-132Ministerio de Economía y Competitividad de España, Cåtedra de Economía de la Energía y del Medio Ambiente (Cåtedra de Energía y Economía Ambiental) ECO2014-56399-RUniversidad Autónoma de Chil

    Comparative Analysis of European Examples of Freight Electric Vehicles Schemes—A Systematic Case Study Approach with Examples from Denmark, Germany, the Netherlands, Sweden and the UK.

    Get PDF
    E-Mobility is a hot topic, in the public policy area as well as in business and scientific communities. Literature on electric freight transport is still relatively scarce. Urban freight transport is considered as one of the most promising fields of application of vehicle electrification, and there are on-going demonstration projects. This paper will discuss case study examples of electric freight vehicle initiatives in Denmark, Germany, the Netherlands, Sweden and the UK and identify enablers and barriers for common trends

    SEEV4-City Policy Recommendations and Roadmap: Recommendations towards integration of transport, urban planning and energy

    Get PDF
    This report, led by Northumbria University and POLIS, provides a final analysis by project partners regarding policy recommendations and a roadmap based on the culmination of experiences, learnings and additional research within the Interreg NSR SEEV4-City project. It is part of a collection of reports published by the project covering a variation of specific and cross-cutting analysis and evaluation perspectives and spans 6 operational pilots. This report is dedicated to policies relating to the integration of transport, urban planning and energy

    Engineering User-Centric Smart Charging Systems

    Get PDF
    Die Integration erneuerbarer Energiequellen und die Sektorenkopplung erhöhen den Bedarf an FlexibilitĂ€t im ElektrizitĂ€tssystem. Elektrofahrzeuge koordiniert zu Laden bietet die Chance solche FlexibilitĂ€t bereitzustellen. Allerdings hĂ€ngt das FlexibilitĂ€tspotential von Elektrofahrzeugen davon ab in welchem Umfang sich die Nutzer der Fahrzeuge dazu entschließen intelligentes Laden zu nutzen. Ziel dieser Dissertation ist es Lösungen fĂŒr intelligente Ladesysteme zu entwickeln, welche die Nutzer zu flexiblerem Laden anreizen und diese dabei zu unterstĂŒtzen. Anhand eines LiteraturĂŒberblicks und einer Expertenbefragung werden zunĂ€chst Ziele identifiziert, welche Nutzer zu einer flexiblen Ladung motivieren können. Die Ergebnisse zeigen, dass neben finanziellen Anreizen auch die Integration erneuer-barer Energien und die Vermeidung von NetzengpĂ€ssen einen Anreiz fĂŒr das flexible La-den darstellen können. In der Folge wird untersucht, ob das Framing der Ladesituation hinsichtlich dieser Ziele die LadeflexibilitĂ€t von Elektrofahrzeugnutzern beeinflussen kann. Hierzu wird ein Online-Experiment mit Elektrofahrzeugnutzern evaluiert. Das sich ein Teil der Nutzer bei einem Umwelt-Framing flexibler verhĂ€lt, macht Feedback darĂŒber, wie die CO2-Emissionen von der bereitgestellten FlexibilitĂ€t abhĂ€ngen zu einem vielversprechenden Anreiz intelligentes Laden zu nutzen. Um solches Feedback zu er-möglichen werden als NĂ€chstes die CO2-Einsparpotenziale eines optimierten Ladens im Vergleich zu unkontrolliertem Laden untersucht. Dazu werden die marginalen Emissions-faktoren im deutschen Stromnetz mithilfe eines regressionsbasierten Ansatzes ermittelt. Um Echtzeit-Feedback in realen Systemen zu ermöglichen wird darauf aufbauend eine Prognosemethode fĂŒr Emissionsfaktoren entwickelt. Die Zielerreichung intelligenten Ladens hĂ€ngt hauptsĂ€chlich von der zeitlichen und energetischen FlexibilitĂ€t der Elektrofahrzeuge ab. Damit Nutzer diese Ladeeinstellungen nicht bei jeder Ankunft an der Ladestation von Hand eingeben zu mĂŒssen, könnten sie durch intelligente Assistenten unterstĂŒtzt werden. HierfĂŒr werden probabilistische Prognosen fĂŒr die FlexibilitĂ€t einzelner LadevorgĂ€nge basierend auf historischen LadevorgĂ€ngen und MobilitĂ€tsmustern entwickelt. DarĂŒber hinaus zeigt eine Fallstudie, dass probabilistische Prognosen besser als Punktprognosen dazu geeignet sind die Ladung mehrerer Elektrofahrzeuge zu koordinieren

    Optimization methods for developing electric vehicle charging strategies

    Get PDF
    Electric vehicles (EVs) are considered to be a crucial and proactive player in the future for transport electrification, energy transition, and emission reduction, as promoted by policy-makers, relevant industries, and the academia. EV charging would account for a non-negligible share in the future electricity demand. The integration of EV brings both challenges and opportunities to the electricity system, mainly from their charging profiles. When EV charging behaviors are uncontrolled, their potentially high charging rate and synchronous charging patterns may result in the bottleneck of the grid capacity and the shortage of generation ramping capacity. However, the promising load shifting potential of EVs can alleviate these problems and even bring additional flexibilities to the demand side for further applications, such as peak shaving and the integration of renewable energy. To grasp these opportunities, novel controlled charging strategies should be developed to help integrate electric vehicles into energy systems. However, corresponding methods in current literature often have customized assumptions or settings so that they might not be practically or widely applied. Furthermore, the attention of literature is more paid to explaining the results of the methods or making consequent policy recommendations, but not sufficiently paid to demonstrating the methods themselves. The lack of the latter might undermine the credibility of the work and hinder readers’ understanding. Therefore, this thesis serves as a methodological framework in response to the fundamental and universal challenges in developing charging strategies for integrating EV into energy systems. The discussions aim to raise readers’ awareness of the essential but often unnoticed concerns in model development and hopefully would enlighten future researchers into this topic. Specifically, this cumulative thesis comprises four papers and analyzes the research topic from two perspectives. With Paper A and Paper B, the micro perspective of the thesis is more applied and focuses on the successful implementation of charging scheduling solutions for each EV individually. Paper A proposes a two-stage scenario-based stochastic linear programming model to schedule EV charging behaviors and considers the uncertainties from future EVs. The model is calculated in a rolling window fashion with updated parameters. Scenario generation for future EVs is simulated by inhomogeneous Markov chains, and scenario reduction is achieved by a fast forward selection method to reduce the computational burden. The objective function is formulated as variance minimization so that the model can be flexibly implemented for various applications. Paper B applies the model proposed in Paper A to investigate how the generation of a wind turbine could be correlated with the EV controlled charging demand. An empirical controlled charging strategy is designed for comparison where EVs would charge as much as possible when wind generation is sufficient or would postpone charging otherwise. Although these two controlled charging strategies perform similarly in terms of wind energy utilization, the solutions from the proposed model could additionally alleviate the volatility of wind energy generation by matching the EV charging curve to the electricity generation profile. With Paper C and Paper D, the macro perspective of the thesis is more explorative and investigates how EVs as a whole would contribute to energy transition or emission reduction. Paper C investigates the greenhouse gas emissions of EVs under different charging strategies in Europe in 2050. Methodologically, the paper proposes an EV module that enables different EV controlled charging strategies to be endogenously determined by energy system models. The paper concludes that EVs would contribute to a 36% emission reduction on the European level even under an uncontrolled charging strategy. Unidirectional and bidirectional controlled charging strategies could further reduce emissions by 4% and 11%, respectively, compared with the original level. As a follow-up study of Paper C, Paper D develops, demonstrates, improves, and compares three different types of EV aggregation methods for integrating an EV module into energy system models. The analysis and demonstration of these methods are achieved by having a simplified energy system model as a testbed and the results from the individual EV modeling method as the benchmark. As different EV aggregation methods share the same data set as for the individual EV modeling method, the disturbance from parameters is minimized, and the influence from mathematical formulations is highlighted. These EV aggregation methods are compared from multiple aspects

    Business Models for SEEV4-City Operational Pilots: From a generic SEEV4-City business model towards improved specific OP business models

    Get PDF
    This report, led by Northumbria University, provides a final analysis by project partners regarding Business Models for SEEV4-City Operational pilots. It is part of a collection of reports published by the project covering a variation of specific and cross-cutting analysis and evaluation perspectives and spans 6 operational pilots
    • 

    corecore