1,401 research outputs found

    Getting Smart (Grids): An Efficiency Frontier Assessment

    Get PDF
    Information and communication technology are reshaping the electricity industry, with economic, environmental, and regulatory consequences. Smart grids allow the growing integration of renewable energy sources, a horizontalization of the roles of producers and consumers, a flatter demand profile which save investments intended to supply peaks of consumption, idle at great extent off-peaks. On the other hand, smart grids require important investments for modernizing technology. Concerning our objectives, firstly, we seek to understand the conceptual consequences of the irruption of smart grids on the electricity sector, and its importance for renewables adoption. Secondly, we discuss policies and regulations needed to accelerate the transformation of the electricity network in a smart grid, and to increase the renewables? share on total energy. Thirdly, our empirical approach runs a Data Envelopment Analysis (DEA) model to estimate the efficiency gains in the transition between traditional and smart grids. Our results show the efficiency levels of those countries whose objective is to deliver electricity with high levels of quality of services, and at the same time, using more renewables (with fewer carbon emissions), and low cost of supply. We conclude discussing the implications of our empirical model, the limitations, and next stages in polishing the results.Fil: Ferro, Gustavo Adolfo. Universidad del Cema; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Romero, Carlos Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; ArgentinaFil: Ramos, Maria Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; ArgentinaLV Reunión Anual Asociación Argentina de Economía PolíticaCiudad Autónoma de Buenos AiresArgentinaAsociación Argentina de Economía Polític

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Residential Energy Management for Renewable Energy Systems Incorporating Data-Driven Unravelling of User Behavior

    Get PDF
    The penetration of distributed energy resources (DERs) such as photovoltaic (PV) at the residential level has increased rapidly over the past year. It will inevitably induce a paradigm shift in end-user and operations of local energy markets. The energy community with high integration of DERs initiative allows its users to manage their generation (for prosumers) and consumption more efficiently, resulting in various economic, social, and environmental benefits. Specifically, the local energy communities and their members can legally engage in energy generation, distribution, supply, consumption, storage, and sharing to increase levels of autonomy from the power grid, advance energy efficiency, reduce energy costs, and decrease carbon emissions. Reducing energy consumption costs is difficult for residential energy management without understanding the users' preferences. The advanced measurement and communication technologies provide opportunities for individual consumers/prosumers and local energy communities to adopt a more active role in renewable-rich smart grids. Non-intrusive load monitoring (NILM) monitors the load activities from a single point source, such as a smart meter, based on the assumption that different appliances have different power consumption levels and features. NILM can extract the users' load consumption from the smart meter to support the development of the smart grid for better energy management and demand response (DR). Yet to date, how to design residential energy management, including home energy management systems (HEMS) and community energy management systems (CEMS), with an understanding of user preferences and willingness to participate in energy management, is still far from being fully investigated. This thesis aims to develop methodologies for a resident energy management system for renewable energy systems (RES) incorporating data-driven unravelling of the user's energy consumption behaviour

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal
    corecore