114 research outputs found

    Control approaches for magnetic levitation systems and recent works on its controllers’ optimization: a review

    Get PDF
    Magnetic levitation (Maglev) system is a stimulating nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev benefits the industry since 1842, in which the maglev system has reduced power consumption, increased power efficiency, and reduced maintenance cost. The typical applications of Maglev system are in wind turbine for power generation, Maglev trains and medical tools. This paper presents a comparative assessment of controllers for the maglev system and ways for optimally tuning the controllers’ parameters. Several types of controllers for maglev system are also reviewed throughout this paper

    Development of registration methods for cardiovascular anatomy and function using advanced 3T MRI, 320-slice CT and PET imaging

    Get PDF
    Different medical imaging modalities provide complementary anatomical and functional information. One increasingly important use of such information is in the clinical management of cardiovascular disease. Multi-modality data is helping improve diagnosis accuracy, and individualize treatment. The Clinical Research Imaging Centre at the University of Edinburgh, has been involved in a number of cardiovascular clinical trials using longitudinal computed tomography (CT) and multi-parametric magnetic resonance (MR) imaging. The critical image processing technique that combines the information from all these different datasets is known as image registration, which is the topic of this thesis. Image registration, especially multi-modality and multi-parametric registration, remains a challenging field in medical image analysis. The new registration methods described in this work were all developed in response to genuine challenges in on-going clinical studies. These methods have been evaluated using data from these studies. In order to gain an insight into the building blocks of image registration methods, the thesis begins with a comprehensive literature review of state-of-the-art algorithms. This is followed by a description of the first registration method I developed to help track inflammation in aortic abdominal aneurysms. It registers multi-modality and multi-parametric images, with new contrast agents. The registration framework uses a semi-automatically generated region of interest around the aorta. The aorta is aligned based on a combination of the centres of the regions of interest and intensity matching. The method achieved sub-voxel accuracy. The second clinical study involved cardiac data. The first framework failed to register many of these datasets, because the cardiac data suffers from a common artefact of magnetic resonance images, namely intensity inhomogeneity. Thus I developed a new preprocessing technique that is able to correct the artefacts in the functional data using data from the anatomical scans. The registration framework, with this preprocessing step and new particle swarm optimizer, achieved significantly improved registration results on the cardiac data, and was validated quantitatively using neuro images from a clinical study of neonates. Although on average the new framework achieved accurate results, when processing data corrupted by severe artefacts and noise, premature convergence of the optimizer is still a common problem. To overcome this, I invented a new optimization method, that achieves more robust convergence by encoding prior knowledge of registration. The registration results from this new registration-oriented optimizer are more accurate than other general-purpose particle swarm optimization methods commonly applied to registration problems. In summary, this thesis describes a series of novel developments to an image registration framework, aimed to improve accuracy, robustness and speed. The resulting registration framework was applied to, and validated by, different types of images taken from several ongoing clinical trials. In the future, this framework could be extended to include more diverse transformation models, aided by new machine learning techniques. It may also be applied to the registration of other types and modalities of imaging data

    Neural Network based Robot 3D Mapping and Navigation using Depth Image Camera

    Get PDF
    Robotics research has been developing rapidly in the past decade. However, in order to bring robots into household or office environments and cooperate well with humans, it is still required more research works. One of the main problems is robot localization and navigation. To be able to accomplish its missions, the mobile robot needs to solve problems of localizing itself in the environment, finding the best path and navigate to the goal. The navigation methods can be categorized into map-based navigation and map-less navigation. In this research we propose a method based on neural networks, using a depth image camera to solve the robot navigation problem. By using a depth image camera, the surrounding environment can be recognized regardless of the lighting conditions. A neural network-based approach is fast enough for robot navigation in real-time which is important to develop the full autonomous robots.In our method, mapping and annotating of the surrounding environment is done by the robot using a Feed-Forward Neural Network and a CNN network. The 3D map not only contains the geometric information of the environments but also their semantic contents. The semantic contents are important for robots to accomplish their tasks. For instance, consider the task “Go to cabinet to take a medicine”. The robot needs to know the position of the cabinet and medicine which is not supplied by solely the geometrical map. A Feed-Forward Neural Network is trained to convert the depth information from depth images into 3D points in real-world coordination. A CNN network is trained to segment the image into classes. By combining the two neural networks, the objects in the environment are segmented and their positions are determined.We implemented the proposed method using the mobile humanoid robot. Initially, the robot moves in the environment and build the 3D map with objects placed in their positions. Then, the robot utilizes the developed 3D map for goal-directed navigation.The experimental results show good performance in terms of the 3D map accuracy and robot navigation. Most of the objects in the working environments are classified by the trained CNN. Un-recognized objects are classified by Feed-Forward Neural Network. As a result, the generated maps reflected exactly working environments and can be applied for robots to safely navigate in them. The 3D geometric maps can be generated regardless of the lighting conditions. The proposed localization method is robust even in texture-less environments which are the toughest environments in the field of vision-based localization.博士(工学)法政大学 (Hosei University

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces

    Development of Efficient Intensity Based Registration Techniques for Multi-modal Brain Images

    Get PDF
    Recent advances in medical imaging have resulted in the development of many imaging techniques that capture various aspects of the patients anatomy and metabolism. These are accomplished with image registration: the task of transforming images on a common anatomical coordinate space. Image registration is one of the important task for multi-modal brain images, which has paramount importance in clinical diagnosis, leads to treatment of brain diseases. In many other applications, image registration characterizes anatomical variability, to detect changes in disease state over time, and by mapping functional information into anatomical space. This thesis is focused to explore intensity-based registration techniques to accomplish precise information with accurate transformation for multi-modal brain images. In this view, we addressed mainly three important issues of image registration both in the rigid and non-rigid framework, i.e. i) information theoretic based similarity measure for alignment measurement, ii) free form deformation (FFD) based transformation, and iii) evolutionary technique based optimization of the cost function. Mutual information (MI) is a widely used information theoretic similarity measure criterion for multi-modal brain image registration. MI only dense the quantitative aspects of information based on the probability of events. For rustication of the information of events, qualitative aspect i.e. utility or saliency is a necessitate factor for consideration. In this work, a novel similarity measure is proposed, which incorporates the utility information into mutual Information, known as Enhanced Mutual Information(EMI).It is found that the maximum information gain using EMI is higher as compared to that of other state of arts. The utility or saliency employed in EMI is a scale invariant parameter, and hence it may fail to register in case of projective and perspective transformations. To overcome this bottleneck, salient region (SR) based Enhance Mutual Information (SR-EMI)is proposed, a new similarity measure for robust and accurate registration. The proposed SR-EMI based registration technique is robust to register the multi-modal brain images at a faster rate with better alignment

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Structural and physical properties of Fe-Nb-B-RE type of bulk magnetic nanocrystalline alloys

    Get PDF
    The subject of hard magnetic materials is important from the both practical as well as scientific point of view. Researches in this field are focused on new materials with strong enough hard magnetic properties but with lower rare earth content than for the classical Nd rich alloys. The presented PhD thesis refers to preparation, structural and magnetic properties of the Fe-Nb-B-RE type of bulk nanocrystalline alloys. As the preparation technology of the bulk alloys, the so-called vacuum suction casting was chosen. The chemical compositions of the examined alloys is originated from the Fe-Nb-B (NANOPERM) amorphous melt spun ribbons in which niobium, as an alloying addition, slows down crystallization of iron leading to some optimization of magnetic properties. The PhD thesis is focused on: i) magnetic interactions in multi-phase magnetic materials, ii) magnetism in TM-RE disordered structure, iii) influence of microstructure on selected physical properties and iv) numerical modeling and characterization of the nanomagnetic structures. From application point of view, especially important is a combination of chemical compositions and technology parameters (cooling rate, melting current) of the studied alloys, in order to improve hard magnetic characteristics and / or decrease the RE content without deterioration of their desired properties. The performed investigations consist of fabrication of about 80 different alloys characterized by several structural and magnetic measurement techniques like X-ray diffraction, Mössbauer spectroscopy, DSC, SEM, AFM / MFM, Kerr microscopy, magnetic balance as well as SQUID magnetometer. It was shown that the phase structure, microstructure and magnetic properties strongly depends on the chemical composition (the RE and Nb content) as well as technology parameters (the sample diameter and the melting current). The optimal parameters were established as: i) Tb as the RE element with the content of 10-12 at. %, ii) Nb content of 6-8 at. %, iii) sample diameter ranged from 0.5 to 1.5 mm and iv) melting current I = 35 A. The alloys reveal hard magnetic properties with a high and ultra-high coercivity depending on the niobium content. Particularly, for the field-annealed (Fe80Nb6B14)0.88Tb0.12 alloy, the coercive field measured at room temperature exceeds 7 T which is a unique feature in the case of bulks. The observed magnetic hardening effect is controlled by the niobium content in the combination with the specific solidification rate (during casting). The observed phase segregation leads to the formation of grain microstructure with the irregularly shaped dendrites separated by inter-dendritic regions. This structure is responsible for an additional shape as well as surface anisotropy and thereby it is a source of some ultra-hard magnetic objects. The carried out simulations proved the proposed micro-magnetic picture of the alloys and indicate a significant role of the ultra-hard magnetic objects in the magnetization processes. Generally, as was shown in the presented thesis, the examined alloys can be considered as high and ultra-high coercive materials with application potential in the fields of permanent magnets where increasing resistance to external magnetic field is required

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    corecore