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Abstract
Recent advances in medical imaging have resulted in the development of many

imaging techniques that capture various aspects of the patients anatomy and

metabolism. These are accomplished with image registration: the task of transforming

images on a common anatomical coordinate space. Image registration is one of the

important task for multi-modal brain images, which has paramount importance in

clinical diagnosis, leads to treatment of brain diseases. In many other applications,

image registration characterizes anatomical variability, to detect changes in disease

state over time, and by mapping functional information into anatomical space. This

thesis is focused to explore intensity-based registration techniques to accomplish

precise information with accurate transformation for multi-modal brain images. In this

view, we addressed mainly three important issues of image registration both in the

rigid and non-rigid framework, i.e. i) information theoretic based similarity measure

for alignment measurement, ii) free form deformation (FFD) based transformation,

and iii) evolutionary technique based optimization of the cost function.

Mutual information (MI) is a widely used information theoretic similarity measure

criterion for multi-modal brain image registration. MI only de�nes the quantitative

aspects of information based on the probability of events. For justi�cation of the

information of events, qualitative aspect i.e. utility or saliency is a necessitate factor

for consideration. In this work, a novel similarity measure is proposed, which

incorporates the utility information into mutual information, known as Enhanced

Mutual Information (EMI). It is found that the maximum information gain using EMI

is higher as compared to that of other state of arts. The utility or saliency employed

in EMI is a scale invariant parameter, and hence it may fail to register in case of

projective and perspective transformations. To overcome this bottleneck, salient

region (SR) based Enhance Mutual Information (SR-EMI) is proposed, a new

similarity measure for robust and accurate registration. The proposed SR-EMI based

registration technique is robust to register the multi-modal brain images at a faster

rate with better alignment.

As the structural content of brain images are important during treatment planning,

the rigid transformation based registration fails to capture local deformation of surfaces.

Hence, non-rigid based registration is essential for brain image analysis, which can

be performed on FFD-based transformation. In this transformation, the image grid

is applied to �nd the deformed region of a brain. Though B-spline interpolation is

popularly used for non-rigid transformation, it fails to register intra tissues of brain by

property of its sensitivity to the distribution of intensity and the local deformations. To

overcome this problem, penalized spline (P-spline) interpolation is introduced, but it

increases the computation time. An adaptive P-spline (AP-spline) based interpolation



scheme is proposed, to reduce the computational burden, which interpolates only for

the local deformation of the image grid rather than the whole image. The proposed

AP-spline interpolation based registration is found to be more e�cient than that of the

P-spline and B-spline based registration approach.

As the functions of the similarity measure with respect to the transformation

parameters are non-linear and non-convex, local optimization based method may not

be appropriate to obtain the optimal solution of the parameters. For optimum

transformation, an evolutionary based hybrid optimization technique is proposed using

the notion of Bacterial Foraging Algorithm (BFA) and quantum-behaved particle

swarm optimization (QPSO) method, named as bacterial foraging - quantum-behaved

particle swarm optimization (BF-QPSO) algorithm. For global search, BF is adopted

with a local search using QPSO in the step of chemotaxis. The proposed algorithm is

found to be e�cient regarding faster converge rate and less mean registration error as

compared to PSO, QPSO, BFA and BF-PSO based registration algorithm.

All the proposed registration schemes are validated with simulated as well as real

multi-modal brain images.

Keywords: Image registration, multi-modal images, mutual information,

spline interpolation, evolutionary optimization techniques.
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Chapter 1

Introduction

In this chapter, we start with a general description of image
registration from the perspective of its applications, followed by its
classi�cation with di�erent criteria. The reason behind multi-modal
brain image registration and the techniques developed towards rigid
and non-rigid registrations are also described along with the literature
review. The objectives of the thesis as well as a brief on thesis
organization are included in this chapter.
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1.1 Image Registration

1.1 Image Registration

Registration is an important task in image processing, where images are to be matched,

captured from di�erent sensors or di�erent viewpoints at di�erent times [1]. The

goal of image registration is to �nd the optimal transformation that best aligns the

structures of interest in the input images. It is a crucial step for image analysis in

which valuable information is gained from the combination of various data sources like

in image fusion, change detection, and multichannel image restoration [2]. Registration

has potential applications in remote sensing (multispectral classi�cation, environmental

monitoring, change detection, image mosaicing, weather forecasting, creating super-

resolution images, integrating information into geographic information systems (GIS)),

in cartography (map updating), in computer vision (target localization, automatic

quality control), in astrophotography, and most importantly in medicine (combining

computer tomography (CT) and nuclear magnetic resonance (NMR) data to obtain

more complete information about the patient, monitoring tumor growth, treatment

veri�cation, comparison of the patients data with anatomical atlases) etc.

Since information gained from two images acquired through di�erent sensors are

usually complementary in nature, alignment of useful data is often desired. Therefore,

it is necessary to transform one image to align geometrically with the other one so

that the di�erence between their spatial information can be easily observed. Image

registration is used to align a pair of images in the same coordinate system in order to

get comprehensive information from di�erent acquired images. Out of two images in a

pair, one image is considered as the reference image and the other one as the �oating

image, which is transformed to align geometrically with respect to the reference one.

The image registration framework is shown in Fig. 1.1. It can be broadly divided into

three tasks:

Similarity measure: The similarity measure helps in measuring the degree of

alignment between reference and �oating images. Generally, there are two kinds of

similarity metric, namely, feature-based metric and intensity-based metric.

Transformation: A transformation is a mapping of locations of points in one

image to new locations in another. The transformation applied to register the images

depends on the degrees of freedom. It may be categorized as either rigid transformation

(translation and rotation), or non-rigid transformation (a�ne, perspective, curve, etc.).

Optimization: The goal of the optimization step is to search for the maximum or

minimum value of the similarity measure adopted. For the registration, the optimum of

the cost function is assumed to correspond to the transformation that correctly register

the input images.
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Figure 1.1: Image registration framework

1.2 Classi�cation of Image Registration Methods

Image registration methods can be classi�ed into various categories based on di�erent

aspects. A brief description is included in this section.

1.2.1 Registration bases

Image registration can be performed by extracting di�erent information from input

images. Based on the kind of information, it can be classi�ed into landmark-based and

intensity-based methods.

In landmark-based image registration, the choice of landmarks highly depends on

the shape of the objects in images. Hence, corresponding feature location is a challenging

task. Also, preprocessing of images, such as image segmentation, is often needed before

the registration, which may a�ect the robustness of registration performance.

In intensity-based image registration, only intensity values of the images are used

to perform the task. Although it requires more computation than landmark-based image

registration, intensity-based image registration is considered more suitable for real time

as it does not require the preprocessing step. Hence, in this thesis, we exclusively focus

on intensity-based image registration.

1.2.2 Classi�cation based on Image Dimensions

The dimensions of the reference and the �oating images taken are assumed to be same,

i.e. 2D-2D and 3D-3D image registration. The dimensions can also be di�erent,

for example, in 2D-3D image registration, the reference image is in two dimensions

3



1.2 Classi�cation of Image Registration Methods

and the �oating image is in three dimensions. Registering those two images requires

transforming the three-dimensional �oating image, including mapping a 3D data volume

onto a 2D image, to align with the 2D reference image.

1.2.3 Transformation based Image Registration

Image registration can be classi�ed into rigid and non-rigid image registration according

to the transformation type.

In rigid image registration, �oating images are considered as rigid bodies, and

only rotation and translation are included in the transformation parameter sets. For

example, three degrees of freedom is considered when �oating images are in two

dimensions (rotation through one axis and translation in two dimensions), and six

degrees of freedom is considered when �oating images are in three dimensions (rotation

through three axes and translation in three dimensions).

In non-rigid image registration, in addition to rigid transformations, deformable

(e.g., a�ne, projective, curved, etc.) transformations are also considered, which requires

comparatively more degrees of freedom than rigid-based image registration. Transform-

based image registration mostly depends on the characteristics of objects in the image.

If the attributes of objects indicate that corresponding objects are deformed (e.g.,

brain, livers), it is more suitable to perform non-rigid image registration. Though

non-rigid image registration is essential, the computational complexity is high due to

its high degrees of freedom. Rigid registration is usually performed �rst to align the

images approximately and to reduce the computational complexity. Subsequently, non-

rigid registration is employed to get more accurate alignment between the given two

deformable objects. In this thesis, we focus on how to perform rigid and non-rigid

image registrations e�ciently and accurately.

1.2.4 Modalities

Image registration can also be classi�ed into mono-modality and multi-modality

depending on sources of input images. If the same sensor produces both the images with

the same physical parameters, the kind of registration is calledmono-modality image

registration. In mono-modality image registration, the reference and the �oating

images have the same or similar intensity values when they are registered.

Multi-modality image registration refers to the case where the images are

captured by di�erent sensors or the same sensor with di�erent physical parameters. Fig.

1.2 shows an example of various modalities of brain images such as MRI, angiography,

CT, ultrasound, SPECT, and PET, etc. In multi-modal image registration, di�erent

sensors or di�erent physical parameters result in di�erent intensity values between the

reference and the �oating images.
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MRI Angiography CT

Ultrasound SPECT PET

Figure 1.2: Multi-modal brain Images

1.3 Medical Image Registration

Image registration is essential for making the medical images more ready and more

suitable to improve the quality of health-care service, and hence it is applicable

widely in the areas including medical database management, medical image retrieval,

telemedicine, and e-health. It also contributes signi�cantly in computer-assisted surgery

as well as intra-subject, inter-subject and inter-modality analysis, registration with

atlases, quanti�cation and quali�cation of feature, shapes and sizes, elastography,

distortion compensation, motion detection and compensation, etc. [3].

Medical image registration has been extensively investigated, and a large number of

software-based algorithms have been proposed alongside the developed hardware-based

solutions (for instance, the combined PET/CT scanners). Among the comprehensive

software-based registration, the feature-based techniques are more computationally

e�cient but require a preprocessing step to extract the features to be used in registration,

which makes this category of registration user-intensive and user-dependent. The

intensity-based scheme provides an automatic solution to avoid user interface in the

registration process. However, this type of registration is computationally complex.

Particularly, image registration is a data-driven and case-orientated research area.

It is a challenging task to select the most suitable and usable technique for a
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particular requirement of a data set captured from various imaging scanners. For

instance, although maximization of MI has been recognized as one of the most robust

registration methods, however it cannot always give an accurate solution for each

class of registration. An automated and accurate registration is more desirable. The

combined imaging devices such as PET/CT provide an expensive hardware-based

solution. However, even this expensive registration method is also not suitable to

provide the accurate registration, and thus software-based solution is required to �x

the mean registration caused by patient motions between the imaging sessions. The

rapid advances in imaging techniques raised more challenges in registration area to

generate more accurate and e�cient algorithms in a clinically acceptable time frame.

Diagnosis and prediction of brain disorders are easy due to development of

imaging tools using computer techniques. Previously computed tomography was

used for clinical applications. Nowadays other imaging techniques such as magnetic

resonance imaging (MRI), positron emission tomography (PET), single photon emission

computed tomography (SPECT), functional magnetic resonance imaging (fMRI) are

more popular, used for radiotherapy and surgical procedure. These advanced techniques

help physicians to detect the disease or unhealthy condition and diagnose exact and

supplementary information about the location of a tumor in brain. Di�erent modalities

in brain imaging are utilized to characterize various aspects of the patient being imaged.

Although this opens the possibility to fuse these di�erent types of information, also poses

signi�cant challenges from an image registration point of view based on the following

factors.

1.3.1 Image Acquisition Artifacts

Brain image acquisition techniques can produce artifacts, such as noise, motion artifacts

and intensity inhomogeneities. As a consequence, image registration techniques must

be designed to be as robust as possible to these type of image acquisition artifacts.

A Noise and Intensity Inhomogeneities

Noise is an inherent artifact in brain imaging. Even though the acquisition parameters

of a scanner may be tuned to minimize these artifacts, they are seldom completely

removed. Intensity inhomogeneities correspond to a variation in intensity as a result of

spatial position. These changes in intensity can usually be modeled as a multiplicative

bias �eld. This type of artifact is often produced by Magnetic Resonance (MR) scanners.

The main causes for these artifacts to occur is due to inhomogeneities of the magnetic

�eld of the scanner and the patient's position. These can hamper the robustness and

accuracy of intensity-based registrations considerably since the intensity in the images

is not spatially consistent.
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B Motion Artifacts

The motion of patients inside the scanner may produce misalignment between

acquisition slices, which is usually problematic for registration algorithms. Furthermore,

natural motion such as cardiac or respiratory motion may also be troublesome.

1.3.2 Multi-modality Challenges

As brain images from di�erent modalities are usually acquired with di�erent scanners

and thus at di�erent points in time, the anatomical features of the images might

have di�erent spatial arrangements. Furthermore, di�erent modalities show di�erent

anatomical or functional properties of the brain being imaged, which makes registration

methods more challenging since the fusion is not clinically relevant if the images are not

adequately aligned.

1.3.3 Ill-Posedness

As previously mentioned, image registration involves an optimization on a search space

of a dimensionality that can be in the order of hundreds, if the transformation to

be estimated is non-rigid. Non-rigid registration becomes an ill-posed problem in the

Hadamard sense. Hadamard states three conditions for a problem to be well-posed: The

existence of a solution, the uniqueness of a solution, and the continuous dependency of

the solution on the initial conditions.

Non-rigid registration problems usually violate the last two conditions. As a

consequence, regularization terms or models are needed to reduce the space of solutions

as much as possible and obtain stable results. Even though a substantial amount

of research on non-rigid registration of brain images has been devoted to di�erent

regularization models [4�8], it still remains an open problem that has to be taken into

account when designing registration algorithms.

1.3.4 Ambiguous Correspondences

Ambiguous correspondences between two medical images arise when one of them depicts

biological features not present in the other. For example, when registering a brain image

of a healthy subject with a brain image of a subject with brain pathology, such as

lesions or tumors. These ambiguous correspondences can be a challenging task for image

registration, that can lead to perform unexpectedly in those areas. This is particularly

the case for intensity-based registration approaches.
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1.3.5 Computational Challenges

In medical image analysis, registration is required for the estimation of non-linear

transformation of the images. For this, non-rigid registration is used, which is a time-

consuming process, as 3D medical imaging acquisition techniques have higher number of

voxels. This signi�es the underlying non-rigid transformations may need to be de�ned by

some parameters. There is a trade-o� between accuracy and speed, where a compromise

has to be made. This compromise tends to be application driven. For example, image-

guided surgery usually requires real-time registrations, whereas computational anatomy

or longitudinal studies can be performed during days or sometimes even weeks without

compromising the clinical applicability of the outcomes.

1.4 Reviewed Literature

The di�erent registration methodologies have been discussed with their advantages and

drawbacks. 2D image registration has been developed by geometrical transformation of

overlapped images of the di�erent complexity of unimodal images [9]. A brief review

of image registration methodologies in di�erent application is presented in [10]. In the

medical image analysis, image registration techniques are categorized into intensity or

feature based. The main steps of intensity based registration are similarity measures,

geometric transformations, optimization and accuracy assessment techniques [10, 11].

For multi-modal images, entropy, and mutual information have been used as matching

criteria for clinical image alignment [12,13].

Intensity-based image registration were used to optimize the transformation

parameter by optimizing the similarity measure by automatic algorithms. For multi-

modal image registration, mutual information has been used as similarity metric. But

the registration accuracy depends on the metric value limits due to interpolation.

Shekhar et al. investigated on deformed ultrasound volumes of thoracic and abdominal

organs with di�erent transformations based on mutual information measure [14].

Though maximization of mutual information (MI)-based objective function over a

regular grid of splines results the better, the computational complexity depends on the

compliance of the transformation of smaller structures in the image. Number of degrees

of freedom in the transformation has to be reduced to speed up the technique [15].

To reduce the computational cost of the registration procedure, Andronache et al.

mapped the intensity of small patches instead of MI measures [16]. Local neighborhood

concept for distinctive structure of small patches has been introduced to calculate the

similarity measure [17]. This method is extended to self-similarity weighted graph-based

implementation of α-mutual information (α-MI) for non-rigid image registration by

taking local structures. The (α-MI) measure was robust against signal non-stationarity
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and intensity distortions and used SeSaMI as the similarity measure in a standardized

cost function with B-spline deformation �eld to achieve non-rigid registration [18].

In medical imaging, interpolation is required for processing such as resampling and

compression [19]. In the analysis of serial structural MRI data, mapping of local

tissue pattern over time was a challenging task. Rueckert et al. has modeled the

global and local motion of breast MRI using a�ne transformation followed by B-

spline [20]. In 2006, they extended the free-form deformation model and they proposed

di�eomorphic non-rigid registration algorithm [21]. Deformable image registration is an

essential tool in medical image processing. The overview of deformable registration

methods are presented in [22]. Splines are familiar to deal with interpolation and

discretization problem. The applications of spline in image processing is reviewed in [23].

Applications of B-spline in image processing are discussed in [24, 25]. Zhuang et al.

used a set of control points in FFD and proposed a weighted non-rigid registration

scheme [26]. Khader et al. also presented a non-rigid image registration technique using

cubic B-spline interpolation to model the deformation of �oating image and matched

with the reference image by minimizing the similarity measure optimized by quasi-

Newton optimization technique [27]. As the basis functions of B-spline are smooth,

the singularities in the deformation �eld can be avoided by the regularization of the

function. To enforce the local invertibility, sometimes the B-spline bases are penalized

with conventional Jacobian penalty in the grid points. Chun et al. incorporated simple

penalty approach into non-rigid image registration techniques [28]. For estimation of

the forward and inverse transformation of an image, another intensity-based similarity

metric has been proposed, which reduces the negative e�ects of outliers [29].

Though B-spline are fascinating for nonparametric modeling, it is complicated to

�nd the optimal number of position of knots, which permits restricted controls over

smoothness. To overcome this problem penalty has been added to B-splines with

a large number of knots [30]. Deformable image registration is an important tool

that combines the multi-modal image datasets for analysis of motion detection and

compensation. The popular DIR algorithms models the displacement vector �eld with

local shape control is B-spline. Jacobson et al. presented two-dimensional deformable

image registration scheme for CT images and extended it to automatic non-uniform

scheme with a comparison to uniform schemes [31]. To visualize the brain surfaces of

male and female, Rajapakse et al. used Non-Uniform Rational B-Splines (NURBS) [32].

NURBs provides an alternative to FFD-based on B-spline with more �exibility and

accuracy. It is extended to 3D images and simulated with real images to avoid the local

minima with improved performance [33]. Lahmiri et al. classi�ed the healthy brain

from Alzheimer's disease or mild cognitive impairment using SVM [34].

For the optimization of similarity measure, local methods or global methods can
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be used. Local methods such as steepest descent gradient, Powell′s direction set

usually trap in the local optimum and result mean-registration error. So, estimation

of good initial transformation parameters are necessary. Simulated annealing (SA),

genetic algorithm (GA) and particle swarm optimization (PSO) are some popular global

optimization techniques used in image registration [35, 36]. Though GA is a powerful

method for global optimization, it requires high computation time and lacks the �ne

tuning capability. Costin et al. described about the Bio-Inspired Optimization Strategy

for medical image registration [37].

1.5 Motivation

In intensity based registration methods, images from di�erent modalities display

complementary information about the object in images with di�erent intensity maps.

Therefore, similarity measures used for multi-modal image registration must be

insensitive to di�ering intensity maps. The information theoretic approach inspires us

for the development of enhanced (new) similarity measure for addressing intensity based

rigid image registration of the brain. Unfortunately, all types of image misalignment

can not be solved by rigid image registration. Hence, non-rigid transformations are

usually considered to account for image deformations. For that, registration using non-

rigid transforms remains a challenging task. These methods vary in their robustness,

complexity, and sophistication. Also, the registration process is complicated as there

may be mean registration error. Fast and accurate, automated, intensity-based medical

image registration is of great utility to clinicians and researchers. However, the high

computational demand of registration can lead to prohibitively lengthy execution times

in imaging work�ows. For instance, registration must be performed within minutes

for applications in intra-operative imaging and image-guided surgery, so as not to delay

procedures. Also, brain atlas creation and clinical studies often require the accurate and

reliable registration of hundreds or thousands of image pairs. To date, the enormous

computational requirements of registration methods have largely precluded their use

at interactive or near real-time speeds on desktop computers. In order to become an

accepted tool in day-to-day practice, registration algorithms must be designed to execute

and generate accurate results within the acceptable time.

1.6 Objectives of Thesis

In this thesis, image registration of multi-modal brain images has been considered in

the intensity domain. The registration is addressed both in the rigid and non-rigid

framework. The thesis is focused on the development of e�cient registration methods

which could register multi-modal brain images accurately with less computation time.
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For evaluation, multi-modal images are taken, such as Computed Tomography (CT),

Magnetic Resonance Imaging (MRI)-T1 weighted, T2 weighted, and PD, etc. Also, the

frontal, sagittal and axial images along with pre and post-operative medical images are

considered for image registration in both rigid and non-rigid framework. The objectives

of this thesis are as follows:

� Proposition of information theoretic based similarity measure to attain the

qualitative and quantitative information for e�cient registration of brain images.

� Development of advanced registration schemes using both scale and a�ne invariant

saliency measure incorporated in similarity measure.

� Development of fast and accurate FFD-based transformation method for

addressing non-rigid registration of multi-modal brain images.

� Development of e�cient optimization technique for transformation associated with

cost function to obtain the maximum similarity measure.

� Performance analysis of proposed methods and validation with multi-modal brain

image data.

1.7 Thesis Contributions

This dissertation aims at developing advanced registration methodologies for medical

images, and speci�cally for brain images. The registration problem is addressed both in

the rigid and non-rigid framework using the intensity-based approach. The chapter-wise

contributions of the thesis are summarized as follows:

� Chapter 2: In this chapter, the thesis aims at developing an information theoretic

based novel similarity measure for brain image registration in intensity-based rigid

transformation framework. In this work, mutual information-based similarity

measure is employed for alignment measurement. The qualitative information

is incorporated through the utility factor or saliency, using which, a new weighted

information measure is proposed named as Enhanced Mutual Information (EMI).

The information gain using EMI is compared with that of existing qualitative-

quantitative mutual information (QMI) [38]. It is mathematically proved that,

the maximum information is gained in case of EMI as compared to QMI.

� The proposed EMI takes care of both qualitative and quantitative measure of

relative information. A new registration algorithm is proposed based on EMI, and

the performance of the same is analyzed for multi-modal rigid registration of brain

images. It is found that, the performance of the proposed scheme is better than
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that of other state of arts. The algorithm is validated with simulated as well as

real brain MR images considering rigid transformation, i.e. translation, rotation,

and scaling.

� Chapter 3: In the previous chapter, the utility or saliency used in similarity

measure is a scale invariant weighting factor. Due to this, EMI based registration

method may fail to register properly in case of a�ne transformation. An attempt

has been made to overcome this di�culty, by incorporating an a�ne invariant

saliency into the similarity measure, which is invariant to the projective and

perspective transformation. In addition to it, the saliency is computed on all pixels

of the image which adds computational burden. Therefore, using a�ne invariant

salient region (SR), a new information measure is proposed named as Salient

Region Enhanced Mutual Information (SR-EMI). The gained information through

SR-EMI in the proposed registration scheme could register the images e�ciently

as compared to EMI based registration scheme. The performance analysis shows

that the SR-EMI based registration algorithm outperforms the similar existing

algorithms regarding mean registration error and other performance criteria.

� Chapter 4: Though the incorporation of salient region as saliency enhances

the similarity measure, it su�ers when the images are geometrically deformed.

For example, the radiological analysis of soft tissue of the brain with some

abnormal cells is a challenging task in rigid registration process. E�ort has been

made to overcome these challenges with the development of an e�cient non-rigid

transformation scheme for image registration. In this chapter, the registration

problem is formulated in non-rigid framework and spline based interpolation has

been performed for non-rigid transformation. B-spline based interpolation scheme

fails to reform the local deformations that are present in the soft tissues of brain

images. Hence, Penalized spline (P-spline) is incorporated by penalizing the image

grid with a regularization term. This regularization term helps in smoothing the

deformed image grid. It is found that P-spline interpolation based registration

method outperforms the B-spline interpolation based registration method.

� The computation time in case of P-spline interpolation is more due to the penalty

term at each grid point of the whole image. In order to reduce the computational

burden, an adaptive P-spline (AP-spline) based interpolation method is proposed,

where the penalty term is adaptively weighted, and only takes care of the locally

deformed grid of the �oating image instead of the whole image grid. The proposed

AP-spline interpolation based registration algorithm is successfully validated with

geometrically distorted brain images as well as pre and post-operative brain

images. The comparison analysis of convergence rate and RMS error shows the
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e�cacy of the proposed P-spline and AP-spline interpolation based registration

methods. The convergence rate is found to be faster, and the RMS error is found

to be least in case of the proposed AP-spline method as compared to other state-

of-art methods.

� Chapter 5: Optimization of cost function is a crucial step in image registration.

The cost function is the similarity measure, which consists of a number of degrees

of freedom of the transformation, is to be optimized for proper registration.

The choice of initial transformation is a challenging task to get an optimum

parameter. Hence, the solution is adoption of nature-inspired optimization

techniques. In this chapter, the registration problem is formulated for both rigid

and non-rigid transformation. Due to large number of degrees of freedom in non-

rigid registration, Powell′s optimization technique fails to converge properly. A

hybrid evolutionary based optimization technique is proposed using the notion of

both bacterial foraging (BF) and quantum-behaved particle swarm optimization

method (QPSO). For a global search, BF is adopted with a local search using

QPSO in the step of chemotaxis for faster convergence and to reduce the

computation time. The proposed BF-QPSO optimization algorithm could be

successfully validated with non-rigid brain images. The performance measure

of the proposed scheme outperforms the other existing state-of-arts. The

performance of proposed hybrid BF-QPSO optimization technique is found to

be better than other existing evolutionary based optimization techniques, such as

PSO, BFA, QPSO, BF-PSO, etc.

1.8 Organization of Thesis

The thesis is organized into the following chapters. An overview of the chapter

organization is shown in Fig. 1.3.

Chapter 1: Introduction

This chapter deals with formal description of the image registration process, its

classi�cation based on various criteria, a brief literature on medical image registration

with an emphasis to the brain images. The thesis objectives, research contributions as

well as chapter organization are also included here.

Chapter 2: Image Registration using Mutual Information based
Similarity Measure

This chapter deals with information theoretic based similarity measure used for

rigid registration followed by detailed description of the existing state-of-arts. A
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Figure 1.3: Thesis organization

new similarity measure is proposed named as Enhanced Mutual Information (EMI),

exhibiting the relative information of both images. Both qualitative and quantitative

information is incorporated into mutual information using the utility factor or saliency.

The performance of the proposed similarity measure is compared with other existing

similarity measures. An algorithm is designed for the registration scheme using EMI as

similarity measure. Simulation and results are presented for simulated as well as real

brain images with rigid transformations.

The maximum information obtained through proposed similarity measure EMI for

registration is described in the APPENDIX A.

Chapter 3: Image Registration using A�ne Invariant Saliency-
based Similarity Measure

In this chapter, a�ne transformation based similarity measure is proposed. A�ne

invariant salient region is incorporated into the saliency for formulating EMI based

registration scheme. The proposed SR-EMI algorithm is validated with CT and MR

image data sets. The performance analysis is also included for exhibiting the e�ciency

of proposed registration method.

Chapter 4: Nonrigid Image Registration using Spline based
Interpolation

In this chapter, we present the non-rigid registration of deformed �oating image with

respect to the reference image. P-spline based interpolation method is proposed to

reform the image grid of the deformed �oating image properly, by using a penalty
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term to the B-spline bases during registration. An adaptive P-spline (AP-spline) based

interpolation methods is also proposed to reduce the computation burden by penalizing

the local deformed grid adaptively. The proposed algorithm is validated with inter and

intra operative brain MR image data set. The performance analysis of the proposed

non-rigid registration method is also presented.

Chapter 5: Hybrid Evolutionary Technique for Transformation
Optimization

In this chapter, the local and global optimization technique for similarity measure

within a given class of geometric, a�ne, and non-rigid transformations are studied.

To �nd the optimum transformation parameters, for more accurate mapping hybridized

evolutionary technique BF-QPSO is proposed. The proposed optimization algorithm is

validated with both rigid and non-rigid image data sets.

Chapter 6: Conclusion and Future Scopes

Conclusions drawn on various issues are presented in this chapter and the scope for

future work is also outlined here.
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Chapter 2

Image Registration using Mutual
Information based Similarity Measure

This chapter describes about registration of brain images of di�erent
modalities achieved by the maximization of suitable information
theoretic similarity measures within a given class of geometric
transformations. The thrust of this chapter is that many of the existing
methods for multi-modal registration that use mutual information
is extended to more accurate intensity-based similarity measures
incorporating the spatial information. To this end, we perform a
computation of the variations of a hierarchy of information theoretic
measures. The proposed method extends to the case of spatially
computed similarity measures for brain image registration.
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2.1 Introduction

The problem of establishing correspondences between two or more images is fundamental

in computer vision, which is one of the building blocks for some challenging problems

such as template matching, 3D reconstruction, camera motion estimation and camera

calibration. When images have been acquired through similar sensors, they can be

realigned by a direct comparison of their intensities. The registration algorithms that

mainly look for the geometric transformation between two images which optimizes the

similarity measure between their intensity values. There are several situations in which

the hypothesis of the invariance of the intensity is no longer valid. One may consider for

instance varying illumination conditions, or sensors with di�erent spectral sensitivities.

The same situation is encountered in brain imaging, where several acquisition modalities

must be realigned to allow for an accurate fusion of complementary information and

cover both structural and functional aspects of the anatomically studied form. Today,

to locate a tumor, to plan a surgical act or to understand a physiological process,

physicians use information acquired with di�erent modalities. CT scanner provides

structural information whereas SPECT or MRI or FMRI give functional information.

The combination of di�erent image modalities facilitates much greater understanding

of the underlying condition of the brain, resulting in improved patient care.

The focus of this chapter is the registration of spatial information, which requires

spatial alignment of the involved images. The images must be aligned geometrically and

must represent the same anatomical form. Several intensity-based similarity measures

have already been used for this purpose. The traditional cross correlation and the sum

of squared di�erence based methods fail to register properly [39]. Mutual information

overcomes the problems and has been popularly used in last decades [12, 40, 41]. For

multi-modal images, entropy, relative entropy, and mutual information have been used

as matching criteria for clinical image alignment [13]. Pluim et al. presented literature

on mutual information based medical image registration [41]. Wells et al. proved the

robustness of mutual information as compared to the traditional correlation where the

edge or gradient-magnitude based method fails to register accurately [39]. In [42],

Pluim et al. included spatial information to develop rigid and a�ne unimodality image

registration.

During brain image acquisitions, the contrast tissue changes locally sometimes due to

neurodegeneration procedure, which modi�es the tissue volume integrity. In such cases,

the MI fails to map. Also, MI is time-consuming due to joint histogram computation.

So, Viola et al. proposed Parzen window kernel density estimation to evaluate the joint

probability distribution between the probability masses [40]. In [43,44], a novel extension

of MI was proposed considering the regions of corresponding pixels to provide faster
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and signi�cant reduction in errors. A new similarity metric combining the anatomical

features along with intensity distribution has been presented for automated MRI/

SPECT image registration in [45]. Loeckx et al. proposed a novel similarity measure

for non-rigid image registration. They estimated the 3D joint histogram considering

image intensities of input images with a given spatial distribution [4]. However, all

these matching criteria are found to be time-consuming as well as lack the qualitative

information of images. Luan et al. incorporated the qualitative information into the

measure of mutual information, and proposed a quantitative-qualitative measure of

information (QMI) in [38]. In this chapter, an attempt has been made to propose a new

mutual information-based similarity measure with more qualitative information along

with quantitative information of the images which could register the brain images with

better accuracy.

The main contribution in this chapter is the proposition of a new information

theoretic based e�cient similarity measure named as Enhanced Mutual Information

(EMI), for the brain image registration in rigid registration framework (translation,

rotation and scaling). The relative information signi�es qualitative and quantitative

information of the mutual information. The performance of the proposed approach

relies on mean registration error.

The rest of the chapter is organized as follows. Section 2.2 describe basic concept

of intensity based registration, similarity measure. All the information theoretic based

similarity measures are described in this chapter. The formulation and justi�cation

of proposed similarity measure are explained in Section 2.3. Section 2.4 presents the

performance analysis with experimental results of proposed method and those in existing

literature [13], [42], [43] and [38]. Finally, the summary is drawn in Section 2.5.

2.2 Materials and Methods

This section describes the details about intensity based registration framework, di�erent

similarity measures such as statistical, information theoretic and spatial dependency

measures.

2.2.1 Intensity-based Image Registration

Registration methodologies based on voxel intensity are commonly known as intensity-

based. As the method does not utilize segmentation, feature detection, intensive user

interaction, can be achieved fully automatic. In this framework, a similarity measure is

de�ned by transformation of raw image content and is used as a criterion for optimal

registration. Several well established intensity-based similarity measures have been

used in the biomedical image registration domain [46�48]. The block diagram of this

registration framework is shown in Fig. 2.1. The components of the same are as follows:

18



2.2 Materials and Methods

� The spatial mapping of intensities throughout the alignment process is achieved

with a transform component.

� An interpolation component is used to evaluate intensities at non-discrete

locations. The similarity metric component calculates a measure of alignment

accuracy.

� Optimization of the similarity measure within a search space de�ned by transform

parameters is achieved with an optimization component.

Figure 2.1: Block diagram of intensity based image registration framework

2.2.2 Similarity Measures

The similarity measure is a signi�cant task in intensity-based image registration. The

purpose of an image similarity metric is to quantify how well a given transformation

aligns two images. It serves as a cost function to be maximized or minimized (depending

on the metric) to achieve accurate alignment. For intensity based registrations, these

parameters are generally calculated from all overlapping pixels in aligned images. There

are some possible metrics to use, each of which is suited to a di�erent type of registration

problem.

The registration problem is expressed in terms of similarity measure associated with

transformation parameters as

t∗ = arg max
t

(SM(R(x), F (Tt(x))) (2.1)

where Tt is the transformation with parameter t, t∗ is the optimum or �nal transformed

parameter, SM is the similarity measure, R is the reference image, F is the �oating

image and x is the associated pixel value of the images.

19



2.2 Materials and Methods

Intensity-based similarity measures are categorized into three groups: statistical

measures i.e. calculation of intensity di�erence of same contrast images, information

theoretic measures that focus on the entropy of an image, and spatial dependency

measure where neighboring pixels/voxels are taken into account.

The statistical measure used for image registration are cross correlation (CC), and

sum of squared di�erence (SSD). Many researchers successfully employed the cross-

correlation of intensities as a similarity measure for image registration [49�51]. It is

used to register translated images with only slight rotations and scalings. It has been

also used for alignment of X-ray images and biomedical volume data by Russako� et

al. [46]. The basic cross-correlation of intensities of both input images is computed as:

CC(R,F ) =

I∑
x=1

J∑
y=1

R(x,y)F (x−u,y−v)

[
I∑
x=1

J∑
y=1
|F 2(x−u,y−v)|

]1
2

(2.2)

where R and F are reference and �oating image, I and J are the number of pixel rows and

columns, x and y are discrete pixel coordinates, while u and v represent the components

of transformation respectively. Although popular, correlation-based metrics are sensitive

to the presence of outliers and are limited to the alignment of images from the same

modality and a�ne transformation. Also the computational cost is unmanageable with

higher degree of transformations.

Another similarity measure based on the intensity di�erence is the sum of squared

di�erences (SSD). Hajnal et al. and Woods et al. have successfully computed the SSD

metric as a similarity measure with identical intensities of corresponding structures

of reference and �oating image [52, 53]. The lower value of SSD signi�es the better

alignment of �oating image F with respect to the reference image R. SSD is evaluated

as

SSD(R,F ) =
1

N

∑
xR∈ΩRF

| R(xr)− F (T (xf )) |2 (2.3)

where xr, xf are the pixel positions and ΩRF is the overlapping domain of R and F .

These methods are based on the proposition of independence and stationarity of the

intensities from pixel to pixel. Information theoretic based similarity measures overcome

the problems associated with SSD. For last two decades, mutual information (MI) has

been the accustomed similarity measure for brain image registration [41].

2.2.3 Information Theoretic based Similarity Measure

A Mutual Information

According to information theory, the concept of mutual information (MI) between two

variables is to measure the amount of information that one variable contains about
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the other. Mutual information makes few assumptions regarding the relationships that

exist between two images, i.e. statistical dependence. It determines the uncertainty of

one of the images when the other one is known. It was independently computed for

mono-modal and multi-modal brain image registration by the researchers [12, 39, 40].

By maximizing MI, the marginal entropies becomes higher with a lower joint entropy.

The popular interpretation of MI is based on the dispersion of the joint histogram, i.e.

the less dispersed the joint histogram, the better the two images are registered.

Entropy is a measure of dispersion of a probability distribution. For uniform

distribution, entropy becomes maximum. It is computed by estimating the probability

distribution of image intensities. The joint probability distribution is estimated by the

normalized joint histogram of the gray values. Shannon measure of entropy is popular

in information theory. The Shannon entropy of a discrete distribution is invariant to

rotation and translations, which makes the problem tractable [54].

Let R = r1, r2, r3, ....rN , rn > 0,
∑N

n=1 rn = 1 be a discrete probability distribution.

Then Shanon's entropy is given by

H(R) = −
N∑
n=1

rnlogrn (2.4)

Considering R as the probability distribution of a set of N number of events with

the predicted probability distribution on the basis of experiment F = f1, f2, f3, ....fN ,

fn > 0,
∑N

n=1 fn = 1, then Kullback's measure of relative information is given by

D (R/F ) = −
N∑
n=1

rnlog
rn
fn

(2.5)

Considering R and F be the reference image and �oating image with pixel intensities

r and f respectively, the associated joint probability distribution function is p(r, f). The

marginal probability distribution functions are p(r) and p(f), which can be thought of

as the projection of the joint PDF onto the axes corresponding to intensities in image R

and F respectively. The marginal entropies H(R) & H(F ) vary during the registration

process and is de�ned as

H(R) = −
∑
r

p(r)logp(r)

H(F ) = −
∑
f

p(f)logP (f) (2.6)

The joint entropy H(R,F ) is de�ned as

H(R,F ) = −
∑
r,f

p(r, f)logp(r, f) (2.7)

According to the information theory, mutual information (MI) is related to the
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entropies as follows:

MI(R,F ) = H(R) +H(F )−H(R,F )

=
∑
rεR

∑
fεF

p(r, f)log
p(r, f)

p(r)p(f)
(2.8)

The above mutual information related variables are considered

throughout the thesis.

Steps of mutual information based registration algorithm are described as follows:

1. Initialize the parameters for transformation of �oating image.

2. Compute marginal entropies and joint entropy of reference and �oating image

using Equations 2.6 and 2.7.

3. Compute mutual information (MI) using Equation 2.8.

4. Apply geometric transformation to �oating image F .

5. Evaluate new mutual information of transformed �oating image and reference

image, MInew.

6. If ε = MInew −MI ≤ 0.01,

then the image is registered with optimum transformation parameters,

else go to Step 2 and repeat.

Viola et al. applied an information theoretic approach to �nd the pose of an object in

an image [40]. He experimented on MR and CT image to align the 3D object model to

real scenes by maximizing the mutual information. MI has gained popularity in multi-

modal image registration [12]. But, the registration function using MI is ill-de�ned

due to local maxima that occur for various reasons, i.e. low resolution of images, less

information content, a small region of overlap or interpolation method, etc. To overcome

the sensitivity of MI to the above factors, Studhlome et al. introduces Normalized

Mutual Information (NMI) [13].

B Density Function Estimation

Step 2 of the MI-based registration algorithm as described earlier is to compute the

entropy, i.e. registration of an image using the density function. However, in a typical

registration problem, direct access to the probability density information is not available

and hence they have to be estimated from the image data. There are several techniques

available to estimate the density function, such as: histogram approach [12] and Parzen

window approach [40].
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B.1 Histogram Approach

Histogram based density function estimation is presented by Collignon et al. [55]. It

calculates the density function using the equation:

p (r, f) =
1

N
h (x, y) (2.9)

where N is the number of samples. x and y are the associated pixel intensities of

reference and �oating image. It is used to calculate the mutual information as presented

in Equation 2.8. Joint intensity histogram is obtained by binning the intensity pair (r, f)

of the overlapping parts of the reference image R and �oating image F . Then, the joint

�oating probability p(r, f) is estimated by normalizing the joint intensity histogram.

B.2 Parzen Window approach

Emanuel Parzen invented this approach, which is widely applied to pattern recognition,

classi�cation, image registration, tracking, image segmentation and image restoration

[56]. Parzen window (PW) density estimation is essentially a data interpolation

technique. With a given instance of the random sample x, parzen windowing estimates

the probability density function (PDF), from which the sample is derived. It essentially

superposes kernel functions placed at each observation, so that each observation xi

contributes to the PDF estimate [56]. PW based density estimation was successfully

applied for image registration [35].

Let w be a function with unit integral
∫∞
−∞w(ζ)dζ = 1 . Let xi be a set of samples

of a random variable X with PDF p(x). Then, the Parzen estimation of p is

pN(x) =
1

N

N∑
i=1

w((x− xi)/γ(N)

γ(N)
(2.10)

where γ is the scaling factor, which controls the Parzen window width w. Using Equation

2.10, the joint discrete Parzen histogram is de�ned as

h(x, y;µ) =
1

γrγf

∑
xiεΩ

w(x/γr − F (T (xi;µ))/γr).w(y/γf −R(xi)/γf ) (2.11)

where xεXR, yεXF and γr, γf are corresponding scaling factor of XR, XF respectively.

XR and XF are discrete set of intensities associated to reference image R and �oating

image F respectively. T (x;µ) is the geometric transformation associated with parameter

µ. The discrete Parzen probability becomes,

p(x, y;µ) = ρ(µ).h(x, y;µ) (2.12)

where ρ(µ) is the normalization factor.
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C Normalized Mutual Information

The registration accuracy depends on the optimization of the similarity measure. The

mutual information is assumed to be maximum with proper alignment of �oating image

with respect to the reference image R. Despite an increasing MI value, the quality

of registration falls due to overlap regions of the pixels of R and F . To overcome

this dependence on volume of overlap, normalization of the combined information in

the overlapping region has been considered and Normalized Mutual Information (NMI)

in [13] by Studholme et al., which is represented by

NMI(R,F ) =
H(R) +H(F )

H(R,F )
(2.13)

Though NMI solved the problem of the overlapping region occurred in MI but fails to

take care of the ignored neighborhood pixels of the gray values, that are dependent on

each other. Russako� et al. introduced the regional information as spatial information

and proposed a new variation of mutual information [43].

D Regional Mutual Information

The estimation of the probability density is the crucial step in normalized mutual

information. The method only considers the image content in histogram excluding

any spatial information such as anatomical structure, which hampers the registration

quality in the presence of outliers or artifacts. According to Viola et al., maximization

of mutual information between two images �nd the complex overlapping regions by

maximizing individual entropies and minimizing the joint entropy [39]. NMI does not

take the geometry into account as it considers only pixel values instead of pixel positions.

An extension of MI is done considering neighborhood regions of corresponding pixels for

utilization of spatial information named as Regional Mutual Information (RMI) [43].

RMI is equivalent to projecting the data onto each of the axes of the new, uncorrelated

basis and summing up the entropies. Here, each pixel along with its neighboring pixel

constitutes a block. Then for each block marginal probabilities and joint distributions

were calculated. The joint distribution is formed by extracting the spatial feature

information and transformed to a decorrelated space. The spatial and intensity

estimations were calculated by mean and covariance matrix of the image. Considering a

pixel with (3× 3) neighborhood gives 9D histogram for marginal probabilities and 18D

histogram for joint distribution. A (d×N) matrix is formed by making a d dimensional

vector of the joint distribution, where d = 2(2r + 1)2, r is speci�ed square radius,

N = (m− 2r)(n− 2r) and (m× n) is size of image. Here, N represents the number of

points distributed in d dimensional space.

The entropy of normally distributed set of points in <d with covariance matrix Σd
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Figure 2.2: Illustration of relationship between an image region with its neighborhoods
and joint distribution

is

Hs (Σd) = log
(

(2πe)
d
2 det (Σd)

1
2

)
(2.14)

RMI is calculated by estimating the marginal entropies and the joint entropy as follows:

RMI(R,F ) = Hs(ΣR) +Hs(ΣF )−Hs(ΣR,F ) (2.15)

Extensions of RMI have been proposed for brain image registration to assess the

quality [44, 57]. Though RMI is more e�cient and robust than traditional MI and

NMI, the computational cost due to high-dimensional joint distribution is more. Hence,

several weighted information has been introduced as spatial information into MI [42].

E Spatial Mutual Information

The di�erent imaging techniques do not depict the same tissue transition in both of

the images. Image locations with a high gradient are assumed to express a change of

tissues, with high information value. Many researchers applied the gradient information

in the registration problem [58, 59]. As gradient information plays a dramatical role

for better performance, calculation of gradient is necessary. The spatial information

is incorporated by applying mutual information to gradient images. The registration

function would probably have a narrow attraction range, and a lot of information from

the gray value of images will be discarded with this. Therefore, a combination of mutual

information along with gradient information is evaluated as the similarity measure [42].

Gradient-based similarity measure is also known as spatial mutual information and is

calculated by

SMI(R,F ) = G(R,F ) ∗MI(R,F ) (2.16)

25



2.2 Materials and Methods

whereG(R,F ) is the gradient information of both images. However, multi-modal images

with same anatomical structures, might have same or di�erent orientation of gradient.

Pluim et al. considered the magnitude as well as the orientation of the gradient [42],

where the gradient vector included the angle function weighted with a minimum gradient

magnitude. The gradient information is expressed as

G(R,F ) =
∑

x,x
′
ε(R,F )

w(αxx′ )min(|∇x|, |∇x′ |) (2.17)

where x is a sample point in the reference image. x
′
is the corresponding point of

�oating image obtained by geometric transformation of x. w is the weighting function

which is a function of αxx′ , where αxx′ is the angle between gradient vector. The angle

is calculated by

αxx′ = arccos
∇x.∇x′

|∇x||∇x′ |
(2.18)

where ∇x is the gradient vector of point x, |.| is the magnitude.

F Qualitative-quantitative Mutual Information

All the above MI based registration methods consider the pixels of the images equally.

The pixels having the same intensity should be utilized di�erently because of their

di�erent characteristics and utilities while used for image registration. MI only de�nes

the quantitative aspects of information based on the probability of events. But the

occurrence of events causes di�erent in�uences and e�ects. Hence, to justify the

information of events, qualitative aspect is necessiable for consideration of the e�ects of

their occurrence. The qualitative aspect is also known as utility or salient point, which

is a non-negative large real base number. Let us consider R as probability distribution

of a set of N events, where R = {(r1, r2, ...., rN), rn > 0,
∑N

n=1 rn = 1} be a discrete

probability distribution and W = {(w1, w2, ...., wN), wn > 0} be the set of utility. Let

wn be the utility of nth event corresponding to probability rn. Bellis et al. proposed an

utility based weighted information measure [60], which is de�ned as

H1(R;W ) = −
N∑
n=1

wnrnlogrn (2.19)

Motivated by this information measure, Luan et al. incorporated the

saliency information as utility along with mutual information and proposed

qualitative−quantitative mutual information (QMI), which was successfully applied for

image registration [38]. QMI similarity measure is de�ned as

QMI(R,F ;W ) =
∑
rεR

∑
fεF

w(r, f)p(r, f)log
p(r, f)

p(r)p(f)
(2.20)
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where w(r, f) is a joint utility for each intensity pair (r, f). Each joint utility w(r, f)

is updated from its initial value w0(r, f) to �nal value through the registration process.

The pixel with higher utility value contribute more towards the goal. Finally, all

pixels contribute equally for the alignment of the �oating image F with reference to

the reference image R.

2.3 Proposed Registration Framework

During acquisition of brain images, relative changes found with relatively short periods

between scan, which needs corrections for a small amount of subject motion during

imaging. Also, the anatomical structures appear with more contrast in one image than

other. These structures in various modalities are convenient to have more information

about them. Brain images of magnetic resonance imaging are more sensitive to contrast

changes [61]. It becomes di�cult to distinguish any injuries or malignant with same

contrast in di�erent regions of the organ. To quantify the speci�ed region of interest

sharp intensity changes contribute more e�cient match. Hence, a weighting factor

or utility factor is needed for qualitative information measure. Researchers over the

past years have proposed several weighted information measures, by integrating the

probabilistic, objective and quantitative measure of information with the non-stochastic,

subjective and qualitative measure of utility [60,62,63].

The proposed registration framework consists of three steps. (1) Evaluation of

similarity measure, (2) transformation using interpolation and (3) optimization. In

this chapter, the focus is towards implementation of a new similarity metric using rigid

registration framework. The transformation parameters are initialized in the �rst step.

The notion of utility or saliency of each pixel is incorporated into mutual information to

evaluate the new similarity measure between the reference and �oating image. The new

similarity measure provides a qualitative-quantitative measure of relative information

of �oating image and the reference image, which enables to register with improved

accuracy. Consequently, the proposed similarity measure is maximized by updating the

new transformation parameters using Powell's optimization technique. The bi-cubic

interpolation method is used during the update process. The procedure iterates until

the proposed similarity measure is maximized and the subsequently �oating image is

aligned to the reference image with a less mean registration error.

2.3.1 Information Measure

In information theory, the occurrence of an event depends on two aspects, (i) the

quantitative; is related to the probability of occurrence, (ii) the qualitative; is related

to utility for the ful�llment of the goal. Considering R as probability distribution of
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a set of N events, where R = {(r1, r2, ...., rN), rn > 0,
∑N

n=1 rn = 1} be a discrete

probability distribution and F = (f1, f2, ...., fN), fn > 0,
∑N

n=1 fn = 1 is the set of

estimated probability distribution of events. The Kullback-Leibler distance, also known

as relative entropy can be expressed as a measure of how close F approaches R [64].

H(R/F ) =
N∑
n=1

rnlog
rn
fn

(2.21)

Di�erent pixels have their own e�ciency towards the grati�cation of the elementary

target, which may be self-reliant of their probability of occurrence. Therefore, both

intensity distributions and e�ectiveness are essential to characterize a pixel. In 2006,

Munteanu and Tarniceriu considered a new set of axioms and proposed a new weighted

measure of information [65] as follows:

H2(R;W ) = −
N∑
n=1

rnlogrn +
N∑
n=1

wnrn (2.22)

Considering wn = 0 for each n, the information measure will be equivalent to Equation

2.4. According to Taneja et al. [62], the quantitative-qualitative measure of relative

information is expressed as

H3(R/F ;W ) =
N∑
n=1

wnrnlog
rn
fn

(2.23)

In 2008, Srivastav et al. developed the quantitative-qualitative measure of relative

information [66], which is de�ned as

H4(R/F ;W ) =
N∑
n=1

rnlog
rn
fn

+
N∑
n=1

wnrn (2.24)

The bounds of this weighted information measures using the Lagrange′s multiplier

method and well known inequalities were proved in [67]. They proved that the new

weighted entropy measure H2(R;W ) in Equation 2.22 is more signi�cant in a maximum

than the weighted measure H1(R;W ) in Equation 2.19.

2.3.2 Proposed Similarity Measure: Enhanced Mutual
Information

All variants of mutual information-based similarity measures only de�ne the quantitative

aspects of information based on the probability of pixels. Whereas the occurrence of

pixels causes di�erent weights and e�ects. For justi�cation of the information of each

pixel, a qualitative aspect is substantial for the consideration of the e�ects of their

occurrence. The qualitative facet is the salient point, with a non-negative large real base

number is the utility of the pixel and is independent of the probability of occurrence of

that pixel.
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In this part of work, a new information theoretic based similarity measure named

as Enhanced Mutual Information (EMI) is proposed. Motivated by the information

measure proposed by [62,67], and using the weighted entropy information H4(R/F ;W )

given in Equation 2.24, a new mutual information is proposed as the similarity measure

for image registration. Here, the weighted information or the utility of each pixel is

calculated according to the regional saliency value computed by scale-space mapping

[68]. Voxels with higher saliency value contributes more towards the calculation of

the similarity measure. The utility factor is incorporated which considers the useful

relative information rather than the self information. The proposed mutual information

adopting the new weighted information is termed as Enhanced Mutual Information

(EMI) and is de�ned as

EMI(R,F ;W ) =
∑
rεR

∑
fεF

p(r, f)log
p(r, f)

p(r)p(f)
+ w(r, f)p(r, f) (2.25)

where w(r, f) is the joint weighted information or utility measure of R and F . In

this measure, the saliency is incorporated to mutual information measure so that the

saliency measure exhibits a relative character rather than a non−negative character.

The maximum information gain of the proposed similarity measure has been proved

and is presented in the Appendix- A.

Utility measure: Utility is determined by analyzing the entropy in the local

regions. Here, self-similarity based saliency measure helps in �nding the joint weighted

information as utility of the images. First we calculate the probability distribution

pi(s, x) of intensity i which is centered at pixel x in a circular region of radius s. Then,

the local entropy HD(s, x) is de�ned as

HD(s, x) = −
∑
i

pi(s, x)log2pi(s, x) (2.26)

The best scale sp for the region centered at pixel x is found by maximizing the local

entropy HD(s, x) with a condition sp = {s : HD(s − 1, x) < HD(s, x) > HD(s + 1, x)}.
The saliency value δ(s, x) of each pixel is de�ned by a maximal local entropy value,

weighted by the inter-scale saliency measure

δ(sp, x) = HD(sp, x)× UD(sp, x) (2.27)

where UD is the self dis-similarity measure i.e

UD(s, x) =
∑
i

|∂pi(s, x)

∂s
|sx (2.28)

After calculating the utility of each pixel, we compute the joint utility, which is the

weight information of the QMI and EMI [69]. The joint weighted information for each
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intensity pair is calculated by

wn(r, f) =
∑
i,jες

δr(i).δf (j). (2.29)

where ς is the overlap region of both images. δR(i) and δF (j) are the weighted values of

pixel i and j respectively in images R and F respectively. Ri and Fj are the respective

intensity of the reference and �oating image at locations i and j. Throughout the

registration process, the joint weighted information is updated hierarchically. The

weighted information changes with the registration steps l with a function

Wn(r, f) + α(l).(1−Wn(r, f)) (2.30)

where α(l)= 0 to 1

2.3.3 Image Registration using Enhanced Mutual Information

From Section 2.3.2, it is proved that the maximum information gain in the EMI measure

is more than that of the QMI measure. Hence, by maximizing the proposed similarity

measure EMI, the transformed �oating image (F ∗) will be aligned with respect to the

reference image (R). The block diagram of the proposed registration framework is

presented in Fig. 2.3.

Figure 2.3: Block diagram of proposed image registration framework

Referring to Equation 2.1, the optimal transformed parameters are obtained by

t∗ = arg max
t

(EMI(R(x), F (Tt(x))) (2.31)

where EMI between R and F t with transformation parameter t∗ is evaluated by

EMI(R,F ;W ) =
∑∑

p(R,F t)log
p(R,F t)

p(R)p(F t)
+ w(R,F t)p(R,F t) (2.32)
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The algorithm of the proposed scheme is as follows. diff(fc) is the di�erence of the

cost function.

Algorithm 1: EMI based registration algorithm

Input: Ir, T (If )
Output: t∗ with high cost function

1 Initialize geometric transformations
2 for each transformation-step=1 to n do
3 Calclate the cost function as given by Equation 2.32
4 repeat
5 Use Powell technique to solve the optimization problem as in Equation 2.1

Update the joint utility using Equation 2.29
6 Go to Step 3

7 until ;
8 The diff(fc) in three consecutive transformation steps is ≤ 0.01

9 end

Optimization Optimization is important to �nd a set of transformation

parameters for which the similarity measure, i.e., the cost function is maximized. In

the case of rigid transformation, there is six dimensional space of possible parameters

to search, which is not feasible to manage with an exhaustive search. Hence, we used a

standard approach i.e. initial estimation of transformation parameters and an iterative

search of that. At each iteration, the optimized cost function is evaluated for the

current parameter estimate and depending on its value; a new estimate is constituted.

The optimization stops on achieving some convergence criterion.

The optimization algorithm we have chosen here is the Powell optimization

technique. This method is demonstrated for registration of MR and CT images in

Maes et al. [12]. Convergence of optimization is declared when the fractional decrease

of the optimized function is smaller than some threshold. The threshold is set to 103.

This method repeatedly iterates the dimensions of the whole search space, performing

one-dimensional optimization for each dimension until the convergence is reached. But,

this approach is not e�cient in case of multi-scale approach. Hence, evolutionary

optimization techniques are adopted for the registration procedure, which are described

in Chapter 5.

2.4 Simulation and Results

Extensive experiments have been carried out to evaluate the performance of the

proposed similarity measure based registration technique. Multi-modal brain images

such as simulated brain MR images of T1, T2 and PD weighted have been taken from the

database (http://brainweb.bic.mni.mcgill.ca/brainweb/). MR images are with 128×128
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pixels, in plane, and of pixel size 1.25mm×1.25mm. Real MR and CT images of the same

subject are taken from internet source (http://medind.nic.in). The CT images are of size

256× 256 pixels. Some of the real images are taken from Ispat General Hospital (IGH),

Rourkela, India. The scale di�erence in multi-modal images is due to di�erent pixel

size. Here, we highlight the registration function for a di�erent problem, comparing the

behavior of information theoretic based similarity measure and statistical dependencies

or weighted information-based similarity measure. We evaluated the accuracy and

robustness of the proposed similarity measure for multi-modal images by comparing

the performance measures as described in the following section.

In this work, the simulation based experimentation on registration has been

performed with �ve di�erent cases (reference image with �oating image).

� Case I: MR T2-weighted image with translated T1-weighted image

� Case II: MR T1-weighted image with translated T2-weighted image

� Case III: MR T2-weighted image with rotated PD-weighted image

� Case IV: MR PD-weighted image with translated and rotated T1-weighted image

� Case V: MR image with CT image

2.4.1 Performance Evaluation Measures

The optimized transformed parameters t∗ with a higher similarity measure value

indicates the alignment of the transformed �oating image and reference image. The

time required to optimize the similarity measure referred as a measure of computation

time. The performance measures used to demonstrate the e�cacy of the proposed

scheme are listed below.

Mean registration error (MRE): It is measured by calculating the di�erence of

pixel distance of the registered image with respect to the reference image or ground

truth image. The mean distance between the two surfaces is calculated by averaging

the distance between corresponding points (xrij, y
r
ij) on reference image and (xr

∗
ij , y

r∗
ij ) on

the registered image surface. The corresponding points are projected from four selected

corner points of the surface of the object. The lower value of MRE indicates better

alignment of the images.

Target registration error (TRE): It is de�ned as the distance between corresponding

points other than those used to estimate the transformation parameters [70].

Peak signal-to-noise ratio (PSNR): Mean squared error (MSE) and PSNR are

widely used simplest quality metric, computed by averaging the squared intensity

di�erences of �oating and reference image. For given two images r = (ri|i = 1, ..., N)
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and f = (fi|i = 1, ..., N) the MSE and the related PSNR is used to assess the image

quality.

MSE(r, f) =
1

n

N∑
1

(fi − ri)2

and

PSNR(r, f) = 10log10

(
L2

MSE(r, f)

)
(2.33)

where L2 is representing the image dynamic range.

Normalized Cross Correlation (NCC): The NCC of given images is used to

compare the performance of the registration algorithm using the following relationship

NCC =

∑
i

∑
j(Irij − Ir)(Ifij − If )√(∑

i

∑
j(Irij − Ir)2

)(∑
i

∑
j(Ifij − If )2

) (2.34)

where Irij and Ifij are the reference and �oating image intensities at point (i, j) in image

Ir and If and Ir and If are the average intensities of Ir and If .

Universal Quality Index (UQI): The universal quality index is modeled by

considering the three factors such as contrast distortion, luminance distortion, and loss

of correlation.

Q =
4σrfrf

(σ2
r + σ2

f )[(r)
2 + (f)2]

(2.35)

where f = 1
N

∑N
i=1 fi and r = 1

N

∑N
i=1 ri

σ2
r = 1

N−1

∑N
i=1(ri − r)2 and σ2

f = 1
N−1

∑N
i=1(fi − f)2

σrf = 1
N−1

∑N
i=1(ri − r)(fi − f)

Structure Similarity (SSIM): To assess the image quality, universal assessment

method structure similarity (SSIM) is widely used. SSIM considers the luminance,

contrast and structure comparison of images. SSIM is calculated as

SSIM =
(2IfIf + C1)(2cov(IrIf + C2)

(2If
2

+ If
2

+ C1)(σ2
r + σ2

f + C2)
(2.36)

where C1 and C2 are the variables to stabilize the division with weak denominator.

2.4.2 Registration Function

An ideal registration function that measures the similarity of two images should be

smooth and convex with respect to di�erent transformation parameters. Also, the global

maximum of the registration function should be close to the correct transformation

parameters that align two images perfectly. Moreover, the capture range around the
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global maximum should be as small as possible, and the number of local maxima of

the registration function should be as small as possible. These criteria will be used

to evaluate the registration functions generated by the proposed measure and other

existing measures respectively. All the registration functions are obtained by using the

Parzen window-based joint density estimation.

The simulated �oating images for the four di�erent cases are generated by following

speci�c geometrical transformations with respect to the reference image, i.e. (i)

translation along x-axis, (ii) translation along y-axis, (iii) rotation about the x-axis.

The registration algorithm is validated with di�erent similarity measures i.e. NMI [40],

SMI [42], RMI [43], and QMI [38]. From the result, we found that NMI could not

handle the case with a wide range of transformation parameters. It is because NMI

only considers the self-intensities of the pixels, not the neighborhood pixel, whereas

RMI considers 3 × 3 neighborhood with the 18D histogram for the joint histogram

evaluation. Although RMI considers the neighborhood information, the drawback is

for high dimension space during calculation of the joint histogram. Similarly, SMI

uses a local intensity gradient to optimize the pixel movements. But, this method

may trap in local minima if brain tissues of the reference image are overlapped with

other tissues (including background) of the �oating image and vice versa. It is because

the pixels may be driven towards the wrong direction. Di�erent from RMI and SMI,

qualitative-quantitative based similarity measure optimizes the registration process in

a global manner by using utility factor which provides qualitative information content.

Therefore utility based proposed new similarity measure is tested with all the 5 cases.

Experimental results on these di�erent registration cases are detailed below.

A Simulated T1-T2 weighted image data set

For evaluation of the proposed scheme, at �rst two sets of multi-modal simulated brain

images are considered i.e Case I and Case II. In Case I, the simulated T2 weighted image

is considered as the reference image whereas T1 weighted image is taken as the �oating

image which is translated along the x-axis. The input images and the paired image

before registration are shown in Fig. 2.4 (a-c) respectively, and the registered images

using NMI (Viola et al.), SMI (Pluim et al.), RMI (Russako� et al.), QMI (Luan et

al.), EMI (Proposed) are shown in Fig. 2.4 (d-h) respectively. The di�erence of paired

image after registration have been presented in Fig. 2.4 (i-m). From this �gure, it is

observed that, the registered image using EMI aligns better than that of other existing

methods.

Similarly, for Case II, the reference image is T1 weighted, and the �oating image is

T2 image translated along y-axis. The input images, along with paired image before

registration and registered images using di�erent information theoretic based similarity
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measure are shown in Fig. 2.5 (a-c), and Fig. 2.5 (d-h) respectively. In Fig. 2.5 (i-m),

the di�erence of paired image after registration using di�erent similarity measure based

registration scheme are shown. To validate the proposed technique with the above two

cases, we have also done the quantitative evaluation. The SM value along with di�erent

performance measures are tabulated in Table 2.1. The SM value is found to be higher in

case of proposed EMI based registration scheme as compared to other existing schemes.

It demonstrates that the proposed registration method using EMI outperforms the other

methods including SMI and QMI, which uses spatial information for the registration

framework. Also, EMI based scheme signi�cantly reduces the mean registration error

(MRE) of di�erent tissues as compared to QMI and SMI based schemes. This shows

that improvement in registration accuracy that mainly comes from the saliency or utility

factor that is embodied with EMI.

B Simulated T2-PD weighted image data set

In Case III, the PD-weighted image is rotated about the x-axis with 15 degrees

considered as �oating image and T2 weighted image is taken as a reference image. The

images are multi-modal due to di�erent tissue characteristics, but the structures are

same containing detailed anatomical information. So, the utility of the corresponding

location is found easily. The respective registered images along with the di�erence paired

images using EMI and other similarity measure based registration schemes are shown

in Fig. 2.6. Similarly, for Case IV, the input images are shown in Fig. 2.7 (a,b), where

PD-weighted image is the reference image and T2 weighted image is rotated about the

x-axis and translated along the x-axis. The registered images and the paired images

using all schemes as discussed earlier are shown in Fig. 2.7 (d-h) and (i-m) respectively.

The corresponding SM value and all the performance measure values are tabulated in

Table 2.1.

C Real MR-CT image data set

In Case V, a set of real brain MR and CT images of the same subject are considered as

the reference and �oating image for evaluation of registration function. As the images

are of di�erent sizes, the CT image is scaled according to the size of MR image. The

registered images along with the di�erence paired images are shown in Fig. 2.8 (d-h)

and (i-m) respectively. The corresponding SM values and other performance measures

are tabulated in Table 2.1. From the table, it is observed that the proposed similarity

metric EMI has higher similarity measure value of 2.59. Also, the MRE of the scheme

is 5.49, which is lower than those of other existing similarity measure based registration

schemes. Similarly, the SSIM index, NCC, and PSNR values for the proposed scheme

are found to be 0.83, 0.84 and 16.81 respectively, which are higher than those of other
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Table 2.1: Performance Measures for all Cases

Case Methods SM value MRE SSIM NCC PSNR UQI

MI (Maes) 1.76 5.95 0.55 0.62 16.94 0.5
NMI (Viola) 1.80 5.91 0.59 0.68 17.04 0.48
RMI (Russako�) 1.84 5.89 0.61 0.72 17.14 0.45

I SMI (Pluim) 1.95 5.73 0.69 0.78 17.43 0.42
QMI (Luan) 2.05 5.42 0.75 0.86 17.63 0.34
EMI (Proposed) 2.15 5.05 0.81 0.91 17.68 0.32

MI (Maes) 1.64 6.40 0.61 0.60 15.94 0.6
NMI (Viola) 1.70 6.31 0.65 0.65 16.01 0.58
RMI (Russako�) 1.76 6.24 0.71 0.71 16.49 0.52

II SMI (Pluim) 1.82 6.15 0.74 0.76 16.65 0.46
QMI (Luan) 1.92 5.92 0.79 0.83 16.86 0.41
EMI (Proposed) 2.09 5.88 0.81 0.89 16.98 0.37

MI (Maes) 1.55 7.5 0.5 0.62 17.42 0.73
NMI (Viola) 1.60 7.44 0.53 0.66 17.64 0.68
RMI (Russako�) 1.65 7.37 0.59 0.68 17.60 0.65

III SMI (Pluim) 1.79 7.28 0.63 0.72 17.69 0.59
QMI (Luan) 1.88 7.13 0.70 0.81 17.82 0.45
EMI (Proposed) 1.99 6.98 0.78 0.86 17.89 0.41

MI (Maes) 1.92 6.85 0.55 0.52 15.04 0.61
NMI (Viola) 1.99 6.41 0.59 0.58 15.54 0.58
RMI (Russako�) 2.03 6.13 0.65 0.61 16.09 0.51

IV SMI (Pluim) 2.11 6.05 0.71 0.66 16.55 0.45
QMI (Luan) 2.20 5.90 0.78 0.73 16.66 0.40
EMI (Proposed) 2.39 5.84 0.85 0.79 16.78 0.35

MI (Maes) 2.02 5.89 0.58 0.58 16.44 0.65
NMI (Viola) 2.19 5.81 0.63 0.63 16.52 0.59
RMI (Russako�) 2.23 5.73 0.68 0.67 16.59 0.52

V SMI (Pluim) 2.31 5.65 0.74 0.72 16.65 0.48
QMI (Luan) 2.40 5.58 0.79 0.79 16.72 0.42
EMI (Proposed) 2.59 5.49 0.83 0.84 16.81 0.37

schemes. At the same time, the UQI measure is only 0.37, which is the lowest in case

of EMI based registration scheme as compared to the other schemes.
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Figure 2.4: (a) Reference image, (b) Floating image translated along x axis, (c)
Paired image before registration, (d-h) Registered image and (i-m) Paired image after
registration using NMI (Viola), SMI (Pluim), RMI (Russako�), QMI (Luan) and EMI
(proposed) scheme respectively for Case I
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Figure 2.5: (a) Reference image, (b) Floating image translated along y axis, (c)
Paired image before registration, (d-h) Registered image and (i-m) Paired image after
registration using NMI (Viola), SMI (Pluim), RMI (Russako�), QMI (Luan) and EMI
(proposed) scheme respectively for Case II
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Figure 2.6: (a) Reference image, (b) Floating image rotated about x axis, (c)
Paired image before registration, (d-h) Registered image and (i-m) Paired image after
registration using NMI (Viola), SMI (Pluim), RMI (Russako�), QMI (Luan) and EMI
(proposed) scheme respectively for Case III
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Figure 2.7: (a) Reference image, (b) Floating image translated and rotated about x axis,
(c) Paired image before registration, (d-h) Registered image and (i-m) Paired image after
registration using NMI (Viola), SMI (Pluim), RMI (Russako�), QMI (Luan) and EMI
(proposed) scheme respectively for Case IV
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Figure 2.8: (a) Reference image, (b) Scaled �oating image, (c) Paired image before
registration, (d-h) Registered image and (i-m) Paired image after registration using
NMI (Viola), SMI (Pluim), RMI (Russako�), QMI (Luan) and EMI (proposed) scheme
respectively for Case V
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Figure 2.9: Similarity measures with respect to geometrical transformation for Case III:
using RMI (a) Rotation along x axis rx, (b) Translation along x-axis tx, (c) Translation
along y-axis ty; using SMI (d) Rotation about x axis rx, (e) Translation along x-axis tx
(f) Translation along y-axis ty; using QMI (g) Rotation about x axis rx, (h) Translation
along x-axis tx, (i) Translation along y-axis ty; using Proposed EMI (j) Rotation about
x axis rx, (k) Translation along x-axis tx, (l) Translation along y-axis ty
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Figure 2.10: Similarity measures with respect to geometrical transformation for Case IV:
using RMI (a) Rotation along x axis rx, (b) Translation along x-axis tx, (c) Translation
along y-axis ty; using SMI (d) Rotation about x axis rx, (e) Translation along x-axis tx,
(f) Translation along y-axis ty; using QMI (g) Rotation about x axis rx (h) Translation
along x-axis tx (i) Translation along y-axis ty; using Proposed EMI (j) Rotation about
x axis rx (k) translation along x-axis tx (l) translation along y-axis ty
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Table 2.2: Comparison of rigid transformation parameters, and computational time for
Case (I-IV)

Case Methods
Parameters Di�erence Computation

Time (sec)θ tx ty θ tx ty

MI (Maes) 10 1.0 5.0 1.8 0.46 1.46 66
NMI (Viola) 10 1.0 5.0 1.63 0.41 1.42 69

I RMI (Russako�) 10 1.0 5.0 1.52 0.39 1.32 75
Brain MR SMI (Pluim) 10 1.0 5.0 1.45 0.36 1.25 78
image T2-T1 QMI (Luan) 10 1.0 5.0 1.21 0.31 1.13 81

EMI (Proposed) 10 1.0 5.0 1.09 0.25 1.02 82

MI (Maes) 15 2.0 5.0 3.21 0.71 1.86 69
NMI (Viola) 15 2.0 5.0 2.89 0.65 1.78 74

II RMI (Russako�) 15 2.0 5.0 2.65 0.59 1.51 82
Brain MR SMI (Pluim) 15 2.0 5.0 2.55 0.49 1.4 84
image T1-T2 QMI (Luan) 15 2.0 5.0 2.32 0.41 1.20 91

EMI (Proposed) 15 2.0 5.0 1.98 0.32 1.04 99

MI (Maes) 20 1.0 10 2.59 0.39 2.31 71
NMI (Viola) 20 1.0 10 2.46 0.35 2.22 78

III RMI (Russako�) 20 1.0 10 2.38 0.32 2.14 84
Brain MR SMI (Pluim) 20 1.0 10 2.25 0.29 2.02 89

image T2-PD QMI (Luan) 20 1.0 10 2.18 0.23 1.89 93
EMI (Proposed) 20 1.0 10 2.0 0.18 1.81 97

MI (Maes) 30 5.0 10 3.9 2.21 2.36 61
NMI (Viola) 30 5.0 10 3.66 2.16 2.32 68

IV RMI (Russako�) 30 5.0 10 2.96 2.12 2.24 74
Brain MR SMI (Pluim) 30 5.0 10 2.5 1.99 2.2 81

image PD-T1 QMI (Luan) 30 5.0 10 1.98 1.89 2.01 95
EMI (Proposed) 30 5.0 10 1.76 1.80 1.91 98

2.4.3 Robustness of Registration Scheme

A robust registration algorithm should be able to recover the true transformation of the

�oating image under registration, even if the initial misalignment between the reference

and �oating image is large. To validate the robustness of the EMI based registration

algorithms, simulation is done with various amounts of initial misalignment between T1,

T2 and PD-weighted brain MR images. Four sets of tests have been performed, with

initial misalignment of rotation transformation in degree and translation transformation

in mm. Here, Case III is taken into consideration for the validation, where the PD

weighted image is the reference image and translated, rotated T1 image is �oating

image. The image is translated 1 mm along x axis, 10 mm along y axis and 20 degree

rotated ablout x axis. The di�erent ranges of rotation and translation along x and y
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axis i.e., [−20, 20], and [−20, 20] are randomly chosen. The registration is considered

as successful for each test, if the di�erence between the estimated transformation is less

than a pre de�ned threshold. The threshold for each transformation parameters are

selected as 2 degree for rotation about x-axis, 0.2 mm for translation in x-axis and 2mm

for translation in y-axis respectively.
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Figure 2.11: Percentage of successful registration for initial transformation with TRE
values for Case III
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Figure 2.12: Comparison of Similarity measures for Case III

The respective number of successful registration for the four cases with di�erent

rotation and translation ranges, using the EMI and other similarity measure based

registration algorithms are summarized in Table 2.2. These results indicate that the

EMI based registration algorithm produces a much higher success rate, and thus it

is more robust than QMI and other similarity based registration algorithm. For
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Figure 2.13: Percentage of successful registration for initial transformation with TRE
values for Case IV
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Figure 2.14: Comparison of Similarity measures for Case IV

visual inspection, EMI and other schemes, the similarity measure value with respect

to transformation function are shown in Fig. 2.9. The registration functions of

EMI versus the rotation about x-axis (rx), the translation along x-axis (tx), and the

translation along y-axis (ty) are shown in Fig. 2.9 (j-l) respectively. Similarly Fig.

2.9 (a-c), (d-f), (g-i), show the variation of registration function of RMI, SMI and

QMI along all transformations respectively. By comparing the �gures, it is observed

that the smoothness and optimum global SM value of proposed EMI are better than

those of QMI, SMI, and RMI. This property is due to the integration of joint utility

through relative information into EMI calculation. Similarly, for case IV, the registration

functions of EMI versus the rotation about x-axis (rx), the translation along x-axis (tx),

and the translation along y-axis (ty) are plotted in Fig. 2.10, where Fig. 2.10 (j-l) show
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2.4 Simulation and Results

EMI based registration function, which is more smoother than that of other existing

state of the art.

In both cases, we can observe that the registration function of EMI drops quickly

with the increase in rotation and translations. It signi�es that the amount of saliency

measure using relative information in the overlap region of two images decreases quickly

in comparison to the saliency measure using joint information. Therefore, the capture

range using EMI is found to be smaller than that of QMI, SMI, and RMI with respect

to geometrical transformations.

The transformed parameters, and computation time for all methods are tabulated in

Table 2.2. Though the computation time for the proposed method is high as compared to

other methods, the lower transformation di�erence after registration shows the e�cacy

of EMI based registration method. The percentage of successful registration for case

III is shown in Fig. 2.11. The initial transformation is characterized by computing the

target registration error (TRE) for the transformation of a group of (0-2, 2-4, ..., 16-18

mm). The registration is successful if TRE < 2.5 mm or unsuccessful if TRE > 2.5

mm. Fig. 2.12 shows the maximum similarity measure value obtained with a set of

rotation transformation parameters. It is observed from the plot; the proposed EMI

based registration scheme is aligned at zero degree with a higher similarity measure

value as compared to other similarity measure based registration schemes. In all cases,

images are aligned with a maximum value that is closer to zero degree.

Also, for case IV, the percentage of the successful registration of the proposed EMI

based registration method is found to be more than 80%, whereas, in all other cases, it is

less than 80%, as shown in Fig. 2.13. The maximum information gain of the proposed

scheme, i.e SM value is higher within a group of rotation transformation parameter,

which is shown in Fig. 2.14. It is observed that the obtained similarity measure value is

maximum at zero degree, whereas in all other cases, the SM value is maximum nearer

to zero degree. It indicates the proper alignment of the �oating image with respect to

the reference image with maximum information gain.
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2.5 Summary

In this chapter, the proposition of a new information theoretic based similarity

measure is the main focus for e�cient registration of multi-modal brain images in

intensity based registration framework. The registration method is addressed in rigid

transformation domain. Motivated by the work of [38], on weighted entropy measure

of relative information, a new similarity measure, i.e. Enhance Mutual Information

(EMI) is proposed. EMI is proposed using a qualitative-quantitative measure of

relative information of both reference and �oating images. The qualitative measure

is incorporated into weighted entropy information or utility factor whereas quantitative

measure is incorporated into mutual information. The maximum information gain

using proposed EMI is found to be more than that of QMI. A new registration

algorithm is proposed using EMI for enhancing the e�cacy of multi-modal brain image

registration. For validation of the proposed method, the experimental analysis has

been performed on various multi-modal brain images with translation, rotation and

scaling transformations. The combination of the qualitative and quantitative measure

of weighted relative information is found to be suitable similarity measure than the

existing state of the art for brain image registration. The performance analysis shows

that the EMI based registration algorithm outperforms the similar existing algorithms

regarding MRE, TRE, SSIM, NCC, PSNR, and UQI.

Though the incorporation of qualitative information through the utility factor

enhances the similarity measure but, this utility factor is a scale invariant feature.

It can perform well in case of rigid transformation. It may fail to register properly in

case of a�ne transformation. To overcome this, an attempt has been made to develop

an a�ne invariant utility factor for e�cient registration, which is discussed in the next

chapter.
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Chapter 3

Image Registration using A�ne
Invariant Saliency based Similarity
Measure

The evaluation of utility factor or saliency measure is one of
the important job in the similarity measure step of brain image
registration. When the scale of both input images are di�erent, the
sensitivity of each pixel information for the same soft tissues becomes
challenging task for analysis. Though this problem can be solved
by using a scale invariant saliency, this saliency generally a�ects the
registration when the images are having projective and perspective
transformations. In this chapter, an a�ne invariant saliency measure,
is taken into consideration for evaluation of the proposed similarity
measure in the registration procedure.
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3.1 Introduction

Fast and accurate registration of low quality medical image is a challenging task due to

low contrast, intensity inhomogeneity as well as unhealthy image caused due to various

pathology. Intensity based methods incorporate the whole image information for the

calculation of a global similarity measure. These methods are closely related to the

background changes, image quality and initial misalignment, but fails when the overlap

region is not large enough and the intensity variance is large.

In the previous chapter, the utility or saliency used for similarity measure is

a scale invariant weighting factor, which fails to register properly in case of a�ne

transformation. To overcome this di�culty, an attempt has been made to incorporate

an a�ne invariant saliency into the similarity measure. In addition to it, the scale

invariant saliency is computed for each pixel pair intensities which enormously increases

the computational burden. Hence, an attempt has also been made here to reduce the

computation time.

In computer vision system, salient image regions make the computation burden easy

permitting the nonuniform allocation of an image. The selection of a proportional set

of salient regions forms the �rst step in the computer vision algorithm. Salient points

and region facilitate interest point detection [71] and image matching [72], as they

permit immediate attention on object of interest in an image. The study on human

visual perception system suggests that the saliency is referred to uniqueness, rarity

and attractiveness of a scene, which is represented by visual features such as color,

motion, texture and shape etc. Recently, a lot of research attempt have been made

to design various algorithms to compute the saliency for static images [73, 74]. Liu

et al. found multi-scale contrast by linearly combining contrast in a Gaussian image

pyramid [73]. Saliency models is roughly divided into two kinds: local contrast and

global contrast. Local contrast based methods estimate saliency of a particular patch

based on their dissimilarity with its neighbors. Itti et al. proposed central-surrounded

di�erences based on a set of pre-attentive image feature [75]. Many techniques have

been developed to de�ne the saliency of image, i.e., using edge gradient, local phase,

salient regions [76], corner and keypoints [77].

The constitution of salient region and importance of that over other feature selection

method was proposed and described in [68]. The authors also discussed about the

algorithm with both feature space and scale space. Previously they used a circular

window to control the radius [76]. Luan et al. obtained the saliency through entropy

of the intensity distribution within its neighborhood [38]. But those saliency have some

limitations. Also the problem is choice of scale. To overcome this problem, Kadir et

al. proposed a�ne invariant salient image detector [78]. For those cases, the features
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are considered salient if their feature space properties vary rapidly with an incremental

change in radius. Huang et al. extended the region extraction criteria to hybrid image

registration based on scale invariant salient region [69].

Motivated by the work of Kadir et al., in this chapter, a�ne invariant salient region

(SR) is incorporated into the computation of saliency measure. The SR based saliency

further helps in computation of the similarity measure for accurate registration of multi-

modal brain images. The proposed a�ne invariant SR based similarity measure is named

as SR-EMI. The proposed registration method not only helps in reducing computation

time but also makes the registration robust against a�ne transformation.

The rest of the chapter is organized as follows. Section 3.2 describes basic concept of

saliency, di�erent types of saliency measures. The saliency measure using information

theory is discussed in this section. The formulation and justi�cation of proposed

registration algorithm using salient region is explained in Section 3.3. Section 3.4

presents the performance analysis with experimental results of proposed method and

those in existing literature [38,79,80]. Finally, summary is drawn in Section 3.5.

3.2 Materials and Methods

The word saliency refers to the quality of being salient. A given entity is salient if it

stands out from other ones in the same domain. The de�nition is directly applied to

image analysis. An image region is visually salient if it is distinguishable from the rest

of elements in the image, in terms of intensity, orientation or any other property.

Figure 3.1: Example of visual saliency

In this section we will brie�y de�ne the term local visual saliency and we will also

introduce the Scale Saliency algorithm proposed by Kadir and Brady [76]. The distinct

part which is discriminative, prominent in image regions are referred to as salient. It is

the spatial region which attracts the attention in the visual �eld. The notion of saliency

has been studied in computer vision literature. A good saliency region is robust to

background changes, intensity variance to pathologies. In Fig. 3.1, the intensity of the

green circle makes it salient with respect to the rest of circles in the left side image,

where as in the right side image, the salient element is the one with di�erent orientation.

Both elements may be considered globally (because they are salient with respect to the
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rest of elements of the image) and locally (because they are salient with respect to their

neighborhood) salient.

3.2.1 Visual Saliency

Several computational models of selective visual attention have been suggested in [81].

The visual attention models is grouped into two classes, i.e. bottom-up approach

and top-down approach. In the top-down approach, a saliency map is computed

from the basic visual features such as colour, orientation, spatial frequency, brightness

and direction of movement. The saliency map is usually represented as a two-

dimensional (2D) grey-scale image, in which the brightness of a pixel is proportional

to its saliency. The top-down attention mechanism is volitionally controlled subjective

and task dependent model. It is generally used with prior knowledge to completely

understand the content and context of the image. This mechanism is mainly used

to search for similar objects or patterns in the images. A bottom-up computational

model for visual saliency map is introduced based on intensity chromatic channels and

orientation. Itti et al. [75] computed the similarity measure from local feature contrast

between surround and center scales in multi resolution framework using the bottom-up

approach.

The approach of Liu et al. is based on learning low, medium and high level image

features combined with eye �xation location, collected from human observers through

eye trading [73]. Unsupervised approach for saliency detection is described in [82], where

both low level or pixel features and intermediate region features determine the saliency

of each pixel in the image. Mohapatra et al. used neurobiology based saliency measure

to improve the performance of QMI for rigid registration [83]. They have applied the

saliency map for 4D registration of renal perfusion MR images. They applied a soft

threshold function to get normalized saliency. Ou et al. developed a similar mutual

saliency map for outlier rejection in 3-D non-rigid image registration [84]. Chen et

al. presented a hybrid saliency detection method which predicts the saliency region

integrating the low level features and high level cues [85].

In order to extract useful features from images, Kadir et al. focused on the detection

of locally salient regions (in terms of intensity), i.e. regions with a locally distinguishable

intensity distribution. Those regions were supposed to remain salient under several

transformations, like for instance scale variations or a�ne distortion [78]. This property

is required by high-level vision tasks that rely on this kind of features.

Gilles was the �rst researcher to relate saliency in the context of visual image

feature extraction to information theory [86]. In information theory, Shannon entropy

is an adequate tool to estimate image saliency. It refers to the amount of information

contained in an message. It is a measure of the unpredictability associated with a
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random variable. The less predictable the value of a random variable is, the more

information it provides. Gilles de�ned salient regions in gray-scale images as piecewise

regions that were locally unpredictable, i.e. the set of highest-informative regions in an

image (high-entropy regions).

Given a pixel x, with its local neighborhood Rx, and a descriptor d that takes value

from D = d1, ..., dn, where D ranges from 0 and 255 for a 8 bit gray level image, the

saliency is estimated by means of Shannon entropy [54] is

HD,Rx = −
∑
i

PD,Rx(di)log2PD,Rx(di) (3.1)

where PD,Rx(di) is the probability of D considering the value di in the local region Rx.

Low entropy values correspond to predictable or low informative random variables, that

is, random variables in which the probability of a given random value is much higher

than that of the rest of values. On the contrary, higher entropy values correspond to

unpredictable random variables, in which the probability of all their possible random

values is similar. From information theory, it is observed that highest entropy regions

of the image should be detected by using the feature extraction algorithm.

The feature extraction algorithm proposed by Gilles works as follows: �rstly, the

size and shape of Rx is set. A square region with a �xed radius measured in pixels is

assumed. This radius is called as scale. Then, the entropy is estimated for each pixel

using Equation 3.1. All pixels with entropy below a given threshold are discarded. The

result is a binarized image containing blobs. Finally, the algorithm selects the local

entropy maxima in these blobs. These points correspond to the most salient regions in

the image.

Although entropy-based saliency estimation is intuitive and simple, the algorithm

su�ers some limitations [76]. The most evident one is the �xed scale constraint, due to

the fact that scale is a preset parameter, the saliency search is constrained to a narrow

range of scales. The algorithm is also very sensitive to small noise. Finally, highly

textured regions with high intensity variations are usually labeled as salient regions,

even if these regions are part of a larger textured region and are not salient from a

perceptual point of view.

3.2.2 Scale Saliency

Kadir and Brady proposed their Scale Saliency algorithm in order to deal with the

limitations of the Gilles algorithm [78]. This algorithm detects salient regions not only

in the image-space but also in the scale-space. Scale limitation is solved by applying the

entropy measure to each pixel while isotropically increasing the size of Rx. The output

of the algorithm is a set of circular salient regions of di�erent size. Kadir and Brady

stated that saliency in a wide range of scales is a consequence of fractal or random
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images, or self-similarity measure. In the Scale Saliency algorithm a salient region must

be distinguishable both in the feature space and scale space.

The algorithm works as follows: Firstly, the range of scales is set between a minimum

scale smin and a maximum scale smax. Then, the entropy of each pixel x at each scale

s is estimated from its intensity pdf

HD(s, x) = −
∑
dεD

(Pd,s,x)(log2Pd,s,x) (3.2)

where Pd,s,x is probability density as a function of scale s, position x and descriptor

d, which takes on values from D. Next, the algorithm detects entropy peaks in the

scale-space, that is, local maxima of the entropy function:

Sp = s : HD(s− 1, x) < HD(s, x) > HD(s+ 1, x) (3.3)

The entropy of x in scales sεSp is weighted by means of a measure of self-dissimilarity

in the scale-space. The self-dissimilarity measure allows the computation of direct

saliency value between pixels at di�erent scales and penalizes those features that are

salient in a wide range of scales. The inter scale saliency measure, WD(s, x) is de�ned

as

WD(s, x) =
s2

2s− 1

∑
dεD

|Pd, s, x−Pd, s− 1, x|s : HD(s− 1, x) < HD(s, x) > HD(s+ 1, x)

(3.4)

The saliency of a region in terms of weighted entropy is computed for those scales

sεSp as

YD(sp,x) = HD(sp,x)WD(sp,x) (3.5)

The output of the Kadir and Brady algorithm is an array Y (S;X) that stores the

saliency for every pixel xεX in the selected scales. The salient region of the image are

the maxima in Y (S;X). Being K as neighborhood and Vth as variance, two preset

parameters, the steps of the feature clustering process are:

� Choose the highest salient region in Y (S;X)

� Find its k nearest neighbors

� Calculate the variance V of their center points, the mean scale smean and the mean

location xmean.

� Find distance D in R3 (image row, image column, scale) from the selected region

to salient regions already clustered
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� Create a new salient region with scale smean and location xmean if D > smean and

V < Vth.

� Repeat from the second step with the next highest salient region until a percentage

of elements in Y (S;X) is processed.

3.3 Proposed Registration Framework

The main problem of the Scale Saliency algorithm is the ine�ciency towards view

point changes in the image and computation of joint utility or saliency [87]. Even

if histograms are reused along the scale-space, the bottleneck of the algorithm is the

estimation of Shannon′s entropy in Equation 3.2 for every pixel at every scale in the

range [smin, smax]. In this work, a new image registration technique is proposed based

on salient region based saliency measure instead of pixel based saliency measure for

obtaining the similarity measure. A well-de�ned region saliency measure is adopted

that consists of both local adaptive variance and gradient �eld entropy to extract the

salient region (SR) in each image. Further, local saliency measure is computed to get

more information from the neighborhood regions with less computation time. Then, the

new similarity measure EMI as proposed in the previous chapter is computed. The rigid

registration (translation, rotation, scaling) is performed to compute the new similarity

measure between the �oating image with respect to the reference image. Finally, the

two images are registered by adopting a global transformation model with locally well-

aligned region centers as control points.

The block diagram of the proposed scheme is shown in Fig. 3.2.

Figure 3.2: Block diagram of proposed image registration scheme
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3.3.1 Salient Region (SR)

Self information is the more appropriate metric than entropy, is presented by Bruce et

al. [88]. Also Kadir et al. proved this in [76]. They described the image region saliency in

the following two aspects: local intensity variance saliency and local structural saliency.

For intensity variance saliency, the coe�cient of variation is an e�ective evaluation

criterion. The local intensity variance saliency of region R is de�ned in terms of adaptive

variance (Av(R)):

Av(R) =
σ

µ
(3.6)

where σ is the standard deviation of R and µ is the mean value of R. The Av(R)

characterizes the intensity variance saliency of region R and guarantees the invariability

of SRs to local linear scale change in pixel intensities. According to information theory

[54], entropy is appropriate for measuring local structural saliency. In this work, local

gradient �eld entropy is used. Here, the 2-D direction angle π/2, 3π/2 is divided into

36 bins uniformly. For a given pixel Xi, the index of 2-D direction angle is denoted as

direction (Xi), and is computed as:

direction(Xi) =


⌈

arctan(g(Xi))+
π
2

2π
36

⌉
, gx(Xi) ≥ 0.⌈

arctan(g(Xi))+
3π
2

2π
36

⌉
, gx(Xi) < 0.

(3.7)

where d.e denotes the ceil operator and g(Xi) = (gx(Xi), gy(Xi)) denotes the gradient

vector of pixel Xi. The local gradient �eld entropy of region R, denoted as Lge(R), is

computed as:

Lge(R) = −
36∑
i=1

pi(R)log2pi(R) (3.8)

where

pi(R) =

∫
Ri
|g(Xi|)dXi∫

R
|g(X|)dX

(3.9)

and

Ri = {Xj|Xj ∈ R ∧ direction(Xj) = i} (3.10)

To reduce the e�ect of pixels with low gradient magnitude, that are in�uenced by

intensity variance and background changes, a magnitude weighted strategy is adopted.

Combining the variance and local gradient �eld entropy, the local saliency measure of

region R is formulated as Ls(R),

Ls(R) = Av(R)Lge(R) (3.11)
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3.3.2 Proposed A�ne Invariant Similarity Measure

The main issue of scale-invariant saliency methods is that their scale-space

representation is based on isotropic Gaussian kernels. They detect isotropic (circular)

interest regions. But, similarity invariant also includes geometric transformation

along with photometric shifts. Circular regions can not cope with certain a�ne

transformations, like those generated by viewpoint variations. Hence, an a�ne-invariant

saliency is needed for this salient region extraction. An a�ne invariant saliency is

presented in [78]. This saliency extracts anisotropic (elliptical) regions by means of a

non-uniform scale-space representation, which is shown in Fig. 3.3.

Figure 3.3: Example of �nding salient regions with ellipse

The region R in a�ne saliency is parameterized by three parameters (s, ρ, θ). where

s is the scale factor, ρ is the axis ratio and θ is the orientation of the ellipse. It increases

the search space of previous saliency measure, from a scale to set of parameters. Hence,

complexity increases. It starts with the set of points and scales generated from scale

saliency then iteratively approximates the suboptimal parameters. The example of

extracted salient regions using a�ne invariant saliency measure is shown in Fig. 3.4.

In this chapter, an a�ne invariant saliency measure using SR is encoded into

Enhanced Mutual Information (EMI). Motivated by the saliency measure proposed

by [78, 80], and using the SR Ls(R) given in Equation 3.11, a new similarity measure

is proposed for image registration. Here, the saliency or the utility of each pixel is

calculated according to the regional saliency value. Voxels with higher saliency value

contributes more towards the calculation of similarity measure. After calculating the

local saliency region of both images as in Equation 3.11, the joint utility or saliency,

which is the weight information to EMI is computed. The joint weighted information is

calculated as
wn(r, f) =

∑
i,jες

Lsr(i).Lsf (j) (3.12)

where ς is the overlap region of both images. LsR(i) and LsF (j) are the weighted

values of pixel i and j respectively in images R and F respectively.
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(a) (b)

(c) (d)

Figure 3.4: (a,c) PD image, Pre operative brain MR image respectively, and (b,d)
Extracted salient regions with a�ne invariant saliency

The proposed similarity measure adopting the SR based saliency measure is de�ned

as

SR− EMI(R,F ;W ) =
∑
rεR

∑
fεF

p(r, f)log
p(r, f)

p(r)p(f)
+ w(r, f)p(r, f) (3.13)

where w(r, f) is the joint saliency region. This similarity measure is termed as salient

region based enhanced mutual information (SR-EMI).

3.3.3 Image Registration using SR-EMI

In Chapter 2, it is found that the information gain in EMI measure is more than that

of QMI measure due to utility or saliency. Maximizing the similarity measure during

registration procedure, enables proper alignment of transformed �oating image (F ∗)

with respect to reference image (R). The optimal transformed parameters are obtained

by Equation 2.1. Adopting the proposed scheme as presented in Fig. 3.2, the proposed

similarity measure SR-EMI between R and F ∗ with transformation parameter t∗ and

new weighed parameter as saliency is evaluated by

SR− EMI(R,F ;W ) =
∑∑

p(R,F t)log
p(R,F t)

p(R)p(F ∗)
+ w(R,F t)p(R,F t) (3.14)
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The algorithm of the proposed scheme is as follows:

Algorithm 2: SR-EMI based registration Algorithm

Input: Ir, T (If )
Output: t∗ with high cost function

1 Initialize geometric transformations
2 for each transformation− step = 1 to n do
3 Calclate the cost function as given by Equation 3.14
4 repeat
5 Use Powell technique to solve the optimization problem as in Equation 2.1

Update the joint utility using Equation 3.12
6 Recalculate the cost function

7 until ;
8 The Diff(fc) in three consecutive transformation steps is ≤ 0.01

9 end

Diff(fc) is the di�erence of the cost function.

3.4 Simulation and Results

Several number of experiments have been carried out to evaluate the performance of the

proposed salient region based similarity measure for the registration technique. The T1,

T2 and PD weighted images that are taken for simulation are mentioned in 2.4. Two

sets of Pre and Post operative brain MR images are also considered for the validation

of the proposed scheme, which are taken from internet source (http://medind.nic.in).

Those images are of size 256 × 256 pixels. The scale di�erence in multi-modal images

is due to di�erent pixel size.

In this work, the simulation based experimentation on registration have been

performed with �ve di�erent cases (reference image with �oating image).

� Case I: MR T2 weighted image with translated T1 weighted image.

� Case II: MR T1 weighted image with translated T2 weighted image.

� Case III: MR T2 weighted image with rotated PD-weighted image.

� Case IV: Pre and post operative brain MR image data set of same subject.

� Case V: Pre and post operative brain MR image data set of same subject.

Here, we highlight the registration function for di�erent cases, comparing the

behavior of scale and a�ne invariant saliency measure incorporated into EMI and

SR-EMI based similarity measure. The saliency of the images using scale and a�ne

invariant saliency measures are shown in Fig. 3.5. We evaluated the e�cacy of the
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proposed similarity measure for multi-modal images by comparing di�erent performance

measures with those of other state-of-art methods.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.5: (a,d,g,j,m) Input images, (b,e,h,k,h) Saliency using scale invariant saliency,
and (c,f,i,l,o) Saliency using a�ne invariant saliency
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3.4.1 MR T1, T2 and PD weighted image data set

For evaluation of the proposed scheme, three sets of MR images are chosen i.e Case

I, Case II and Case III. For all set of images, the axis ratio is considered as 1/5, and

θ de�nes the orientation of the image. As discussed in Section 3.3.2, the major and

minor axis of the ellipse are considered as s/
√
ρ and s.

√
ρ respectively. In Case I, the

simulated T2 weighted image is considered as the reference image whereas T1 weighted

image is taken as the �oating image which are shown in Fig. 3.6 (a,b) respectively. The

�oating image is rotated around X-axis, then translated along x and y axis respectively.

In the previous chapter, we found that our proposed EMI based registration method

outperforms the other state of the art methods. Therefore, in this chapter we have

considered EMI and QMI based similarity measures for performance comparison analysis

of the proposed scheme. The checker board image (CBI) after registration using the

proposed SR-EMI, EMI and QMI based similarity measure, with the three types of

transformations (rotation around X-axis, translation along X and Y axis) are shown in

Fig. 3.6 (c-e), (f-h), and (i-k) respectively. From this, it is observed that, the registered

image using SR-EMI is accurately aligned rather than that of the EMI and QMI based

registration scheme. Similarly, for Case II, the reference image is T1 weighted and the

�oating T2 weighted image is transformed with rotation and translation parameters.

The �oating image is rotated about X axis with 15 degree and registered with respect

to the reference image using SR-EMI, EMI and QMI based registration schemes. The

corresponding CBI after registration are shown in Fig. 3.7 (c-e). Similarly, the �oating

image is translated along X axis with 15 mm, and the CBI after registration using the

proposed SR-EMI along with EMI and QMI based registration schemes are shown in

Fig. 3.7 (f-h). Fig. 3.7 (i-k) shows the CBI after registration of the �oating image

that is translated along Y axis with respect to the reference image. For the above two

cases, the proposed scheme is compared with EMI and QMI based registration method

using di�erent performance measure such as MRE, PSNR, NCC, and computation time,

which are recorded in Table 3.1.

Similarly, for Case III, PD weighted image is rotated around X axis with 30 degree,

is considered as �oating image and T2 weighted image is taken as the reference image.

Though the structures are similar containing detailed anatomical information, the

images are multi-modal due to di�erent tissue characteristics. The saliency of the

corresponding location helps to register the images with maximum information gain.

To evaluate the proposed SR-EMI based registration technique, we have performed

a quantitative validation for this case considering di�erent transformation parameters.

The SM value along with the performance measures are tabulated in Table 3.1. The SM

value is found to be 1.79 in case of SR-EMI based registration method, whereas in case of

EMI and QMI it is 1.63 and 1.42 respectively. Also, the MRE of SR-EMI is 3.54, which
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is lower than those of EMI and QMI based registration scheme. Similarly, the PSNR

and NCC value of SR-EMI are higher as compared to other methods. It demonstrates

that the proposed method outperforms both EMI and QMI based registration schemes.

The enhancement of the SM value is due to the incorporation of salient region based

utility into EMI based similarity measure. The recorded computation time for the

proposed SR-EMI based registration scheme is 107 sec, but in case of EMI and QMI,

the computation time is 94 sec and 88 sec respectively. Though the computation time

is more in case of SR-EMI scheme, it signi�cantly reduces the mean registration error

(MRE) of di�erent tissues as compared to EMI and QMI based schemes.

Table 3.1: Performance Measures for all Cases

Case Methods SM value MRE PSNR NCC Time (s)
I SR-EMI 1.88 1.42 16.58 0.83 89

T1-T2 rotated EMI 1.73 2.63 12.59 0.58 85
about x-axis QMI 1.62 3.89 12.09 0.54 80

II SR-EMI 1.67 1.54 17.33 0.72 88
T1-T2 rotated EMI 1.55 2.24 16.75 0.57 84
about x-axis QMI 1.31 2.81 16.19 0.49 78

III SR-EMI 1.79 3.54 13.63 0.58 107
T1-T2 rotated EMI 1.63 4.34 11.75 0.50 94
about x-axis QMI 1.42 4.61 11.49 0.47 88

IV SR-EMI 1.92 3.05 14.97 0.39 98
Pre-post operative EMI 1.60 3.36 12.95 0.34 74
Brain MR image QMI 1.15 3.56 12.84 0.33 70

V SR-EMI 2.12 2.09 16.27 0.46 105
Pre-post operative EMI 1.90 3.16 15.86 0.38 89
Brain MR image QMI 1.75 3.40 14.74 0.32 85

3.4.2 Pre and post operative brain MR image data set

For Case IV, a set of pre and post operative brain MR image of same subject is also

considered for the validation of the proposed scheme. The reference and �oating image

for evaluation of the proposed salient region based similarity measure for the registration

framework are shown in Fig. 3.8 (a,b) respectively. Fig. 3.8 (c) shows the checker board

image (CBI) before registration. The registered image using SR-EMI, EMI and QMI

based registration schemes are shown in Fig. 3.8 (d-f) respectively. Corresponding

CBI as well as di�erence images after registration are shown in Fig. 3.8 (g-i) and (j-l)

respectively. The related SM values and the performance measure values are tabulated

in Table 3.1. From the table, it is observed that, the SM value for proposed SR-EMI

is 1.92, whereas for EMI and QMI based registration scheme it is found to be 1.60 and

1.15 respectively. This signi�es the augmentation of the similarity value in case of SR-

EMI due to the incorporation of a�ne invariant salient region based utility factor. The
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elliptical window used for saliency measure could be able to extract more qualitative

information than the circular window based scale invariant saliency. This SR based

weighted relative entropy measure (SR-EMI) enables to align more accurately than

that of a weighted entropy and weighted relative entropy (EMI) measure. The recorded

computation time for the proposed scheme is 98 sec, which is more as compared to

other methods. Though, the computation time is more, mean registration error (MRE)

is reduced signi�cantly in case of SR-EMI based scheme because of the above factors.

Similarly, the PSNR and NCC values are higher for the proposed scheme.

For Case V, another set of pre and post operative brain MR images is experimented

for the evaluation of the proposed scheme. The SM value along with the performance

measures are tabulated in Table 3.1. The SM value in case of SR-EMI is found to be

2.12, which is higher than EMI and QMI based registration schemes. The MRE of SR-

EMI is 2.09, whereas for EMI and QMI MRE is 3.16 and 3.40 respectively. The reduced

MRE signi�es the e�ciency of SR-EMI based registration scheme. Similarly the PSNR

and NCC value of SR-EMI is 16.27 and 0.46 respectively, which are more as compared

to EMI and QMI based registration schemes. The computation time for SR-EMI is 105

sec. which is more as compared to EMI and QMI. Though the a�ne invariant based

salient region enhanced the similarity measure value, with improved PSNR, and NCC

measure, the computation time is more due to the computation of the set of parameters

(s, ρ, θ) for a�ne invariant saliency.

The comparison of recorded similarity measure value and MRE for Case (I-V) are

plotted in Fig. 3.9 and Fig. 3.10 respectively. For all the cases, the SM value is

maximum in case of SR-EMI based registration scheme as compared to the EMI and

QMI based registration scheme. Also, the observed MRE for our proposed scheme is

lower for the �ve cases as compared to the other state of the art methods.
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QMI

Rotated 

about x axis

Translated 

along x axis

Translated  

along y axis

Figure 3.6: (a) Reference image, (b) Floating image;
CBI image after registration using SR-EMI, EMI and QMI based registration scheme
respectively for transformation: (c-e) Rotated about x-axis, (f-h) Translated along x
axis, and (i-k) Translated along y-axis for Case I
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Rotated 

about x axis

Translated 

along x axis

Translated  

along y axis

Figure 3.7: (a) Reference image, (b) Floating image;
CBI image after registration using SR-EMI, EMI and QMI based registration scheme
respectively for transformation: (c-e) Rotated about x-axis, (f-h) Translated along x
axis and (i-k) Translated along y-axis for Case II
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(a ) (b ) (c )

(d ) (e ) (f)

(g ) (h ) ( i)

( j) ( l)(k )

Figure 3.8: (a) Reference image, (b) Floating image, (c) CBI before registration, (d-f)
Registered image, (g-i) CBI after registration, (j-l) Di�erence image after registration
using SR-EMI, EMI and QMI based registration scheme respectively for Case IV
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Figure 3.9: Comparison of SM value using proposed SR-EMI, proposed EMI and QMI
based registration for all Cases
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Figure 3.10: Comparison of MRE using proposed SR-EMI, proposed EMI and QMI
based registration for all Cases
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3.5 Summary

In the previous chapter, the utility used in the proposed similarity measure is a scale

invariant weighting factor, which fails in case of a�ne transformation. To overcome this

bottleneck, in this chapter an attempt has been made to propose an a�ne invariant

similarity measure for accurate alignment of multi-modal brain images in case of

a�ne transformation. In our proposition, new saliency measure i.e. salient region

(SR) is incorporated as utility factor to EMI. The joint probability of the images are

found through region based similarity measure. The combination of SR and the joint

probability enhances the qualitative-quantitative measure of relative information and

is found to be a better similarity measure than EMI and other existing state of art

for intensity based image registration. Five number of multi-modal brain image data

sets were considered for experimentation and performance evaluation. The SM value

is increased where as MRE is decreased signi�cantly in case of the proposed SR-EMI

based registration scheme. The performance analysis shows that the SR-EMI based

registration algorithm outperforms the similar existing algorithms.

Though the incorporation of a saliency measure as the utility factor enhances the

similarity measure but it su�ers when the images are geometrically deformed. Again

the registration problem becomes intractable when pre and post operative brain MR

images are taken for radiological analysis through image registration. To overcome this

challenge, an attempt has been made to develop non-rigid transformation based image

registration, which is discussed in the following chapter.
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Chapter 4

Non-rigid Image Registration using
Spline based Interpolation

In the previous chapters, we were dealing with registration of images
with rigid transformations i.e. rotation, translation and scaling and
a�ne. Images of di�erent patients may be very dissimilar due to a
normal variability of organs, i.e. human brain. Therefore, rigid-body
transformations is not su�cient to match the shape and soft tissue
structures of the organs. A�ne transformations consisting of rigid-
body + scaling + shear can accommodate for this normal variability.
But may not be su�cient for the cases where local matching is required
for utilization of non-linear deformations. In this chapter, non-rigid
transformation is considered for registration framework and the spline
interpolation method is proposed for e�cient registration of multi-
modal brain images.
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4.1 Introduction

Image registration is an important tool in atlas matching, image fusion, brain mapping

and intra operative image guided surgery for the last two decades. It is the process of

�nding the optimal transformation of the deformed image with respect to the reference

image, which may be divided according to the type of transformation, i.e. a�ne and

non-rigid transformation. Many researchers experimented on a�ne transformation

for image registration [89]. But geometrically deformed images fail to transform

with a�ne transformation based registration. To overcome this problem, non-rigid

registration technique is accustomed for transformation of deformed images [47]. As the

brain anatomy is deformable in nature, and the analysis depends on various imaging

modalities, multi-modal non-rigid brain image registration is an important task for the

researcher.

The important applications of non-rigid registration are:

� Alignment of an image or a set of images with an image template for statistical

analysis of functional or anatomical variability both at normal and abnormal

condition.

� Alignment of a model of anatomy with a particular image for the purpose of

segmentation and interpretation.

� Construction of normal and disease-speci�c atlases and normative images.

Non-rigid transformations are important not only for applications to non-rigid

anatomy, but also for inter-patient and intra-patient registration of rigid anatomy when

there are non-rigid distortions in the image acquisition procedure. In all cases, it is

preferable to choose transformations and the choice is made on the basis of convenient

mathematical properties. In most cases, the transformed position of pixel or voxel in the

deformed image will not necessarily coincide exactly with a grid point of the reference

image. Therefore interpolation method is needed to obtain the intensity value of that

point. Interpolation estimates the intensity value of that point from its neighborhood

points with integral coordinates. The interpolation methods di�er according to their

relative quality and computational complexity of the estimation. The simplest method

is the nearest neighbor approach while other includes bilinear interpolation, trilinear

interpolation, and cubic interpolation.

As interpolation in�uences the transformations at nongrid point, that can cause a

sudden change in the value of the similarity measure, resulting in a pattern of local

extrema. The occurrence of such patterns has been described in several literature [35,

55, 90]. In [91], di�erent patterns created by linear and partial volume interpolation
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(PVI) are extensively studied. Likar and Pernu overcome this artefact problems in the

registration functions of subimages, by random re-sampling of the image grids [92]. Chen

et al. developed a new scheme for joint histogram estimation named generalized partial

volume estimation (GPVE) and compared with PVI [12,93]. In GPVE, a kernel function

is employed in each of the x and y directions to estimate the joint histogram of two

images. To �nd the local details of deformed image with �exible matching, spline based

non-rigid registration has been proposed, which overcomes artifacts problem caused by

PVI and GPVE [94].

Due to the properties such as smoothness, faster and compact support, B-spline

interpolation have been popularly used for non-rigid registration [94]. Thevenaz et

al. and Mattes et al. used B-spline interpolation for 3D multi-modal non-rigid

registration [35, 95]. However, deformation with high degree of freedom leads to

unrealistic transformation result. Hence, regularization is needed to overcome the

folding e�ect of transformation based on spline bases. Rueckert et al. penalized the

bending energy of deformation �eld for registration to get the smooth transformation

[21]. Similarly Chun et al. used jacobian penalty method to penalize the deformation

transformation at each grid point of the image [28]. Motivated by the same, we applied

penalty to the B-spline bases at each grid point of the deformed �oating image.

The main contribution in this chapter is to develop an interpolation scheme for non-

rigid registration based on free form deformation (FFD) transformation. The Penalized

spline (P-spline) based transformation model is proposed for the non-rigid registration

framework. EMI is used as a similarity measure; second derivatives of similarity

measure were adopted as the smoothness function, and iterated with gradient descent

optimization method. Though P-spline based transformation enhanced the e�ciency

for reformation with weighted information, it su�ers with computation burden. So, an

adaptive Penalized spline (AP-spline) interpolation scheme is proposed which reform

the local transformation of the grid points at �ner level. The proposed transformation

function using adaptive P-spline interpolation provides smoother cost function than that

of other existing transformation function.

The rest of the chapter is organized as follows. Section 4.2 describes basic concept

of FFD based transformation. Di�erent types of transformation models are also

described in this section. The formulation of proposed P-spline and AP-spline based

transformation model are explained in Section 4.3. Section 4.4 presents the performance

analysis with experimental results of proposed method and those in existing literature

[20,27,31,93]. Finally, summary is drawn in Section 4.5.
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4.2 Materials and Methods

Rigid body transformations are used when there is no changes in the shape of

the structure being imaged. In rigid transformation, only rotation and translation

transforms are allowed where as a�ne transformations allow skew and scaling in addition

to rotation and translation. To de�ne free-form mappings, deformable transformations

are used with regularization constraint to limit the allowable solution space, also

known as non-rigid registration. Non-rigid registration technique is also known as local

registration, where the deformations perform through

� image features such as anatomical structures that utilize the geometrical

information

or

� intensity values where the intensity values are taken to �nd the transformation of

interest

or

� both geometrical information and intensity value.

4.2.1 Transformation Model

The transformation model de�nes the procedure to transform the deformed image

with a set of parameters or degrees of freedom to match the reference image. It is

performed by a transformation function, which contains information about geometric

di�erences between the images. This information is sometimes crucial in understanding

the contents of the underlying image, as the presence of sharp geometric di�erences may

be due to the local motion or deformation of the image. Hence, deformable registration

techniques are more complex and di�cult to validate. Non-rigid transformations are

categorized into the parametric and non-parametric approach [96]. The parametric

transformations depend on a set of parameters. This approach is well posed due to

small degree of freedom and is important in clinical applications including inter-subject

brain registration and dynamic contrast breast MRI registration. Non-parametric image

registration methods estimate the transformation as an unknown function within the

variational calculus [97]. The non-parametric approach allows to model complex local

deformations with exhaustive computational burden.

4.2.2 Free Form Deformation based Transformation

The goal of free form deformation (FFD) is modeling of arbitrary deformations applied

to the image, which are manipulated geometrically. In FFD, the image is manipulated

by a regular grid of control points that are distributed across the image at an arbitrary
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mesh resolution. Control points are moved and the position of individual pixels between

the control points is computed from those of surrounding control points. The techniques

based on free-form deformations are attractive for smoothness property that are enforced

using suitable basis functions [5,47]. The control points are placed at variable distances,

giving a �exible way of controlling deformation precision. The spacing between the

control points are used to control the local transformation. That means, more number

of control points gives accurate transformation.

The problem becomes ill posed in intensity based registration methods. As the pixel

in the deformed image is mapped to any point within a homogenous intensity region

without changing the similarity metric, there will be ambiguous in the transformation

since the correspondence between the transformation and the similarity measurement

is not unique. In order to choose one deformation from transformations space, an

extra constraint is added to make the transformation regular and smooth as well. The

regularization constraint is an energy which is related to the change of the displacement

�eld. The smaller change in displacement �eld gives lower regularization energy.

Di�erent kinds of regularization energies are used to smooth the control grid that are,

�rst order and second order regularization [98]. Here, the second order regularization is

used. It makes the control grid to be second order continuous.

4.2.3 Spline based Image Transformation

A B-spline based Interpolation

Interpolation is a strategy which evaluates the intensity value of the pixel at a new

position after transformation to a non integer position. Mostly used interpolation

techniques are nearest neighborhood, bilinear interpolation and cubic interpolation [19].

Cubic interpolation gain more popularity in case of medical imaging analysis [9, 28].

The letter B in B-spline refers to Basis. B-splines are the piecewise polynomial curves

that have a parametric representation. B-spline parametrization uses a mesh of control

points and interpolates with the B-spline basis functions. The shape of the B-spline

basis functions and the sparseness of control points limit the admissible transformations.

Cubic B-splines are most popular parametric non-rigid transformation parametrization

[99]. It is expressed as

f ct (x) =
∑
iεIb

f1βn(x− i) (4.1)

where βn is the tensor product of B-splines of degree of n, that is βn(x) = ΠN
k=1βn(xk),

with x = (x1, ....., xN), f ct is the image under the B-spline based deformation, f1 is the

pixel intensity at the neighboring 4× 4 points around the point x, and c is the B-spline

control grid. Fig. 4.1 (c) shows an example of interpolation of transformed grid on to
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reference grid, where Fig. 4.1 (a) is the reference image grid and Fig. 4.1 (b) is the

transformed �oating image grid.

(a) (b) (c)

Figure 4.1: (a) Reference image grid, (b) Floating image grid, (c) Interpolation of
transformed �oating image to reference image

B B-spline based Deformation

The key advantage of cubic B-splines is, these are twice di�erentiable and continuous at

the joints. They can model localized deformations with low computational complexity.

Due to its wide popularity in medical image analysis, cubic B-spline is used as

transformation model [20, 100]. To control the deformation �eld in brain images, 3rd

order B-spline is used. Medium number of control points are used to control the B-spline

based deformation.

Considering a domain of imaging as Ω = (x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z.

Θ as a mesh of nx, ny, nz control points ϕijk with uniform spacing ∆. B-spline based

deformation is de�ned by the tensor product of n dimensional B-spline, which is

expressed as follows:

Tlocal(x, y, z) =
3∑

k=0

3∑
m=0

3∑
n=0

Bn(ux)Bm(vy)Bk(wz)ϕi+n,j+m,l+k (4.2)

where i = [x/nx] − 1, j = [y/ny] − 1, l = [z/nz] − 1, ux = x/nx − [x/nx], vy = y/ny −
[y/ny], wz = z/nz − [z/nz] and Bn(ux), Bm(vn), Bk(wz) represent the n

th,mth, kth basis

functions along x,y,z direction respectively.

The displacement �eld at a point is controlled by the control vectors and is calculated

by B-spline based interpolation. The control vectors are located with a spacing of

nx, ny, nz of grid points.

C NURBS

NURBS stands for Non-Uniform Rational B-spline.
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� Non-Uniform refers to the parametrization of the curve which allows the use of

the needed multiple knots to represent Bezier curves.

� Rational refers to the mathematical representation of shapes. It allows for both

free form shapes and exact conic representation in NURBS.

� B-splines are the piecewise polynomial curves that have a parametric

representation.

NURBS based analysis has been done on human brain surface [32]. Motivated

with this, Wang et al. developed non-rigid registration of brain MRI using NURBS

[33]. NURBS are de�ned by a set of control points, basis functions, knots, degrees,

and weights that are associated with every control point. These �ve components are

evaluated mathematically at a range of parameters to produce NURBS curves and

surfaces. The set of control points are used to characterize the general shape of the

curve or surface. Moving one of the control points is one of the easiest ways to change

the shape of a NURBS curve or surface. The desirable locality property of NURBS will

limit the e�ect of a single control point to the area of the curve in the vicinity of the

point [101]. An investigation of NURBS based deformable image registration is depicted

in [31].

NURBS generalizes the non-rational parametric form. They are in�nitely smooth in

the interior of a knot span provided the denominator is not zero, which enables them

to satisfy di�erent smoothness requirements. The properties of NURBS are:

� It includes weights as extra degrees of freedom which in�uence the local shape.

The spline is attracted toward a control point more if the corresponding weight is

increased and less if the weight is decreased.

� It o�ers a common mathematical framework for implicit and parametric

polynomial forms. This powerful modelling �exibility is achieved through the

speci�c combinations of control points and weights.

A NURBS curve C(u) is vector-valued tensor-product function in the following form

c(u) =

∑n
i=0 Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

for a ≤ u ≤ b (4.3)

where Pi are the control points that form the control polygon, wi are values of weighting

functions associated with Pi, and i
th Ni,p are the p

th degree B-spline non-rational basis

functions given by the Cox-de Boor recurrence relation

Ni,0(u) =

{
1 if ui ≤ u ≤ ui+1

0 otherwise,
(4.4)
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and

Ni,p(u) = u−ui
ui+p−uiNi,p−1(u) +

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u) (4.5)

de�ned over the non-periodic knot vector U for degree p,

U =

a, ...a,︸ ︷︷ ︸
p+1

up+1, ...., um−p−1, b, ...., b︸ ︷︷ ︸
p+1

 subject to xi ≤ xi+1 (4.6)

4.2.4 Non-rigid Image Registration using B-spline Interpolation

Let Fr(x) and Ft(x) represent the reference and �oating image respectively. For a given

set of B-spline control vector, the multi-modal non-rigid cost function is de�ned in terms

of energy with parameters c. The registration scheme is the process to �nd the B-spline

control grid which can minimize the cost function. The cost function consists of two

parts. First is similarity energy Esim and the second is regularization energy Ereg. The

optimal parameter for optimum B-spline deformation grid is expressed as

copt = arg min
cεC

(Esim(c) + λ.Ereg(c)) (4.7)

Mutual information is used as the similarity measure. Since MI reaches a maximum

value with proper alignment, to �nd the minimum cost function, the similarity energy

of the registration scheme is de�ned as negative MI. That is

Esim = −MI(fr(x), f ct (g(x))) (4.8)

where

MI(fr(x), f ct (x)) =

∫ ∫
p(ir, is)log

p(ir, is)

p(ir)p(is)
(4.9)

The probability density in mutual information is derived by a discrete form of the

joint histogram or by approximating the density using the parzen window. For multi-

modal image registration, the partial derivative of MI has been calculated with respect

to the displacement �eld [12]. Here, the partial derivative of MI is calculated with

respect to B-spline controlling vector.

4.3 Proposed Registration Framework

In non-rigid registration, the concept of minimization of an energy function drives

the registration process by maximizing the similarity between the images where the

control points are dynamically updated, resulting new transformation function in each

iteration. In this chapter, the transformation g(ψ;µ) is modeled based on cubic B-spline

using FFD. The 3D transformation at any point ψ = [x, y, z]T in the �oating image is

interpolated using a linear combination of a cubic B-spline convolution kernel as
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T (ψ;µ) =
∑
ij

ηijkβ
3

(
ψ − ϕijk

∆

)
(4.10)

where ψ = [x, y, z]T is the transformation at any point in the �oating image, ∆ is

the uniform spacing between the mesh control points, B3(ψ) = B3(x)B3(y)B3(z) is the

separable cubic spline convolution kernel, ηijk are the deformation coe�cients associated

to the control points ϕijk. The block diagram of non-rigid image registration is shown

in Fig. 4.2.

Figure 4.2: Block diagram of non-rigid image registration

4.3.1 Smoothing Spline

The B-spline approach requires knowledge of the location and number of knots. This

information may not be possible in general and the placement of proper number of knots

is a complex nonlinear optimization problem. Since B-spline functions are inherently

smooth, an additional regularization term is needed in order to avoid the singularity

or folding e�ect in the deformation �eld. Penalized spline proposed by Ruppert and

Carroll allow the penalty to act di�erently for each spline basis, where the smoothing

parameters are selected using a multivariate generalized cross validation [102, 103]. To

circumvent this problem, the penalized spline smoothing approach is adopted [104]. The

penalty is constructed from the di�erence between neighboring spline coe�cients [30].
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4.3.2 Proposed P-spline Interpolation based Image Registration

Motivated by Eilers and Marx [104], in our proposition a regularization or penalty term

is incorporated at each grid point of the image during B-spline based interpolation for

non-rigid registration. This penalty term helps in smooth reformation of the deformed

images. The two steps to achieve the smoothness are:

1. Use of rich regression basis for purposely over�t of smooth coe�cient vector with

a modest number of equally spaced B-splines and

2. Ensuring proper amount of smoothness through a di�erence penalty on adjacent

B-spline coe�cients.

The proposed Penalized spline (P-spline) model is represented as:

Φ = Bθ

where B: b-spline bases, θ: unknown coe�cient. P-spline approach places penalties on

the coe�cients to control the function. Let P1, P2 be penalties for the marginal bases

B1, B2 respectively, then the resultant penalty is

P = λ1(P2 ⊗ Ik1) + λ2(Ik2 ⊗ P1) (4.11)

where λi : smoothing parameters, Ik : identity matrix. The transformation model using

P-spline is written as,

T (ψ;µ) =
∑
ij

ηijkβ
3

(
ψ − ϕijk

∆

)
+ P (4.12)

where P is the penalty for the marginal bases. We have considered up to second order

marginal bases.

4.3.3 Knot Selection

Knot vectors have the signi�cant role to smooth the curve during interpolation of data

points [105]. Considering three points pi−1, pi and pi+1 i = 0, 1, 2, ...., n for curvature

approximation, Li et al. presented local de�ection of ai ≤ π
6
, where ai is angle between

Li+1 and Li. where

Li = pi − pi−1 (4.13)

With this condition, the interpolated points are approximated. The rule for

approximation of knot placement is, if points corresponding to the knots can satisfy

above condition, the reconstructed curve will be a good approximation to the given

data points.
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4.3.4 Proposed Adaptive P-spline Interpolation based Image
Registration

Medical images with large deformations dealt with non rigid registration. Some

regularization constraints needs to impose on deformation to ensure the smoothness

of the solution and proper convergence to obtain a desired result. The choice of knots

has considerable e�ect on the shape of an object. Uniform grid re�nement has been

applied in brain image registration. Pradhan et al. have successfully applied the P-

spline interpolation method for brain image registration [106]. In P-spline interpolation,

penalty term is used globally i.e. each grid point of the whole image is penalized.

However, the penalty di�ers from region to region, which depends on local deformation.

Many adaptive grid re�nement detect large deformation areas and locally re�ne these

regions [107]. Adaptive mesh re�nement scheme using hierarchical B-spline have been

proposed by [100,108].

Here, the large deformations are reformed using dynamic computation of fewer

control points, which is e�cient and faster as compared to uniform grid re�nement. A

multilevel technique, which makes it more e�cient and �exible. Equation 4.5 represents

the ith B-spline function of polynomial order p + 1. It is de�ned on a knot vector

u1, ..., um in the u direction.

Let Nj,3(u) be the cubic B-splines in the u direction with an open knot vector

ξu = u1, u1, u1, u1, u2, ..., um−1, um, um, um, um, and Nk,3(v) are the cubic B-splines in

the v direction with an open knot vector ξv = v1, v1, v1, v1, v2, ..., vm−1, vm, vm, vm, vm.

Then the global basis functions φi(x) are expressed by

φi(x) = Nj,3(u)Nk,3(v) (4.14)

where x = (u, v), j = 1, ...,m+p+1, k = 1, ..., n+q+1, and i = 1, ..., (m+p+1)(n+q+1).

The maximization of the cost function in Equation 2.1 to solve the optimal control points

for the spatial transformation is written as

Ck = Ck−1 − εδp∗ (4.15)

where δp∗ is the di�erential of the energy function, Ck and Ck−1 are the control points

calculated by the kth and the (k − 1)th iteration steps, and ε is the time step chosen

manually.

A Proposed Algorithm

The algorithm starts from two given images, the reference image Ir(x) and the �oating

image If (x). The goal is to �nd a spatial transformation T (x), aligning Ir(x) with

If (x) such that If (T (x)) ≈ Ir(x). The registration process is divided into a multilevel

procedure, using coarser levels for large deformation and �ner levels for more detailed
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deformation. The steps of the algorithm are described as follows:

1. Based on the chosen initial control points, the initial spatial transformation

T 1
1 (x) =

∑N1
i=1C

1
1ii(x) is built, then interpolation is performed to obtain I1

f (T 1
1 (x)).

2. For di�erent levels l = 1, ..., z, do the following

(a) For di�erent iterations s = 1, ..., k, do the following

i. Substitute I1
f (T 1

1 (x)) into the cost function to obtain δEk
l .

ii. Substitute the control points Ck
l and the calculated δEk

l into Equation

4.15, and then we obtain a new group of control points, Ck+1
l = Ck

l −εδEk
l

.

iii. Using the newly calculated control points Ck+1
l , the corresponding spatial

transformation is constructed using fk+1
l (x) =

∑Nl
i=1 C

k+1
li φi(x). From

the interpolation approximation, obtain Ik+1
l (fk+1

l (x)).

(b) Check the similarity ratio after each iteration. After certain iteration

steps, if the similarity ratio increases slower or even decreasing. Then

increase the number of control points. Reset the spatial transformation,

i.e. f 1
l+1(x) =

∑NL+1

i=1 C
Nl+1

(l+1)iφi(x), and perform the interpolation operation to

yield I1
l+1(f 1

l+1(x)).

3. The multilevel procedure continues until the cost function becomes stable without

further improvement.

4.4 Simulation and Results

The deformable registration algorithm presented in this chapter is targeted at 2D-

2D intensity-based registration problem. The algorithm in general is applied to

mono-modal as well as multi-modal image registration. Free-form deformations and

B-spline basis functions are used to model the non-rigid deformed brain images.

Here, the transformation between the images contain localized non-linear stretching.

Although deformable image registration is more �exible for deformed images, it requires

signi�cantly more computation time than rigid registration techniques, due to the

computation of a very large number of parameters.

A number of experiments have been carried out to evaluate the

performance of the proposed P-spline and adaptive P-spline interpolation

based registration schemes. Multi-modal brain images such as simulated brain

MR images of T1, T2 and PD weighted have been taken from database

(http://brainweb.bic.mni.mcgill.ca/brainweb/). MR images are with 256 × 256

pixels, inplane, and of pixel size 1.25mm × 1.25mm. Those images are reformed with
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some geometric transformations. A set of real brain MR image of same subject is also

taken from internet source (http://medind.nic.in). Here, we highlight the registration

function for di�erent problem, comparing the �nal deformed grid using spline based

transformation into the registration process. We evaluate the accuracy and robustness

of the proposed transformation methods for multi-modal images.

In this work, the simulation based experimentation on non-rigid registration have

been performed with four di�erent cases. (reference image with �oating image)

� Case I: MR T1 weighted image with deformed T1 weighted image

� Case II: MR T2 weighted image with deformed T1 weighted image

� Case III: MR T2 weighted image with deformed PD weighted image

� Case IV: Brain MR image of same subject

Following performance measures are evaluated for performance analysis of the proposed

registration methods.

Mean squared error (MSE): The simplest quality metric is MSE. For given two

images r = (ri|i = 1, ..., N) and f = (fi|i = 1, ..., N) MSE is computed using intensity

di�erences to assess the image quality.

MSE(r, f) =
1

n

N∑
1

(fi − ri)2 (4.16)

Universal Quality Index (UQI): The universal quality index is modeled by

considering the three factors such as contrast distortion, luminance distortion, and loss

of correlation.

Q =
4σrfrf

(σ2
r + σ2

f )[(r)
2 + (f)2]

(4.17)

where f = 1
N

∑N
i=1 fi and r = 1

N

∑N
i=1 ri

σ2
r = 1

N−1

∑N
i=1(ri − r)2 and σ2

f = 1
N−1

∑N
i=1(fi − f)2

σrf = 1
N−1

∑N
i=1(ri − r)(fi − f)

4.4.1 MR image data set

For evaluation of the proposed scheme, three sets of MR images are considered i.e Case I,

Case II, and Case III. Four types of similarity measures are considered for registration

framework, such as SMI, QMI, both proposed EMI and SR-EMI. For each case, the

four similarity measures are taken into consideration, where four types of spline based
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interpolation schemes, such as B-spline, proposed P-spline, NURBs, and proposed AP-

spline schemes are incorporated into registration framework and evaluated.

In Case I, the simulated T1 weighted image is considered as the reference image where

as deformed T1 weighted image is taken as the �oating image which is geometrically

deformed. As the images are having the same intensity, they are considered as mono-

modal images. The input images and the di�erence image before registration are shown

in Fig. 4.3 (a-c) respectively. The registered images, �nal transformed grids and the

di�erence images after registration using B-spline, P-spline, NURBs and proposed AP-

spline interpolation based schemes have been demonstrated and are shown in Fig. 4.3

(d-g), (h-k) and (l-o) respectively. From this �gure, we observed that, the registered

image using the AP-spline based scheme is accurately registered as compared to other

aforementioned spline based registration schemes. The grids after transformation using

AP-splines are found to be smoother as compared to the other schemes. The SM

values of SMI, QMI, EMI and SR-EMI with the four interpolation based registration

schemes are tabulated in Table 4.1. The table shows SM value of the proposed AP-

spline using SR-EMI based similarity measure i.e. 2.29, which is higher than those

of other interpolation techniques using SR-EMI based similarity measure. Also, the

performance measures such as MSE, UQI and the computation time are tabulated here.

The MSE and UQI value for the proposed AP-spline interpolation based registration

framework is lower as compared to other existing state-of-arts. Consequently, the

computation time using proposed P-spline interpolation is little bit higher as compare to

B-spline and NURBs interpolation based registration schemes. For faster convergence

of the transformed grids, the AP-spline based registration scheme is validated to reduce

the computation time. Table 4.1 also demonstrates that, the computation time is

comparatively reduced in case of AP-spline interpolation scheme, incorporated into SR-

EMI similarity measure based registration scheme. The computation time is reduced

due to the adaptive selection of the grid points with a penalty term.

The convergence plot for all types of transformation methods are plotted in Fig.

4.4. It is shown that, in case of (SR-EMI+ AP-spline interpolation) based registration

scheme, MSE is minimized to 5.21 with minimum computation time of 80 sec., whereas

in case of other interpolation based methods MSE is found to be higher than 5.21 and

the computation time is more than 80 sec. The RMS error curve for all the interpolation

based registration schemes are plotted in Fig. 4.5. From the graph, it is noticed that,

the RMS error is lower for the proposed AP-spline based registration scheme. Also,

after 10 iterations, the cost function of the registration framework has been converged

with lower RMS value whereas in all other cases, the RMS value is more as compared

to the AP-spline based registration scheme. It shows the e�cacy of the proposed AP-

spline based registration scheme as compared to other existing state of the art. The
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Table 4.1: Performance Measures for Case I

Method SM method SM value MSE UQI Comp time (s)

SMI 1.81 5.92 0.89 94
QMI 1.87 5.89 0.84 111

B-spline EMI 1.94 5.83 0.78 127
Interpolation SR-EMI 2.01 5.76 0.72 149

SMI 1.87 5.88 0.85 133
QMI 1.92 5.82 0.79 146

P-spline EMI 2.13 5.79 0.74 155
Interpolation SR-EMI 2.22 5.73 0.69 170

SMI 1.88 5.85 0.82 65
QMI 1.95 5.81 0.78 84

NURBS EMI 2.17 5.76 0.72 105
Interpolation SR-EMI 2.26 5.71 0.67 123

SMI 1.92 5.70 0.79 46
Adaptive P-spline QMI 1.98 5.56 0.73 58
Interpolation EMI 2.19 5.38 0.69 68
Proposed SR-EMI 2.29 5.21 0.65 80

regularization applied on the spline interpolation based schemes, reform the deformed

�oating image e�ciently and smoothly. The adaptiveness incorporated in the proposed

penalized spline is able to reduce computational burden of the registration scheme.

In Case II, the reference image is T2 weighted and the �oating image is deformed T1

image. The input image and registered image using di�erent spline based transformation

schemes are shown in Fig. 4.6 (a,b) and (d-g) respectively. Fig. 4.6 (h-k) and (l-o)

shows the �nal transformed grids and di�erence images after registration respectively.

The SM value along with the performance measures are tabulated in Table 4.2. The

convergence and RMS error curve for this set of images are demonstrated in Fig. 4.7

and Fig. 4.8 respectively. From Fig. 4.7, it is also observed that, the computation time

of the proposed AP-spline is 110 sec., which is faster than those of B-spline, P-spline

and NURBs transformation based registration scheme. It is also found that the MSE

value for the proposed scheme is reduced after registration, which is lower than other

existing transformation based registration methods. In Fig. 4.8, it is observed that, the

RMS error for the proposed transformation based registration scheme is quite smaller

than those of other state of the art and it also converges faster.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 4.3: (a) Reference image, (b) Floating image, (c) Di�erence image before
registration, (d-g) Registered image using B-spline, P-spline, NURBs and AP-spline
transformation, (h-k) Corresponding �nal transformed grid, (l-o) Di�erence image after
registration for Case I
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Figure 4.4: Convergence of di�erent transformation method for Case I
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Figure 4.5: RMS error curve for di�erent transformation method for Case I
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 4.6: (a) Reference image, (b) Floating image, (c) Di�erence image before
registration, (d-g) Registered image using B-spline, P-spline, NURBs and AP-spline
transformation, (h-k) Corresponding �nal transformed grid, (l-o) Di�erence image after
registration for Case II

Similarly, for Case III, a deformed PD weighted image is considered as the �oating

image which is to be registered, with respect to the reference image i.e T2 weighted

MR image. The images are shown in Fig. 4.9 (a,b). Though the structures have

similar anatomical information, the images are multi-modal due to di�erent tissue

characteristics. The registered images, �nal transformer grids along with the di�erence

images after registration using the proposed AP-spline and other transformation schemes

are shown in Fig. 4.9 (d-g), (h-k) and (l-o) respectively.
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Figure 4.7: Convergence of di�erent transformation method for Case II
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Figure 4.8: RMS error curve for di�erent transformation method for Case II
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Table 4.2: Performance Measures for Case II

Method SM method SM value MSE UQI Comp time (s)

SMI 1.73 5.43 0.81 104
QMI 1.78 5.35 0.77 134

B-spline EMI 1.84 5.28 0.72 165
Interpolation SR-EMI 1.89 5.21 0.69 180

SMI 1.76 5.40 0.78 175
QMI 1.80 5.32 0.73 190

P-spline EMI 1.84 5.26 0.69 208
Interpolation SR-EMI 1.95 5.18 0.64 239

SMI 1.80 5.39 0.76 90
QMI 1.86 5.31 0.71 117

NURBS EMI 1.91 5.22 0.66 123
Interpolation SR-EMI 1.98 5.13 0.62 155

SMI 1.86 5.26 0.72 73
Adaptive P-spline QMI 1.91 5.20 0.68 87
Interpolation EMI 1.96 5.12 0.64 99
Proposed SR-EMI 2.05 5.03 0.61 110

Table 4.3: Performance Measures for Case III

Method SM method SM value MSE UQI Comp time (s)

SMI 2.51 4.48 0.78 152
QMI 2.59 4.39 0.71 165

B-spline EMI 2.63 4.31 0.68 177
Interpolation SR-EMI 2.78 4.25 0.62 189

SMI 2.62 4.44 0.73 186
QMI 2.68 4.35 0.67 195

P-spline EMI 2.72 4.26 0.63 208
Interpolation SR-EMI 2.84 4.18 0.58 216

SMI 2.68 4.34 0.67 128
QMI 2.74 4.29 0.62 139

NURBS EMI 2.80 4.22 0.58 151
Interpolation SR-EMI 2.94 4.11 0.52 166

SMI 2.72 4.38 0.63 108
Adaptive P-spline QMI 2.79 4.22 0.59 121
Interpolation EMI 2.85 4.13 0.56 139
Proposed SR-EMI 3.04 4.02 0.48 147
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 4.9: (a) Reference image, (b) Floating image, (c) Di�erence image before
registration, (d-g) Registered image using B-spline, P-spline, NURBs and AP-spline
transformation, (h-k) Corresponding �nal transformed grid, (l-o) Di�erence image after
registration for Case III

In order to evaluate the proposed registration schemes, we have performed a

quantitative validation. The SM value along with the performance measures such

as MSE, UQI and computation time are tabulated in Table 4.3. The SM value is

found to be higher in case of AP-spline as compared to P-spline and other spline based

transformation methods. It demonstrates that the proposed method, AP-spline has

locally transformed the deformation grid and outperforms than those of other existing

schemes. It is also found that, the AP-spline scheme signi�cantly reduces the mean

square error (MSE) of di�erent tissues as compared to P-spline, B-spline and NURBs

based interpolation methods. This shows that improvement in registration accuracy due

to the adaptive penalization of the weighted factor, that is incorporated into P-spline
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based interpolation method.

Table 4.4: Performance Measures for Case IV

Method SM method SM value MSE UQI Comp time (s)

SMI 2.46 4.76 0.79 175
QMI 2.53 4.69 0.73 189

B-spline EMI 2.62 4.61 0.64 203
Interpolation SR-EMI 2.72 4.52 0.58 221

SMI 2.52 4.63 0.73 191
QMI 2.61 4.59 0.68 209

P-spline EMI 2.68 4.52 0.59 224
Interpolation SR-EMI 2.76 4.44 0.53 233

SMI 2.60 4.56 0.69 153
QMI 2.69 4.49 0.63 164

NURBS EMI 2.73 4.41 0.56 178
Interpolation SR-EMI 2.80 4.32 0.49 186

SMI 2.69 4.48 0.65 126
Adaptive P-spline QMI 2.78 4.39 0.58 139
Interpolation EMI 2.81 4.30 0.52 148
Proposed SR-EMI 2.90 4.21 0.45 160

4.4.2 Pre and post operative brain MR image data set

In pursuance of validating the proposed registration method, another set of brain MR

images of the same subject is also considered as the reference and �oating image,

which are shown in Fig. 4.10 (a,b). Fig. 4.10 (c-f) shows the registered images using

B-spline, P-spline, NURBs and AP-spine based transformation for non-rigid registration

framework. The di�erence images after registration are shown in Fig. 4.10 (g-j). The

�nal transformed grids after reformation of the �oating image with respect to the

reference image using proposed AP-spline, P-spline and other existing transformation

based registration methods are shown in Fig. 4.10 (k-n). The SM values along with the

performance measures are tabulated in Table 4.4. From the table, it is observed that,

the SM value is higher in case of registration scheme using AP-spline transformation

with SR-EMI similarity measure as compared to SR-EMI with NURBs based and

SR-EMI with P-spline based registration scheme. Similarly, the MSE and UQI values

are found to be lower in case of the proposed scheme rather than the existing schemes.

Also, the computation time of AP-spline and SR-EMI based registration scheme is

160 sec, which is lower than SR-EMI with P-spline based and SR-EMI with NURBs

based registration schemes. From all these simulation based observations, we found

that the proposed Adaptive P-spline interpolation based registration scheme performs
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best when the similarity measure is considered as salient region based enhanced mutual

information (SR-EMI). It can e�ciently align the deformed �oating images with respect

to the reference image with more accuracy and faster convergence.

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

Figure 4.10: (a) Reference image, (b) Floating image, (c-f) Registered image using B-
spline, P-spline, NURBs and AP-spline transformation, (g-j) Corresponding di�erence
images, (k-n) Final transformed grid after registration for Case IV
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4.5 Summary

The prime objective of this chapter is to transform the deformed �oating images with

non-rigid registration framework. B-spline interpolation is popularly used for non-

rigid image registration. But, it fails to reform properly in the presence of local

deformations. To overcome this problem, penalized spline (P-spline) interpolation based

registration method is proposed, incorporating a penalty term as a weighted term to

the B-spline interpolation method. The penalty term penalizes the local deformation

in the image grid to transform smoothly and e�ciently. But, the computation time is

comparatively higher due to the computation of a penalty term at each grid point of

the deformed image. To reduce the computational burden, an adaptive P-spline (AP-

spline) interpolation based registration method is proposed, where only locally deformed

grid points are penalized in stead of the whole image grid in the registration process.

To validate the proposed P-spline and AP-spline interpolation based registration, the

experimental analysis has been performed on several multi-modal brain MR images those

are geometrically deformed. The combination of the proposed AP-spline interpolation

with SR-EMI similarity measure based registration scheme outperforms the similar

existing algorithms, such as SR-EMI + NURBs, SR-EMI + P-spline, and SR-EMI

+ B-spline in terms of MSE, UQI, and computation time. The computation time for

SR-EMI + AP-spline interpolation method is reduced due to adaptive knot selection in

the image grid. The MSE and UQI values are comparatively lower in case of SR-EMI

+ AP-spline based registration scheme.

Though AP-spline interpolation based registration algorithm registered the deformed

image properly, the degree of freedom is comparatively higher, which becomes a

bottleneck for optimizing the transformation parameters. Therefore, evolutionary based

approaches are adopted for optimizing the transformation parameters in non-rigid

registration procedure, which are discussed in the following chapter.
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Chapter 5

Hybrid Evolutionary Technique for
Transformation Optimization

This chapter describes about optimization of the similarity measure
within a given class of geometric transformations for the registration
framework. For the optimization of the similarity metric local methods
were used. As the functions of the similarity metric with respect
to the transformation parameters are non-convex and irregular, local
optimization methods may not converge at optimum transformation
parameters. Therefore global optimization techniques are required
to get the optimum transformation parameters for more accurate
mapping and subsequently obtain accurate registration. In this
chapter, a new hybrid evolutionary based optimization method is
proposed, to yield optimum transformation which leads to accurate
registration. The proposed method is validated with both rigid and
non-rigid transformed multi-modal brain images.
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5.1 Introduction

The registration process is viewed as an optimization problem, where the registration

criterion is the maximization of the cost function i.e. similarity measure over the search

space of spatial transformation parameters. Starting with a set of initial parameters, the

optimization procedure iteratively searches for a solution by evaluating the cost function

at di�erent positions in the search space. In this chapter, the similarity measure is

considered as the cost function and is maximized for optimal registration.

For the optimization of the similarity measure, local methods or global methods are

used [36, 109]. Local methods such as steepest descent gradient, Powell′s direction set

usually trap in a local optimum and obtain a large mean-registration error. Hence, the

selection of good initial values are necessary for these techniques [1]. Evolutionary based

optimization methods are very popular and successfully applied in image processing

[37, 110, 111]. Genetic algorithm (GA) and particle swarm optimization (PSO) are

some popular global optimization techniques used in image processing [112]. Though

Genetic algorithm (GA) is a powerful scheme for global optimization, it takes a longer

computation time and lacks the �ne tuning capability. Particle swarm optimization

(PSO) is a stochastic population based technique. A comparative study on genetic

algorithm and particle swarm optimization is drawn in [113]. PSO is more e�ective

and extremely simple algorithm in comparison with GA and other global optimization

algorithms. It was used for multi-modal image registration with a variation of hybrid

techniques [114]. A new diagonal gradient-type method for large scale unconstrained

optimization was proposed by [115].

In this chapter, the focus is towards the maximization of the similarity metric

for rigid and non-rigid transformed images. A new hybrid evolutionary computation

based optimization algorithm is developed to optimize the transformation parameters

for non-rigid registration of multi-modal images. The algorithm hybridizes the

notion of BF and Quantum behaved PSO algorithm to reduce the misalignment or

mean-registration error. For this purpose, the deformed transformation parameters

are initialized. Subsequently the similarity measure is optimized by updating the

transformation parameters, where the parameters were interpolated by an adaptive

P-spline interpolation method. The process continues until the �oating image and

reference image align properly. The proposed hybrid algorithm outperforms as compared

to other existing global optimization techniques.

The rest of the chapter is organized as follows. Section 5.2 describes the basic

concept of global and local optimization technique used for the registration process.

The one dimensional direction search Powell method and other existing evolutionary

based optimization schemes are also included in this chapter. The proposed evolutionary
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optimization algorithm is explained in detail in Section 5.3. Section 5.4 presents the

performance analysis with experimental results of the proposed method and those in

existing literature [37,116,117]. Finally, summary is drawn in Section 5.5.

5.2 Materials and Methods

5.2.1 Powell's Optimization Technique

Powell′s direction set method only requires evaluations of the cost function. The method

�nds the N-dimensional minimum of the function by repeatedly minimizing it in one-

dimension along a set of N di�erent directions, each time starting from the minimum

found in the previous direction using a one-dimensional line minimization method.

Powell′s method incorporates a scheme to construct a set of conjugate directions

iteratively. The set of directions is initialized with the basis vectors in each dimension in

parameter space, but after each iteration in which all directions in the set are optimized

over in turn, the overall distance moved in parameter space into that iteration is taken

as a new direction.

Powell′s algorithm exactly minimizes the cost function in (N +1) dimension line

[118]. Here, the direction set to the parameter basis vectors reinitialized each time

and a new direction is found for the �nal optimization. Due to di�erences in image

resolution in di�erent directions and due to the speci�c shape of the objects in the scene,

di�erent parameters are considered and are optimized, which might strongly in�uence

optimization performance and registration robustness. The powell optimization method

has been successfully applied for medical image registration in [119,120]. A comparative

study is drawn for multi-modal brain image matching in [121]. For rigid registration

of multi-modal brain images, optimization of the translation transformations tx, ty,

and rotation along φx are considered. Therefore, optimization of the parameters are

obtained using Powell′s optimization scheme in each iteration for tx, ty, φx.

5.2.2 Particle Swarm Optimization Algorithm

In the swarm algorithm, basically the particles track a deterministic way of life

by an updated velocity formulation through random acceleration coe�cients. The

conventional PSO algorithm has a weak local search ability, which deteriorates the

global search ability of the algorithm. Hence, a trade-o� between exploitation and

exploration is essential for improved functioning of the algorithm with a favorable

convergence speed. So, many variations of PSO have been o�ered by putting an inertia

weight into the velocity update equation. Also a constriction factor was added in the

velocity update equation, to keep o� the velocity restriction during convergence by

Clerc et al. [122]. Zheng et al. proposed some improved PSO algorithm for image
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registration [116]. Many researchers proved the conventional GA and PSO fail to �nd

the global optimum well. So, a new approach named hybrid particle swarm optimization

(HPSO), was proposed which incorporated the sub-population and crossover of GA

into the conventional PSO [123]. Though, HPSO algorithm is faster and accurate, the

drawback is about the non accuracy in the presence of large shear distortion between

images [124]. An adaptive accelerated particle swarm optimization approach is proposed

by Ludwig [125].

Figure 5.1: Example of PSO

5.2.3 Quantum behaved Particle Swarm Optimization
Algorithm

Several probabilistic PSO algorithms have been proposed to cast along the particle

trajectories with direct sampling by a random number generator, from a scattering of

practical bene�ts. Quantum behaved PSO (QPSO) is a kind of probabilistic algorithm,

inspired by quantum mechanics and trajectory analysis of PSO [126]. The algorithm

employs a scheme based on a quantum delta potential well model, which samples about

the previous best positions. During the search process, the update equation customize

an adaptive approach for easier carry out with fewer parameters to adjust. Equally,

it does not necessitate velocity vector for particles and has fewer parameters to adjust

which makes the implementation easier [127]. Xi et al. improved the algorithm by

introducing a weighted mean to �nd the best position of the particle and enhanced the

performance as compared to the former method [128]. The �ow chart of QPSO is shown

in Fig. 5.2. Assuming each individual particle moves with a δ potential in the search

space with a center of potential pij and solving Schrodinger equation of one-dimensional

δ potential well, the probability density function S is de�ned as

S(Xij(t+ 1)) =
1

Wij

(t)F (Xij(t+ 1)) (5.1)

where Wij(t) is the standard deviation of the distribution, determining the search scope

of each particle. The position of the particle is obtained by employing the Monte Carlo
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Figure 5.2: Flow chart of QPSO

method as:

Xij(t+ 1) = Pij(t)±
Wij

1
ln(1/r) (5.2)

where r is the random number uniformly distributed in (0,1). For evaluation of Wij(t),

mean best position of the population was introduced into PSO [128]. The global point,

denoted as m, is de�ned as the mean of the pbest positions of all particles. That is

m(t) =
1

M

M∑
i=1

Pi.1(t),
1

M

M∑
i=1

Pi.2(t), ......,
1

M

M∑
i=1

Pi.n(t) (5.3)

where M is the population size and Pi is the pbest position of particle i. The values of

Wij(t) is determined by

Wij(t) = 2β.|mj(t)−Xij(t)|
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Thus the position is calculated as

Xij(t+ 1) = Pij(t)± β|mj(t)−Xij(t)|ln(1/r) (5.4)

where

Pi,j = (c1Pij(t) + c2Pgj(t))/(c1 + c2) (5.5)

where β is called contraction-expansion coe�cient, which is used as a tuner to control

the convergence speed. c1 and c2 are the acceleration coe�cients. Equation 5.4 is the

position vector which is added to the particle swarm optimization. Steps of QPSO

algorithm are as follows:

1. Initialize population randomly.

2. Calculate mbest using Equation 5.3

3. Calculate particle position using Equation 5.2

4. Update Pbest using Equation 5.5

5. Update Gbest using Equation 5.4

6. Until termination criterion is met.

5.2.4 Bacterial Foraging Algorithm

Bacterial foraging paradigm is a bio-inspired distributed non gradient global

optimization method introduced by Passino [129, 130]. The algorithm is inspired by

group foraging behavior of bacteria. A foraging bacteria takes foraging in the expression

of the constraints represented by its own physiology and environment. i.e. the social

animals, like E. coli - a bacterium, search for nutrients to maximize the energy acquired

per unit time. Also the speci�c bacteria communicates with other by sending signals.

Bacterial foraging optimization (BFO) algorithm has been used as a global optimization

algorithm for fuzzy logic based image enhancement of degraded images by Hanmandlu

et al. [131]. To know the particular degradation of the image, the parameters of

the operator were found by optimizing the image entropy using the bacterial foraging

algorithm. This approach worked well for underexposed images but fails for overexposed

images and mixed exposed images. Wang et al. employed a probability density gradient

based interest point detector to extract the stable point features precisely. To discard the

outliers in the initial matches he proposed a robust technique, global parallax histogram

based �lter and tested for inter-frame registration [132]. Bacterial foraging algorithm

has been successfully applied to medical image registration [37]. The foraging process is

classi�ed into four steps, such as chemotaxis, swarming, reproduction and elimination

and dispersal described in [133].
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1. Chemotaxis: The bacteria swim and tumble through �agella to succeeded the

chemotaxis step. The e�ective approach that a bacterium performs in its total

lifetime is switching between swimming and tumbling. If C(i) is the step size

speci�ed by the tumble in a random direction and θi(j, k, l) is ith bacterium

at jth chemotactic, kth reproductive and lth elimination-dispersal step, then the

bacterium undertaking in the chemotaxis step is represented by

θi(j + 1, k, l) = θi(j, k, l) + C(i)
δ(i)

δT (i)δ(i)
(5.6)

where δ indicates a vector in the random direction, between [-1, 1].

2. Swarming: Bacteria move in a striking ring by following the produced nutrient

gradient of the group by consuming the food. When nutrient is high, bacteria

releases the attractant and concentrate to a group producing concentric patterns

of clusters with high compactness. The spatial order rest on both the outward

activities of the group and local issues of the attractant, which serves as an

attraction pointer between bacteria to gather. The cell to cell gesturing for the

bacteria is represented by the function.

Jcc(θ, P (j, k, l)) =
S∑
i=1

Jcc(θ, θ
i(j, k, l)) =

S∑
i=1

[−dattractantexp(−wattractant (5.7)

p∑
m=1

(θm − θim)2)] +
S∑
i=1

[−hrepellantexp(−wrepellant
p∑

m=1

(θm − θim)2)]

where Jcc(θ, P (j, k, l)) is the objective function varying w.r.t time, S is the

total number of bacteria, number of variables to be optimized is p and

dattractant, wattractant, hrepellant, wrepellant are the coe�cients preferred according to

the problem.

3. Reproduction: In this tone, the unhealthy bacterium expires and the healthier

bacterium splits into two bacteria, which are located in the same location to

prevent the population of the bacteria constant.

4. Elimination and Dispersal: Elimination occurs when local signi�cant increase

in high temperature kills the population of bacteria present in a neighborhood

with high absorption of foods. A sudden forceful �ow of water spread bacteria

from one place to some other. The evacuation and the dispersal step a�ect the

chemotactic progress due to demolition, but they too bear the consequence of

assisting in chemotaxis, as dispersal places bacteria near noble nutrition sources.
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The steps of BFA are as follows:

1. Initialize parameters n, S, Nc , Ns , Nre , Ned , Ped , c(i)(i = 1, 2...S), θi where

n: Dimension of the search space, S: The number of bacteria in the population,

Nc: No. of Chemotactix steps, Nre: The number of reproduction steps, Ned:

The number of elimination-dispersal events, Ped: Elimination-dispersal with

probability, c(i): The size of the step taken in the random direction speci�ed

by the tumble. θi: Position vector

2. Elimination-dispersal step: For (ell=1 to Ned)

3. Reproduction step: For (k=1 to Nre)

4. Chemotaxis loop:

(a) For (j=1 to Nc) For (i=1 to S) Evaluate the cost function J(i, j, k, l) =

J(i, j, k, l) + Jcc(θ
i(j, k, l), P (j, k, l))

(b) Store the best cost function in Jlast = J(i, j, k, l)

(c) Tumbling: Generate a random direction and compute the new bacterium

position as J(i, j + 1, k, l) with an addition of attractant-repellant e�ect

(d) Swimming:

i. initializing m = 0

ii. While m < Ns

� if J(i, j+ 1, k, l) < Jlast then Jlast = J(i, j+ 1, k, l) move in the same

direction and compute a new cost as in Step 4c.

� else m = Ns to force the exit from the loop

5. If j < Nc, go to previous step. Continue chemotaxis since the life of the bacteria

is not over.

6. Reproduction:

(a) Compute each bacteria health in chemotaxis loop as J ihealth =∑Nc+1
j=1 J(i, j, k, l)

(b) Sort bacteria in ascending order of health of bacteria where Sr bacteria with

highest values dies with the remaining bacteria of best values split .

7. If k < Nre, then Step 3 continues to start the chemotactic loop for new generation.

8. Elimination - dispersal: For i=1,....,S with Ped, eliminate and disperse each

bacteria. If a bacteria is eliminated, another one dispersed to a random location

in the optimization domain. If l < Ned, then Step 2 continues, else stop.
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5.3 Proposed Optimization Algorithm: Hybrid BF-
QPSO

Bacterial Foraging algorithm (BFA) is a non gradient global optimization technique

where E-coli bacteria models a trial solution by chemotactic movement. During

chemotaxis, the algorithm depends on random search direction, which delays to reach

the global solution. To improve the convergence speed along with accuracy of the BFA,

the notion of Quantum behaved Particle Swarm Optimization (QPSO) is hybridized in

the chemotaxis step of BFA for optimization of multi-modal transformation functions.

This hybrid BF-QPSO algorithm emphasizes on a wide usage of the ability of BFA

to acquire a new tenacity in the dispersed procedure and analogous search ability of

QPSO in�uenced by the swarm intelligent algorithm. The local search of the algorithm

performs during the chemotactic movement procedure of BFA which is accomplished by

a QPSO operator. The �owchart of the proposed BF-QPSO is shown in Fig. 5.3.

Figure 5.3: Flow chart of proposed BF-QPSO

In BF-QPSO, each bacterium gets transmutated by a QPSO operator after

undergoing a chemotactic step. The bacterium is stochastically concerned near the

global best position obtained and earlier heading direction from an entire population.
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The QPSO operator eliminates the cognitive component. The steps of the BF-QPSO

algorithm are as follows:

1. Initialize parameters n, S, Nc , Ns , Nre , Ned , Ped , c(i)(i = 1, 2...S), δ, C1, C2,

R1, R2. where n: Dimension of the search space, S: The number of bacteria in the

population, Nc: Number of Chemotactix steps, Nre: The number of reproduction

steps, Ned: The number of elimination-dispersal events, Ped: Elimination-dispersal

with probability, C(i):Step size taken in the random direction speci�ed by the

tumble. δ: The inertia weight. C1: Swarm Coe�cient. θ(i, j, k): Position vector

of the ith bacterium, in jth chemotactic step, and kth reproduction. Vi: Velocity

vector of the ith bacterium.

2. For (k=1: Nre) For (j=1: Nc) For (i=1: S)

(a) Evaluate the cost function J(i, j, k)

(b) Store the best cost function in Jbest, as Jbest = J(i, j, k)

(c) Tumble by generating a random vector ∆i with each bacteria and move with

θ(i, j + 1, k) = θ(i, j, k) + C1 ∆i√
∆T
i ∆i

and compute J(i, j + 1, k)

(d) Swimming step initialized with swim length m=0

While m < Ns

� if J(i, j+1, k) < Jbest then Jbest = J(i, j+1, k) move in the same direction

and compute a new cost as in .

� else m = Ns to exit from the loop

3. Chemotaxis step: Update the cost function J(i, j, k) along with the position vector

of the best position θgbest using Equation 5.2 and �tness of the best position

Jbest(i, j, k) using Equation 5.4.

4. Reproduction:

(a) Compute each bacteria health in the chemotaxis loop as J ihealth =∑Nc+1
j=1 J(i, j, k)

(b) Bacteria is sorted in ascending order of health of bacteria where Sr bacteria

with highest values dies with the remaining bacteria of best values split .

5. If k < Nre, go to step 1. As the speci�ed number of reproduction steps is not

reached, the next generation in the chemotaxis loop starts.

6. Elimination-dispersal: For i=1,....,S with Ped, each bacteria eliminates and

disperses.
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5.4 Simulation and Results

Extensive experiments have been carried out to evaluate the performance of proposed

optimization scheme used for the registration of multi-modal images. The focus is

on the optimization of FFD-based registration, where the transformation contains

local deformation during image acquisition. As FFD-based registration allows more

�exibility during the reformation of the deformed image for analysis, the computation

time increases signi�cantly due to a high degree of freedom. Hence, global as well as

local optimization techniques are adopted to obtain the �nal transformed grid, that

are controlled through proposed AP-spline interpolation and P-spline interpolation

methods. The registration framework is tested under two proposed interpolation

methods using both proposed SR-EMI, and EMI based similarity measures. All the

combinations of the similarity measures and transformation methods are used in the non-

rigid registration framework, where the transformation parameters are optimized with

the proposed evolutionary based optimization algorithm named as BF-QPSO algorithm.

For the validation, initially the values of step size, grid dimension, iteration number for

the convergence, inertia weight, swarm coe�cient were set to �nd the optimum cost

function.

To evaluate the performance of the proposed BF-QPSO optimization scheme for

registration, simulated brain images such as coronal and axial brain MR T1 weighted

images have been taken from database (http://brainweb.bic.mni.mcgill.ca/brainweb/).

The spatial resolution of the images used is of size 256×256 pixels. The reference images

are deformed with some geometric transformations, to generate the �oating image.

Two sets of real brain MR image data set of same subject are collected from (Ispat

General Hospital, Rourkela) for validation of the proposed optimization scheme. Here,

we emphasize on di�erent evolutionary-based optimization schemes for registration

procedure, to �nd the optimum cost function i.e. similarity measure. The comparison

of the similarity measure value and some performance indices proves the accuracy and

robustness of the proposed optimization schemes for deformed multi-modal images.

For QPSO algorithm, β is called contraction-expansion (CE) coe�cient, which can

be tuned to control the convergence speed of the algorithms. CE coe�cient was set to

decrease linearly with the iteration number from 1.0 to 0.5. The population size was 20,

and the maximum number of iterations was 40. The inertia weight decreasing linearly

from 0.9 to 0.4 and both of the acceleration coe�cients C1 and C2 were set to 2.

For BF-QPSO algorithm, the number of bacteria in population, s is set to 400.

Number of chemotactic steps, Nc = 20; Maximum number of swim steps, Ns = 10;

Number of reproduction steps, Nre = 16; Number of elimination/dispersal steps, Ned =

2; Probability of dispersal, Ped = 0.25; Size of the move step Cij = 0.001.
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In this work, the simulation based experimentation on registration have been

performed with four di�erent cases (reference image with �oating image). The proposed

algorithm is executed 30 times and resulting average similarity value is tabulated in the

corresponding tables.

� Case I: Axial MR T1 weighted image with deformed T1 weighted image

� Case II: Coronal MR T1 weighted image with deformed T1 weighted image

� Case III: Pre and post operative brain MR image

� Case IV: Pre and post operative brain MR image

5.4.1 Axial MR T1 and deformed T1 image data set

For an evaluation of the proposed optimization scheme, a set of axial brain MR images

are considered. In Case I, a set of mono-modal image i.e simulated axial T1 weighted

image and its deformed image are also demonstrated, where Fig. 5.4 (a) is the reference

image and Fig. 5.4 (b) is the �oating image respectively. The registered image using SR-

EMI based similarity measure with the AP-spline based interpolation scheme using BFA

and QPSO algorithm are shown in Fig. 5.4 (c,d) and their di�erence image with respect

to the reference image are shown in Fig. 5.4 (f,g) respectively. The �nal transformed

grids for these optimization algorithm, where the images are registered are shown in Fig.

5.4 (i-j). The registered image using an evolutionary based hybrid BF-QPSO algorithm,

along with its di�erence image and �nal transformed grid are shown in Fig. 5.4 (e,h,k)

respectively.

Di�erent performance measures such as MRE and SSIM are computed to evaluate

the e�ciency of the proposed optimization scheme for the nonrigid registration method.

The SM values along with MRE, SSIM, and computation time for di�erent evolutionary

based optimization schemes such as PSO, QPSO, BFA, and BF-PSO using SR-EMI

with AP-spline based interpolation, SR-EMI with P-spline based interpolation, EMI

with AP-spline based interpolation, and EMI with P-spline based interpolation schemes

are tabulated in Table 5.1. From the table, it is observed that, the SM value using BFA

is 1.75, which is more than that of QPSO and PSO based optimization scheme, but

the computation time for BFA is 118 sec., which is more as compared to QPSO and

PSO. Hence, to �nd the optimum transformed grid faster, BFA and QPSO algorithms

are hybridized to obtain higher SM value with a less computation time. The optimized

SM value is found to be 1.96 with a computation time of 103 sec for the proposed BF-

QPSO algorithm based registration scheme. After hybridization, the computation time

reduced as compared to BFA and BF-PSO algorithm based registration.
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The convergence of RMS error curves against a number of iteration of the proposed

optimization scheme based registration is compared with BFA, QPSO, BF-PSO based

registration schemes, and is shown in Fig. 5.5. From the plot, it is observed that the

RMS error value is 5.3, for the proposed BF-QPSO based optimization scheme, which is

lower as compared to other existing optimization schemes. The obtained SM values with

AP-spline interpolation + SR-EMI based similarity measure using all aforementioned

optimization schemes is plotted in Fig. 5.6. From this plot, it is clearly visible that

the SM value using the BF-QPSO scheme is higher i.e. 1.96, where as in case of BF-

PSO, QPSO and BFA, it is 1.86, 1.75, and 1.70 respectively. Also, it is observed that,

the similarity measure value is converged after 10 iteration, whereas all other methods

require more number of iteration for convergence of the similarity measure. It signi�es

the e�ciency of the registration scheme with faster convergence.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5.4: (a) Reference image, (b) Floating image, (c-e) Registered images using BFA,
QPSO, BF-QPSO with AP-spline interpolation and SR-EMI similarity measure, (f-h)
Corresponding di�erence images, (i-k) Final transformed grid respectively for Case I
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Figure 5.5: RMS error for di�erent optimization methods for Case I
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Figure 5.6: SM value for di�erent optimization methods for Case I
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5.7: (a) Reference image, (b) Floating image, (c-e) Registered image using BFA,
QPSO, BF-QPSO with AP-spline interpolation and SR-EMI similarity measure, (f-h)
Corresponding di�erence images, (i-k) Final transformed grid respectively for Case II
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Table 5.1: Performance Measures for Case I

Optimization
Method

SM and Interpolation
method

SM Value MRE SSIM
Computation
Time (sec)

SR-EMI using AP-spline 1.63 8.96 0.718 82
EMI using AP-spline 1.58 9.23 0.703 85

PSO SR-EMI using P-spline 1.49 12.57 0.681 87
EMI using P-spline 1.45 12.94 0.672 98

SR-EMI using AP-spline 1.70 8.86 0.722 78
EMI using AP-spline 1.63 9.14 0.708 82

QPSO SR-EMI using P-spline 1.53 12.32 0.695 89
EMI using P-spline 1.49 12.82 0.680 93

SR-EMI using AP-spline 1.75 8.68 0.728 118
EMI using AP-spline 1.69 9.01 0.714 125

BFA SR-EMI using P-spline 1.62 12.09 0.699 138
EMI using P-spline 1.52 12.63 0.687 144

SR-EMI using AP-spline 1.86 8.18 0.731 109
EMI using AP-spline 1.74 8.33 0.720 115

BF-PSO SR-EMI using P-spline 1.71 11.89 0.698 124
EMI using P-spline 1.59 12.34 0.692 138

SR-EMI using AP-spline 1.96 7.38 0.739 103
EMI using AP-spline 1.83 8.05 0.726 107

BF-QPSO SR-EMI using P-spline 1.80 11.28 0.707 118
Proposed EMI using P-spline 1.67 12.03 0.703 129

5.4.2 Coronal MR T1 and deformed T1 image data set

In Case II, another set of healthy coronal T1 weighted image is considered as the

reference image whereas deformed T1 weighted image is taken as the �oating image and

shown in Fig. 5.7 (a,b) respectively. The registered images with optimum transformed

parameter using BFA, QPSO algorithm and BF-QPSO algorithm are shown in Fig.

5.7 (c)-(e), where the SR-EMI is used as similarity measure and transformed with the

AP-spline interpolation method. Fig. 5.7 (f)-(h), shows the di�erence images with

respect to the reference image with the �nal transformed grids using the AP-spline

interpolation method are shown in Fig. 5.7 (i)-(k) respectively. The optimum SM

value, along with performance measures such as MRE, SSIM, and computation time

are tabulated in Table 5.2. From the table, it is observed that, the SM value is 2.08 in

case of proposed BF-QPSO scheme, where as the MRE value is 6.32, which is lower as

compared to other evolutionary based registration schemes. The SM value is enhanced

due to the combination of the proposed SR-EMI similarity measure with the AP-spline

interpolation method. It is also observed that, the computation time for the proposed

scheme is lower due to the hybridization of QPSO technique with BF algorithm. The
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optimization technique e�ciently maximized the SM value within a comparable time

period.

Table 5.2: Performance Measures for Case II

Optimization
Method

SM and Interpolation
method

SM Value MRE SSIM
Computation
Time (sec)

SR-EMI using AP-spline 1.87 7.39 0.801 76
EMI using AP-spline 1.68 8.85 0.74 83

PSO SR-EMI using P-spline 1.59 10.89 0.734 90
EMI using P-spline 1.48 12.72 0.724 96

SR-EMI using AP-spline 1.92 7.37 0.804 73
EMI using AP-spline 1.73 8.82 0.75 75

QPSO SR-EMI using P-spline 1.65 10.81 0.743 78
EMI using P-spline 1.53 12.63 0.732 86

SR-EMI using AP-spline 1.96 7.35 0.809 112
EMI using AP-spline 1.82 8.76 0.783 118

BFA SR-EMI using P-spline 1.72 10.71 0.752 120
EMI using P-spline 1.62 12.48 0.748 126

SR-EMI using AP-spline 1.98 7.02 0.818 104
EMI using AP-spline 1.89 8.65 0.789 108

BF-PSO SR-EMI using P-spline 1.76 10.37 0.758 109
EMI using P-spline 1.67 12.09 0.749 116

SR-EMI using AP-spline 2.08 6.32 0.826 95
EMI using AP-spline 1.93 8.55 0.798 98

BF-QPSO SR-EMI using P-spline 1.79 10.02 0.764 104
Proposed EMI using P-spline 1.71 11.79 0.758 106

5.4.3 Pre and post operative brain MR image data set

In Case III, one more set of pre and post operative real brain MR images is also validated

with the proposed optimization based registration method, where the reference image

and the �oating image are shown in Fig. 5.8 (a,b) respectively. The registered images

using the existing optimization algorithms BFA, BF-QPSO are shown in Fig. 5.8 (d,e)

and the paired image after registration are shown in Fig. 5.8 (j,k) respectively. The

transformed grids for �nal registered images using these algorithms are displayed in Fig.

5.8 (g-h) respectively. Fig. 5.8 (f,i,l) represent, the registered image, transformed grid,

and di�erence image using hybrid BF-QPSO algorithm respectively. The performance

of the proposed hybrid BF-QPSO algorithm is compared with the aforementioned

optimization schemes in terms of performance measures such as MRE, SSIM, and

computation time, that are recorded in Table 5.3. From the table, it is observed that,

the computation time for PSO, QPSO, BFA and BF-PSO are 91 sec, 88 sec, 123 sec, and
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118 sec respectively. For the QPSO based registration, the computation time is lower

as compared to PSO based registration, but the SM value obtained using QPSO is

higher than that of the PSO based registration scheme. Though the SM value obtained

using BF algorithm is improved than PSO and QPSO based scheme, it requires more

time for optimization. Hence, to obtain the maximum SM value with less computation

time, the QPSO algorithm is employed in the chemotaxis step of BF algorithm for faster

convergence. The computation time after hybridization becomes 105 sec., which is lower

than that of BFA and BF-PSO based registration scheme. At the same time, the SM

value is more i.e. 2.54.

Table 5.3: Performance Measures for Case III

Optimization
Method

SM and Interpolation
method

SM Value MRE SSIM
Computation
Time (sec)

SR-EMI using AP-spline 2.22 9.21 0.801 91
EMI using AP-spline 2.10 9.52 0.810 97

PSO SR-EMI using P-spline 2.08 10.21 0.798 101
EMI using P-spline 1.89 10.98 0.778 109

SR-EMI using AP-spline 2.28 9.15 0.809 88
EMI using AP-spline 2.18 9.44 0.812 96

QPSO SR-EMI using P-spline 2.12 10.15 0.801 100
EMI using P-spline 1.98 10.86 0.782 103

SR-EMI using AP-spline 2.39 9.02 0.817 123
EMI using AP-spline 2.26 9.33 0.814 136

BFA SR-EMI using P-spline 2.22 10.06 0.805 142
EMI using P-spline 2.02 10.73 0.798 149

SR-EMI using AP-spline 2.43 8.84 0.828 118
EMI using AP-spline 2.34 9.25 0.816 128

BF-PSO SR-EMI using P-spline 2.32 9.93 0.809 136
EMI using P-spline 2.09 10.62 0.804 142

SR-EMI using AP-spline 2.54 8.78 0.835 105
EMI using AP-spline 2.39 9.01 0.826 112

BF-QPSO SR-EMI using P-spline 2.38 9.86 0.812 125
Proposed EMI using P-spline 2.18 10.51 0.808 129

Similarly, in Case IV, another set of pre and post operative real brain MR images

of same subject is also validated with the proposed hybrid BF-QPSO algorithm. Fig.

5.9 (a, b) are the pre-operative and post-operative brain MR images considered as

reference and �oating image. The image pair before registration is shown in Fig. 5.9

(c). The registered images using the BF and QPSO algorithms along with the proposed

optimization algorithm are shown in Fig. 5.9 (d-f) with their �nal transformed grids

in Fig. 5.9 (g-i) respectively. The corresponding paired image after registration are
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Table 5.4: Performance Measures for Case IV

Optimization
Method

SM and Interpolation
method

SM Value MRE SSIM
Computation
Time (sec)

SR-EMI using AP-spline 1.43 7.68 0.778 88
EMI using AP-spline 1.39 9.28 0.722 95

QPSO SR-EMI using P-spline 1.28 10.86 0.705 98
EMI using P-spline 1.22 11.21 0.699 108

SR-EMI using AP-spline 1.55 7.61 0.782 111
EMI using AP-spline 1.46 9.08 0.748 122

BFA SR-EMI using P-spline 1.39 10.94 0.739 129
EMI using P-spline 1.28 11.32 0.727 135

SR-EMI using AP-spline 1.63 7.48 0.791 105
EMI using AP-spline 1.52 8.91 0.778 118

BF-PSO SR-EMI using P-spline 1.48 11.02 0.783 120
EMI using P-spline 1.36 11.54 0.762 126

SR-EMI using AP-spline 1.86 7.37 0.809 101
EMI using AP-spline 1.73 8.81 0.787 113

BF-QPSO SR-EMI using P-spline 1.56 11.28 0.799 111
Proposed EMI using P-spline 1.42 11.62 0.773 118

shown in Fig. 5.9 (j-l) respectively. Comparing Fig. 5.9 (c) and (l), it is found that,

the images are registered properly by maximizing the similarity measure using SR-EMI

using the proposed BF-QPSO algorithm. The post operative image is transformed

with respect to the pre operative brain MR image using the AP-spline interpolation

method. The performance measures calculated for this case are tabulated in Table 5.4.

Comparing the computation time of the proposed scheme with the other existing scheme,

it is observed that, the SR-EMI using AP-spline method needs less computation time

as compared to SR-EMI using P-spline method, when optimized using the proposed

BF-QPSO algorithm. The performance is also compared with that of the hybrid BF-

PSO method using the AP-spline interpolation method and the P-spline interpolation

method. Both proposed similarity measures, i.e. SR-EMI and EMI are considered for

alignment measure.

The similarity metric value signi�es the alignment between the two images after

registration process. Higher the similarity measure value implies accurate alignment of

the images. In Case IV, the computation time is 101 sec., which is lower as compared to

BF-PSO and BFA techniques. The mean registration error (MRE) is also tabulated by

considering the registered image with respect to the reference images. In our proposed

scheme the MRE is signi�cantly reduced to 7.37, as compared to other evolutionary

based optimization schemes. The less value of MRE signi�es the best alignment of the

images.
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In, AP-spline interpolation, in order to smoothen the non-convex and irregular

shape of the medical images, a penalized term is imposed adaptively to the B-spline

bases, where the deformation is more. Though, bacterial foraging algorithm is a global

optimization technique, it requires more time for optimum solution in tumbling process.

QPSO algorithm has fewer parameters to be optimized as it does not require the velocity

updation, whereas PSO needs more time. Also the contraction-expansion coe�cient

controls the convergence speed of QPSO algorithm. The hybridized BF-PSO algorithm

registered the image but needs more time for convergence. After hybridizing BF and

QPSO algorithm, the convergence rate seems faster with better accuracy in terms of

computation time and MRE. For, quantitative analysis, Fig. 5.10, the convergence rate

is shown through the RMS error curve. From the plot, it is observed that, the RMS value

signi�cantly reduced to 5.5 after 20 iterations. But, in case of BF optimization schemes,

RMS error is nearly about 6. The optimum SM value obtained for the four evolutionary

based optimization techniques for this case is shown in Fig. 5.11. From this, it is

observed that, BF-QPSO needs 15 iterations to obtain the optimum similarity measure

value, whereas BF-PSO, QPSO, and BFA need 25 to 35 iteration for the optimum SM

value. Also, the SM value is comparatively more in case of BF-QPSO scheme.

After validation of all the cases, with all combination of similarity measure and

interpolation methods, we observed that, SR-EMI + AP-spline outperforms as compared

to SR-EMI +P-spline, EMI + AP-spline, and EMI + P-spline methods. For all cases,

the SM value becomes higher, wehereas the MRE and SSIM value signi�cantly reduced

with a comparable computation time.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.8: (a) Reference image, (b) Floating image, (c) Paired image before registration,
(d-f) Registered image using BFA, QPSO, BF-QPSO with AP-spline interpolation
and SR-EMI similarity measure, (g-i) Final transformed grid, (j-l) Paired image after
registration respectively for Case III
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.9: (a) Reference image, (b) Floating image, (c) Paired image before registration,
(d-f) Registered image using BFA, QPSO, BF-QPSO with AP-spline interpolation
and SR-EMI similarity measure, (g-i) Final transformed grid (j-l) Paired image after
registration respectively for Case IV
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Figure 5.10: RMS error for di�erent optimization methods for Case IV
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Figure 5.11: SM value for di�erent optimization methods for Case IV
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5.5 Summary

In this chapter, the optimization of similarity measures within a given class of geometric

transformations is the primary focus. Though Powell optimization technique is used for

rigid and a�ne registration, it fails to optimize in case of non-rigid registration due to

the higher degree of parameters. Hence, evolutionary based optimization techniques are

adopted to �nd the transformation grid in the non-rigid registration framework. Though

bacterial foraging algorithm optimizes the transformation parameters globally, it su�ers

from the computational burden due to the step of chemotaxis. Again, quantum behaved

optimization technique optimizes the parameters faster than that of PSO algorithm

but traps locally. To overcome the di�culty of BFA, a new hybridization technique is

proposed embodying the QPSO algorithm in the chemotaxis step of BFA. The proposed

algorithm is named as BF-QPSO algorithm. The global search is incorporated through

the bacterial foraging optimization technique whereas the local search is incorporated

through QPSO algorithm. To validate the proposed hybrid algorithm, simulation has

been performed on various multi-modal non-rigid brain images. The optimization of SR-

EMI similarity measure with the AP-spline interpolation method is found to be faster

convergent than that of existing state of the art. The performance of the proposed

BF-QPSO is validated with various multi-modal brain image and compared with the

performance of the existing algorithm such as QPSO, BFA, and BF-PSO algorithm.

Both proposed P-spline and AP-spline interpolation methods are considered for the

transformation of deformed images. For similarity measure, proposed EMI and SR-EMI

are considered for the registration framework. Di�erent combinations of the similarity

measure along with interpolation methods are considered for the registration of non-

rigid images. The performance analysis shows that the BF-QPSO based registration

algorithm outperforms similar existing evolutionary algorithms in terms of MRE, SSIM

and computation time.
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Chapter 6

Conclusion and Future Scopes

6.1 Summary of the Work

This dissertation is focused on the development of e�cient registration techniques for

multi-modal brain images, where intensity based registration is considered. The process

of brain image registration has been divided into three tasks such as similarity measure

criterion, transformation and optimization. There are four contributions which are

depicted in this dissertation, two of them are focused on the task of similarity measure

criterion, and the other two are on the transformation and the step of optimization

respectively. For the similarity measure criterion, we proposed two novel methods

to augment the e�cacy of some existing conventional information theoretic based

similarity measure i.e. mutual information. To yield the accurate deformation in

the transformation grid, we proposed the P-spline and adaptive P-spline interpolation

based approach that are validated with deformed brain images. Moreover, a hybrid

optimization technique is also proposed to obtain an optimum cost function with

transformation parameter of nonrigid brain image registration. The summary of the

thesis is discussed as follows.

In Chapter 2, we proposed a qualitative-quantitative measure of relative information

based similarity measure known as Enhance Mutual Information (EMI), to overcome

the drawback of conventional mutual information and to confront the e�ciency of QMI.

MI leads to misalignment when resolution of the input images change, due to lack

of qualitative information. We proposed a new similarity measure to overcome the

drawback by incorporating qualitative information with joint utility or saliency. The

saliency is a qualitative aspect of the information de�ned from the images, considered

as a weighting factor to the mutual information. The saliency used in QMI has scale

invariant property. Motivated by the information theoretic measures, a new similarity
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measure, EMI is proposed using the weighted relative information of the images. The

EMI is found to gain more information than that of QMI. The proposed registration

method using EMI is validated with various multi-modal brain images with translation,

rotation and scaling transformations. The performance analysis shows that the proposed

EMI based registration scheme outperforms the existing QMI, SMI, RMI, and NMI

based registration schemes in terms of MRE, SSIM, NCC, PSNR, and UQI. It is observed

that, MRE, UQI values are lower in case of the proposed scheme. At the same time,

SSIM, NCC, and PSNR values are higher for the proposed scheme as compared to other

existing schemes.

The drawback of the saliency measure used in EMI is that, it does not take care of

the prospective and projective changes. Hence, scale invariant saliency fail to extract

the salient region of the images properly that are a�ne transformed. To conquer this

problem, a�ne invariant salient region based weighted parameter is incorporated into

EMI based registration algorithm, which is proposed in Chapter 3. The proposed

similarity measure incorporating the a�ne invariant saliency is named as SR-EMI. This

a�ne invariant saliency not only enhances the similarity measure value but also reduces

the MRE and NCC metrics as compared to EMI and QMI based registration schemes.

Experiments show that the proposed SR-EMI is more robust than EMI methods in case

of 2D a�ne brain image registration. The projective and prospective transformations

are taken care with the a�ne invariant salient region.

In Chapter 4, the deformed brain MR image registration is carried out using spline

based transformation. This type of registration is known as non-rigid registration,

which has application in case of real medical image analysis, to know the treatment

planning during surgery. Here, the registration process is performed on the image grid

that are applied to reform the geometrically deformed images. The similarity measure

is maximized within the constrains of a transformation model during the registration

process. B-spline based interpolation has incorporated to model the deformed grid of the

�oating image. But, it fails to register intra tissues of brain by property of sensitivity

to distribution of intensity. To overcome this bottleneck, penalized spline (P-spline)

interpolation based registration method is proposed. Though, P-spline interpolation

based method reform the deformed grid with a regularization or penalty term, the

computation time of P-spline is quite higher than that of the B-spline based interpolation

technique, due to the computation of penalty term at each grid point. Hence, an

adaptive method is proposed which is based on the notion of NURBs. The proposed

adaptive P-spline (AP-spline) based registration technique successfully obtained the

reformed grid by transforming the deformed �oating image with less computation

time than that of the P-spline interpolation based registration method. From the

experimental results, it is observed that the proposed AP-spline interpolation with the
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proposed SR-EMI based registration method is more e�cient than that of P-spline and

B-spline based registration approach, in terms of some performance measures i.e. MSE,

RMS, UQI and computation time. The proposed method not only aligns the shape

structure of deformed brain very well, but also reasonably maintain the correspondence

of local deformation.

Finally, in Chapter 5, we proposed a hybrid evolutionary based optimization method

named bacterial foraging - quantum behaved particle swarm optimization (BF-QPSO),

a new optimization technique for deformed brain images, to improve the accuracy and

e�ciency of the registration procedure. In, past several years, PSO and QPSO have

been successfully applied for rigid medical image registration. Though QPSO converges

faster, it traps at local optimum. Similarly, the bacterial foraging algorithm is a global

optimization scheme used for medical image registration, but the computation time

is more to obtain optimal convergence. For trade of between the global and local

search, hybrid evolutionary technique is proposed using the notion of the bacterial

foraging (BF) algorithm and quantum behaved particle swarm optimization (QPSO)

technique for registration of non-rigid images. The proposed hybrid optimization

technique is validated for rigid and nonrigid brain image registration. In case of

rigid brain image registration, we applied BF-QPSO to both simulated data and real

brain image dataset to obtain the robustness of the algorithm. Similarly, for nonrigid

registration, the simulation results prove the faster convergence of the proposed hybrid

algorithm than that of other similar techniques. In order to compare with the other

conventional methods, PSO, BFA, QPSO, and BF-PSO are also experimented for each

dataset. In this chapter both the P-spline and AP-spline interpolation scheme are

applied for non-rigid registration. The proposed similarity measures i.e. EMI and

SR-EMI are considered for alignment measurement. After exhaustive study, it is found

that SR-EMI + AP-spline interpolation with BF-QPSO optimization based registration

method outperforms the other proposed combination schemes, i.e, SR-EMI + P-spline

+ BF-QPSO, SR-EMI + AP-spline + BF-PSO etc. Considering all combinations,

the computation time is lowest i.e in SR-EMI using AP-spline interpolation based

registration scheme optimized with BF-QPSO.
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6.2 Future Scope of Research

Medical imaging plays a signi�cant role in modern healthcare and will continue to do as

patient-speci�c care is emerging. The new era will even further increase the number of

possible clinical applications utilizing image registration. In addition to focus on further

improvement in non-rigid image registration, several interesting research directions are

discussed next.

1. Segmentation based registration: Our ongoing e�orts are focused on non-rigid

registration. In the future, we intend to develop an image registration approach

followed by a segmentation method for possible clinical applications. Segmentation

discriminates the most likely structures and aids certain information. Prior

information of the shapes or relative positions of internal structures may help

in the registration process and will assist the clinician for analysis.

2. 3D image registration: For surgical assistance, 3D image registration is necessary

for proper analysis during treatment planning. In the future, the proposed non-

rigid registration framework may be extended to world 3D environment.

3. Group-wise image registration: Another possible future work direction is to extend

the proposed Enhanced mutual information similarity measure to register a set

of multiple images. The key idea is to register all image frames to the average

(mean) image.

4. Image fusion: Another possible future work direction is image fusion. It

would be of great interest to fuse images after their registration. Images are

usually registered for the purpose of combining or comparing them, enabling

the fusion of information in the images. Incorporating image fusion with

our nonrigid registration algorithm will provide a systematic framework which

extracts information from input images such that the fused image provides better

information for human or machine perception as compared to any of the input

images.

5. Regularization terms: In this dissertation, free form deformation based non-rigid

registration is performed. Regularization terms or penalty terms are incorporated

in to B-spline interpolation for transformation of local deformations. The possible

future work is, the choice of di�usion regularizer, for implementation of curvature

or linear elasticity within non-grid positions.
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Appendix

Appendix-A

In this appendix, the maximum information obtained by Equation (2.22) is described.

Also its lower and upper bounds to prove the inequality is given.

Considering the function

ζ (R1R2 ..... Rn W1W2 .....Wn) = −
n∑
i=1

RilogRi +
n∑
i=1

RiWi + λ(
n∑
i=1

Ri − 1) (6.1)

where λ is the lagrange multiplier and is a real positive number. The function ζ is

maximum with respect to Ri for �xed wi coincides with the maximum of function

H1(R,W ). The conditions for extreme is given by
∂ζ(R1R2 ..... Rn W1W2 .....Wn)

∂Ri
= 0 1 < i ≤ n

n∑
i=0

Pi = 1
(6.2)

applying (6.2) on the function (6.1) we obtain

Ri =
2Wi∑n
i=0 2Wi

(6.3)

i = 1, 2, ..., n This extreme is maximum because,

∂2ζ

∂R2
i

= −
∑n

i=0 2Wi

2wiln2
< 0

and
∂2ζ

∂RiRj

= 0 when i 6= j (6.4)

Applying (6.4) into H4(R/F,W ) = −
∑N

n=1Rnlog(Ri/Fi) +
∑N

n=1 WnRn we will get

maxRiH4(R/F,W ) = log2

(∑n
i=0 2Wi

)
. The maximum value obtained when Ri =

2Wi∑n
i=0 2Wi for each i. Hence, the derivative provides an easy method for �nding the

optimum probabilities, which maximizes the entropy (2.22).

The bounds of new similarity measure using the inequalities derived by Halliwell

et al. [134] provides the improved lower and upper bound on relative entropy given by

(2.22).

Let Ri, Fi > 0 where 1 6= i 6= n and
∑n

i=0 Rn = 1 =
∑n

i=0 Fn
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Then the following estimate holds
n∑
i=1

fi(fi − ri)2

(fi)2 + (max(firi))2
≤

n∑
i=1

Rilog
Ri

Fi
≤ fi(fi − ri)2

(fi)2 + (min(firi))2
(6.5)

The inequality is re�nement of Shanon inequality given by
∑n

i=1Rilog ≥ 0.

Replacing fi by Ri = 2Wi∑n
i=0 2Wi in the above inequality

n∑
i=1

2Wi∑n
i=0 2Wi

(
2Wi∑n
i=0 2Wi − ri

)2

(
2Wi∑n
i=0 2Wi

)2

+
(
max

(
2Wi∑n
i=0 2Wi ri

))2 ≤ log

(
n∑
i=0

2Wi

)

−H∗(R,W ) ≤
n∑
i=1

2Wi∑n
i=0 2Wi

(
2Wi∑n
i=0 2Wi − ri

)2

(
2Wi∑n
i=0 2Wi

)2

+
(
max

(
2Wi∑n
i=0 2Wi ri

))2 (6.6)

which gives

log

(
n∑
i=0

2Wi

)
−

n∑
i=1

2Wi∑n
i=0 2Wi

(
2Wi∑n
i=0 2Wi − ri

)2

(
2Wi∑n
i=0 2Wi

)2

+
(
min

(
2Wi∑n
i=0 2Wi ri

))2 ≤ H∗(R,W )

≤
n∑
i=1

2Wi∑n
i=0 2Wi

(
2Wi∑n
i=0 2Wi − ri

)2

(
2Wi∑n
i=0 2Wi

)2

+
(
max

(
2Wi∑n
i=0 2Wi ri

))2 (6.7)

This proves the equality holds in the above inequality if Ri = 2Wi∑n
i=0 2Wi for each i. The

relative entropy has two advantages a) gives maximum information and b) minimizing

the transmission time for source information.
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