31 research outputs found

    Controllability of networked multiagent systems based on linearized Turing's model

    Full text link
    Turing's model has been widely used to explain how simple, uniform structures can give rise to complex, patterned structures during the development of organisms. However, it is very hard to establish rigorous theoretical results for the dynamic evolution behavior of Turing's model since it is described by nonlinear partial differential equations. We focus on controllability of Turing's model by linearization and spatial discretization. This linearized model is a networked system whose agents are second order linear systems and these agents interact with each other by Laplacian dynamics on a graph. A control signal can be added to agents of choice. Under mild conditions on the parameters of the linearized Turing's model, we prove the equivalence between controllability of the linearized Turing's model and controllability of a Laplace dynamic system with agents of first order dynamics. When the graph is a grid graph or a cylinder grid graph, we then give precisely the minimal number of control nodes and a corresponding control node set such that the Laplace dynamic systems on these graphs with agents of first order dynamics are controllable.Comment: 13 pages, 4 figures, submitted to automatic

    Graph Laplacians, Nodal Domains, and Hyperplane Arrangements

    Get PDF
    Eigenvectors of the Laplacian of a graph G have received increasing attention in the recent past. Here we investigate their so-called nodal domains, i.e. the connected components of the maximal induced subgraphs of G on which an eigenvector ψ does not change sign. An analogue of Courant's nodal domain theorem provides upper bounds on the number of nodal domains depending on the location of ψ in the spectrum. This bound, however, is not sharp in general. In this contribution we consider the problem of computing minimal and maximal numbers of nodal domains for a particular graph. The class of Boolean Hypercubes is discussed in detail. We find that, despite the simplicity of this graph class, for which complete spectral information is available, the computations are still non-trivial. Nevertheless, we obtained some new results and a number of conjectures

    Gene Family Histories: Theory and Algorithms

    Get PDF
    Detailed gene family histories and reconciliations with species trees are a prerequisite for studying associations between genetic and phenotypic innovations. Even though the true evolutionary scenarios are usually unknown, they impose certain constraints on the mathematical structure of data obtained from simple yes/no questions in pairwise comparisons of gene sequences. Recent advances in this field have led to the development of methods for reconstructing (aspects of) the scenarios on the basis of such relation data, which can most naturally be represented by graphs on the set of considered genes. We provide here novel characterizations of best match graphs (BMGs) which capture the notion of (reciprocal) best hits based on sequence similarities. BMGs provide the basis for the detection of orthologous genes (genes that diverged after a speciation event). There are two main sources of error in pipelines for orthology inference based on BMGs. Firstly, measurement errors in the estimation of best matches from sequence similarity in general lead to violations of the characteristic properties of BMGs. The second issue concerns the reconstruction of the orthology relation from a BMG. We show how to correct estimated BMG to mathematically valid ones and how much information about orthologs is contained in BMGs. We then discuss implicit methods for horizontal gene transfer (HGT) inference that focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of an undirected graph, the later-divergence-time (LDT) graph. We explore the mathematical structure of LDT graphs and show how much information about all HGT events is contained in such LDT graphs
    corecore