
On Simply Structured Bases of Graph
Eigenspaces

Torsten Sander

Habilitationsschrift

vorgelegt bei der
Fakultät für Mathematik/Informatik und Maschinenbau

der Technischen Universität Clausthal

Oktober 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/45268857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents I

Contents

1 Introduction 1

2 Basics 7

3 General criteria 11

4 Trees 13

4.1 The FOX algorithm . 13

4.2 FOX on trees . 18

4.3 Storing FOX vectors . 28

4.4 Gaussian elimination . 30

4.5 Partitioning trees by eigenvectors . 32

4.5.1 Tree eigenvector decomposition 33

4.5.2 Tree eigenvector composition 43

4.5.3 Tree pattern matrices . 44

4.6 Eigenspace bases for eigenvalues 1 and −1 46

4.6.1 {1,−1} eigenvectors for eigenvalue 1 47

4.6.2 {0, 1,−1} eigenvectors for eigenvalue 1 48

5 Unicyclic graphs 51

5.1 Uncracked cycles . 53

5.2 Cracked cycles . 55

5.3 Algorithmic, algebraic and structural characterisations 64

6 Distance powers of paths and circuits 67

6.1 Path distance powers . 67

6.2 Circuit distance powers . 71

II Contents

7 Product graphs and related classes 79

7.1 NEPS . 79

7.2 Cayley graphs and Hamming graphs 80

7.3 Sudoku graphs . 84

8 Cographs 89

9 Coprime graphs 97

9.1 Loopless coprime graph . 97

9.1.1 Lower bound on the nullity 97

9.1.2 Mertens’ function and the kernel 99

9.1.3 Nullity and simply structured kernel bases 102

9.2 Traditional coprime graph . 105

10 Outlook 107

A Symbol Index 109

B List of Figures 111

C List of Tables 113

D References 115

1. Introduction 1

1 Introduction

As the name suggests, the discipline of algebraic graph theory connects graph theory
and algebra — two areas of mathematics that at first sight could not be further apart
from each other. Today, many synergies have been discovered. A graph theoretical
problem may be represented in an algebraic way and then be solved by a seemingly
unrelated algebraic theorem. Conversely, many algebraic problems are easier to
represent and analyse if they can be phrased in the language of graph theory.

The formal foundation of algebraic graph theory has probably been laid in 1957
by the paper [15], written by Collatz and Sinogowitz. It defines the eigenvalues
of graphs. Five years before, in 1952, Tutte had published a generalisation of his
famous one-factorisation theorem [95]. It requires the solution of equations defined
by the vertex-edge incidences and certain values assigned to graph vertices and
edges. Several papers concerned with determinants and characteristic polynomials
of matrices arising in mechanics, physics and chemistry had appeared even before
that, cf. papers published by Rutherford [77] in 1947, by Pöschl and Collatz [73] in
1938, and by Funk [37] in 1935.

Probably the earliest contribution to algebraic graph theory has been made in 1931
by Hückel [52]. The molecular orbitals of electrons can be analysed by solving
the Schrödinger equation. Hückel replaced this by a linear model and obtained a
quantitative theory for the analysis of electron charges and locations (see e.g. [62]
for an introduction). Essentially, it requires the determination of eigenvectors and
eigenvalues of the molecular graph.

Being the earliest known link of algebraic graph theory, the paper [52] even today is
still often quoted as a reference in papers analysing the spectral properties of graphs.
Of course, today’s chemists use modern computers to solve Schrödinger’s equation
numerically and mainly teach Hückel theory to students because it is easier to un-
derstand for undergraduates. Indeed, algebraic graph theory has found many more
applications like biology, communication networks, computer graphics, tournaments,
or internet search engines.

A(G) =

0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
0 1 1 0 0 1
0 0 0 0 1 0

Figure 1.1: Example graph and its adjacency matrix

2 1. Introduction

Let us shortly introduce the notion of eigenvalues and eigenvectors of graphs. The
eigenvalues of a graph G with vertex set V = {v1, . . . , vn} are the eigenvalues of its
adjacency matrix A = (aij) which is defined by aij = 1 if vi is adjacent to vj and
aij = 0, otherwise. This eigenvalue definition is independent of the chosen vertex
order. Note that there exist many more matrices whose spectra are of interest in
algebraic graph theory. Moreover, the reader should be aware that algebraic graph
theory is a vast research area in which the study of graph spectra only represents
one of many ways in which graphs can be associated with algebraic structures.

We know that a given vector w = (wi) with w 6= 0 is an eigenvector of A for
eigenvalue λ if and only if Aw = λw. If we read this system of equations line by
line and interpret wi as a weight assigned to vertex vi, then it is easily seen that,
equivalently, for every vertex of G the sum over the values of its neighbours must
equal λ times its own value. This is called the summation rule.

Consider the example graph in Figure 1.1. A basis of the kernel of this graph is
shown in Figure 1.2.

Figure 1.2: Example graph kernel basis

We can verify the validity of the vectors by applying the summation rule to all
vertices. For example, the inner product of the second row of the adjacency matrix
with a given vector asserts that the weight of the three neighbours of vertex 2 equals
zero:

0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
0 1 1 0 0 1
0 0 0 0 1 0

−1

−1
1

1
0

0

=

0
0

0
0
0
0

The kernel of a graph and its dimension (called the nullity of the graph) are of
particular interest to researchers of algebraic graph theory. There exist applications
in chemistry ([52], [62], [90]), biology ([86]) and other areas.

1. Introduction 3

Let us describe some of the more recent research on the kernel and nullity of graphs.
Results on the nullity have been obtained for numerous graph classes. The nullity of
bipartite graphs in general is treated in [19]. For trees it is known that the nullity is
directly related to the size of a maximum matching. A tree is non-singular if and only
if it has a perfect matching. The nullity of a tree equals the number of its vertices
minus the number of vertices saturated by some maximum matching. These facts
are very remarkable and have been proved several times, cf. [19], [9], [55], [35], [34],
[78]. The construction of trees with prescribed number of vertices and maximum
degree bound that achieve the maximum possible nullity is described in [34]. [35]
gives a linear time algorithm for the computation of the nullity of a tree. In [60]
these results are transferred to unicyclic graphs, yielding a linear time algorithm
that can check whether a unicyclic graph is singular. In [97] it is shown that the
nullity of a unicyclic graph on n vertices may range exactly between 0 and n − 4.
A general characterisation of graphs with maximum and near maximum nullity is
achieved in [14]. The nullity has been determined for many more graph classes,
e.g. for 4-circulants [23], line graphs of certain regular graphs [24], line graphs of
trees [63], or distance powers of circuits [80].

A series of papers systematically investigates the nullity of graphs in terms of pro-
totypical subgraphs [91], [87], [92], [89], [90]. The key concept is that the non-zero
entries of graph eigenvectors induce certain subgraphs. Given a kernel eigenvector
x, one partitions the graph into periphery and core vertices, depending on whether
x vanishes on a vertex or not. The set of vertices that belong to some core is an
invariant of the graph. A core graph is a graph with at least two vertices and some
kernel eigenvector without zero entries. Core graphs with nullity one are called nut
graphs. A minimal configuration is a graph of nullity one whose periphery is either
empty or induces a subgraph of isolated vertices. Moreover, the removal of a pe-
ripheral vertex must increase the nullity of the graph. By allowing edges between
peripheral vertices one obtains the notion of a singular configuration, which also has
nullity one and contains a unique spanning minimal configuration as subgraph. The
authors of the mentioned papers investigate the properties of these graphs and the
roles they play as potential subgraphs of singular graphs. For example, a graph with
nullity k contains k singular configurations as subgraphs such that their core vertices
correspond to the non-zero entries of a kernel basis with an overall minimum number
of non-zero entries [89]. These investigations have led to a complete characterisation
of singular graphs in terms of singular configurations.

In the examples they present in their published work, researchers usually seek to give
example eigenvectors that are as ”simple” as possible. Since the adjacency matrix is
integral one can find integral eigenspace bases for all integer eigenvalues. But often
enough the eigenvector entries are chosen such that as few different numbers as
possible are used. For example, one can find numerous examples where eigenvectors
with entries only from the set {0, 1,−1} are used and even complete eigenspace bases
consisting only of such vectors, cf. [74], [55], [66], [89], [90] and Figure 1.2. This
may seem a coincidence, but it is well worth investigating which graph classes and
eigenvalues admit such eigenvectors and bases, which we shall call simply structured.

4 1. Introduction

The case of finding particularly simple eigenspace bases is a rather new research
topic. Owing to a certain degree of sparsity, a simply structured basis can have sig-
nificant computational advantages. Depending on the graph class, simply structured
bases may have storage advantages. For example, the vectors of a simply structured
basis of a tree kernel can be compressed into bit fields by simply discarding the entry
signs, because it is possible to reconstruct the distribution of signs [78]. Finally, it
is noted in [90] that {0, 1,−1}-eigenvectors of certain molecular graphs are related
to equidistributivity of electron charges in non-bonding molecular orbits.

It has long been known that the vector (1, 1, . . . , 1)T spans the eigenspace for
eigenvalue k of a connected k-regular graph and that (1,−1, 1,−1, . . .)T spans the
eigenspace for eigenvalue −k of a connected bipartite k-regular graph. In [10] a
construction is given that allows the generation of a simple kernel vector for each
pair of vertices with identical neighbourhoods. Moreover, it is easily verified that
the complete graph Kn with eigenvalues −1 and n − 1 admits simply structured
eigenspace bases for both eigenvalues.

Apart from this folklore, the first serious research in the direction of simply struc-
tured bases has probably been undertaken by Villarreal. In a rather algebraic con-
text it is shown in the 1995 paper [96] that the kernel of the incidence matrix of a
graph always admits a basis with entries from the set {−2,−1, 0, 1, 2}. Recall that
the incidence matrix of an undirected graphs is a {0, 1} valued matrix that cap-
tures the edge-to-vertex incidence relation, just like the adjacency matrix reflects
the vertex-to-vertex adjacency relation. For two-connected graphs (i.e. graphs with-
out cut-vertices) it was shown in 2002 that the set {−2,−1, 0, 1, 2} can be reduced to
{−1, 0, 1} [49]. This even holds for graphs without cut-edges [6]. It is even possible
to characterise all graphs whose incidence matrix admits a simply structured kernel
basis, effectively exhausting this direction of research.

In contrast, the situation is much harder for the adjacency matrix of a graph. Cur-
rent research has not progressed as far as to yield a complete characterisation of
graphs with simply structured bases. In 2004, a proof for the existence of a simply
structured basis for the kernel of a tree with nullity one was given in the thesis [79].
However, it is noted that the proof technique used inevitably fails for greater nullity.
One year later the result was extended to all singular trees in [78]. Independently and
probably unaware of this reference, the existence of simply structured tree kernels
has later been also shown in two other papers [5], [66]. In [82] a characterisation of
all unicyclic graphs admitting simply structured bases is achieved. Moreover, in [58]
it is proved that all eigenspaces of unitary Cayley graphs admit simply structured
bases.

In the following chapters we will present numerous results on simply structured
eigenspace bases. To begin with, a few general criteria will be proved. However, it
becomes clear that much more powerful results can be obtained when the focus is
restricted to some specific graph class. In sections 4 and 5 we study the eigenspaces
of trees and unicyclic graphs, respectively. In section 6 we treat distance powers
of paths and circuits. Section 7 deals with graph products and related classes,

1. Introduction 5

namely Cayley graphs, Hamming graphs and Sudoku graphs. The eigenspaces for
eigenvalues 0 and −1 of the graphs without an induced path on four vertices, called
cographs, are investigated in section 8. Finally, section 9 is concerned with the
kernels of coprime graphs. These graphs model a number theoretic problem initially
proposed by Erdős.

6 1. Introduction

2. Basics 7

2 Basics

In this chapter we introduce basic notation and definitions. Further notation is
postponed until later and introduced when required by the context. Moreover, we
state basic results that may be used implicitly in subsequent chapters.

Matrices and vectors

The symbols I, J and j denote the identity matrix, the all ones matrix and the
all ones vector, respectively. Subscripts may be used to indicate their respective
dimensions in case they are not clear from the context. Let rkM , im M , ker M
denote the rank, image and kernel, respectively, of a given matrix M .

Given row or column vectors v1, . . . , vk such that v
(1)
i , . . . , v

(n)
i are the entries of vi,

we define their concatenation (which is a row vector) by

(v1 | v2 | . . . | vk) := (v
(1)
1 , . . . , v

(n)
1 , . . . , v

(1)
k , . . . , v

(n)
k).

A matrix in which the i-th column vector can be derived from the first column vector
by means of a downward rotation by i − 1 entries is called a circulant matrix [25].

Let us abbreviate ωn = e
2πi

n .

Theorem 2.1. [10] Let (a1, a2, . . . , an)T be the first column of a real circulant ma-
trix A. Then the eigenvalues of A are exactly

λr =
n

∑

j=1

ajω
(j−1)r
n , r = 0, . . . , n − 1.

�

Graphs

Throughout this work — unless stated otherwise — we only consider finite, loopless,
simple graphs.

Note that this section does not replace a thorough introduction to graph theory, for
which the reader is referred to e.g. [46], [28], [53], [57]. The foundations of algebraic
graph theory can be found in sources like [10], [17], [18], [39].

Let G be a graph. Then by V (G) and E(G) we denote its sets of vertices and edges,
respectively. Let degG(x) denote the degree of vertex x in graph G. We write x ∼ y
if the vertices x, y are adjacent in the considered graph.

8 2. Basics

We write NG(x) for the neighbourhood of the vertex x in G, i.e. the set of all vertices
of G that are adjacent to x.

Given a set M ⊆ V (G), we denote by G − M the graph formed by removing the
vertices of M and all their adjacent edges from G. If only a single vertex x is
removed, then for the sake of convenience we write G − x instead of G − {x}. If H
is a subgraph of G, then G − H := G − V (H).

We define two join operations, namely the disjoint union G∪H and the complete join
G▽H of the vertex disjoint graphs G and H . The first operation simply joins the
vertex and edge sets whereas the latter additionally adds all possible edges between
the two joined vertex sets.

Let Kn, Pn, Cn denote the complete graph, path and circuit on n vertices, respec-
tively.

By a matching of a graph we understand a set of independent edges of the graph.
We call a vertex covered or saturated by a matching if it is incident to an edge of
that matching. A maximum matching comprises the greatest possible number of
edges. Maximum matchings of trees are unique.

By G we denote the complement of the graph G.

A graph is called bipartite if there exists a disjoint partition of its vertex set into two
sets such that every edge of the graph runs from a vertex of the first set to a vertex
of the second set. We shall call such a partition a corresponding vertex bipartition
of the bipartite graph.

A circulant graph is a graph whose adjacency matrix is circulant with respect to
a suitable vertex ordering. Examples for circulant graphs are circuits and their
distance powers.

Graph eigenspaces

Let G = (V, E) be a graph with vertex set V = {x1, . . . , xn}.

Then its adjacency matrix A(G) = (aij) is defined by

aij =

{

1 if xi ∼ xj

0 else
.

Note that A(G) = J − A(G) − I.

The eigenvalues of a graph G are the eigenvalues of its adjacency matrix A(G). Note
that this definition is invariant under isomorphism so that the eigenvalues of a graph
do not depend on the numbering of its nodes.

2. Basics 9

An eigenvector x of a graph G for eigenvalue λ is given by a non-zero solution of
the equation A(G)x = λx. One can interpret the eigenvectors of A(G) as vertex
weight functions V → R, in order to derive a notion of graph eigenvectors that does
not depend on the numbering of the vertices. Let V (G) = {v1, . . . , vn} and x =
(x1, . . . , xn)T . Now assign value xi to vertex vi. Reading the equation A(G)x = λx
for each entry of x separately, it is easily seen that, equivalently, for every vertex of
G the sum over the values of its neighbours must equal λ times its own value:

∑

vj∈N(vi)

w(vj) = λw(vi) (i = 1, . . . , n).

We will hereafter refer to this as the summation rule.

The eigenspace for eigenvalue λ of graph G is written as Eig(λ; G) := ker(A(G)−λI).
Moreover, ker G := Eig(0; G) is the kernel of G. By µ(λ; G) := dim Eig(λ; G) we
denote the multiplicity of the eigenvalue λ of graph G. Clearly, 0 ≤ µ(λ; G) ≤
|V (G)|. We say that a G is singular if it has a zero eigenvalue. The multiplicity of
the zero eigenvalue is called the nullity of a graph.

Since adjacency matrices are symmetric we can immediately deduce that the eigen-
values of a graph are all real numbers and that its eigenspaces are mutually perpen-
dicular.

For a bipartite graph λ is an eigenvalue if and only if −λ is an eigenvalue of the
graph as well, with the same multiplicity [10]. Given an eigenvector for eigenvalue
λ of a bipartite graph, one obtains an eigenvector for −λ by negating the entries of
the vector on all vertices of exactly one of the two sets of a corresponding vertex
bipartition.

An important consequence of the famous Perron-Frobenius theorem on non-negative
matrices [38] is that the maximum eigenvalue λmax of a connected graph G with at
least to vertices has multiplicity one and is the only eigenvalue to afford a positive
eigenvector.

The largest eigenvalue of a k-regular graph is λmax = k. The corresponding eigenspace
is spanned by the all-ones vector j .

Theorem 2.2. [10] Let G be a k-regular graph on s vertices and let λ1, . . . , λs be
its eigenvalues.

Then the eigenvalues of G are s− k− 1 and all numbers −λi − 1 where λi 6= k. The
eigenspace for eigenvalue −λi − 1 of G is the same as the eigenspace for eigenvalue
λi 6= k of G. The eigenspace for eigenvalue s − k − 1 is spanned by the all ones
vector. �

As a consequence of Theorem 2.1, we can explicitly state the spectrum of circulant
graphs:

10 2. Basics

Theorem 2.3. Let G be a circulant graph. Let (0, a2, . . . , an)T be the first column
of a circulant adjacency matrix of G. Then the eigenvalues of G are exactly

λr =
n

∑

j=2

ajω
(j−1)r
n , r = 0, . . . , n − 1.

�

According to [25], the column vectors of the matrix

F ∗ = n− 1
2

(

ω(i−1)(j−1)
n

)

i,j=1,...,n
∈ Cn×n,

which is the conjugate transpose of the so-called Fourier matrix F ∈ Cn×n, constitute
a complete and universal set of complex eigenvectors for every circulant matrix M
of order n. Moreover, the (r + 1)-th column of F ∗ yields a complex eigenvector for
eigenvalue λr of Theorem 2.3.

3. General criteria 11

3 General criteria

In this chapter we derive general criteria which eigenvalues of a graph potentially ad-
mit simply structured eigenspace bases. Naturally, such eigenvalues must necessarily
be integers.

Theorem 3.1. Let G be a graph with a pendant vertex. If G admits a {0, 1,−1}
valued eigenvector v for eigenvalue λ and v does not vanish on all pendant vertices
of G and their neighbours, then λ ∈ {−1, 0, 1}. �

Proof. Let x be a pendant vertex of G and v a {0, 1,−1} valued eigenvector for
eigenvalue λ such that w(x) 6= 0. From the summation rule for vertex x we derive
the condition λ = w(y)/w(x). Since w(x), w(y) ∈ {−1, 0, 1} this condition can only
be satisfied if λ ∈ {−1, 0, 1}. �

Corollary 3.2. Let G be a tree. If G admits a {0, 1,−1} valued eigenvector for
eigenvalue λ, then necessarily λ ∈ {−1, 0, 1}. �

Proof. It suffices to observe that no eigenvector of a tree can vanish on all of its
leaves, as can be shown by a simple inductive argument. �

The next theorem is particularly useful for graphs where the neighbourhoods of
adjacent vertices overlap to a large extent, e.g. for distance powers (cf. section 6).

Theorem 3.3. Let G be a graph and T a spanning tree of G such that there exists
q ∈ N with |(N(x) ∪ N(y)) \ (N(x) ∩ N(y))| ≤ q for all adjacent vertices x, y of T .

If v is a {−1, 0, 1} valued eigenvector of G for eigenvalue λ, then λ ∈ {−q+1, . . . , q−
3} or v = j . �

Proof. Consider the summation rule on G for two adjacent vertices x, y of T :

λw(x) =
∑

z∈N(x)

w(z) =
∑

z∈N(x)\N(y)

w(z) +
∑

z∈N(x)∩N(y)

w(z),

λw(y) =
∑

z∈N(y)

w(z) =
∑

z∈N(y)\N(x)

w(z) +
∑

z∈N(x)∩N(y)

w(z).

We find that

(λ + 1)(w(x) − w(y)) =
∑

z∈N(x)\(N(y)∪{y})

w(z) −
∑

z∈N(y)\(N(x)∪{x})

w(z)

∈ {−(q − 2), . . . , (q − 2)}.

12 3. General criteria

We have w(x) − w(y) ∈ {−2,−1, 0, 1, 2} so that, consequently, w(x) = w(y) or
λ ∈ {−q + 1, . . . , q − 3}. The proof is completed by iterating the argument along
incident edges of T . �

We call a matrix A totally unimodular if every square submatrix Ã of A has det(Ã) ∈
{0, 1,−1}.

Theorem 3.4. For every totally unimodular, singular matrix A there exists a sim-
ply structured basis of ker(A). �

Proof. Let rk(A) = r. We arrange the lines and columns of A so that the first r
lines and the first r columns form an invertible submatrix A′. If n is the number
of columns in A, then the dimension of ker(G) is p = n − r. To solve Ax = 0
with x = (xi) ∈ Rn we may take arbitrary values for xr+1, . . . , xn and determine

x1, . . . , xr by the first r equations in Ax = 0. We define basis vectors x(k) = (x
(k)
i)

by x
(k)
r+j = δk,j for j = 1, . . . , n− r and k = 1, . . . , n− r = p. If x̃(k) = (x

(k)
1 , . . . , x

(k)
r),

then we have A′x̃(k) = −ck, where ck is the (r + k)-th column of A reduced to
positions 1, . . . , r. We solve A′x̃(k) = −ck by Cramer’s rule, which means

x
(k)
i = − det(Ai)/ det(A′) (i = 1, . . . , r).

Here Ai is obtained from A′ by replacing column i by ck. Both matrices A′ and Ai

are submatrices of A. As A is totally unimodular, their determinants have values 0
or ±1 and so x

(k)
i ∈ {0, 1,−1}. �

A direct consequence of Theorem 3.4 is that every graph with totally unimodular
adjacency matrix admits a simply structured kernel basis.

4. Trees 13

4 Trees

The spectra of trees have been investigated quite exhaustively. For example, trees are
exactly those graphs whose characteristic polynomial equals the so-called matching
polynomial, whose coefficients are derived from the numbers of matchings of different
sizes [40]. The square of the maximum eigenvalue of a tree lies roughly between one
and two times the maximum degree [40]. The inverse of the adjacency matrix of
a non-singular tree has the extraordinary property that its zero-nonzero pattern
corresponds to the adjacency matrix of a graph that can be directly constructed
from the given tree itself [41],[69]. The paper [43] analyses the relative signs of
eigenvectors on adjacent vertices of a tree. Many more results could be quoted here.

In this chapter we give a characterisation of trees for which simply structured
eigenspace bases exist. According to Corollary 3.2, the only feasible eigenvalues
that allow the construction of such bases are 0, 1,−1.

The next two sections 4.1 and 4.2 deal with simply structured kernel bases. In [79]
the existence of a similarly structured basis has been proved for the kernel of a
simply singular tree. However, the proof technique used inevitably fails for multiply
singular trees. We will use an alternate approach that works for arbitrary singular
trees. Based on the observation that straight application of the Gauss algorithm to
the adjacency matrix of a tree often yields a kernel basis of the intended structure,
we seek to develop a procedure that guarantees the construction of such a basis. The
key is a possibly incomplete Gaussian elimination scheme whose pivoting strategy
only considers unit vector rows of the coefficient matrix. In section 4.4 the focus is
extended to other elimination procedures.

In section 4.5 a partitioning technique is developed that is used in section 4.6 to char-
acterise all trees whose eigenspaces for eigenvalue 1 or −1 admit simply structured
bases.

4.1 The FOX algorithm

To construct the kernel basis of a graph we usually perform Gaussian elimination
on the adjacency matrix of the given graph. Since we want to construct a basis that
exhibits certain properties there will typically arise additional rules to observe.

In this section we present an elimination algorithm that performs a possibly incom-
plete Gaussian elimination scheme. Its pivoting strategy only considers unit vector
rows of the coefficient matrix. Applied to an adjacency matrix, this only turns some
nonzero entries into zero entries.

For a formal analysis we want to avoid excessive use of matrix indices and therefore
seek a presentation of the algorithm that carries out the elimination operations
directly on a directed graph. If an undirected graph is given, then this approach

14 4. Trees

uses the directed graph with the same adjacency matrix as the given undirected
graph. The elimination procedure described below only removes edges from the
digraph.

Let G = (V, E) be a connected graph. Construct the corresponding bidirectional
orientation Ĝ, i.e. the unique digraph that has the same adjacency matrix as G.

We will introduce an algorithm that takes the graph Ĝ as input and produces a
labelled subgraph D̃ of the input graph. Each node will be labelled with at least
one of the three labels F, O and X.

Algorithm 4.1.

(1) Let all nodes of Ĝ be unlabelled.

(2) Find a node v without X label that has exactly one outgoing edge e. If no such
node exists, go to step (6).

(3) Tag node v with X.

(4) Let w be the unique node with e = vw. Except for e, remove all incoming
edges of w.

(5) Tag node w with O and go to step (2).

(6) Tag all unlabelled nodes with F.

�

Since for each run of the main loop from step (2) to (5) another node becomes
X labelled, it is clear that the algorithm stops after at most |V | iterations of the
main loop.

Let H{labels} be the subgraph of D̃ induced by all nodes that have each been labelled
with all of the labels mentioned in the subscript.

We will say that v is an O labelled node if among its labels there is an O label.
Conversely, we require an O labelled node to have no O label.

It is obvious that every node of D̃ has been labelled.

An example is shown in figure 4.1, where the original graph G is a tree. The final
graph D̃ shown in the figure is obtained for the step (2) node sequence 0, 2, 4, 5,
13, 14, 17, 20, 22, 21.

We will now look for further properties of D̃. The construction of X and O labelled
nodes immediately implies

4. Trees 15

Figure 4.1: Example graphs G and D̃

Lemma 4.2. [78] Every X labelled node of D̃ has exactly one outgoing neighbour,
namely an O labelled node. Every O labelled node of D̃ has exactly one incom-
ing neighbour, namely an X labelled node. Every node has at least one incoming
neighbour. �

Lemma 4.3. [78] Every weak component of HXO is a 2-cycle and also a weak com-
ponent of D̃. �

Proof. Let v1 be an XO labelled node. By Lemma 4.2 we have exactly one outgoing
edge e = v1v0. The neighbour v0 is O labelled. Now suppose that D̃ does not contain
the edge v0v1. Then, by Lemma 4.2, for v1 there exists an incoming edge v2v1 from
an X labelled node v2. Since v2v1 is an edge of D̃ but not v0v1 we see that v2 6= v0.
But v2 misses v1v2 as incoming edge since v1v0 is the only outgoing edge of the
X labelled node v1. Consequently, v2 must be an O labelled node.

16 4. Trees

Repeat this reasoning for v2 instead of v1 and so on. We obtain a sequence of
distinct XO labelled nodes v1, v2, . . . with vi adjacent to vi−1 for i ≥ 1. Naturally,
this sequence is finite. Note that the final node vn may only be O labelled by v0

since this is the only node left without an X label towards the end of constructing
the node sequence.

As a consequence, there exists a cycle of XO labelled nodes in D̃. But in Ĝ the nodes
of this cycle originally each had at least two outgoing neighbours. Therefore, one
of the O labelled nodes of the cycle must originate from an exterior X labelled node.
But, by construction, each node of the cycle has been O labelled exactly by one of
its neighbours within the cycle, a contradiction.

Therefore, there exists an edge v0v1 in D̃. By Lemma 4.2 we see that v0 and v1 form
a 2-cycle in D̃. �

Lemma 4.4. [78] Let v1 be an F labelled node of D̃ and v1v2 be an outgoing edge
of v1. Then v2 is an F labelled node as well and v2v1 is also an edge of D̃. �

Proof. Let e = v1v2. Then v2 cannot be an O labelled node since otherwise the
edge e would have been removed in D̃. Also, v2v1 is an edge in D̃ because v1 is not
an O labelled node and therefore may not miss any of its original incoming edges.
Consequently, v1 and v2 are mutually adjacent in D̃.

Clearly, v2 cannot be X labelled because its only outgoing neighbour v1 would have
to be an O labelled node. Therefore, v2 must be F labelled. �

Lemma 4.5. [78] Let v be an F labelled node and let H be the strong component of
D̃ that contains v. Then all adjacencies between nodes of H are mutual. H contains
only F labelled nodes. Further, |H| = 1 or |H| ≥ 3. In the second case H contains
a bidirectional cycle with at least 3 nodes.

Incoming neighbours of H can only be XO labelled nodes. H has no outgoing neigh-
bours. �

Proof. Let w be a node of H , w 6= v. Then there exists a directed path from v
to w. By Lemma 4.4 this path contains only F labelled nodes. Therefore, the entire
strong component H contains only F labelled nodes, in particular w. By Lemma 4.4
it also follows that all adjacencies of nodes of H are mutual.

It is clear that H cannot have outgoing edges since by Lemma 4.4 these would
only lead to F labelled nodes which cannot be weakly connected to H . Conversely,
incoming edges cannot start from F labelled nodes but neither from X labelled nodes

4. Trees 17

since that would require H to contain an O labelled node. The only remaining
alternative is an XO labelled node.

Assume |H| = 2. Then each node would only have exactly one outgoing edge and
should have been X labelled, a contradiction.

Now let |H| ≥ 3. Then H contains two mutually adjacent nodes v0, v1. Since v1 is
not an X labelled node it must have another outgoing edge v1v2 besides v1v0. Note
that v2 6= v1 must be an F labelled node. Repeat this conclusion for v2 and so on
until a maximal sequence of distinct nodes v0, v1, . . . , vn has been constructed. Since
H is finite we see that vn must be adjacent to one of the nodes v0, . . . , vn−2. Thus,
H contains a bidirectional cycle with at least 3 nodes. �

Corollary 4.6. [78] Let G be a tree. Then HF contains only isolated points. �

Lemma 4.7. [78] Assume that HF contains only isolated points.

Then the F labelled nodes of D̃ are exactly the X labelled nodes that have no outgoing
edges. Incoming edges of F labelled nodes always start from XO labelled nodes. �

Proof. Let v be an X labelled node of D̃ that has no outgoing edges and assume
that v is also O labelled. Then there exists an X labelled incoming neighbour w. Since
by assumption there exists no edge vw in D̃ we see that w is missing an incoming
edge an therefore must be O labelled. But v lies in the same weak component of D̃
as w so that by Lemma 4.3 there must be an X label on v, a contradiction. Therefore
v must be an F labelled node. The rest follows from Lemma 4.5. �

Lemma 4.8. [78] If the FOX algorithm is conducted in a way that avoids the
assignment of multiple labels for as long as possible, then the set of unlabelled
nodes at the time of the first assignment of a second label to an already labelled
node is identical to the set of nodes that become F labelled at the end of the FOX
algorithm. �

Proof. We need to show that the assignment of a second label to a node does not
affect the set of unlabelled nodes.

The only situation where a second label can be assigned is when there exists an O la-
belled node y with only one outgoing neighbour x. Note that x must be the X partner
of y. By construction, all other neighbours of x must be incoming neighbours. These
are necessarily O labelled since their incoming edge from x is missing.

18 4. Trees

After the FOX algorithm has assigned an X label to y and an O label to x we see that
x and y form a separate 2-cycle. Therefore, if among the other formerly incoming
neighbours there is one with only one outgoing neighbour, then the situation is the
same as before and we may proceed in the same manner. Overall, only nodes of
type X or O are affected. �

Let us now turn to some immediate algebraic properties of the FOX algorithm.
Since the FOX algorithm only performs row operations of the adjacency matrix of
the given graph G, it is obvious that it has the same kernel as the adjacency matrix
of the resulting graph D̃:

In the following, let D denote the undirected counterpart of D̃.

Lemma 4.9. [82] For any graph G,

ker G = ker D̃ = ker D

�

Proof. The equality ker G = ker D̃ directly follows from the construction of D̃.
Now consider the FOX run on G whose result is D̃. Let e = xy be an edge that
lies in G but not in the subgraph D. Then according to the definition of the FOX
algorithm e can only join O labelled nodes. Further, according to Lemma 4.2 the X

partner of x cannot be y and vice versa. It follows that the considered FOX run on G
could be performed in the same way even if the edge e did not exist. Consequently,
there exists a FOX run on D that yields D̃. �

Every X labelled node has exactly one outgoing neighbour, therefore its correspond-
ing row of A(D̃) is a unit vector. Consequently, the value of the O labelled partner
of this X labelled node must be zero for every vector from the kernel of G:

Lemma 4.10. [78] Let G be a graph. Then the nodes of HO obtained after a run
of the FOX algorithm on G form a subset of the nodes whose value is zero for every
vector from the kernel of G. �

We will see that this lemma can be strengthened considerably if the FOX algorithm
is applied to a tree or forest.

4.2 FOX on trees

In this section we apply the FOX algorithm from section 4.1 to trees. There already
exist other algorithms that operate directly on a tree in order to determine spec-
tral properties. For example, in [54] an algorithm is presented that computes the

4. Trees 19

determinant of the neighbourhood matrix (which is the sum of adjacency matrix
and identity matrix I) of a tree. In [35] the algorithm is rephrased such that it
computes the characteristic polynomial of a tree. It can also test whether a tree has
a certain prescribed eigenvalue. An algorithm that can compute eigenspace bases
of trees is described in [55]. However, that algorithm still requires the solution of a
linear equation system as its final step, cf. section 4.4. In contrast, we will describe a
construction for a simply structured tree kernel basis that works entirely on graphs.

In the following, we will assume that given a graph G we will automatically apply
the FOX Algorithm 4.1 to its bidirectional orientation Ĝ to get the final digraph D̃.
The number of nodes of G and the number of F labelled nodes of D̃ will be denoted
by n = |G| and k = |HF|, respectively.

We may combine the properties of the FOX algorithm from section 4.1 in a straight-
forward manner to obtain the following lemma. Note that we call a directed path
maximal if it is not contained in any other directed path.

Lemma 4.11. [78] Let G be a tree. For any XO labelled node v that has only one
incoming edge let R̃v be the subgraph of D̃ spanned by the nodes of all directed paths
in D̃ starting from v. Likewise, for any F labelled node w let S̃w be the subgraph
of D̃ spanned by the nodes of all directed paths in D̃ ending at w. The undirected
counterparts of R̃v and S̃w in G are called Rv and Sw, respectively.

Then:

1. The graphs Rv and Sw each induce a subtree of G.

2. Each maximal directed path in R̃v that begins at v starts with an even number
of consecutive nodes labelled XO and XO alternatively and terminates with an
F labelled node.

3. Each maximal directed path in S̃w that leads to w starts with an even number
of consecutive nodes labelled XO and XO alternatively and terminates with an
F labelled node.

�

Before we advance to the construction of kernel eigenvectors, we will investigate
some consequences of the previous lemma and definitions.

Lemma 4.12. [78] Let G be a tree. Then for every XO labelled node v of D̃ there
exists a node w ∈ HF of D̃ such that v lies in S̃w. �

20 4. Trees

Proof. Consider the last node w of a directed path P of maximum length within
D̃ that leads away from v. Let x be the immediate predecessor of w along P . We
show that w can only be F labelled. Then by definition v would lie in S̃w.

Assume that w is O labelled. Then w cannot have any neighbours in D̃ besides x.
But then w and x must be of type XO. Consequently, either v = x so that it must
also be of type XO or there exists no directed path from v to w because of Lemma
4.3.

Now assume that w is X labelled. Then due to the maximality of P the only outgoing
neighbour of w must be x. Hence, x is the O partner of w. The case v = x is
impossible because then v would be O labelled. But since x is O labelled it cannot
have an incoming edge from the third last node along P . �

Lemma 4.13. [78] Let G be a tree and x an F labelled node of G. Then, all
XO labelled nodes of Sx have degree 2 within this subgraph of G. Consequently, all
nodes of Sx whose degree is at least 3 are necessarily of type XO or F. �

Proof. Clearly, Sx cannot contain any XO labelled nodes. Let u be a type XO node of
Sx and let v be the X partner of u. Since v has no outgoing neighbours in S̃x besides
u it follows that a directed path from v to the F labelled node of S̃x must lead via
u. But then u must have another outgoing neighbour w besides v. It is impossible
for u to have yet another outgoing neighbour y because then the F labelled node
could not be reached in S̃x without introducing a cycle in the tree G. Since u has
no incoming neighbours besides v we see that it has degree two in Sx. �

The next lemma states that within a subgraph Sw any O labelled node may play the
part of the F labelled node.

Lemma 4.14. [82] Let G be a tree and w a node that gets F labelled by a given
FOX run A. Further, let v be an XO labelled node of Sw.

Then there exists a FOX run B on G that creates the same node labels as run
A, except that node v gets F labelled and w becomes XO labelled. Moreover, the
subgraphs S

(A)
w and S

(B)
v of G are identical. �

Proof. We may assume w.l.o.g. that distG(v, w) = 2, otherwise iterate the proof
technique.

According to Lemma 4.11 the node u that lies between v and w is O labelled. Clearly,
u must be the partner of v. Let u1, . . . , ur be the other incoming neighbours of w in
D̃, all being type O.

4. Trees 21

Since w is F labelled we see that the operations carried out by FOX run A may be
rearranged such that first only the branches that are connected to w via u1, . . . , ur

get labelled and then only the branch connected via u. This does not change the
result D̃ or any node labels. Now, when the FOX algorithm would select v we pick
w instead. This is possible because the neighbours u1, . . . , ur have all been O labelled
so that its only outgoing neighbour is u. Since v was eligible for X labelling one step
before and the O labelling of u has removed the edge vu we see that v now becomes
F labelled. Denote this altered FOX run by B.

Obviously, except for the edges between the nodes u, v, w and their labels there is
no difference between the results of runs A and B. Since there exits a directed path
from w to v in D̃(B) and u has no other incoming edges other than from w it is clear
that S

(A)
w and S

(B)
v are the identical subgraphs of G. �

We will now exhibit several properties of the adjacency matrix of the graph D̃
obtained for a tree.

Lemma 4.15. [78] Let G be a tree and let A be the adjacency matrix of D̃. Then
the row vectors of A that correspond to the XO labelled of D̃ are linearly independent
among themselves and from the remaining row vectors of A. �

Proof. Let H be the subgraph of D̃ that is spanned by all XO labelled and all
XO labelled nodes. For each X labelled node of H remove the edge leading back from
its unique outgoing neighbour. Then, as a consequence of Lemma 4.11 it is possible
to assign integral height levels to the nodes of H such that the edges starting at
each level may only lead to the nodes of the level directly below.

Construct a node sequence v1, . . . , vn as follows. First number the X labelled nodes
of H level by level, starting from the top level. For the same order of the X labelled
nodes, number the corresponding outgoing O labelled neighbours. Finally, number
the XO labelled and then the F labelled nodes.

Assume that the adjacency matrix A reflects the above node numbering. Now form
the submatrix M = (mij) of A that contains only the rows that correspond to the
XO labelled nodes of D̃ and the columns that correspond to the XO labelled nodes.
Then by construction we have mij = 0 if i > j and mii = 1. Thus, M takes upper
triangular form with an all ones diagonal and therefore has maximum rank. Since
XO labelled nodes can only have XO labelled nodes as incoming neighbours we see
that within those columns of A that correspond to the XO labelled nodes all non-
vanishing entries must necessarily belong to M as well. Consequently, the result
follows. �

22 4. Trees

Construction 4.16. [78] Let G be a tree. Assign weight 0 to all O labelled nodes
of D̃ and also to all F labelled nodes except one node w. Assign weight 1 to w and
construct S̃w according to Lemma 4.11.

All XO labelled nodes that are not contained in S̃w receive weights of 0. Conducting
an incoming edge breadth first search on S̃w with starting node w, we can assign
weights to the remaining X labelled nodes as follows. Let x be an unweighted X la-
belled node to be processed and let y be its outgoing O labelled neighbour. Then
assign to x the negative sum of the weights of all non-incoming neighbours of y.

Performing this procedure for every F labelled node of D̃ we obtain a set of k vectors
zi ∈ Rn. �

Observation 4.17. [78] The following properties of Construction 4.16 are obvious:

1. At any time, all non-incoming neighbours of y have already been assigned
weights.

2. The k vectors zi are linearly independent.

�

Lemma 4.18. [78] The vectors obtained by Construction 4.16 have only entries
from the set {0, 1,−1}. �

Proof. Use the notation from Construction 4.16 and assume that we need to assign
a weight to the X labelled node x. Consider the non-incoming neighbours of the
associated node y. These can only be either XO labelled or F labelled. A non-zero
weight can only occur at the neighbour that lies on the unique directed path from
y to w. Using an inductive argument it is clear that only weights 1 or −1 can be
assigned to X labelled nodes along this path and, consequently, to the node x. �

For a forest we will now strengthen Lemma 4.10 from the previous section.

Lemma 4.19. [78] Let G be a forest. Then the graph HO contains exactly those
nodes for which every vector from the graph kernel vanishes. In particular, this node
set is invariant for all possible results of the FOX algorithm. �

Proof. Consider Construction 4.16 and note that according to Lemma 4.12 every
XO or F labelled node v lies in a subgraph S̃w for some node w. We see that for at
least one basis vector the construction yields a nonzero weight on v. �

4. Trees 23

Example 4.20. For graphs that contain cycles it is possible to find counterexam-
ples regarding the above lemma. For instance, consider the graph that results by
connecting a fifth node to one of the nodes of the cycle C4. Its kernel has dimension
one and the spanning vector is zero on an X labelled node, see figure 4.2.

Figure 4.2: Counterexample for Lemma 4.19

�

Next, we present our main theorem. It is useful to note that a tree has a perfect
matching if and only if it is nonsingular since the rank of the adjacency matrix of
a tree is twice the size of a maximum matching [19], [55]. By iterative construction
of the matching starting from the leaves and removing matched node pairs from the
graph it becomes clear that a perfect matching in a tree must be unique.

Theorem 4.21. [78] Let G be a tree. Apply Algorithm 4.1 on its bidirectional
orientation Ĝ to get the final digraph D̃.

Then k = |HF| equals the degree of singularity of G.

For k ≥ 1 Construction 4.16 yields a basis of ker G that consists of vectors with
entries from {0, 1,−1} only.

For k = 0 the graph D̃ consists only of XO labelled nodes. The perfect matching of
G can be constructed by pairing the nodes according to the 2-cycles in HXO. �

Proof. Construct row and column index permutations for the adjacency matrix as
follows. First take all row indices that correspond to XO labelled nodes and arrange
them as pairs according to the 2-cycles of D̃. Use the same order of the node pairs for
the column indices, but swap the node indices of each pair. Next, append the indices
of the XO labelled nodes to the row indices and then in the same order append the
indices of the corresponding unique outgoing (XO labelled) neighbours to the column
indices. Now repeat this procedure vice versa (swap row and column indices) and

24 4. Trees

additionally observe the node order described in the proof of Lemma 4.15. Finally
append the indices of the F labelled nodes both to the row and column indices.

Using the above index permutation, the adjacency matrix of D̃ transforms into the
matrix

I 0 0 0
0 I 0 0
0 0 R ∗
0 0 0 0

with an upper right triangular matrix R. This follows directly from Lemmas 4.3,
4.2, 4.5, 4.7, and 4.15.

Observing Lemma 4.15, we see that this matrix has kernel dimension k. Further,
it has the same rank as the adjacency matrix of G since Algorithm 4.1, essentially,
simply repeatedly looks for a unit vector row and uses it for pivoting.

Case k ≥ 1. Since the vectors constructed are linearly independent and Lemma
4.18 asserts that their entries are as required, it suffices to show that these vectors
belong to the kernel of G. Using each vector as node weights on G, this is equivalent
to showing that for each node the weight sum of its neighbours vanishes. Observe
that two nodes that are adjacent in G are disconnected in D̃ if and only if both
have been O labelled. Therefore we may consider D̃ instead (to be precise, its simple
undirected representation). The neighbours of an F labelled or X labelled node are
all O labelled nodes, therefore the weight sum vanishes. An XO labelled node may
have both X labelled and F labelled neighbours. Among the latter there is at most
one non-vanishing weight. Referring to Construction 4.16 we see that this weight
has exactly been chosen so that the weight sum vanishes.

Case k = 0. First observe that by pairing each X labelled node with its unique out-
going (O labelled) neighbour a perfect matching of G can be constructed since there
are no F labelled nodes. As a consequence, every directed path in D̃ that connects
two leaves of G must contain an even number of nodes. Next, note that every O la-
belled leaf of D̃ must also be X labelled since it has exactly one outgoing neighbour.
Since the latter becomes O labelled this pair of nodes forms a 2-cycle. Repeat this
argument for the remaining nodes. It is impossible to have only XO labelled leaves
left since this would mean that we could find a directed leaf-to-leaf path with an
odd number of nodes. Therefore, the whole graph D̃ falls into XO labelled 2-cycles
(cf. Lemma 4.3) so that indeed a perfect matching of G is obtained. �

Corollary 4.22. [19], [9], [55], [35], [34], [78] The rank of the adjacency matrix of
a tree is twice the size of a maximum matching. �

Proof. A matching that misses only k nodes can be constructed by pairing each
X labelled node with its unique outgoing neighbour.

4. Trees 25

Conversely, consider a maximum matching of G. Without changing the size of the
matching we may alter it such that every leaf neighbour is paired with one of its
leaves. Apply Algorithm 4.1 and begin with the leaves that belong to the matching.
These will become X labelled and their neighbours receive O labels. The subgraph
of G that is spanned by the remaining unlabelled nodes is a forest F . Alter the
matching of G such that every leaf neighbour of F is paired with one of its leaves.
Proceed by alternatingly continuing Algorithm 4.1 with the leaves of F that belong
to the matching and updating F . Finally, the forest F will only contain isolated
nodes because otherwise the matching would not be maximal. Clearly, exactly the
nodes of F become F labelled by Algorithm 4.1. �

As Corollary 4.22 indicates, there exists a connection between the FOX algorithm
and maximum matchings on trees. If fact, the following results show that there
exists a one-to-one mapping between the possible outcomes of applying the FOX
algorithm to a tree and the maximum matchings of that tree.

Lemma 4.23. [82] Let M be a maximum matching of the tree T . Then M covers
at least one leaf of T . �

Proof. Assume to the contrary that no leaves are covered by M . Let v1 be such
a leaf and v2 its neighbour. Then v2 must be covered because M is maximum.
Let v3 be the neighbour of v2 with v2v3 ∈ M . By assumption v3 cannot be a
leaf. Therefore v3 has another neighbour v4 with v4 6= v2. v4 cannot be covered by
M because otherwise v1, . . . , v4 would form an augmenting path, contradicting the
choice of M . Now the situation for v4 is like it was for v2. Continue the argument.
Since T is a finite graph, we arrive at a contradiction. �

Lemma 4.24. [82] Let M be a maximum matching of the tree T . Then there exists
a FOX run on T such that M can be obtained by collecting the edges between the
X labelled nodes and their O labelled partners. �

Proof. Let Ti be a subtree of T and let Mi = M ∩ E(Ti) be the restriction of M
to Ti. Let the directed graph T̃ (i) be a valid intermediate graph of a FOX run on T .
Further, let T̃i be the restriction of T̃ (i) to Ti (including labels).

Now we make the following assumptions:

(a) Mi is a maximum matching on Ti.

(b) None of the nodes of T̃i have been labelled.

(c) The only nodes of T̃ (i) eligible for X labelling lie in the subgraph T̃i.

26 4. Trees

(d) Every node eligible for X labelling in T̃i is also eligible in T̃ (i).

(e) In T̃ (i) the edges between the X labelled nodes and their O labelled partners
form the set M − Mi.

(f) None of the unlabelled nodes of T̃ (i) − T̃i are covered by M .

By Lemma 4.23 and assumption (a) there exists a leaf v
(i)
1 of Ti that is covered by

Mi. Let v
(i)
2 be its neighbour in Ti. Clearly, the edge e = v

(i)
1 v

(i)
2 belongs to Mi. We

conclude from assumptions (b), (c) and (d) that v
(i)
1 is eligible for X labelling, both

in T̃i and T̃ (i). In both graphs we can perform a step of the FOX algorithm that
labels v

(i)
1 with X and then v

(i)
2 with O. From T̃ (i) we obtain the new intermediate

graph T̃ (i+1).

Let Ni = {v(i)
3 , . . . , v

(i)
si } be the neighbours of v

(i)
2 besides v

(i)
1 . We can deduce from

assumptions (c) and (d) that none of the nodes of Ni have any outgoing edges in
T̃ (i+1), hence we already know they will become F labelled at the end of the FOX
run. The nodes of Ni cannot be covered by M because of assumptions (e) and (f).

Now construct the subtree Ti+1 of T by removing the nodes v
(i)
1 , . . . , v

(i)
si from Ti.

Note that Mi+1 = Mi − e. Incrementing i by one, it is straightforward to see that
assumptions (a) to (f) hold again.

Starting with T1 = T and M1 = M we see that assumptions (a) to (f) hold for i = 1.
Iterate the induction step described above until Mi = ∅. Complete the FOX run on
T̃ (i). It is clear by construction that FOX will only assign F labels to the remaining
unlabelled nodes, which concludes the proof. �

Lemma 4.25. [82] Let M be the set of edges between the X labelled nodes and
their O labelled partners obtained by a FOX run on a given tree T . Then M is a
maximum matching on T . �

Proof. Obviously M is a matching on T . Exactly the F labelled nodes are not
covered by M . In view of Theorem 4.21 and Corollary 4.22 this means that indeed
M is a maximum matching. �

Corollary 4.26. [82] Exactly the O labelled nodes of a tree are covered by every
single maximum matching. �

Proof. This follows from Lemmas 4.12, 4.14, 4.24, and 4.25. �

4. Trees 27

Remark 4.27. The subgraphs Sw associated with the vectors obtained by Con-
struction 4.16 are actually minimal configurations (cf. section 1). To see this we
check the defining properties of a minimal configuration. Each of the basis vectors
corresponds to a different subgraph Sw. Clearly, a maximum matching of such a
graph Sw misses exactly one vertex, so it has nullity one. Construction 4.16 guar-
antees that its periphery consists only of isolated vertices (which are exactly the
O labelled vertices). Moreover, the removal of a peripheral vertex increases the nul-
lity of the graph. This follows from the fact that the removal splits the graph into
exactly two components (a tree Sw cannot have an O labelled leaf). The X part-
ner of the removed vertex cannot lie in the same component as the one containing
the F labelled vertex. It follows easily that on each of the components a maximum
matching would miss a single vertex.

Trivially, the trees Sw are even singular configurations. Recall that in section 1 we
cited a theorem that every graph with nullity k contains k singular configurations as
subgraphs such that their core vertices correspond to the non-zero entries of a kernel
basis with an overall minimum number of non-zero entries [89]. It is not difficult to
see that a FOX kernel basis has this minimal basis property so that the k trees Sw

used to construct the basis are examples for the singular configurations predicted
by the mentioned theorem. �

We conclude this section with the following extension lemma:

Lemma 4.28. [78] Let G be a tree and v be an O labelled node of G. Construct a
tree G′ by connecting v to a new node w.

Setting the weight of w to zero it is then possible to embed every vector from the
kernel of G such that a vector from the kernel of G′ is obtained.

Moreover,

dim ker G′ = dim ker G + 1

and there exists a basis of ker G′ such that all but one vector have zero weights on
w. �

Proof. Since according to Lemma 4.19 all vectors from the kernel of G have a
zero entry on node v it is readily checked that assuming a zero weight on w will
extend any eigenvector from ker G to one from ker G′. Conversely, every vector from
ker G′ that has weight zero on w can be reduced to a vector from ker G by deleting
the entry corresponding to w. Hence, dim ker G ≤ dim ker G′. Moreover, we can
find a basis of ker G′ that does not contain more than one vector with a nonzero
weight on w since a suitable linear combination of two such vectors would have a
zero weight on w and therefore be a vector extended from ker G. Consequently,
dim ker G′ ≤ dim ker G + 1.

28 4. Trees

Now run the FOX Algorithm 4.1 on G as described in Lemma 4.8. The operations
that occur until the first multiple label is assigned are also valid for G′. But then
v would be O labelled on G′ so that w would become F labelled at the end of the
FOX run. In view of Lemma 4.8 we see that we have gained exactly one degree of
freedom and may construct a vector from ker G′ with a nonzero weight on w. �

4.3 Storing FOX vectors

Given a basis whose vectors have length n and contain only entries from the set
{−1, 0, 1}, it is clear that on a computer these vectors can be stored very efficiently.
By separating the positive and negative components we get two binary vectors so
that the overall information of a basis vector can be stored in a bit field of length
2n.

Considering a tree kernel basis with entries only from the set {−1, 0, 1}, it is even
sufficient to save only the zero/non-zero pattern of these basis vectors. Using a
recursive technique it is possible to adjust the signs of the entries such that from
every bit field a proper kernel vector can be reconstructed. However, the following
example shows that the reconstructed vectors need not be linearly independent.

Example 4.29. Consider the tree K1,4. The leftmost three pictures in figure 4.3
represent a kernel basis of K1,4. Given the zero/non-zero patterns of these basis
vectors (e.g. read from suitable bit fields in memory), clearly, the first two basis
vectors can be reconstructed up to a sign factor. Reconstruction of the third vector
from its bit field may, however, also yield the vector shown in the rightmost picture.
Since this vector can be obtained by subtracting the first basis vector from the
second, we may fail to reconstruct a kernel basis from the bit fields of the original
basis vectors.

Figure 4.3: Kernel basis reconstruction for K1,4

�

4. Trees 29

The next theorem asserts for a tree kernel basis obtained by the FOX algorithm and
Construction 4.16 that up to sign factors the entire basis can be reconstructed from
the stored zero/nonzero patterns.

Theorem 4.30. [78] Let G be a tree with n nodes. Having stored the zero-nonzero
pattern of a vector from the kernel of G obtained by Construction 4.16 in a bit field
of length n, the original eigenvector may be reconstructed up to a factor of ±1 by
the following procedure:

1. Interpreting the bit field as a function on the nodes of G, let G′ be the tree
that is obtained by removing all branches from G that have only zero weights.

2. Choose a node w of G′ with weight 1 and negate the weights of all nodes whose
distance to w is 2, 6, 10, and so on.

�

Proof. First note that in view of Construction 4.16 the nonzero entries of the bit
field represent O tagged nodes of G. Hence, node w must be either F or XO tagged.
According to Lemma 4.11 and Construction 4.16 the graph G′ is one of the subtrees
Sx of G in which w lies according to Lemma 4.12.

In view of this, we see that the neighbours (within G) of a nonzero node of G′ must
be O tagged so that their weight sum vanishes. Now we need to check the neighbour
weight sums for O tagged nodes. Note that all node weights outside G′ are zero.
By definition of G′ any node z outside G′ can only have one neighbour in G′. This
neighbour in turn must be O tagged or otherwise the neighbour weight sum for z
could not vanish. It remains to check the neighbour weight sums for the nodes of
G′. But since all node weights outside G′ are zero we may entirely restrict ourselves
to the subgraph G′. According to Lemma 4.13 all O tagged nodes of G′ have degree
2 in G′. But by construction these neighbours have weights 1 and −1.

We see that we have constructed an eigenvector from ker G with the same zero/non-
zero pattern as the original vector. Moreover, Lemma 4.13 ensures that after assign-
ing only one nonzero weight to a node there is no choice during the reconstruction
of the remaining entries. �

Remark 4.31. Note that although in the proof of the previous theorem we rely
on the node tags created by the FOX algorithm, these tags are not needed for the
eigenvector reconstruction itself. �

30 4. Trees

4.4 Gaussian elimination

We have shown that the FOX algorithm can be used to construct a simply structured
kernel bases for any given singular tree. A simple experiment suggests that it may
be far easier to construct simply structured tree kernel bases. Just use a computer
algebra system like ”Maple” to determine the kernel of a tree adjacency matrix.
Surprisingly, ”Maple” always presents a simply structured basis. The following
theorem explains this observation:

Theorem 4.32. If a kernel basis of a tree adjacency matrix is computed by Gaus-
sian elimination where for backward substitution the free variables are successively
chosen such that that the corresponding entries of the resulting vectors are unit
vectors, then this kernel basis is simply structured. �

Proof. Observe that the adjacency matrix of a tree is totally unimodular, as can
be shown by a simple induction argument. The result now follows from the proof
of Theorem 3.4. Just note that the values chosen for the free variables completely
determine the resulting solution vector. The corresponding entries are given the
same values as in Theorem 3.4, assuming suitable re-indexing. Note that re-indexing
of vertices changes the adjacency matrix but not its property of total unimodularity.

�

Note that Theorem 4.32 does not obsolete Theorem 4.21 since it does not help
understand the structure of the computed bases nor hint at the close connection to
matchings.

In the paper [55] by John and Schild, an algorithm is presented that permits the
computation of tree eigenvectors by means of successively assigning vectors to all
vertices of an augmented tree, collecting the vectors assigned to certain vertices and
then solving a linear system of usually much smaller dimension than the one arising
from the adjacency matrix itself. The authors present an example tree (cf. Figure
4.4) for which the computed basis of the kernel is strictly simple (cf. Figure 4.5).
We show that this is not a coincidence, but that, under normal conditions, the
John-Schild algorithm always generates a simply structured tree kernel basis.

Let vec(x) denote the vector assigned to vertex x of a given graph. Then the John-
Schild algorithm to determine the eigenvectors for eigenvalue λ of a tree T with n
vertices works as follows:

1. Determine a complete path system (CPS) for the given tree T . This is a
spanning subgraph of T whose components are paths.

4. Trees 31

Figure 4.4: Example tree from John-Schild paper

Figure 4.5: Kernel basis for example tree from John-Schild paper

2. Orient every path of the CPS from one of its terminal vertices to the other
(from start vertex to end vertex). Transfer these orientations to T to obtain a
partially oriented tree T ′.

3. To every vertex of T ′ that coincides with a path end vertex attach an outgoing
edge to a newly introduced sink vertex (whereas the path start vertex is called
a source vertex).

4. Assign distinct unit vectors of dimension k to the source vertices (k being the
number of source vertices).

5. Iteratively propagate vectors along the paths as follows: Choose a vertex v for
which all neighbours of its unique predecessor vertex w except v have been
assigned vectors. Assign to v the vector λ vec(w) − ∑

vec(x) where the sum
ranges over all neighbours of w except v.

32 4. Trees

6. Number the vertices of T as v1, . . . , vn such that v1, . . . , vk are the source
vertices. Form the (n × k)-matrix D whose rows are vec(v1)

T , . . . , vec(vn)T .
Number the sinks of T ′ as v′

1, . . . , v
′
k such that v′

i is the sink that corresponds to
source vi. Form the (k × k)-matrix D∗ whose rows are vec(v′

1)
T , . . . , vec(v′

k)
T .

7. Compute a kernel basis B = {b1, . . . , bq} of D∗. Then an eigenspace basis of
T for eigenvalue λ is given by the set {Db1, . . . , Dbn}.

Note that the eigenvalue λ can be treated symbolically so that the vector propagation
only needs to be carried out once for all eigenvalues.

Theorem 4.33. The John-Schild algorithm always computes a simply structured
tree kernel basis, provided that for the computation of the basis B the free variables
of the system D∗z = 0 are assigned values in unit vector fashion. �

Proof. Note that the first k rows of D form an identity matrix. Hence, the product
Dbi contains a copy of bi in its first k entries. Thus we can treat the vectors of B
as if we had obtained them by directly solving the system A(T)z = 0 and assigning
the free variables in unit vector fashion. So the result follows from Theorem 3.4 in
the same way as Corollary 4.32. �

4.5 Partitioning trees by eigenvectors

Since the eigenvectors of a graph can be considered as real valued functions on
its vertex set, one may partition the vertices of a tree by grouping those vertices
on which there exist non-zero values for some vector from a fixed eigenspace and
those on which every vector from that space vanishes. Then the components arising
from vertices of the first kind can be contracted into single vertices. Together with
any adjacent vertices they induce a so-called skeleton forest, a concept initially
hinted at in [67]. We show that the null space of this skeleton provides a blue
print for the vectors from the considered eigenspace of the original tree. Moreover,
its matching properties can be utilised to determine the eigenspace dimension. A
converse technique allows to create trees with certain eigenspace properties from
given skeletons.

In section 4.2 we have seen how easily the matching properties of a tree help de-
termine a kernel basis. Depending on whether a vertex can be saturated by some
maximum matching or not, we know if there exists a kernel eigenvector that does not
vanish on that vertex. The overall picture here is that, for eigenvalues potentially
different from 0 we can derive a similar relationship by means of the skeleton forest.
Whenever a vertex of the skeleton can be saturated by a maximum matching we can
find an eigenvector for the original graph that is completely non-zero on the vertices
contracted into the considered skeleton vertex.

4. Trees 33

The partitioning of graphs according to eigenvector structure has been studied be-
fore, but with different aims. For example, in [74] the components induced by the
signs of the entries of eigenvectors have been investigated and an upper bound for
the number of zero entries in eigenvectors of graphs has been derived.

Associate with a given real n × n symmetric matrix (so-called pattern matrix) an
undirected graph Γ(A) on n vertices 1, 2, . . . , n by including the edge connecting
vertex i to vertex j in the edge set if and only if the entry at position (i, j) in A
is non-zero. In 1998, Nylen [67] showed that if Γ(A) is a tree, then the dimension
of the null space of A equals the number of connected components of the subgraph
of Γ(A) induced by the set of indices i such that xi is non-zero for some vectors
x from the null space A, minus the number of indices adjacent to (with respect to
Γ(A)) but not in that index set. This also follows from and is even generalised by
the results presented below since they are readily extended to pattern matrices.

Tree pattern matrices are also called acyclic matrices. A number of results exist on
the spectra of such matrices in general. One of the first papers in that area was [33],
where it is shown that the signs of eigenvector entries are related to the position
of the corresponding eigenvalue in the ordered spectrum of a tree pattern matrix.
In [56] it is shown that it is in general not possible to express maximum eigenvalue
multiplicities of a class of acyclic matrices given by some tree in terms of the degrees
of the vertices. It is moreover well known that any tree T has at least diam(T) + 1
distinct eigenvalues. This fact can be generalised to tree pattern matrices [59]. For
even more general results that cover conditions on the solution of linear equations
or existence of certain eigenvalues and eigenvectors for a class of matrices whose
zero-nonzero pattern matches a given digraph, see e.g. [64].

4.5.1 Tree eigenvector decomposition

Let G be a graph and M = {X1, . . . , Xr} a set of mutually vertex disjoint subgraphs
of G. Then by G/{Xi}r

i=1 or G/M we denote the graph that results from the
contraction of each subgraph Xi in G to a single vertex xi. Further, let C(G) denote
the set of components of G.

Let x be an eigenvector for eigenvalue λ of graph G. Let Nλ(G, x) be the set of those
vertices of G on which x vanishes. Moreover, let Nλ(G) mean the set of vertices on
which every eigenvector for eigenvalue λ of G vanishes.

In the sequel, we will investigate the properties of the sets Nλ(G, x) and Nλ(G). But
first we cite the following result due to Fiedler that will required in several proofs:

Lemma 4.34. [33] Let T be a tree. Let v be an eigenvector of T for eigenvalue λ.
If v does not have any zero entries, then λ necessarily has multiplicity one. �

34 4. Trees

Lemma 4.35. [83] Let G be a graph and x an eigenvector for its eigenvalue λ.
Then:

1. For any C ∈ C(G−Nλ(G, x)), the restriction x|C is an eigenvector of the graph
C for eigenvalue λ. If G is a tree, then x|C constitutes an eigenspace basis of
the subtree C for eigenvalue λ.

2. For any C ∈ C(G − Nλ(G)) the restriction x|C is either the null vector or an
eigenvector of the graph C for eigenvalue λ. If G is a tree and x|C 6= 0, then
x|C does not contain any zero entries and, moreover, constitutes an eigenspace
basis of the subtree C for eigenvalue λ.

�

Proof. In the first case the claim follows directly from the definition of Nλ(G, x),
the summation rule and Lemma 4.34. The case C ∈ C(G − Nλ(G)) is similar, with
only one additional argument. Let v1, . . . , vk be the vertices of C. For every vertex
vi there exists an eigenvector xi of T for eigenvalue λ whose restriction xi|C does
not vanish on vi. It is straightforward to show (see e.g. Lemma 7 in [67]) that there
exists a linear combination of these vectors xi that has no zero entries so that by
Lemma 4.34 the associated eigenvalue λ of C has multiplicity one. �

It is easy to see that the eigenspace basis related claim of the lemma does not extend
to general graphs. For example, look at the complete graph K3 and its eigenvectors
(2,−1,−1), (−1, 2,−1) for eigenvalue −1.

Let x be an eigenvector for eigenvalue λ of a given tree T . Further let Ci, i = 1, . . . , r,
be the elements of C(T − Nλ(T, x)). We will now concentrate on a particularly
interesting subset of Nλ(T, x). Namely, let NC

λ (T, x) consist of all those vertices of
Nλ(T, x) that are adjacent to at least one of the subgraphs Ci in T .

Lemma 4.36. [83] Let T be a tree and x an eigenvector for its eigenvalue λ. Let Ci,
i = 1, . . . , r, be the elements of C(T −Nλ(T, x)). Further let ci denote the associated
contracted vertices of T/{Ci}r

i=1.

Then the vertex set NC
λ (T, x) ∪ {c1, . . . , cr} induces a forest F in T/{Ci}r

i=1 such
that the leaves of F form a subset of {c1, . . . , cr} and are also leaves of T/{Ci}r

i=1.
�

Proof. Clearly, the contraction T/{Ci}r
i=1 of the tree T by the sub-forest

⋃{Ci}
is a tree. So the induced subgraph F of T/{Ci}r

i=1 must be a forest.

4. Trees 35

Now, consider an element v of NC
λ (T, x). By construction and since T is a tree there

exists a one-to-one mapping of the non-zero weight neighbours of v to a subset of
C(T − Nλ(T, x)). By definition, v is adjacent to at least one component Ci, but
since the sum over the neighbours of v must vanish we see that it must be adjacent
to at least two such components. Consequently, v is adjacent to at least two of the
vertices ci in both T/{Ci}r

i=1 and F . So the leaves in F are a subset of {c1, . . . , cr}.

Assume that ck is a leaf of F that is not a leaf of T/{Ci}r
i=1. Then in T/{Ci}r

i=1,
there would exist a neighbour w of ck such that w ∈ Nλ(T, x) \ NC

λ (T, x). But then
w could only be adjacent to zero-weight vertices, a contradiction. �

In the following, let Sλ(T, x) denote the forest F by Lemma 4.36 associated with a
given tree T and eigenvector x. We call Sλ(T, x) the x-skeleton of T .

Note that x-skeletons do not necessarily characterise an eigenspace basis, i.e. there
may exist linearly independent eigenvectors x, x′ for eigenvalue λ of a tree T such
that C(T − Nλ(T, x)) = C(T − Nλ(T, x′)). An example is shown in Figure 4.6 for
λ = 1.

Figure 4.6: Eigenvectors with the same x-skeleton

Remark 4.37. In [87], [91] graphs with nullity one and corresponding eigenvector
without zero entries, so-called nut graphs, are studied. Although the components of
T − N0(T, x) have nullity one and corresponding eigenvector without zero entries,
the theory on nut graphs does not yield any insight in the case of trees since the re-
spective components are all isomorphic to K1 and nut graphs, however, are required
to have at least two vertices. Recalling the results from section 4.2 and in particular
Remark 4.27, it becomes apparent that the subgraphs Sw obtained from the FOX
algorithm are actually skeletons S0(T, x) of the associated tree kernel basis vectors.
The subgraphs Sw are singular configurations, but x-skeletons in general need not
be.

In any case, note the crucial difference: Nut graphs, minimal configurations and
singular configurations are concepts for studying the kernel of an arbitrary graph,
whereas the construction of skeletons is limited to trees but applicable to all eigen-
values. �

Theorem 4.38. [83] Let T be a tree and x an eigenvector for eigenvalue λ of T .
Then, C(T − Nλ(T, x)) ⊆ C(T − Nλ(T)). �

36 4. Trees

Proof. Let C ∈ C(T − Nλ(T, x)). Clearly, none of the vertices of C belong to
the set Nλ(T). Therefore C is a subgraph of some component C ′ ∈ C(T − Nλ(T)).
According to Lemma 4.35 the vector x|C′ is an eigenvector for eigenvalue λ on C ′

and does not have any zero entries on C ′. Hence C = C ′. �

Corollary 4.39. [83] Let x, x′ be eigenvectors for eigenvalue λ of a given tree and
let C ∈ C(T −Nλ(T, x)), C ′ ∈ C(T −Nλ(T, x′)). Then either C and C ′ are identical
or they are disjoint subgraphs of T . �

Corollary 4.40. [83] Let T be a tree with eigenvector x for eigenvalue λ. Then,

NC
λ (T, x) ⊆ Nλ(T).

�

Corollary 4.41. [83] Let T be a tree with eigenvalue λ. Then,

C(T − Nλ(T)) =
⋃

x

C(T − Nλ(T, x)),

where the union is taken over all eigenvectors x for eigenvalue λ of T . �

As a consequence of Corollary 4.41 we can safely merge the x-skeleton forests of an
entire eigenspace. Let T be a tree and let C1, . . . , Cr be the elements of C(T−Nλ(T)).
Let the associated contracted vertices in T/{Ci}r

i=1 be c1, . . . , cr. Denote the union
of the sets NC

λ (T, x) by NC
λ (T). Now, we define the skeleton Sλ(T) as the sub-forest

of T/{Ci}r
i=1 induced by the vertices of NC

λ (T) ∪ {c1, . . . , cr}.

In Figure 4.7 an example of a tree T with threefold eigenvalue 2 is shown along with
its skeleton forest S2(T). The black vertices of T denote the vertices on which the
respective eigenvector vanishes. It can be clearly seen how the respective components
of T−Nλ(T, x) correspond to a part of the skeleton. The black vertices in the skeleton
correspond to the set NC

2 (T).

Lemma 4.42. [83] Let T be a tree with eigenvalue λ. Then C(T − NC
λ (T)) can be

partitioned into C(T − Nλ(T)) and a set of trees without eigenvalue λ. �

4. Trees 37

Figure 4.7: Eigenvector zero-nonzero patterns of a tree and corresponding skeleton
forest

Proof. Considered as a subgraph of T , every component of T −Nλ(T) is adjacent
only to vertices from NC

λ (T), but by definition does not contain such vertices. So
C(T − Nλ(T)) ⊆ C(T − NC

λ (T)). By construction all elements of C(T − Nλ(T))
have eigenvalue λ. Now, let C ∈ C(T − NC

λ (T)) \ C(T − Nλ(T)). All vertices of C
necessarily belong to the set Nλ(T) so that every eigenvector of T for eigenvalue λ
must vanish on C.

Assume that there exists an eigenvector y of C for eigenvalue λ. Construct an
eigenvector z for eigenvalue λ of T as follows. Firstly, set z|C = y. Consider a vertex
w that is adjacent to C in T and let v be the neighbour of w in C. Let ν be the
value of y on v.

Case ν = 0: Simply set z to zero on the vertices of the particular component of
T − C that contains w.

Case ν 6= 0: Clearly, w ∈ NC
λ (T) so that by construction, w has a neighbour u 6= v

that belongs to a component of T − Nλ(T) (since v does not). There exists an
eigenvector x of T for eigenvalue λ that vanishes on C and w but does not vanish on
u. We may assume c that x has value −ν on u. Let Tu be the branch of T connected
to w via u. Let TF be the union of the branches connected to w via the neighbours
of w different from u, v. Note that TF is nonempty since x must fulfil the summation
rule at vertex w. Set z|TF

= 0 and z|Tu
= x|Tu

. Now, the summation rule holds for
w and all the vertices of Tu and TF .

Apply the described procedure for every eligible vertex w. After that the values of
z are completely determined. This yields a valid eigenvector for eigenvalue λ of T

38 4. Trees

that does not vanish on C, a contradiction. �

Combining Lemma 4.42 with Corollary 4.41 and Lemma 4.35 we can derive the
following useful statement:

Lemma 4.43. [83] Let T be a tree and x an eigenvector for eigenvalue λ of T . Then
for every C ∈ C(T − NC

λ (T)) the restriction x|C either has only zero entries or only
non-zero entries. In the latter case it constitutes an eigenspace basis of the subgraph
C of T . �

Observe that every vector from the null space of some x-skeleton can be trivially
extended to a vector from the null space of the corresponding skeleton Sλ(T).

For the following lemma note that by Lemma 4.42 the skeleton Sλ(T) can be con-
sidered as a subgraph of the tree T/C(T − NC

λ (T)).

Lemma 4.44. [83] Let T be a tree with eigenvalue λ. Further let S ′ = T/C(T −
NC

λ (T)) and S = Sλ(T). Then the skeleton S forms an induced sub-forest of the
tree S ′ such that S ′ − V (S) contains no edges. �

Proof. Assume that S does not form an induced subgraph of S ′. Then two vertices
of S are adjacent in S ′ but not already in S. Since these vertices by construction
must lie in the same component of S, the additional edge would create a cycle in
S ′, which is impossible. By construction the vertices of S ′ − V (S) are mutually
non-adjacent in S ′. �

Lemma 4.44 allows us to derive the notion of a meta skeleton in which the compo-
nents of the skeleton forest of a tree T with eigenvalue λ are joined by exactly those
vertices contracted from the component trees of C(T − NC

λ (T)) that do not have
eigenvalue λ (cf. Lemma 4.42).

Next we explore the relation between eigenspace bases of trees and null space bases
of the respective skeleton forests.

Construction 4.45. [83] Let B = {b1, . . . , br} be an eigenspace basis for eigenvalue
λ of a given tree T . Construct a basis B′ = {b′1, . . . , b′r} of the same eigenspace as
follows. Let initially b′i = bi for i = 1, . . . , r and let M = ∅. There exists a
component C1 6∈ M of T − Nλ(T) such that b1|C1 does not vanish. By Lemma
4.43 we can subtract suitable multiples of b′1 from b′2, . . . , b

′
r such that b′i|C1 = 0 for

i = 2, . . . , r. Add C1 to the set M . Proceed iteratively for bj , j = 2, . . . , r, by in
turn finding a suitable Cj 6∈ M and establishing b′i|Cj

= 0 for i = j + 1, . . . , r. �

4. Trees 39

The previous construction immediately gives rise to the following observation.

Observation 4.46. [83] Let T be a tree and let λ be an eigenvalue of T with
multiplicity r ≥ 1. Then, |C(T − Nλ(T))| ≥ r. �

We say that a set {x1, . . . , xr} of eigenvectors for eigenvalue λ of a tree T is straight if
the components of T −Nλ(T) can be numbered C1, . . . , Cs such that for j = 1, . . . , r
we have xj |Cj

6= 0 but xj |Ci
= 0 for i = j + 1, . . . , r. Observation 4.46 guarantees

that s ≥ r. Note that by Lemma 4.43 each condition xj |Cj
6= 0 actually means that

xj vanishes on none of the vertices of Cj. By Construction 4.45 every tree eigenspace
has a straight basis.

Lemma 4.47. [83] Every straight set of tree eigenvectors is linearly independent.
�

Proof. Let X = {x1, . . . , xr} be a straight set of eigenvectors for eigenvalue λ of a
tree T . Let u1, . . . , ur be vertices of T such that they belong to distinct subgraphs of
T representing components of T −Nλ(T). There exist enough such vertices because
of Observation 4.46. Let M be the matrix formed by taking x1, . . . , xr as columns
and then retaining only those rows that correspond to the entries of the xi on the
vertices u1, . . . , ur. If X is straight then with respect to a suitable numbering of
the xi the vertices ui can be selected such that M is a lower diagonal matrix with
non-zero diagonal entries. Hence, the set X is linearly independent. �

Theorem 4.48. [83] Let T be a tree with eigenvalue λ and corresponding eigenspace
basis B. Then for every vector b ∈ B there exists a vector b′ from the null space of
the skeleton Sλ(T) such that b′ is non-zero exactly on the vertices corresponding to
the contracted subgraphs of T on which its associated vector b ∈ B does not vanish.
If B is straight, then the vectors created from B are linearly independent. �

Proof. Let b ∈ B and initialise b′ = 0. In the following let C(v) denote the
contracted subgraph corresponding to a vertex v of Sλ(T) − NC

λ (T). Moreover, if
two vertices from Sλ(T) − NC

λ (T) have a common neighbour in Sλ(T) (necessarily
from NC

λ (T)) they are called brothers.

For every component S of Sλ(T) proceed as follows. Fix a vertex s of S − NC
λ (T).

If b is non-zero on C(s), then set b′ to 1 on s. Consider s as visited and all other
vertices of S−NC

λ (T) as unvisited. We now employ a tree search that starts at s and
iteratively corrects the values of b′ on the vertices of S − NC

λ (T) such that, finally,
b′|S belongs to the null space of S and assumes the desired zero-nonzero pattern.
The search only visits unvisited brothers of already visited vertices.

40 4. Trees

Let v be a visited vertex of S − NC
λ (T) that has unvisited brothers. Mark all

brothers of v as visited once the steps described below have been carried out. Let
W ⊆ NC

λ (T) contain all vertices that are adjacent (in Sλ(T)) both to v and some
unvisited brother of v. Now, iterate over the vertices w ∈ W . Let v1, . . . , vr be all
those unvisited brothers of v that are adjacent to w and for which b does not vanish
on C(vi). By construction, each vertex vi has exactly one visited brother, namely
v. Observe at this point that we have necessarily r ≥ 1 if b does not vanish on C(v)
because else the summation rule would fail for b on the vertex in T that corresponds
to w. Hence, it is always possible to assign suitable non-zero values to the vertices
v1, . . . , vr such that b′ fulfils the summation rule for vertex w.

By construction and the definition of a skeleton it follows immediately that b′ is a
valid eigenvector from the null space of Sλ(T). Its zero-nonzero pattern is as claimed.
If B is straight, then the set of vectors created from all the vectors of B using the
above procedure is straight as well. Therefore it is linearly independent by Lemma
4.47. �

Since every tree eigenspace has a straight basis we can immediately relate the di-
mensions of a tree eigenspace and the null space of the associated skeleton:

Corollary 4.49. [83] Let T be a tree with eigenvalue λ of multiplicity r ≥ 1. Let
s be the nullity of Sλ(T). Then r ≤ s. �

Theorem 4.50. [83] Let T be a tree with eigenvalue λ and let B′ be a basis of
the null space of its skeleton Sλ(T). Then for every vector b′ ∈ B′ there exists
an eigenvector b of T for eigenvalue λ such that b is non-zero exactly on those
subgraphs of T that correspond to vertices of Sλ(T) on which b′ does not vanish. If
B′ is straight, then the vectors created from B′ are linearly independent. �

Proof. In view of Lemma 4.43 it is possible to use a technique similar to the one
used in the proof of Theorem 4.48, just in the opposite direction. �

Corollary 4.51. [83] Let T be a tree with eigenvalue λ of multiplicity r ≥ 1. Let
s be the nullity of Sλ(T). Then r ≥ s. �

By Corollaries 4.49 and 4.51 we see that the multiplicity of the eigenvalue λ of a
tree T equals the nullity of the skeleton Sλ(T). As we have seen in section 4.1, the
nullity of a forest is closely linked to its matching properties. We will exploit these
ties with respect to skeletons. But first let us explicitly relate maximum matchings
of trees to eigenvectors of their null spaces:

4. Trees 41

Theorem 4.52. [83] Let T be a tree with edge set E. Let K contain all vertices of
T that may be missed by some maximum matching of T . Further, let N contain all
vertices of T that are saturated by all maximum matchings of T . Consider a fixed
maximum matching M of T and let KM ⊆ K be the vertices missed by M .

Then a simply structured null space basis of T can be constructed as follows. Pick
a vertex v ∈ KM and find the subtree Sv of T formed by the union of all maximal
paths that start at v and alternatingly contain edges from E \M and M , such that
each edge in the path is incident to one vertex from N and one from K \ (KM \{v}).
Assign weight 1 to all vertices of Sv whose distance to v is divisible by four, assign
weight −1 if the distance is two modulo four, and assign zero to all other vertices of
T . �

Proof. This is simply a reformulation of Theorem 4.21 in term is matchings, by
virtue of Lemma 4.24, Lemma 4.25, and Corollary 4.26. �

Corollary 4.53. [83] Let T be a tree. Then the set of vertices saturated by all
maximum matchings of T is exactly the set of vertices on which every vector from
the null space of T vanishes. �

Corollary 4.54. [83] Let T be a tree and let R be the set of those vertices of T on
which the null space of T does not completely vanish. Then the nullity of T equals
the number of connected components of the subgraph of T induced by the set R
minus the number of vertices of T that are adjacent to R but not contained in it.

�

We will revisit Corollary 4.54 later on in section 4.5.3.

Theorem 4.55. [83] Let T be a tree with eigenvalue λ.

Then the set of vertices of the skeleton Sλ(T) that may be missed by a maximum
matching of the skeleton consists exactly of the vertices corresponding to the con-
tracted components of T − Nλ(T).

The number of vertices of Sλ(T) that are missed by a maximum matching of the
skeleton equals the multiplicity of eigenvalue λ of T .

The non-zero entries of a vector from the null space of Sλ(T) only occur on vertices
that correspond to the contracted elements of C(T − Nλ(T)). �

42 4. Trees

Proof. This follows from Corollary 4.49, Corollary 4.51, Theorem 4.52 and Corol-
lary 4.53. �

Remark 4.56. Given a tree, a λ-skeleton and a maximum matching of the skeleton,
we can determine the multiplicity of λ as an eigenvalue of T by Theorem 4.55.
Moreover, since Theorem 4.52 allows to construct a straight basis of the skeleton null
space from a given maximum matching, a basis of the corresponding tree eigenspace
can be obtained constructively by means of Theorem 4.50.

The only catch is that usually the skeleton vertices that may or may never be missed
by a maximum matching are not known beforehand. Luckily, the FOX algorithm
presented in section 4.1 allows to generate maximum matchings along with the sets
K,N as required by Theorem 4.52. Every maximum matching can be obtained by
a suitable run of the FOX algorithm. �

Now we derive an interesting feature of a skeleton that becomes important once we
want to characterise what forests may actually occur as skeletons (as we will see
later in the proof of Theorem 4.60):

Lemma 4.57. A skeleton Sλ(T) of a tree T with eigenvalue λ does not contain any
edges that belong to every maximum matching of the skeleton. �

Proof. Theorem 4.48, Theorem 4.52 and the definition of Sλ(T) imply that a
pair of skeleton vertices can only be adjacent if one of them is never missed by a
maximum matching whereas the other one may be missed by a maximum matching
of the skeleton. �

Concluding this section, it is interesting to note that the skeleton construction cannot
be arbitrarily iterated in the sense that a skeleton is its own eigenvalue 0 skeleton:

Lemma 4.58. Let T be a tree with eigenvalue λ and let S = Sλ(T) its λ-skeleton.
Then the skeleton S0(S) equals S. �

Proof. Clearly zero is an eigenvalue of the skeleton S. Every vertex of S corre-
sponds to a subgraph of T − Nλ(T) for which there exists an eigenvector of T for
eigenvalue λ that is non-zero on all vertices of the subgraph. So by Theorem 4.48
for every vertex of S that corresponds to an element of C(T −Nλ(T)) there exists a
vector from the null space of S that does not vanish on this vertex.

Consequently, the partition of the components of S − NC
0 (S) according to Lemma

4.42 does not contain any trees without eigenvalue zero so that NC
0 (S) = N0(S).

4. Trees 43

On the other hand, a component of S − NC
0 (S) that has a null space eigenvector

without zero entries must necessarily contain only a single vertex (cf. Theorem 4.52).
So every vertex of S is associated with exactly one vertex in the skeleton S0(S) and
no factual contraction of subgraphs of S happens when forming S0(S). �

4.5.2 Tree eigenvector composition

In this section a composition technique is outlined that allows to ”blow up” a given
potential skeleton to a tree whose skeleton is indeed the initial graph. The bottom
line is that we can not only use the maximum matching properties of skeletons to de-
scribe eigenvectors of a tree but also conversely construct a tree with predetermined
eigenvector properties by generating it from a suitable skeleton.

Following the lines of Lemma 4.44, Theorem 4.55 and Lemma 4.57 we introduce
the following definition. We call a tree a meta skeleton if its vertex set contains an
independent set X such that each subtree C ∈ C(T − X) does not have a perfect
matching and only vertices of C that are contained in every maximum matching
of C are adjacent to vertices of X in T . Moreover, it is required that no edge of
T − X is contained in every maximum matching of T − X. The set X is called an
admissible non-eigenvalue set of the meta skeleton (cf. Lemma 4.42).

Construction 4.59. Let S ′ be a meta skeleton with non-eigenvalue set X. Choose
a number λ ∈ R and construct a tree T as follows. Substitute each vertex of X
with a tree without eigenvalue λ. For every component of S ′ − X replace each of
its vertices that may be missed by a maximum matching of the component with
a tree that has eigenvalue λ and a corresponding eigenvector without zero entries.
Whenever a vertex of an adjacent pair of vertices is substituted with a graph, a
single arbitrary vertex of the substituted graph is chosen to become connected to
the other vertex of the pair. �

Theorem 4.60. If Construction 4.59 succeeds for a given triplet (S ′, X, λ), then
the generated tree T has eigenvalue λ. Its multiplicity equals the number of vertices
missed in a maximum matching of S ′ − X. Moreover, Sλ(T) = S ′ − X and S ′ =
T/C(T − NC

λ (T)). �

Proof. We show that the skeleton and meta skeleton are as claimed. Then the rest
of the theorem follows from Theorems 4.48, 4.50, 4.52, 4.55 as outlined in Remark
4.56.

By the definition of a meta skeleton each component of S ′−X has eigenvalue zero so
that we can use Theorem 4.52 to obtain a null space basis for each such component.
Let K consist of all vertices of S ′ that may be missed by maximum matchings of

44 4. Trees

their respective components of S ′ − X. With the same technique that was used in
the proof of Theorem 4.38 we can actually find a vector y from the null space of the
forest

⋃

C(S ′ − X) that is nonzero on every vertex of K. Let T ′ be the subgraph
of T that is the blown up counterpart of the subgraph

⋃

C(S ′ − X) of S ′. Using a
technique similar to the one used in the proof of Theorem 4.48 we can now employ
the zero-nonzero pattern of y to construct an eigenvector x′ for eigenvalue λ of T ′

since exactly the vertices of S ′ on which y is non-zero have been blown up to suitable
trees. Use zero entries to trivially extend x′ to a vector x on T . Then Corollary 4.53
and the meta skeleton definition imply that x is an eigenvector of T for eigenvalue
λ since the summation rule clearly also holds for the vertices of the subtrees blown
up from the elements of X.

We will see in a moment that the vector x has been chosen such that it is zero
exactly on the vertices Nλ(T), i.e. N=(T, x)Nλ(T). This fact substantially eases the
determination of the skeleton.

Let N be the set of vertices of S ′−X that are covered by every maximum matching
of S ′ −X. It follows from the definition of the meta skeleton and Lemma 4.57 that
every vertex of N is adjacent to some vertex of S ′ − X that may be missed by a
maximum matching of that graph. Since by Construction 4.59 we can consider N
also as a subset of the vertices of T it follows immediately that N ⊆ NC

λ (T).

Now assume that there exists an eigenvector z for eigenvalue λ of T that is non-zero
on a subtree Tv of T blown up from a vertex of v ∈ X. Since by construction all outer
neighbours of Tv in T belong to N the restriction z|Tv

must be a valid eigenvector
for eigenvalue λ of Tv. But this is impossible by the choice of Tv. Hence, we have
N = NC

λ (T), Nλ(T, x) = Nλ(T) and C(T − Nλ(T, x)) = C(T − Nλ(T)).

Moreover, if TX denotes the sub-forest of T that is the union of all graphs blown up
from the vertices of X, then Nλ(T) = V (TX) ∪N . So S ′ −X is indeed the skeleton
of T and S ′ = T/C(T − NC

λ (T)). �

Remark 4.61. The skeleton property stated in Lemma 4.57 is decisive for choosing
proper forests to be blown up. Otherwise, even though valid eigenvectors can be
constructed for the blown up graph, it cannot be guaranteed that a proper eigenspace
basis is obtained because the skeleton of the blown up graph may in fact not be the
graph we expanded. See Figure 4.8 for a malformed skeleton with one-dimensional
null space that can be blown up to the graph with eigenvalue 1 shown in Figure 4.6.
However, its eigenvalue 1 has multiplicity 3. �

4.5.3 Tree pattern matrices

Let M be a real n × n matrix. We define a (directed) graph Γ(M) with vertices
v1, . . . , vn such that there is an edge from vi to vj if and only if M has a non-zero

4. Trees 45

Figure 4.8: Malformed skeleton example

entry at position (i, j). If Γ(M) is a tree, then we call M a tree pattern matrix. Let
supp(M ; λ) denote the set of vertices of Γ(M) on which the eigenspace for eigenvalue
λ of M does not entirely vanish. We call this set the support of M with respect to λ.
For a graph G, supp(G; λ) denotes the support of its adjacency matrix. Note that
it is easy to find examples such that supp(M ; λ) and supp(Γ(M); λ) are different.

We can extend Corollary 4.54 to the following result which has already been pub-
lished in [67] but proved differently:

Theorem 4.62. [83] Let M be an n × n tree pattern matrix. Then the nullity of
M equals the number of connected components of the subgraph of Γ(M) induced by
supp(M ; 0) minus the number of vertices of Γ(M) that are adjacent to supp(M ; 0)
but do not belong to this set. �

Proof. Let M be a tree pattern matrix and let A be the adjacency matrix of
Γ(M). Theorem 4.52 states that supp(A; 0) forms an independent vertex set in
Γ(M). Given a vector v from the null space of A we can transform it to a vector v′

from the null space of M having the same zero-nonzero pattern as follows. Assign
v to the vertices of Γ(M). Conduct a breadth first search on Γ(M) from a fixed
vertex s and enforce new summation rules. To be precise, for every vertex z (as
traversed by the breadth first search) it is possible to multiply each of its adjacent
branches leading away from s with a nonzero factor such that the summation rule
given by the line of M that corresponds to z holds. From a straight basis of the
null space of A we can thus obtain a straight linearly independent set of vertices
from the null space of M . A similar conversion can be employed for the opposite
direction. Therefore, supp(M ; 0) = supp(A; 0) = supp(Γ(M); 0). Now the result
follows by Corollary 4.54. �

In fact, the results from the previous sections allow us to generalise even further.
We quoted Lemma 4.34 only as a special case of what is actually proved in [33]. It
has been shown that every eigenvector of a tree pattern matrix necessarily belongs
to an eigenvalue with multiplicity one if it has no zero entries. Moreover, for the
application of the summation rule none of the proofs given in Section 4.5.1 explicitly
relied on the fact that it was induced by the adjacency matrix of the tree. Every row
of a tree pattern matrix M induces a particular summation rule for the associated

46 4. Trees

vertex of Γ(M). The only difference to the summation rule used for the adjacency
matrix is that for every vertex certain non-zero factors are applied to the weights of
the neighbours before adding them up. Consequently, we can generalise the entire
theory presented in Section 4.5.1 to cover eigenvectors of tree pattern matrices. In
particular we obtain the following generalisation of Theorem 4.62:

Theorem 4.63. [83] Let M be an n × n tree pattern matrix with eigenvalue λ.
Then the dimension of the eigenspace of M for eigenvalue λ equals the number of
connected components of the subgraph of Γ(M) induced by supp(M ; λ) minus the
number of vertices of Γ(M) that are adjacent to supp(M ; λ) but do not belong to
this set. �

One other noteworthy generalisation is that eigenspace dimensions of tree patterned
matrices are determined by sizes of maximum matchings of the respective associated
skeletons.

4.6 Eigenspace bases for eigenvalues 1 and −1

It has already been shown in section 4.2 that every tree has a simply structured
basis for eigenvalue 0. We complete the characterisation by investigating the other
two possible eigenvalues 1 and −1. To this purpose we make use of the concept of
decomposing trees by the zero entries of their eigenvectors that was presented in
section 4.5. Since trees are bipartite it suffices to restrict further investigations to
the eigenvalue 1. Given an eigenspace basis for eigenvalue 1, an eigenspace basis
for eigenvalue −1 is readily obtained by negating the signs of all vector entries
corresponding to the vertices of one part of a corresponding vertex bipartition.

Examples for eigenvectors for eigenvalue 1 that cannot be scaled to {0, 1,−1} entries
can be found quite easily — see Figure 4.9, where the claim follows by Lemma 4.34.
We will therefore attempt to characterise those trees that have a simply structured
eigenspace basis for eigenvalue 1. A simple example of a tree with this property is
the path P5.

Figure 4.9: Graph without {0, 1,−1} eigenvector for eigenvalue 1

Assume that a tree with a simply structured eigenspace basis for eigenvalue 1 is
decomposed according to the always-zero entries. Clearly, each such generated com-

4. Trees 47

ponent has a single eigenvalue 1 and a corresponding eigenvector without zero en-
tries, namely a {1,−1} vector. Since such eigenvectors are the building blocks for
the composition of trees with simply structured bases for eigenvalue 1 we now direct
our attention to them. It turns out that trees with {1,−1} eigenvector for single
eigenvalue 1 can be characterised in a very elegant way.

4.6.1 {1, −1} eigenvectors for eigenvalue 1

Observation 4.64. [83] Let x be an eigenvector for eigenvalue 1 of a given tree T .
Then the value of x on a leaf equals the value on its unique neighbour. �

Theorem 4.65. [83] A tree has a {1,−1} eigenvector for eigenvalue 1 if and only
if the tree can be reduced to a K2 graph by repeatedly selecting a subgraph as in
Figure 4.10 (where the vertices u0, u1, w must be leaves in the current reduced graph)
and removing all its vertices except z from the current reduced graph. �

Proof. Let T be a tree with {1,−1} eigenvector x for eigenvalue 1. Clearly, T
must have at least two vertices. If T is a complete graph K2 there is nothing to
show. So we may assume that T has at least three vertices.

Recall that the eccentricity of a vertex is its distance from the graph centre and that
the centre of a tree consists of either a single vertex or a pair of adjacent vertices. Let
u0 be a leaf of T that has maximum eccentricity and v its only neighbour. Among
those neighbours of v different from u0 let z be that vertex which is closest to the
centre of T . Let u1, . . . , ur be the other neighbours of v besides u0 and z. Since u0

has maximum eccentricity the vertices u1, . . . , ur must also be leaves of T .

We may assume that v is not the sole centre vertex of T . Otherwise T would be
a star graph K1,r+2, which does not have eigenvalue 1. Let w.l.o.g. x have value
1 on u0. Then by Observation 4.64, x assumes the same value also on the vertices
u1, . . . , ur, v. The summation rule for vertex v requires a negative value of x on z.
Therefore, r = 1 and x has value −1 on z.

We now claim that z is adjacent to a leaf with value −1. By the summation rule
there exist at least two neighbours of z on which x assumes the value −1. Among
these neighbours there exists at least one vertex w such that the branch adjacent to
z via the edge wz does not contain any centre vertices of T . Assume that w is not
a leaf of T . Then by the summation rule w would have at least one neighbour w′

with value 1. Again by the summation rule w′ would have at least one neighbour
w′′ with value 1. But by our assumption about the location of the centre of T the
eccentricity of w′′ is clearly greater than that of u0, a contradiction.

Remove the vertices u0, u1, v, w from T . Clearly, T remains a tree. Moreover, the
summation rule remains valid for all remaining vertices, in particular for z. Since z

48 4. Trees

has at least one remaining neighbour it follows that T has at least two vertices. We
can therefore iterate the reduction step until a graph K2 has been obtained. The
reduction procedure can also be applied for every subgraph of T isomorphic to the
one in Figure 4.10 if only u0, u1, w are leaves. The maximum eccentricity criterion
only asserts the existence of a subtree suitable for reduction.

Conversely, assume that a tree can be decomposed in the described manner. Then
we can assemble it from K2 by iteratively selecting a vertex z and adding vertices
u0, u1, z, w according to Figure 4.10. The all ones vector forms an eigenspace basis
for eigenvalue 1 of the graph K2. After the addition of the vertices u0, u1, z, w we
can uniquely augment the previous eigenvector to become a {1,−1} eigenvector for
eigenvalue 1 of the extended graph. The values on the newly added vertices depend
only on the existing eigenvector value on z, cf. Figure 4.10. Iterating this argument
we find that T has a {1,−1} eigenvector for eigenvalue 1. �

Figure 4.10: Reduction subgraph and weights for {1,−1} eigenvectors

Corollary 4.66. [83] There exists a tree with n vertices that has a {1,−1} eigen-
vector for eigenvalue 1 if and only if n ≡ 2 mod 4. �

In the following, let C denote the class of all trees with {1,−1} eigenvector for
eigenvalue 1. Note that if a tree has a {1,−1} eigenvector for eigenvalue 1, then by
Lemma 4.34, the eigenvalue 1 has necessarily multiplicity one.

4.6.2 {0, 1, −1} eigenvectors for eigenvalue 1

Having investigated trees with {1,−1} eigenvectors it is now straightforward to
achieve a characterisation of trees with simply structured eigenspace bases for eigen-
value 1:

Theorem 4.67. [83] Let T be a tree with eigenvalue 1. Then there exists a simply
structured basis for the corresponding eigenspace if and only if C ∈ C for every
component C ∈ C(T − N1(T)). �

4. Trees 49

Proof. Necessity follows from Lemma 4.43. For sufficiency refer to Theorem 4.65
and consider the reconstruction of (linearly independent) eigenvectors of T from the
zero-nonzero patterns of a straight null space basis of its skeleton forest. Simply
assign valid {1,−1} eigenvectors to all contracted subgraphs of T where the chosen
skeleton null space eigenvector is nonzero on the corresponding skeleton vertices.
A valid eigenvector is obtained by establishing the summation rule for all vertices
of NC

1 (T). This can be achieved by conducting a breadth first search from a fixed
nonzero skeleton vertex v. Each time a vertex of NC

1 (T) is visited the summation
rule for its partner vertex in T is enforced by suitably multiplying the values on the
branches leading away from v. Since the branches have only values from the set
{0, 1,−1} the only factors that are needed are 1 and −1 so that finally a {0, 1,−1}
eigenvector is created. �

In theory, Theorem 4.67 provides us with a completely structural characterisation
of all trees whose eigenspace for eigenvalue 1 admits a simply structured basis. The
class C is characterised by a reduction property and the set N1(T) is independent
of the choice of a particular eigenspace basis so that essentially it is an intrinsic
structural property of a tree as well.

From a practical point of view, however, there is always an algebraic aspect. In
order to check if a tree T has a simply structured eigenspace one would start by
computing an arbitrary eigenspace basis for eigenvalue 1 and then try to reduce the
components of T − N1(T). Conversely, the trees with simply structured eigenspace
bases for eigenvalue 1 can be generated using Construction 4.59 by using only graphs
from C for the blown-up trees with eigenvalue 1. But for blowing up the vertices of
the non-eigenvalue set, trees without eigenvalue 1 are used. So far a non-algebraic
characterisation of such trees is unknown. It is even doubtful if such a characterisa-
tion exists since it is not difficult to show that every given tree can be extended to a
tree with single eigenvalue 1 and a corresponding eigenvector without zero entries.
So it seems hard to tell the difference between trees that have eigenvalue 1 and trees
that have not. All in all, the desired characterisation of trees with simply structured
eigenspace bases has been achieved.

We conclude this section with a construction that allows to derive a simply structured
tree eigenspace basis from a given initial eigenspace basis.

Construction 4.68. Let T be a tree with eigenvalue 1 and B a corresponding
eigenspace basis. Then a simply structured eigenspace basis for this eigenvalue of T
can be obtained as follows:

1. Use B to determine C(T − N1(T)) and the skeleton Sλ(T).

2. Reduce every component of T −N1(T) according to Theorem 4.65 and simul-
taneously determine {1,−1} component eigenvectors.

3. Determine a maximum matching of Sλ(T), e.g. using one of the algorithms
presented in [9], [35] or [78].

50 4. Trees

4. Construct a straight null space basis B′ of Sλ(T).

5. Map the vectors of B′ to a set of vectors on T by matching their zero-nonzero
patterns; to the subgraphs corresponding to nonzero skeleton vertices the re-
spective already computed {1,−1} component eigenvectors are assigned, all
other vertices are assigned zero values.

6. For every constructed vector use a breadth first search approach to correct the
signs of branches such that for every zero value vertex adjacent to a non-zero
vertex the summation rule holds.

�

The initial basis B can be obtained by traditional Gaussian elimination, but there
exists an algorithm by John and Schild that allows to compute the vectors of B on
the tree T itself [55], cf. section 4.4.

5. Unicyclic graphs 51

5 Unicyclic graphs

Having analysed the eigenspaces of trees we will now consider graphs that contain
exactly one cycle, the so-called unicyclic graphs.

Applying Theorem 3.1 to the trees emanating from the cycle of a given unicyclic
graph, it becomes immediately apparent that a {−1, 0, 1} valued eigenvector is only
possible if one of the following conditions is satisfied:

1. The corresponding eigenvalue belongs to the set {−1, 0, 1}.

2. Non-zero values of the eigenvector only occur for vertices of the cycle.

The cases are not exclusive. But if the second condition is satisfied for some eigen-
value λ 6∈ {−1, 0, 1}, then application of the summation rule reveals that, necessarily,
λ ∈ {−2, 2}. In this case the graph must even be a cycle since the considered eigen-
vector would necessarily have to be non-zero on every vertex of the cycle in the given
graph.

For each of the eigenvalues −2,−1, 0, 1, 2 one can easily find unicyclic example graphs
admitting simply structured eigenspace bases. In the following, we concentrate on
eigenvalue 0 and, hence, on the kernel of unicyclic graphs. The introductory remarks
and the following results on the kernel indicate that, with due diligence, similar
results can be obtained for the other candidate eigenvalues as well.

We have seen in section 4.2 that every graph without cycles admits a simply struc-
tured kernel basis. For graphs that contain cycles it easy to find counterexamples
— even from the class of unicyclic graphs — that do not admit a simply struc-
tured kernel basis, cf. Figure 5.1. It shows an example graph and a basis of its one
dimensional kernel.

On the other hand we can easily identify cases when unicyclic graphs admit simply
structured kernel bases. According to [7], the adjacency matrix of a unicyclic graph
is totally unimodular if and only if the length of its cycle is a multiple of four.
Thus, by Theorem 3.4, a simple check on the length of the cycle of a unicyclic graph
provides a sufficient criterion for the existence of a simply structured kernel basis.
We do not, however, gain any insight regarding basis structure.

The goal of this chapter is to achieve a complete characterisation of all unicyclic
graphs admitting simply structured kernel bases. Just as for trees, we rely on the
FOX algorithm. The main cases to distinguish result from how the FOX algorithm
actually behaves on the vertices of the cycle of the unicyclic graph.

Consider an induced cycle C of a given graph G. Perform the FOX algorithm on G
to get D̃ and transfer the node labels to the corresponding nodes of G. We say that
C has been cracked by this run of FOX if not all of its nodes have been F labelled.

52 5. Unicyclic graphs

Figure 5.1: Graph without a simply structured kernel basis

Observation 5.1. [82] Let G be a unicyclic graph with cycle C and suppose that
C gets cracked by a particular FOX run A. Then, clearly, the first node v of C
to become F labelled by run A must get O labelled from outside C, i.e. there exists
an X labelled node w in a tree T emanating from C such that v is the outgoing
neighbour of w. �

Lemma 5.2. [82] Let G be a unicyclic graph with cycle C. A given FOX run on G
does not crack C if and only if all neighbours of C in G have been O labelled. �

Proof. Assume that a node v from C has a neighbour u in G−C that is either XO
or F labelled. Since neither of them is O labelled, u and v must be mutually adjacent
in D̃.

Now assume that u is XO labelled. According to Lemma 4.3 the node v must be
its only outgoing neighbour so that by Algorithm 4.1 the node v is O labelled, a
contradiction.

Let therefore u be F labelled. Let T be the tree in G that is attached to C by the
edge uv. Not all neighbours of u within T can be XO labelled since then u would
have exactly one outgoing neighbour and would have become X labelled by FOX. So
we may assume that u has a neighbour in T that is either XO or F labelled. As above
we see that the case XO is impossible.

Continuing this argument, we may conclude that there exists a chain of F labelled
nodes starting from v and leading to a leaf of T . But by Lemma 4.3 in D̃ this leaf is

5. Unicyclic graphs 53

mutually adjacent to its neighbour and therefore has only one outgoing neighbour
in D̃. Hence, it would have been X labelled by FOX, a contradiction.

The converse statement follows from Observation 5.1. �

Lemma 5.3. [82] Let G be a unicyclic graph with cycle C. Suppose that C has
been cracked by a particular run of FOX. Then C gets cracked by every possible
run of FOX. �

Proof. Suppose that there exists a FOX run A that cracks C and that C has not
been cracked by another FOX run B. Determine nodes v, w and a tree T according
to Observation 5.1. Rearrange both runs A and B in such a way that they start on
the nodes of the tree T +v. This does not change the resulting digraphs whose node
labels we need to consider.

Now focus only on the graph T + v. The starting operations of run A represent a
partial FOX run on T + v which may be completed in a way such that v, w becomes
an XO labelled pair. On the other hand, the operations of run B represent a complete
FOX run on T + v that creates an F label for v. Hence, we have a contradiction to
Lemma 4.19. �

As a consequence of the previous lemma, we say that the cycle C of a unicyclic
graph G is either cracked or uncracked.

The following investigations will treat these cases separately. To begin with, we
consider uncracked unicyclic graphs.

5.1 Uncracked cycles

Lemma 5.4. [82] Let G be a unicyclic graph with uncracked cycle C. If x ∈ ker G,
then xC ∈ ker C holds for the restriction xC of x to C. �

Proof. According to Lemma 5.2 the neighbours of C in G − C are all O labelled.
Therefore, the respective node weights must be zero for every vector from the kernel
of G. Consequently, we see that on the nodes of C the eigenvector summation rules
for C and G coincide. �

Theorem 5.5. [82] Let G be a unicyclic graph with uncracked cycle C. If the size
of C is not a multiple of four, then G has a simply structured kernel basis. �

54 5. Unicyclic graphs

Proof. Since the size n of C is not divisible by four, the cycle graph Cn is nonsin-
gular [10]. Therefore, according to Lemma 5.4 every vector from ker G must vanish
on the vertices of C. Consider the forest G − C and let T be one of its trees. Then
we see by Lemma 5.2 that xT ∈ ker T must hold for the restriction xT of any vector
x ∈ ker G to T . Hence, a simply structured kernel basis of G is obtained by means
of trivial embedding after using Construction 4.16 to determine simply structured
kernel bases for the trees of G − C. �

Lemma 5.6. [82] Let n be a multiple of four and let x ∈ ker Cn. Then x takes
values c, 0,−c, 0, c, 0,−c, . . . for some c ∈ R on consecutive vertices of Cn. �

Proof. This is a well-known result that follows directly from the summation rule.
�

Theorem 5.7. [82] Let G be a unicyclic graph with uncracked cycle C. If the size
of C is a multiple of four, then G has a simply structured kernel basis. Moreover,

dim ker G = dim ker(G − C) + 2.

�

Proof. Since the size n of C is divisible by four, the cycle graph Cn is sin-
gular. Therefore, according to Lemma 5.4 every vector from ker G takes values
c, 0,−c, 0, c, 0,−c, . . . for some c ∈ R on the consecutive vertices of C. If c = 0, then
we may proceed as in the proof of Theorem 5.5. For c 6= 0 we deduct from Lemma
5.6 that there are only two linearly independent choices of possible weights on C (the
zero-nonzero pattern is rotated by one position). We may assume that these weights
are only from the set {0, 1,−1}. Given such weights on C we need to construct a
valid vector from ker G. Assign zero weights to the vertices of all trees emanating
from the zero weight vertices of C. Because of Lemma 5.2 we may employ Lemma
4.28 to construct a suitable eigenvector for each tree emanating from a vertex with
weight ±1.

This construction yields dim ker(G−C)+2 linearly independent vectors from ker G.
These vector even form a basis of ker G. To see this, it suffices to note that B cannot
contain two vectors that do not vanish on C but have the same zero-nonzero pattern
on C because otherwise a suitable linear combination would yield a vector extended
from ker(G − C). �

An example that illustrates Theorem 5.7 can be found in Figure 5.2.

5. Unicyclic graphs 55

Figure 5.2: Kernel basis of a unicyclic graph according to Theorem 5.7

5.2 Cracked cycles

Let us consider the case of unicyclic graphs with cracked cycle. It turns out that it
demands more effort than the uncracked case.

Our next theorem determines the size of the kernel of a unicyclic graph with cracked
cycle in terms of the number of F labelled nodes. Thus, the result relates to Theorem
4.21.

But beforehand, we require the definition of a trivial embedding function ι. Let H
be a subgraph of G and let w : H → R be a node weight function on H . Then,
ι(w) : G → R is defined by

ι(w)(x) =

{

w(x) if x ∈ V (H)

0 else
.

Naturally, we assume that ι works accordingly for weight vectors (with respect to a
fixed vertex numbering).

Theorem 5.8. [82] Let G be a unicyclic graph with cracked cycle C. Let therefore

56 5. Unicyclic graphs

u be an O labelled node of C whose X labelled partner v does not lie on C. Then,

ker G ⊆ ι(ker(G − u))

and
|HF| = dim ker G = dim ker(G − u) − 1.

�

Proof. There exists a FOX run on G such that u is the first node of C that receives
a label. Consider the situation just after u has been O labelled. Since the selection
of a node to be X labelled does not depend on its incoming edges it is clear that the
outgoing edges of u leading to still unlabelled nodes have no effect on the remaining
steps of the FOX run considered. We may therefore remove the corresponding edges
from G and still get the same node labels. If we further disconnect u and v we
see that v has no more incoming neighbours and must therefore become F labelled.
Consequently, there exists a FOX run on G − u that creates the same node labels
as on G before, only that v is F labelled. Since G − u is a forest it follows from
Theorem 4.21 that the number of F labelled nodes of G exceeds the dimension of
ker(G − u) by exactly one.

Since u is O labelled it holds necessarily that x|G−u ∈ ker(G − u) for every vector
x ∈ ker G. It follows with Lemma 4.10 that ker G consists of exactly those vectors
x ∈ ι(ker(G−u)) that obey the summation rule for the node u. The summation rule
poses an at most one-dimensional restriction on ι(ker(G − u)). If the summation
rule did not pose a restriction, then every vector from ker G would have to be zero
on the neighbours of u, in particular on v. But according to Theorem 4.21 there
exists a vector from ι(ker(G − u)) that does not vanish on v, a contradiction. �

Note that Theorem 5.8 does not yet guarantee the existence of simple kernel bases
since the component eigenvectors may have to be multiplied to suit the summation
rule at the node u.

At this point we can provide a generalisation of Lemma 4.19:

Lemma 5.9. [82] Let G be a unicyclic graph. Then the set V (HO) is invariant for
all possible runs of FOX on G and contains exactly those vertices on which every
vector from ker G vanishes. �

Proof. From the proofs of Theorems 5.5, 5.7 and 5.8 it follows that for every
O labelled node (with respect to a given FOX run) there exists a vector from the
kernel of G that does not vanish on this node. Recalling Lemma 4.10, the result
follows. �

Continuing our analysis of the cracked case we will now investigate node separation
issues since these lead to further sub-cases we need to consider.

5. Unicyclic graphs 57

Lemma 5.10. [82] Let G be a unicyclic graph with cracked cycle C. Then the
following statements are equivalent for a given FOX run:

1. No two adjacent nodes of C are assigned O labels.

2. Adjacent nodes of C do not become separated in D̃.

�

Proof. Nodes on C that become separated in D̃ must necessarily be O labelled
since their incoming edges get deleted.

Conversely, assume that there exists a pair x, y of adjacent O labelled nodes on C.
We will show that there exist two nonadjacent nodes in D̃ whose counterparts in C
are adjacent.

Case 1. Suppose that both x and y are X labelled as well. Let y′ be the second
neighbour of x on the cycle C. Then according to Lemma 4.3 the node x and either
y or y′ belong to different weak components of D̃.

Case 2. Suppose that at most one of the nodes x and y is X labelled. Then by
Lemma 4.2 the nodes x and y belong to different weak components of D̃. �

The previous lemma motivates the following definition. We say that a cycle C of a
graph G is cut by a given FOX run if there exist two nodes of C that are adjacent
in G but disconnected in D̃.

It follows directly from Lemma 5.9 that cutting the cycle does not depend on the
particular FOX run so that it makes sense to say that a unicyclic graph either has
a cut or uncut cycle. A cut cycle is necessarily cracked.

Note that if an even cycle gets cut, then separation occurs for at least two pairs
of neighbours since between the separated nodes there must be alternating O and
O labels along the nodes of the cycle.

Corollary 5.11. [82] Let G be a unicyclic graph with cut cycle C. Then G has a
simply structured kernel basis. �

Proof. By Lemma 5.10 we see that D is a forest so that the result follows from
Lemma 4.9 and Theorem 4.21. �

Corollary 5.12. [82] Let G be a unicyclic graph with uncut cracked cycle C. Then
C is even. �

58 5. Unicyclic graphs

Proof. According to Lemma 5.10 the nodes of C do not become separated in D̃.
Thus, O labelled and O labelled nodes must alternate on C so that C must necessarily
be even. �

Corollary 5.13. [82] Let G be a unicyclic graph with cracked odd cycle C. Then
G has a simply structured kernel basis. �

Let us take a closer look at unicyclic graphs with uncut cracked cycles. Before we
analyse their kernel structure let us determine when a cracked cycle remains uncut.

We say that the cycle C of a unicyclic graph G can be cracked at node u by node v
if u lies on C, v lies outside C and there exists a FOX run on G such that v is the
X labelled partner v of u.

Lemma 5.14. [82] Let G be a unicyclic graph with cracked cycle C. Then C
remains uncut if and only if C is even and each pair of nodes at which C may be
cracked has even distance in G. �

Proof. Sufficiency follows directly from the proof of Corollary 5.12 and Lemma
5.9.

Conversely, construct a FOX run on G that avoids the creation of X labelled nodes
on C for as long as possible. It is obvious that when the first node of C becomes
X labelled there are no more unlabelled nodes on the tree emanating from C so that
C has been cracked at all possible nodes. Note that between any two O labelled
nodes of C there lies an even number of unlabelled nodes.

Subsequently, let the FOX run avoid labelling nodes outside C for as long as possible
by repeating the following procedure. On C select an arbitrary unlabelled neighbour
v of an O labelled node. If v has no outgoing neighbour, pick again. Otherwise
v has exactly one outgoing neighbour, which by construction must be its second
neighbour y on C. To see this it suffices to note that since C cannot be cracked
at v its neighbours outside C must be O labelled. Consequently, let FOX select v
for X labelling. Thus we have reduced the gap of unlabelled nodes between two
particular O labelled nodes on C by two.

It is clear that this procedure leads to a strict O-O pattern on C that does not cut C.
Employing an argument similar to that in Lemma 4.8 it is guaranteed that the final
steps of the FOX run may introduce multiple labels but does not further change the
set of O labelled nodes. �

5. Unicyclic graphs 59

Theorem 5.15. [82] Let G be a unicyclic graph with uncut cracked cycle C. If the
size of C is a multiple of four, then G has a simply structured kernel basis. Moreover,
this basis may be chosen to contain at most one vector x with xC ∈ ker C \{0}. �

Proof. Let u be an O labelled node of C whose X labelled partner v does not lie
on C. Since G − u is a forest, we may use Construction 4.16 to obtain a simply
structured kernel basis B of G−u. We assume that the FOX run on G−u needed for
the construction has been derived from a FOX run on G as described in the proof of
Theorem 5.8, yielding the same node labels except for v. Let B = {b0, . . . , bk} with
k = |HF|, cf. Theorem 5.8. By construction, the restriction of B to HF yields the
standard unit basis. Assume w.l.o.g. that b0 has value 1 on v. Since G is unicyclic
it follows that one component of G − u contains exactly two neighbours of u in
G whereas all other components contain at most one neighbour. Therefore, every
vector bi may have at most two nonzero weights on the neighbours of u in G.

We will now construct a simply structured linearly independent subset B′ of ker G
with B′ = {b′1, . . . , b′k}. Theorem 5.8 then ensures that B′ is a basis of ker G. Con-
sider each vector b1, . . . , bk separately and let ni be the number of nonzero weights
among the neighbours of u in G for the vector bi.

Case ni = 1. Let y1 be the only neighbour of u with nonzero weight (assume
w.l.o.g. that this weight equals one). Then ι(bi − b0) ∈ ker G. Let therefore b′i =
ι(bi − b0).

Case ni = 2. Let y1, y2 be the neighbours of u with nonzero weight. Because of
Construction 4.16 both y1 and y2 lie in the same subgraph Sw of G − u for some
F labelled node w.

But since the X labelled partner v of u does not lie in C it follows that there exists
no directed path from y1 to y2 via u in D̃ and vice versa. So C − u is necessarily
a subgraph of Sw because otherwise the propagation of weights starting from w
could not have succeeded. Since the size of C is a multiple of four, we deduce from
Construction 4.16 that distG−u(y1, y2) ≡ 2 mod 4 so that bi assigns opposite weights
to y1 and y2. This implies ι(bi) ∈ ker G. Let therefore b′i = ι(bi).

Now suppose that B′ contains two nonzero vectors bi1 and bi2 whose restriction to C
lies in ker C. It follows from Lemma 5.6 and Lemma 4.10 that there exists a linear
combination b′ of bi1 and bi2 that vanishes on C. Substitute b′ for bi2 in B′. Clearly,
B′ retains its basis property. Repeat the procedure until B′ only contains at most
one vector x with xC ∈ ker C \ {0}. �

We have seen in the proof of Theorem 5.15 that there may exist an F labelled node
w such that for some O labelled node u from C its neighbours y1 and y2 in C both
lie in Sw. We may ask what happens if there exist several such nodes w, cf. Figure
5.3.

60 5. Unicyclic graphs

Lemma 5.16. [82] Let G be a unicyclic graph with cracked cycle C. Let u be an
O labelled node of C whose X labelled partner v does not lie on C and let y1 and y2

be the neighbours of u in C.

If there exist distinct nodes w1 and w2 such that y1 and y2 both lie in Sw1 and Sw2,
then w1 and w2 lie in the same tree emanating from C. �

Proof. According to the definition of Sw1 there exist directed paths P̃1 and P̃2 in
D̃ leading from y1 and y2 to w1. Clearly, P̃i cannot contain u. If w1 was situated
on the cycle C it would be impossible to reach any other F labelled node from both
y1 and y2. Therefore, w1 lies outside C so that necessarily C − u is a subgraph of
Sw1. The paths P̃1 and P̃2 start separately but then unite in a common final node
z on C before they leave the cycle to enter the emanating tree T that contains w1.
Note that necessarily z is XO labelled. In order to reach w1 from z it is required that
the O labelled partner of z lies in T . This leaves z with no outgoing nodes on C,
rendering it the only node on C that can be reached both from y1 and y2. Thus,
any other F labelled node that can be reached from both y1 and y2 must lie in T as
well. �

Corollary 5.17. [82] Let G be a unicyclic graph with cracked cycle C. Let u be an
O labelled node of C whose X labelled partner v does not lie on C and let y1 and y2

be the neighbours of u on C.

If there exists an F labelled node w such that both y1 and y2 lie in Sw, then C is
even. �

Proof. This follows from the proof of Lemma 5.16 and Lemma 4.11. �

Let us carry our analysis of the structures Sw a little further.

Lemma 5.18. [82] Let G be a unicyclic graph with cracked cycle C. Let u,u′ be
two nodes at which C may be cracked. Then there exists a FOX run on G such that
the neighbours y1, y2 of u within C do not lie in a common subgraph Sw for any
F labelled node w. �

Proof. Since C may be cracked at u and u′ it is possible to construct a FOX run
on G such that u and u′ are the first nodes on C to be labelled, namely O labelled.
Now consider adjacencies of u and u′ in D̃. Any other node of C may at best be an
outgoing neighbour of u or u′, but never an incoming neighbour. Therefore there
cannot exist directed paths in D̃ from y1 and y2 leading to the same F labelled
node w since at least one of these paths would have to run via u or u′, which is
impossible. �

5. Unicyclic graphs 61

Figure 5.3: FOX result that illustrates Lemma 5.16

Lemma 5.19. [82] Let G be a unicyclic graph with cycle C that can be cracked at
node u. Suppose there exists a FOX run on G such that the neighbours y1 and y2

of u on C lie in a common Sw for some F labelled node w.

Then there exists a subgraph Sw′ that contains only exactly one of the nodes y1 and
y2 if and only if C can be cracked at more than one node. �

Proof. If there exists a FOX run on G such that the neighbours y1 and y2 of u on
C lie in a common Sw for some F labelled node w, then with respect to Lemma 4.14
this run can be altered such that w = y2. Note that C is necessarily uncut.

Since y2 has no outgoing neighbours we see that there exists a subgraph Sw′ that
contains only exactly one of the nodes y1 and y2 if and only if there is a second
F labelled node w′ in D̃ that lies on a directed path from y1. Clearly, w′ cannot lie
on C. With respect to Lemma 4.11 it is clear that a path from y1 to w′ must exit
C at an O labelled node v since in D̃ the outgoing neighbours of X labelled nodes on
C all lie on C themselves.

Let T be the tree that is attached to v and contains w′. Assume that in G node v is
adjacent to the node z of T . Employ Lemma 4.14 and alter the FOX run such that
D̃ remains unchanged for the nodes of G−T but z becomes F labelled. Clearly, this
run can then be rearranged such that it first operates on the subtree that cracks C
at u and after the cracking continues on the subgraph T for as long as possible. But
then z cannot become F labelled but instead cracks C at v. �

62 5. Unicyclic graphs

Remark 5.20. Given a unicyclic graph G with cycle C that may be cracked at a
node u, consider a neighbour y of u on C. If y lies in the subgraph Sw of D for some
F labelled node w, then u does not belong to Sw. Now apply a FOX run A to G
to get the final digraph D̃(A) and let K̃(A) be the subgraph of D̃(A) induced by the
nodes of the component K of G−u that contains y. From the proof of Theorem 5.8
it follows that it is possible to construct a restriction B of run A to K such that the
result on K is the same, i.e. the digraphs K̃(A) and K̃(B) = D̃(B) are isomorphic.
Therefore, for the determination of common subgraphs Sw for the neighbours of u
on C as treated in Lemma 5.18 and Lemma 5.19 we may restrict ourselves to K
only. �

The final case we need to settle is an uncut cracked cycle C whose size is not a
multiple of four. Because of Lemma 5.13 we may restrict ourselves to the case
|C| ≡ 2 mod 4.

Let us refine the ideas presented in the proof of Theorem 5.8 and assume that C
can be cracked at the node u. Let v be the X partner of u.

Then a kernel basis of G can be obtained by suitable linear combinations of the
vectors of a given basis B′ of ι(ker(G − u)), enforcing the summation rule at node
u. We need to characterise under which restrictions on G this strategy admits the
construction of a simply structured kernel basis B. In the following, we tacitly
require that the basis B′ has been obtained by means of Construction 4.16.

Since C is uncut the neighbours y1 and y2 of u on C in G are O labelled. We will
distinguish three types of kernel vectors of G − u. Depending on whether none,
exactly one or both of y1 and y2 are assigned nonzero weights by a given vector
x ∈ ι(ker(G − u)), we say that x is type τ0, τ1 or τ2, respectively.

Next, we make several simple observations:

Observation 5.21. [82] Because of |C| ≡ 2 mod 4 a type τ2 vector always assigns
the same values to y1 and y2. In the following, we may therefore assume that B′

consists of vectors that assign only 0 or 1 to y1, y2. �

Observation 5.22. [82] Consider the component H of G−u that contains v. There
exists a kernel vector that does not vanish on v since the restriction of the original
FOX run on G to H yields the same node labels, except that v becomes F labelled.
Therefore, the given basis of ι(ker(G − u)) always contains a type τ0 vector. �

Observation 5.23. [82] Since y1 is O labelled we see that B′ always contains at
least one type τ1 or τ2 vector. �

5. Unicyclic graphs 63

Observation 5.24. [82] The basis B′ contains a type τ1 vector if and only if for
the given FOX run there exists a subgraph Sw that only contains exactly one of the
nodes y1, y2. Likewise, it contains a type τ2 vector if and only if y1 and y2 lie in a
common Sw. �

In view of the previous observation and Lemma 5.18 we see that for a unicyclic
graph whose cycle can be cracked at more than one node we may assume a basis
B′ that does not contain a type τ2 vector. On the other hand, it may be assumed
that a given basis of ι(ker(G − u)) only contains at most one type τ2 vector since
the difference of two type τ2 vectors is of type τ0.

Consequently, the most simple linear combinations of vectors from B′ that lead to
vectors which have only entries from {0, 1,−1} and satisfy the summation rule at
node u are of the types τ0 − τ0, τ1 − τ0, τ2 − τ0 − τ0, and τ2 − τ1 − τ0 (multiple vectors
of the same type in an expression are assumed to be distinct). With respect to the
previous observations and assumptions it is clear that the construction of a simply
structured basis of ker G is possible if and only if it may succeed using only such
linear combinations.

Keeping all this in mind we may reason as follows:

Suppose that B′ does not contain a type τ2 vector. Choose a fixed type τ0 vector
and subtract it from the remaining vectors of B′. Then the difference vectors form
a simply structured basis of ker G.

If B′ contains a type τ2 vector, then such a construction can succeed if and only if
either B′ contains a second type τ0 vector or a type τ1 vector.

So, in order to solve the final open case we just need to put together the pieces
collected so far:

Theorem 5.25. [82] Let G be a unicyclic graph with uncut cracked cycle C. Let
|C| ≡ 2 mod 4. Then G has a simply structured kernel basis if and only if one of
the following conditions is satisfied:

1. C can be cracked at more than one node.

2. There exist at least two nodes that may crack C at the same node.

�

Proof. G has a simply structured kernel basis if and only if the construction from
the proof of Theorem 5.8 succeeds. Using the results of a suitable FOX run construct
a basis B′ of ι(ker(G− u)) as described before. We may assume that B′ contains at
most one type τ2 vector.

64 5. Unicyclic graphs

Then G has a simply structured kernel basis if and only if either B′ can be chosen
not to contain a type τ2 vector or to contain a second type τ0 vector or a type τ1

vector.

Firstly, according to Lemma 5.18 the occurrence of a type τ2 vector can be avoided if
and only if C can be cracked at more than one node. Secondly, more than one type
τ0 vector exists if and only if there exists a FOX run such that C gets cracked at u,
and in D there exist at least two O labelled neighbours of u outside C. Equivalently
there exist a least two nodes that may crack C at the same node. And finally,
Lemma 5.19 states that a type τ2 vector is accompanied by a τ1 vector exactly when
we could have avoided the type τ2 vector in the first place. �

5.3 Algorithmic, algebraic and structural characterisations

We may sum up the cases considered in the previous sections as follows:

Theorem 5.26. [82] Let G be a unicyclic graph with cycle C. Then G has a simply
structured kernel basis unless |C| ≡ 2 mod 4 and C can be cracked by exactly one
node. �

Proof. Collect the results from Theorem 5.5, Theorem 5.7, Corollary 5.11, Corol-
lary 5.13, Theorem 5.15, and Theorem 5.25. �

The criteria we have presented so far in order to achieve a complete characterisation
of all unicyclic graphs with simply structured kernel bases are formulated in terms of
a particular behaviour of the FOX algorithm. We now seek to give a purely algebraic
version.

Lemma 5.27. [82] Let G be a unicyclic graph with cycle C. Let u be a node of C
and v one of its neighbours outside C. Further, let T be the tree that is connected
to C by the edge uv. Then v may crack C at u if and only if there exists a vector
x ∈ ker T that does not vanish on v. �

Proof. Suppose that C gets cracked at u by v. Restricting the FOX run to the
nodes of T only, we obtain a valid FOX run on T such that v is type F. According
to Lemma 4.19 there exists a vector x ∈ ker T that does not vanish on v.

Conversely, by Lemma 4.19 and Lemma 4.14 there exists a FOX run A on T such
that v is type F. This run A represents a partial FOX run B′ on G. Choose v as
the next X labelled node since it only is connected to u and by construction has
no outgoing neighbours among the other nodes of T . But this means that C gets
cracked at u by v. �

5. Unicyclic graphs 65

With the help of Lemma 5.27 we may now rephrase Theorem 5.26 as follows:

Theorem 5.28. [82] Let G be a unicyclic graph with cycle C. Let Ti be the trees
emanating from C and assume that each tree Ti is attached to C by an edge viui

such that ui and vi are nodes of C and Ti, respectively.

Then G has a simply structured kernel basis unless |C| ≡ 2 mod 4 and there exists
exactly one index i such that ker Ti does not completely vanish on vi. �

Having found an algorithmic and an algebraic characterisation, let us now derive a
purely structural one.

Theorem 5.29. [82] Let G be a unicyclic graph with cycle C. Let Ti be the trees
emanating from C and assume that each tree Ti is attached to C by an edge viui

such that ui and vi are nodes of C and Ti, respectively.

Then G has a simply structured kernel basis unless |C| ≡ 2 mod 4 and there exists
exactly one index i such that vi is not covered by some maximum matching of Ti.

�

Proof. Rewrite Theorem 5.28 using Corollary 4.26 and Lemma 4.19. �

It is interesting to remark that in [21] the inertia of unicyclic graphs is determined.
It depends on the circuit size and as well as certain matching properties, just as it
is the case in Theorem 5.29. Of course, the actual conditions on circuit size and
matchings are quite dissimilar.

Moreover, independently, [66] has determined kernel bases for all unicyclic graphs.
These bases depend on matchings of unicyclic graphs. They are given in a way
such that, if possible, simply structured bases are chosen, so the results are basically
equivalent to those presented here.

66 5. Unicyclic graphs

6. Distance powers of paths and circuits 67

6 Distance powers of paths and circuits

We define the r-th distance power G(r) of a given graph G as the graph with the
same vertex set as G and two vertices adjacent if and only if their distance in G is
at most r.

Distance powers of circuits belong to the important class of circulant graphs. Such
graphs are frequently used for modelling redundancies of communication networks.
Since circulant graphs reveal strong symmetries a number of interesting results on
them have been found [25]. In the following sections, we investigate the classes of
path and circuit distance powers.

6.1 Path distance powers

For non-complete path distance powers, a direct consequence of Theorem 3.3 is that
only eigenvalues from {−3,−2,−1, 0, 1} may potentially admit simply structured
eigenspace bases (q = 4). We can reduce this set of eigenvalues even further:

Theorem 6.1. Let d < n − 1. If P
(d)
n affords a {0, 1,−1} valued eigenvector for

eigenvalue λ, then λ belongs to the set {−2,−1, 0, 1}. �

Proof. Let v = (vi) be a {0, 1,−1} valued eigenvector for eigenvalue λ of P
(d)
n for

given n, d with d < n− 1. We may assume that v1 ∈ {0, 1}. Let A be the canonical

adjacency matrix of P
(d)
n . Create a matrix B = (bij) from A − cI by successively

subtracting row i from row i− 1 for i = 2, . . . , n and afterwards discarding the n-th
row. Then the entries of B are

bij =

−(c + 1) for j − i = 0,

c + 1 for j − i = 1,

1 for j − i = d + 1,

−1 for j − i = −d,

0 else.

Clearly, Eig(c; P
(d)
n) is a subspace of ker B.

Claim 1: Let x = (xi) ∈ Eig(λ; P
(d)
n) and x1 = . . . = xk = 0 for 1 ≤ k < n. Then,

xk+1 = 0 or λ ∈ {−2,−1, 0}.

If λ = −1, then there is nothing to show. So let c 6= −1 and consider the k-th row
of B. Depending on k, different cases may arise:

0 = (−1 − c)(xk − xk+1) − xk+d+1 = (c + 1)xk+1 − xk+d+1

or 0 = xk−d + (−1 − c)(xk − xk+1) − xk+d+1 = (c + 1)xk+1 − xk+d+1

or 0 = xk−d + (−1 − c)(xk − xk+1) = (c + 1)xk+1

or 0 = (−1 − c)(xk − xk+1) = (c + 1)xk+1.

68 6. Distance powers of paths and circuits

The claim now follows from the fact that xi ∈ {0, 1,−1}.

Claim 2: Let x = (xi) ∈ Eig(λ; P
(d)
n) and x1 = . . . = xk = 1 for 1 ≤ k < n. Then,

xk+1 = 1 or λ ∈ {−2,−1, 0, 1}.

In analogy to the first claim we derive the following cases and check their solutions
for xi ∈ {0, 1,−1}:

0 = (−1 − c)(xk − xk+1) − xk+d+1 = (c + 1)(xk+1 − 1) − xk+d+1

or 0 = xk−d + (−1 − c)(xk − xk+1) − xk+d+1 = −c + (c + 1)xk+1 − xk+d+1

or 0 = xk−d + (−1 − c)(xk − xk+1) = −c + (c + 1)xk+1

or 0 = (−1 − c)(xk − xk+1) = (c + 1)(xk+1 − 1).

Now let c 6∈ {−2,−1, 0, 1}. According to the previous claims, either v = (0, . . . , 0)T

or v = (1, . . . , 1)T . Both cases are impossible since v is an eigenvector and P
(d)
n is

non-complete for d < n − 1. �

For each of the eigenvalues −2,−1, 0, 1 it is easy to find examples of path distance
powers admitting a simply structured eigenspace basis for the chosen eigenvalue.

Let us concentrate on the kernel of a path distance power. In Theorem 6.6 we will
characterise which path distance powers P

(d)
n with n−1

2
≤ d ≤ n − 1 admit simply

structured kernel bases. The condition n−1
2

≤ d ≤ n − 1 means that P
(d)
n has at

least one vertex that is adjacent to all other vertices. Let us explore the general
eigenspace structure of such path distance powers.

Lemma 6.2. [79] Let n
2
≤ d ≤ n − 1. Then the vectors

{(0 | e1 − e2 | 0)T , (0 | e1 − e3 | 0)T , . . . , (0 | e1 − es | 0)T},

constitute a basis of Eig(−1; P
(d)
n). �

As a direct consequence of Lemma 6.2, we can distinguish between two types of
eigenvectors of P

(d)
n for n

2
≤ d ≤ n − 1 and λ 6= −1:

vT = (x | 0 | y) type I

and

cvT = (x | j | y) type II

for some c ∈ R, c 6= 0. Formally, this distinction remains valid even for n−1
2

≤ d ≤
n − 1.

6. Distance powers of paths and circuits 69

Lemma 6.3. [79] The linear system

0 −1 −1 −1 −1 −1 −1 . . . −1 0

−1 −1 −2 −2 −2 −2 −2 . . . −2 −1

−1 −2 −2 −3 −3 −3 −3 . . . −3 −2

−1 −2 −3 −3 −4 −4 −4 . . . −4 −3

−1 −2 −3 −4 −4 −5 −5 . . . −5 −4
...

...
... etc.

...

−1 −2 −3 −k

with coefficient matrix of dimension (k + 1) × (k + 1) is solvable for k ≥ 0 if and
only if k 6≡ 3 mod 6.

In this case, the solution is

(ν,−1 + ν, . . . , 1, ν,−1 + ν,−1,−ν, 1 − ν, 1, ν)T , ν ∈ R if k ≡ 0 mod 6,
(−1, 0, . . . , 0, 1, 1, 0,−1,−1, 0, 1, 1, 0)T if k ≡ 1 mod 6,
(−2,−1, . . . , 1, 2, 1,−1,−2,−1, 1, 2, 1,−1)T if k ≡ 2 mod 6,
(1, 2, . . . ,−2,−1, 1, 2, 1,−1,−2,−1, 1, 2)T if k ≡ 4 mod 6,
(0, 1, . . . ,−1, 0, 1, 1, 0,−1,−1, 0, 1, 1)T if k ≡ 5 mod 6.

�

In the following, let
↼
x denote the vector that has the same entries as vector x, but

in reverse order.

Lemma 6.4. [79] Let A be adjacency matrix of P
(n−1)
2n , n ∈ N. Then

j 6∈ im(J − A)

if and only if n ≡ 4 mod 6. Further, if (J − A)v = j holds for v = (vi), then

2n
∑

i=1

vi =

−2 if n ≡ 5 mod 6,

0 if n ≡ 0 mod 6,

1 if n ≡ 1 mod 6,

2 if n ≡ 2 mod 6,

4 if n ≡ 3 mod 6.

For n ≡ 1 mod 6 we have

v = (r | − r | r | . . . | − r | r̃ | − r | r | − r | r)T (6.1)

with r = (1 − ν, 1, ν) and r̃ = (1 − ν, ν). If n 6≡ 1 mod 6, then v = (
↼
x | x) with

x ∈ Rn being a solution of the system from Lemma 6.3. �

70 6. Distance powers of paths and circuits

Theorem 6.5. [79] Let n−1
2

≤ d ≤ n − 1.

Then P
(d)
n is singular if and only if either

1. n ≡ 1 mod 12 ∧ (d = n+1
2

∨ d = n−1
2

) or

2. n − d ≡ 2 mod 6.

In both cases, dim ker P
(d)
n = 1. �

Proof. (Sketch) We know that a kernel basis can only contain vectors of type I
or II. The existence of a type II kernel vector (x | js | y)T is equivalent to solving

the equations (J2t − A(P
(t−1)
2t))(x | y)T = j and j T (x | y)T = −(s − 1) for a vector

(x | y) ∈ R2t. So we are looking for a vector as in Lemma 6.4, but with a prescribed
component sum. The only valid cases are s = 3, t ≡ 5 mod 6 and s = 1, t ≡ 0
mod 6. Analogously, the existence of a type I vector (x | 0s | y) leads equations

(J2t − A(P
(t−1)
2t))(x | y)T = j and j T (x | y)T = 0 and, hence, to the condition that

t ≡ 1 mod 6. The result now follows by virtue of Lemma 6.3 and the fact that the
conditions for the existence of the two vector types are mutually exclusive. �

Theorem 6.6. Let n−1
2

≤ d ≤ n − 1. Then P
(d)
n admits a simply structured kernel

basis if and only if either

1. n ≡ 1 mod 12 ∧ d = n−1
2

or

2. n − d ≡ 2 mod 6.

�

Proof. Consider the conditions for singularity given in Theorem 6.5. The condition
n ≡ 1 mod 12 ∧ d = n+1

2
is equivalent to s = 3, t ≡ 5 mod 6. From the proof

of Theorem 6.5 and Lemma 6.4 we see that the kernel is spanned by the vector
(x | js |

↼
x)T where x is given by the case k ≡ 4 mod 6 in Lemma 6.3. So in this case

there exists no simply structured basis. The condition n ≡ 1 mod 12 ∧ d = n−1
2

is equivalent to s = 1, t ≡ 0 mod 6. Here we have the case k ≡ 5 mod 6 in
Lemma 6.3, yielding a simply structured basis. Finally, the case n − d ≡ 2 mod 6
is equivalent to t ≡ 1 mod 6. We have k ≡ 0 mod 6 in Lemma 6.3 and obtain a
suitable basis vector by choosing ν = 1 so that j T (x | y)T = 0. �

6. Distance powers of paths and circuits 71

The case 1 ≤ d ≤ n
2
−1 remains still open. Computer experiments suggest that most

of the kernel bases admit simply structured bases in this case. A counterexample
for smallest odd n is the basis

{(−1, 1, 1,−1,−1, 0, 2, 0,−2, 0, 1, 1,−1,−1, 1)T}

for n = 15 and d = 5. A counterexample for smallest even n is the basis

{(−1, 1, 0,−1, 2,−1,−1, 2,−2, 0, 2,−2, 1, 1,−2, 1, 0,−1, 1, 0)T,

(−1, 0, 1,−1, 1, 1,−2, 1, 0,−2, 2, 0,−1, 2,−1,−1, 1,−1, 0, 1)T}

for n = 20 and d = 3.

6.2 Circuit distance powers

In this section we analyse distance powers of circuits. For d ≥ n−1
2

the graph

C
(d)
n is complete, so it follows that all eigenspaces of C

(d)
n admit simply structured

eigenspace bases. So let us consider the non-complete case (where 1 ≤ d < n−1
2

).
For non-complete circuit distance powers it follows directly from Theorem 3.3 is that
only eigenvalues from {−3,−2,−1, 0, 1} may potentially admit simply structured
eigenspace bases (q = 4). We will analyse for which values of n, d a circuit distance

power C
(d)
n these eigenvalues can occur.

The next two theorems are reformulations of a single theorem in [80] concerned with

the nullity of C
(d)
n .

Theorem 6.7. The eigenvalues of C
(d)
n are exactly

λ0 = 2d, λr =
sin

(

(2d + 1)ϕ
2

)

sin ϕ
2

− 1 =
cos((d + 1)ϕ) − cos(dϕ)

cos ϕ − cos 0
− 1 (6.2)

for ϕ = 2πr/n and r = 1, . . . , n − 1. �

Proof. From Theorem 2.3 it follows directly that the spectrum of a circuit power
C

(d)
n is

λr + 1 =

d
∑

j=−d

ωrj
n , r = 0, . . . , n − 1. (6.3)

Clearly, λ0 = 2d. Consider the case 1 ≤ r ≤ n − 1. The right hand side of equation
(6.3) can be transformed by means of the following well-known trigonometric identity
for the functions Dq(x) of the so-called Dirichlet kernel [98]:

Dq(x) =

q
∑

j=−q

eiqx =
sin

(

(q + 1
2
)x

)

sin x
2

. (6.4)

72 6. Distance powers of paths and circuits

This yields the first part of the claimed identity for λr. The second part follows with
the help of the cosine subtraction theorem [12]

cos α − cos β = −2 sin
α + β

2
sin

α − β

2
.

�

Corollary 6.8. A non-complete circuit distance power C
(d)
n is singular if and only if

there exist integers 1 ≤ r < n and l ∈ N0 such that dr = ln or 2(d+1)r = (2l +1)n.
�

Proof. It follows from equation (6.2) that

λr = 0 ⇐⇒ cos ((d + 1)ϕ) − cos(dϕ)

ϕ
=

cos ϕ − cos 0

ϕ
. (6.5)

In effect, we require the slopes of two particular secant lines of the cosine function
to be equal. In this case, due to the nature of the cosine curve there are only
two possible constellations for which the slopes are the same (cf. Figure 6.1). Either
both secant lines must be apart by a non-vanishing multiple of 2π or their endpoints,
if projected onto the same period of the cosine curve, must be point symmetrical
with respect to π

2
. The first condition means that dϕ = 2πl and the second yields

(d + 1)ϕ = π + 2πl. The result now follows by observing Theorem 2.3 and the fact
that ϕ = 2πr

n
. �

Corollary 6.9. A non-complete circuit distance power C
(d)
n has eigenvalue −2 if and

only if there exist integers 1 ≤ r < n and l ∈ N0 such that (d + 1)r = ln or 2dr =
(2l + 1)n. �

Proof. This is analogous to Corollary 6.8, it just turns out that the slopes are
required to have opposite and not the same signs. �

Corollary 6.10. A non-complete circuit distance power C
(d)
n has eigenvalue −1 if

and only if there exist integers 1 ≤ r < n and l ∈ N0 such that (2d + 1)r = ln. �

Proof. For λr = −1 equation (6.2) yields cos(dϕ) = cos((d+1)ϕ). This equation is
solvable for ϕ ∈ (0, 2π) if and only if there exist integers r, l with 1 ≤ r ≤ n−1, l ∈ N0

such that r = ln or (2d + 1)r = ln. The first condition has no valid solution. �

Note that from Theorem 2.3 we can easily deduce if the multiplicity of an eigenvalue
of C

(d)
n is even or odd. Simply verify that λr = λn/2−r and check the value of λn/2.

6. Distance powers of paths and circuits 73

π
2

π 3π
2

2π 5π
2

1

−1

x

f(x)

ϕ

dϕ

Figure 6.1: Cosine secant lines with same slopes

Observation 6.11. All eigenvalues of C
(d)
n have even multiplicity, except λ = −2

for even n and odd d, λ = 0 for even n and even d, and λ = 2d. �

Owing to Theorem 6.7, every valid solution r found in one of the Corollaries 6.8, 6.9,
6.10 contributes to the multiplicity of the respective eigenvalue. So the number of
valid solutions r equals the corresponding eigenvalue multiplicity. By revisiting the
previous corollaries we can thus precisely determine the actual respective eigenvalue
multiplicities.

Let ord(p, n) denote the order of the prime divisor p with respect to n, i.e.

ord(p, n) = max{j ∈ N0 : pj|n}.

Theorem 6.12. [80] For given n, d ∈ N let g := gcd(n, d) and h := gcd(n, d + 1).

If C
(d)
n is non-complete, then

dim ker C(d)
n =

g − 1 if ord(2, d + 1) ≥ ord(2, n),

g + h − 1 if ord(2, d + 1) < ord(2, n) and 2 ∤d,

g + h − 2 if ord(2, d + 1) < ord(2, n) and 2|d.

�

Proof. We count the valid solutions in Corollary 6.8.

Claim 1. There exist exactly g−1 values of r (with 1 ≤ r < n) such that a solution
l ∈ N0 exists for dr = ln.

Since gcd(n
g
, d

g
) = 1 we see that the equation r d

g
= ln

g
has solutions l ∈ N0 and

1 ≤ r < n if and only if r = j n
g

with integer j satisfying 1 ≤ j ≤ g − 1.

74 6. Distance powers of paths and circuits

Claim 2. Let ord(2, d+1) < ord(2, n). Then there exist exactly h values of r (with
1 ≤ r < n) such that a solution l′ ∈ N0 exists for 2(d + 1)r = (2l′ + 1)n.

First note that n
h

is even so that gcd(d+1
h

, n
2h

) = 1. It follows that the equation
r d+1

h
= (2l′ + 1) n

2h
has solutions l, r ∈ N0 exactly for r = j′ n

2h
and 2l′ + 1 = j′ d+1

h

with odd integer j′ satisfying 1 ≤ j′ < 2h (note that d+1
h

is odd).

Claim 3. Let ord(2, d + 1) ≥ ord(2, n). Then 2(d + 1)r = (2l′ + 1)n is not solvable
with 1 ≤ r < n and l′ ∈ N0.

Since n
h

is odd it follows that gcd(2d+1
h

, n
h
) = 1. Consequently, 2r d+1

h
is even and

(2l′ + 1)n
h

is odd so that we cannot solve 2r d+1
h

= (2l′ + 1)n
h
.

Claim 4. Let ord(2, d + 1) < ord(2, n). If d is even, then r = n
2

is the only integer
1 ≤ r < n such that simultaneous solutions l, l′ ∈ N0 can be found for the equations
dr = ln and 2(d + 1)r = (2l′ + 1)n. If d is odd then none such r exists.

From Claims 1 and 2 it follows that necessarily j1
n
g

= (2j2 + 1) n
2h

for integers j1, j2

satisfying 1 ≤ j1 ≤ g − 1 and 0 ≤ j2 ≤ h − 1. Equivalently, j12h = (2j2 + 1)g must
hold. Assume that d is even. Since n is necessarily even it follows that g is even,
too. But gcd(g

2
, h) = 1 yields that j1 must be multiple of g

2
, hence we obtain valid

solutions j1 = g
2

and j2 = h−1
2

. This yields r = n
2
. Assume that d is odd. Then g

must be odd as well so that j12h = (2j2 + 1)g cannot be solved.

In order to finish the proof of the theorem it now suffices to combine the above
claims. �

Theorem 6.13. For given n, d ∈ N let g := gcd(n, d) and h := gcd(n, d + 1). If

C
(d)
n is non-complete, then

dim Eig(−2; C(d)
n) =

h − 1 if ord(2, d) ≥ ord(2, n),

g + h − 1 if ord(2, d) < ord(2, n) and 2|d,

g + h − 2 if ord(2, d) < ord(2, n) and 2 ∤d.

�

Proof. In analogy to the proof of Theorem 6.12 we find that 2dr = (2l + 1)n is
solvable for r if and only if 2g|n, with solutions n

2g
+ k n

g
(k = 0, . . . , g − 1). The

equation (d + 1)r = ln can be solved for r if and only if h > 1, with solutions k n
h

(k = 1, . . . , h − 1).

A solution r appears in both sequences at once if and only if there exist integers p, q
such that 0 ≤ p ≤ g − 1, 1 ≤ q ≤ h − 1 and n

2g
+ pn

g
= q n

h
. The latter condition

is equivalent to (2p + 1)h = 2qg. Since gcd(g, h) = 1 the only possible common
solution is r = n

2
for p = g−1

2
, q = h

2
. This solution exists if and only if h and g − 1

are odd, which is equivalent to d being odd since n is necessarily even. �

6. Distance powers of paths and circuits 75

Theorem 6.14. Let g = gcd(2d + 1, n). If C
(d)
n is non-complete, then the multi-

plicity of −1 as an eigenvalue equals g − 1. �

Proof. We count the valid solutions in Corollary 6.10. Let g = gcd(2d + 1, n).
Then there exists q ∈ N such that 2d+1 = qg with gcd(q, n

g
) = 1. So (2d+1)r = ln

if and only if rq = ln
g
. Because of gcd(q, n

g
) = 1 we get the g solutions r = l

q
n
g

for
l
q

= 1, 2, . . . , g − 1. �

Recall that in section 2 we introduced the conjugate transpose F ∗ of the Fourier
matrix. The (r + 1)-th column of F ∗ yields a complex eigenvector for eigenvalue λr

of Theorem 2.3. The same applies to the circuit power eigenvalues given in Theorem
6.7.

Theorem 6.15. If λ ∈ {−2,−1, 0} is an eigenvalue of the non-complete graph C
(d)
n ,

then the corresponding eigenspace admits a simply structured basis. �

Proof. In the following, let col(r) denote the (r + 1)-th column of F ∗.

Case λ = 0: Let g = gcd(n, d) and h = gcd(n, d + 1). It follows from the proof of
Theorem 6.12 that the vectors u1, . . . , ug−1 with uk =

√
n · col(kn/g) form a basis of

a subspace of ker C
(d)
n . We will show that the vectors u′

1, . . . , u
′
g−1 with

u′
k =

n/g−1
∑

m=0

ek+mg − eg+mg

constitute an alternative (real) basis of this subspace.

Let M be the matrix with columns u1, . . . , ug−1. Fix some 1 ≤ ι ≤ g − 1 and let
M ′ be the matrix with columns u1, . . . , ug−1, u

′
ι. Clearly, rkM ′ ≥ rk M = g − 1.

Actually, we have rkM ′ = g − 1 since the sum of all row vectors of M ′ vanishes.
To see this, consider the summation of the values in a single column. We have
uk = (ω

0kn/g
n , ω

1kn/g
n , ω

2kn/g
n , . . . , ω

(g−1)kn/g
n)T so that its component sum is

g−1
∑

m=0

ωmkn/g
n =

g−1
∑

m=0

ωkm
g (6.6)

and therefore a Gaussian period. Because of 1 ≤ k ≤ g − 1 we have g ∤ k so that,
according to the theory of Gaussian periods [65] [22], the component sum in equation
(6.6) vanishes. Moreover, the component sum of u′

ι vanishes, too. As a result, we see
that u′

ι is a linear combination of the vectors uk. Since the vectors u′
1, . . . , u

′
g−1 are

obviously linearly independent, it follows that they are a basis for the space spanned
by u1, . . . , ug−1.

76 6. Distance powers of paths and circuits

In the case that ord(2, d + 1) < ord(2, n), equivalently 2h|n, the vectors v1, . . . , vh

with vk =
√

n · col(kn/h − n/(2h)) form a basis of another subspace of ker C
(d)
n .

A similar argument as for the vectors u′
k shows that the vectors v′

1, . . . , v
′
h with

v′
k =

n/h−1
∑

m=0

(−1)mek+mh

form a basis of the subspace of ker C
(d)
n spanned by v1, . . . , vh.

Now consider the cases listed in Theorem 6.12:

• If ord(2, d + 1) ≥ ord(2, n), then {u′
1, . . . , u

′
g−1} is a basis of ker C

(d)
n .

• If ord(2, d + 1) < ord(2, n) and 2 ∤ d, then {u′
1, . . . , u

′
g−1, v

′
1, . . . , v

′
h} is a basis

of ker C
(d)
n .

• If ord(2, d + 1) < ord(2, n) and 2|d, then {u′
1, . . . , u

′
g−1, v

′
1, . . . , v

′
h} can be re-

duced to a basis of ker C
(d)
n .

All mentioned bases are simply structured.

Case λ = −2: Use Theorem 6.13. This case is analogous to case λ = 0, only with
swapped roles of g and h. We have complex subspace basis vectors u1, . . . , ug with
uk =

√
n · col(kn/g − n/(2g)) and can find real basis vectors u′

1, . . . , u
′
g with

u′
k =

n/g−1
∑

m=0

(−1)mek+mg

for the same subspace. Likewise, we have complex vectors v1, . . . , vh−1 with vk =√
n · col(kn/h) and real vectors v′

1, . . . , v
′
h−1 with

v′
k =

n/h−1
∑

m=0

ek+mh − eh+mh.

Case λ = −1: Using Theorem 6.14, we can proceed exactly as in the first part of
case λ = 0, just with g = gcd(n, 2d + 1). We obtain the same complex vectors
u1, . . . , ug−1 and real vectors u′

1, . . . , u
′
g−1. �

6. Distance powers of paths and circuits 77

Example 6.16. According to Theorem 6.15, the vectors

1
0
−1
0
1
0
−1
0
...
1
0
−1
0

,

0
1
0
−1
0
1
0
−1
...
0
1
0
−1

,

1
0
−1
1
0
−1
1
0
−1
...
1
0
−1

,

0
1
−1
0
1
−1
0
1
−1
...
0
1
−1

constitute a simply structured eigenspace basis of C
(14)
36 for eigenvalue −2. �

There remain two further eigenvalues that may admit simply structured eigenspace
bases, namely, −3 and 1. These cases have not been solved yet, but computational
experiments suggest the following:

Conjecture 6.17. Let C
(d)
n be a non-complete circuit distance power.

1. C
(d)
n has eigenvalue −3 if and only if 6|n and d ≡ 4 mod 6 for 1 ≤ d < n−1

2
.

In this case, its multiplicity equals two, with r ∈ {n
6
, 5n

6
} in equation (6.2).

2. C
(d)
n has eigenvalue 1 if and only if 6|n and d ≡ 1 mod 6 for 1 ≤ d < n−1

2
. In

this case, its multiplicity equals two, with r ∈ {n
6
, 5n

6
} in equation (6.2).

�

Corollary 6.18. If Conjecture 6.17 holds true, then the eigenvalues −3 and 1 of
C

(d)
n admit simply structured eigenspace bases. �

Proof. Let λr = −3 or λr = 1 be eigenvalue of C
(d)
n . It it easily verified that in

both cases {(1, 1, 0,−1,−1, 0, . . .)T , (1, 0,−1,−1, 0, 1, . . .)T} is a simply structured
basis of the eigenspace for eigenvalue λr. �

As a first step towards proving Conjecture 6.17, it is readily verified with equation
(6.2) that λr = 1 for r = n/6 or r = 5n/6 if and only if 6|n and d ≡ 4 mod 6 for
1 ≤ d < n−1

2
(analogously for λr = −3). Moreover, for n

6
< r < 5n

6
we have sin ϕ

2
> 1

2

so that |λr +1| < 2. So it remains to show that λr 6∈ {−3, 1} if only 0 < r < n
6

(note
that r is integer).

78 6. Distance powers of paths and circuits

7. Product graphs and related classes 79

7 Product graphs and related classes

In this section we consider product graphs. Such graphs can be created from numer-
ous graph product operations. The names of these operations and the symbols used
to denote them vary greatly in common literature. We follow the terminology of [17].
A common feature of all product operations is that the vertex sets of the resulting
graphs are Cartesian products of the graphs involved in the respective product op-
erations. Many properties of product graphs can be conveniently expressed in terms
of the properties of the original graphs, including eigenvalues and eigenvectors.

7.1 NEPS

Most of the common graph product operations can be classified as NEPS (acronym
for ”non-complete extended p-sum”) operations. Given a set B ⊆ {0, 1}n\{(0, . . . , 0)}
and graphs G1, . . . , Gn, the NEPS of these graphs with respect to ”basis” B is the
graph G with vertex set V (G) = V (G1)× . . .× V (Gn) and edge set E(G) such that
(x1, . . . , xn), (y1 . . . , yn) ∈ V (G) are adjacent if and only if there exists an n-tuple
(β1, . . . , βn) ∈ B such that xi = yi whenever βi = 0 and xi ∼ yi in Gi whenever
βi = 1.

For n = 2, commonly used products are

• the direct sum G1 + G2 with B = {(0, 1), (1, 0)},

• the direct product G1 × G2 with B = {(1, 1)} and

• the strong product G1 ∗ G2 with B = {(0, 1), (1, 0), (1, 1)}.

In section 7.2 the far less common left strong product G1⊲G2 with B = {(1, 0), (1, 1)}
will be used.

Since the direct sum commutes it makes sense to extend its definition to arbitrary
n. We write rG for the r term sum G + . . . + G. Note that the left strong product,
on the other hand, need not commute.

According to [17], the adjacency matrix of a NEPS G of graphs G1, . . . , Gn with
basis B is

A(G) =
∑

β∈B

A(G1)
β1 ⊗ . . . ⊗ A(Gn)βn.

We now cite a well-known result on the eigenvalues of NEPS graphs:

Theorem 7.1. [17] For i = 1, . . . , n, let λi1, . . . , λini
be the eigenvalues of the graph

Gi with ni vertices with respective linearly independent eigenvectors xi1, . . . , xini
.

80 7. Product graphs and related classes

Then the eigenvalues of the NEPS G of G1, . . . , Gn with basis B are exactly

Λi1,...,in =
∑

β∈B

λβ1

1i1
· . . . · λβn

nin

with ik = 1, . . . , nk for k = 1, . . . , n.

With each Λi1,...,in associate a vector xi1,...,in = x1i1 ⊗ . . . ⊗ xnin . Then, xi1,...,in is an
eigenvector of G for eigenvalue Λi1,...,in. Together, these vectors form a complete set
of linearly independent eigenvectors of G. �

It follows from Theorem 7.1 that the eigenvalues of the direct sum G + H add up
(as already shown in 1947 by Rutherford [77]) whereas for the direct product they
are multiplied (hence justifying the names of these operations). The eigenvalues of
the left strong product G1 ⊲ G2 are of the form λi(µj + 1).

Corollary 7.2. If the eigenvalues of G1 and G2 are integer, then also the eigenvalues
of every NEPS of G1 and G2 are integer. If for every eigenvalue of G1 and G2 there
exists a simply structured eigenspace basis, then this property also holds for every
NEPS of G1 and G2. �

Corollary 7.2 generalises a number of previously known results on graph products
with integer eigenvalues. The special case that cube-like graphs have only integer
eigenvalues dates back to 1975, cf. [61].

More information on NEPS and further generalisations can be found in [17], [16]
and [70].

7.2 Cayley graphs and Hamming graphs

Cayley graphs have been an object of study in algebraic graph theory for some time
now. They are closely linked to groups, encoding their structures. To be precise,
the Cayley graph Cay(G, C) for a given group G and a subset C ⊆ G has vertex set
G and edges exactly between those vertices g, h for which g−1h ∈ C [10].

We are interested in certain properties of the unitary Cayley graphs Cay(Zn, Un).
Here, Un denotes the units of Zn. We can describe the graph Cay(Zn, Un) as the
graph with vertex set {1, . . . , n} and an edge between vertices i and j exactly if
gcd(i − j, n) = 1.

Some results on unitary Cayley graphs in particular can be found in [8], [36], [27]
and [58]. Note that the unitary Cayley graphs are not to be confused with the
coprime graphs of integers, which have a very similar definition (two vertices i, j
being adjacent exactly if gcd(i, j) = 1) [42], cf. section 9.

7. Product graphs and related classes 81

In this section we first expose a link between unitary Cayley graphs and Hamming
graphs. The latter are a class of graphs typically related to communication theory.
Afterwards we show that all eigenspaces of Hamming graphs and unitary Cayley
graphs admit simply structured bases.

Let us first define the class of Hamming graphs. These graphs have evolved over
time so that in today’s literature the term ”Hamming graph” is used for the original
class but also for many of the possible generalisations.

The original Hamming graph is defined to model the 1-distance relation in a Ham-
ming scheme. It means that, given an alphabet of m letters, all possible words with
r letters from this alphabet are formed. Some definitions even restrict themselves
to a binary alphabet. Each of the mr words is associated with a graph vertex. Two
vertices are joined by an edge if their Hamming distance is one, i.e. if their associated
words differ in exactly one letter position.

Two immediate generalisations come to mind. Firstly, one can allow each letter po-
sition to use its own private alphabet. Secondly, one can model alternative distance
relations in the Hamming scheme by joining edges if the Hamming distance is one
from a given list K. Our definition of the class of Hamming graphs includes both
extensions. We write Ham(m1, . . . , mr; K) where the respective alphabet sizes are
m1, . . . , mr and K a list of positive Hamming distances.

In the 1-distance relation Hamming graph the notions of graph theoretical distance
and Hamming distance coincide. Therefore, its r-th distance power is isomorphic to
an 1, . . . , r-distance relation Hamming graph.

It is not difficult so see that this graph is isomorphic to the direct sum rKm. Other
isomorphies are derived just as easily:

Lemma 7.3. Let 1 ≤ d ≤ r. Then,

Ham(m1, . . . , mr; 1) ≃ Km1 + . . . + Kmr
,

Ham(m1, . . . , mr; 1, . . . , d) ≃ (Km1 + . . . + Kmr
)(d),

Ham(m1, . . . , mr; r) ≃ Ham(m1, . . . , mr; 1, . . . , r − 1).

�

Theorem 7.4. Let n be the product of distinct primes p1, . . . , pr. Then,

Cay(Zn, Un) ≃ Ham(p1, . . . , pr; r).

�

82 7. Product graphs and related classes

Proof. Let n = p1 . . . pr be a square-free product of primes. We first establish a
bijection between the vertex sets of Cay(Zn, Un) and Ham(p1, . . . , pr; r). Associate
with every x ∈ Zn = {0, 1, . . . , n − 1} the vector (x1, . . . , xr) such that each entry
xi is the residue of x modulo pi. This mapping is injective because otherwise the
Chinese Remainder Theorem would be contradicted.

Two vertices (x1, . . . , xr) and (y1, . . . , yr) in Ham(p1, . . . , pr; r) are adjacent if and
only if xi − yi 6= 0 for all i = 1, . . . , r. Viewing the entries as residues we see that
this means exactly that pi ∤ xi − yi for all i = 1, . . . , r. According to the Chinese
Remainder Theorem, this is equivalent to pi ∤ x − y. Consequently, we arrive at
gcd(x − y, n) = 1, which is the condition for adjacency in Cay(Zn, Un). �

Theorem 7.5. Let m = pα1
1 · . . . ·pαr

r such that the pi are the distinct prime divisors
of m. Let n = p1 . . . pr and s = m

n
. Then,

Cay(Zm, Um) ≃ Cay(Zn, Un) ⊲ Ks.

�

Proof. Let us revisit the proof of Theorem 7.4. We can choose x e.g. from
n, . . . , 2n − 1 without any impact since the equations are read modulo pi. Con-
sequently, x and y are adjacent in Cay(Zm, Um) if and only if for every choice of
j, k ∈ {0, . . . , s − 1} the vertices x + jn and y + kn are adjacent. So we can extend
Cay(Zn, Un) to Cay(Zm, Um) by forming the product Cay(Zn, Un)⊲Ks and identifying
each vertex (u, v) of the product with the vertex u + vn of Cay(Zm, Um). Note here
that the left strong product with a complete graph Ks in effect means splitting each
vertex of the left hand operand graph s − 1 times (including neighbourhood). �

Corollary 7.6. Use the same definitions for m, pi, s as in Theorem 7.5. Then,

Cay(Zm, Um) ≃ (Kp1 + . . . + Kpr
)(r−1) ⊲ Ks.

�

Proof. This follows from Theorem 7.5 together with Theorem 7.4 and Lemma
7.3. �

A striking property of the adjacency matrix of Cay(Zn, Un) is that it can be obtained
from its first column by repeated downward rotation, so it is a circulant. As noted in
section 2, the columns of the conjugate transpose F ∗ of the n×n Fourier matrix form
a universal set of eigenvectors. However, the entries of these eigenvectors involve

7. Product graphs and related classes 83

roots of unity and are usually not real. It is not immediately clear how to construct
a real basis from these vectors, let alone with further special properties.

We are now concerned with obtaining real basis vectors for eigenspaces, in particular
with entries from the set {0, 1,−1} only. We will show the existence of such bases
for the eigenspaces of Cay(Zn, Un) but beforehand we need some auxiliary results.

Theorem 7.7. Let G be a graph on n vertices and assume that for some positive
integer d the distance powers G(1), G(2), . . . , G(d) are simultaneously diagonisable by
the eigenvectors v[1], . . . , v[n].

Then for every positive integer m and every linearly independent set of m eigenvec-
tors w[j] of Km the distance powers H(1), H(2), . . . , H(d) with H = G+Km are simul-
taneously diagonisable by the eigenvectors v[i]⊗w[j] for i = 1, . . . , n and j = 1, . . . , s.

�

Proof. According to Theorem 7.1 we only need to assert that every vector u =
v[i] ⊗ w[j] is also an eigenvector of H(i) for every 1 ≤ i ≤ d. In order to test this we
can conduct the multiplication of the adjacency matrix of H (i) with a vector u on
the graph itself. We assign the k-th component of u as a weight to the k-th vertex
of H(i). Then we require that some λ exists such that for every vertex the sum over
the weight of its neighbours is equal to λ times its own weight.

Up to isomorphy, the graph H is formed by taking s copies of G and joining all
vertices that represent the same vertex in G.

Now fix a pair of vectors v = v[i0], w = w[j0]. When applying the vector v⊗w to the
vertices of H the vertices of the k-th copy of G are assigned the respective values of
v multiplied with the k-th component of w.

Let 1 ≤ q ≤ d and pick a vertex x of H (q). Let y be a neighbour of x and consider
a shortest path P from x to y in H . Since the corresponding vertices of the copies
of G are mutually connected we may assume that P starts with a number of edges
joining the copies of G and then a number of edges within a single copy, totalling
length d. This yields two segments P1 and P2 of P . Clearly, the length of P1 must
be 0 or 1 because it cannot exceed the diameter of Km.

So the set of neighbours of x in H consists of the neighbours of x in G(q) (referring
to the copy of G that x belongs to) and the neighbours of the vertices corresponding
to x in G(q−1) (referring to all the other copies of G in H). By assumption v is an
eigenvector for the distance powers G(q) and G(q−1). Let the respective eigenvalues
be µ and ν.

Without loss of generality we may make a number of assumptions. The weight of
x may be assumed non-zero because otherwise the sum over its neighbour weights
vanishes by Theorem 7.1 so that nothing remains to show. Without loss let the

84 7. Product graphs and related classes

weight of x equal one. We may assume that x lies in the first copy of G in H .
Further, let m ≥ 2 because the case m = 1 is trivial. Subsequently, the choice of
w can be limited to the vectors (1, . . . , 1) and (1,−1, 0, . . . , 0) because these vectors
can be extended to a set of linearly independent eigenvectors of Km such that the
added vectors all vanish on x.

Let Σ denote the respective sum over the weights of the neighbours of x. Then we
have Σ = µ + (m − 1)ν if w = (1, . . . , 1) and Σ = µ − ν if w = (1,−1, 0, . . . , 0). As
we see, the result is independent of the particular choice of x. �

Observing Corollary 7.2, let us now merge our previous results into our main theo-
rem:

Theorem 7.8. Both Hamming graphs Ham(p1, . . . , pr; 1, . . . , d) and the unitary
Cayley graphs Cay(Zn, Un) have only integer eigenvalues. All associated eigenspaces
admit simply structured bases. �

Proof. From Corollary 7.6 and Lemma 7.3 it follows that the graphs Cay(Zn, Un)
and Ham(p1, . . . , pr; 1, . . . , d) can be constructed from complete graphs by a number
of certain graph operations. Km has a simply structured eigenspace basis for every
eigenvalue. Because of Corollary 7.2 the simple basis structure property is preserved
for the direct sum and the left strong product. Theorem 2.2 asserts this for the
complement of a regular graph. Theorem 7.7 guarantees that taking the distance
power of a direct sum of complete graphs also preserves the property. Note that
regularity of (Kp1 + . . . + Kpr

)(r−1) follows from Lemma 7.3 and Theorem 7.4. �

The fact that unitary Cayley graphs are integral (i.e. that they have only integer
eigenvalues) also follows from [58] since they can be expressed as Ramanujan sums
(which have only integer values). In [93] a complete characterisation of all integral
circulant graphs is achieved. It is interesting to note that circulant graphs can be
used to model the behaviour of quantum systems. Such systems exhibit periodicity
if any only if the underlying circulant graph is integral [85].

7.3 Sudoku graphs

The recreational game of Sudoku has attained quite some popularity in recent years.
A traditional Sudoku puzzle consists of a 3 × 3 arrangement of square blocks con-
sisting of 3×3 cells each. Each cell may be empty or contain a number ranging from
1 to 9, see Figure 7.1. The aim of the puzzle is to fill the empty cells with numbers
from 1 to 9 such that every row, column and block of the puzzle contains all of the
numbers 1, . . . , 9. A properly set up Sudoku puzzle permits only one unique way
of filling the missing numbers. Many different solution techniques exist for Sudoku

7. Product graphs and related classes 85

puzzles [26]. The game can be generalised to n4 instead of 34 = 81 cells so that
numbers from 1 to n need to be filled in. Let us call these puzzles n-Sudokus.

9 2 1 8 5 7

3 1 6 4

6 5 4 7 3 2

5 1 6 7 4 8

6 3 5 1

9 3 5 8 6 2

8 1 9 2

1 7 3

2 3 9 8 7 4 1 6

Figure 7.1: Example Sudoku puzzle

As a result of Sudoku’s general popularity, there has also been an increasing amount
of mathematical research on it. In particular, the puzzle exhibits a close connection
to graph theory. Given an empty n-Sudoku puzzle, the corresponding Sudoku graph
Sud(n) on n4 vertices is derived by establishing a one-to-one mapping between the
vertices and the cells and adding edges between vertices if and only if the correspond-
ing cells are situated in the same row, column or block. This process is depicted in
Figure 7.2.

Figure 7.2: Deriving the graph Sud(2) from a 2-Sudoku puzzle

Numbers in the cells of an n-Sudoku puzzle can be interpreted as a vertex colouring
of the corresponding Sudoku graph. Hence, the task of solving a Sudoku puzzle is

86 7. Product graphs and related classes

the mathematical task of extending a partial vertex colouring to a valid n2-colouring
of the entire graph (note that the chromatic number of an n-Sudoku puzzle is n2

[50]).

Mathematical research on Sudoku has mainly concentrated on aspects of colouring
and isomorphism. Typical questions considered are:

• How many completed Sudoku puzzles exist? How many of them are essentially
distinct (i.e. how many representative solutions exist from which all other
solutions can be constructed by means of permutation or other operations)?

• What is the minimum number of filled cells for which a Sudoku puzzle with a
unique solution exists?

• What is the minimum number of filled cells such that for every Sudoku puzzle
with that number of filled cells a unique solution exists?

• Given a completed Sudoku puzzle, what is the minimum number of entries to
erase such that a non-unique solution is guaranteed to exist?

Further information on the topic can be found in references like [32], [76], [47], [29],
and [50].

So far, it appears that no results have been published on the spectral properties of
Sudoku graphs. In this section we show that they have only integer eigenvalues and
admit simply structured bases for all eigenspaces. The key is the following lemma:

Lemma 7.9. Let n ∈ N and G1, . . . , G4 = Kn. If G is the NEPS of the Gi for ba-
sis B = {(0, 1, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},
then G ≃ Sud(n). �

Proof. We may assume that V (Gi) = {1, . . . , n}. Construct a one-to-one mapping
between the 4-tuples in V (G) = {1, . . . , n}4 and the cells of the Sudoku grid as
follows. For every vertex v = (a, b, c, d) ∈ V (G), associate with v the cell Γv that
lies in row number (a− 1)n+ b and column number (c− 1)n+ d of the Sudoku grid.
Thus, a, c index the vertices and horizontal block number, respectively, whereas b, d
index the positions inside the block. So the mapping is clearly one-to-one.

Now fix a vertex v ∈ V (G) and some b ∈ B and consider how b selects certain
vertices of G as the neighbours of v. We express this in terms of the associated grid
cells:

• For b = (0, 1, 0, 1), select all cells in the block of Γv that do not lie in the same
row or column as Γv.

7. Product graphs and related classes 87

• For b = (1, 1, 0, 0), select all cells in the same column as Γv that do not lie in
the same block nor at the same relative position inside the block as Γv.

• For b = (1, 0, 0, 0), select all cells in the same column as Γv that do not lie in
the same block but at the same relative position inside the block as Γv.

• For b = (0, 1, 0, 0), select all cells in the same column as Γv that lie in the same
block but not at the same relative position inside the block as Γv.

The remaining cases can be resolved in the same manner. Combining the cases, we
find that (cf. Figure 7.3)

• subset S1 = {(1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)} selects all cells in the same col-
umn as Γv except Γv itself,

• subset S2 = {(0, 0, 1, 1), (0, 0, 1, 0), (0, 0, 0, 1)} selects all cells in the same row
as Γv except Γv itself,

• subset S3 = {(0, 1, 0, 1)} selects all cells of the block of Γv not selected by any
of the two other subsets, with the exception of Γv itself.

But these are exactly the adjacencies of the Sudoku graph. �

Figure 7.3: Selection of Sudoku cells for basis sets S1, S2, S3, B

Theorem 7.10. All eigenvalues of Sud(n) are integers. All corresponding eigenspaces
admit simply structured bases. �

Proof. Observe that Kn has single eigenvalue n−1 with eigenspace basis {jn} and
eigenvalue −1 of multiplicity n−1 with eigenspace basis {e1−e2, e1−e3, . . . , e1−en}.
The result now follows directly from Lemma 7.9 and Corollary 7.2. �

To complete our analysis of the spectrum of Sudoku graphs, let us determine their
exact eigenvalues and eigenvalue multiplicities.

88 7. Product graphs and related classes

Theorem 7.11. Let n ≥ 2. Then the spectrum of Sud(n), in increasing order, is

−1 − n (2n3−4n2+2n),

−1 (n4−2n3−n2),

n2 − 2n − 1 (n2−2n+1),

n2 − n − 1 (2n2−2n),

2n2 − 2n − 1 (2n−2),

3n2 − 2n − 1 (1).

The graph Sud(2) has 5 distinct eigenvalues. For n > 2, the graph Sud(n) has 6
distinct eigenvalues. �

Proof. According to Theorem 7.1 and Lemma 7.9, the eigenvalues of Sud(n) are
of the form

Λλ1,λ2,λ3,λ4 = λ1λ2 + λ2λ4 + λ3λ4 + λ1 + λ2 + λ3 + λ4,

where the λi are eigenvalues of Kn. Since Kn has only eigenvalues 1 and k = n − 1
we only need to check 16 cases so that we can conveniently determine the eigenvalues
of Sud(n):

−2 − k = Λk,−1,−1,k = Λ−1,k,−1,−1 = Λ−1,−1,−1,k = Λ−1,k,k,−1,

−1 = Λk,−1,k,−1 = Λ−1,−1,k,−1 = Λ−1,−1,−1,−1 = Λk,−1,−1,−1,

k2 − 2 = Λ−1,k,−1,k,

k2 + k − 1 = Λk,k,−1,−1 = Λ−1,−1,k,k = Λk,−1,k,k = Λk,k,k,−1,

2k2 + 2k − 1 = Λ−1,k,k,k = Λk,k,−1,k,

3k2 + 4k = Λk,k,k,k.

The respective multiplicities are readily concluded from this analysis and the multi-
plicities of the eigenvalues of Kn. It is easy to check that for n ≥ 2 the eigenvalues
can be ordered as follows:

−1 − n < −1 ≤ n2 − 2n − 1 < n2 − n − 1 < 2n2 − 2n − 1 < 3n2 − 2n − 1.

For n > 2 this chain of inequalities is strict. �

8. Cographs 89

8 Cographs

The class of cographs has numerous applications in optimisation, scheduling or even
in biology. Consequently, many research results on cographs have been obtained
in recent years (see [11] for an overview). The contribution of this chapter is to
study the eigenspaces of cographs for eigenvalues 0 and −1, namely, to derive the
multiplicities of these eigenvalues and to construct particularly simple eigenspace
bases.

The particular eigenvalues 0 and −1 play a role in several areas of algebraic graph
theory. For example, in the theory of star partitions the eigenvalues 0 and −1 are
special cases (cf. [17], chapter 7). Another interesting result is that singular line
graphs of trees can be partitioned into two classes, depending on whether a certain
graph has either 0 or −1 as a multiple eigenvalue [88], [44].

For cographs there exist a number of equivalent definitions [11]. For what follows a
constructive definition of cographs in terms of split pairs is best suited. Define an
operation O1 on a vertex of a given graph that splits the vertex i.e. it introduces
a new vertex with the same neighbourhood. Analogously, an operation O2 splits a
vertex in the same manner, but afterwards adds an edge that connects it with the
newly created vertex. The class of cographs is defined as all finite graphs that can
be obtained from a single vertex by a series of O1 and O2 operations.

In view of the defined operations we call a pair (u, v) of vertices a split pair if their
outer neighbourhood is the same, i.e. if NG(u)\{v} = NG(v)\{u}. Then a graph is a
cograph exactly if it can be reduced to a single vertex by subsequently joining split
pairs. This reduction process yields a characteristic series-parallel decomposition
tree for every cograph, the so-called cotree.

Every cograph contains at least one split pair, but usually it contains many eligible
pairs that can be grouped as follows. Given a graph G with vertex set V , we call a
set M ⊆ V a module in G if NG(u) \M = NG(v) \M holds for every pair u, v from
M . Consequently, a split pair is a module M with |M | = 2. A maximum module
M with |M | ≥ 2 such that M is an independent set of vertices in G is called an O1

cluster. Analogously, if a maximum module M induces a clique in G, then we call
M an O2 cluster. A straightforward argument shows that a vertex cannot be part
of more than one cluster.

The number of components of a cograph equals the maximum number of consecutive
O1 operations at the beginning of its construction. The complement G of a cograph
G is also a cograph, created by the sequence of exactly the opposite O1 and O2

operations. Hence, G is connected if and only if G is not connected.

We now show that every cograph admits simply structured eigenspace bases for
eigenvalues 0 and −1. These bases can be obtained without solving systems of
equations. Further, we study the evolution of these eigenspaces when constructing
a cograph by repeated vertex split operations.

90 8. Cographs

The next theorem proves the so-called rank property of the adjacency matrix of a
cograph. This property was first observed by Türker [94] and then proved by Royle
[75]:

Theorem 8.1. [75], [94], [13] The rank of a cograph is equal to the number of
distinct non-zero rows of its adjacency matrix. �

Remark 8.2. Considering Theorem 8.1, a natural question to ask [75] is whether
there exist other common graph classes that have the same rank property of the
adjacency matrix as cographs.

Trivially, one can list the path graphs P2n with even number of vertices and the
complete graphs Kn.

It is also not difficult to determine exactly which trees have the property that the
rank is equal to the number of distinct non-zero rows of the adjacency matrix: The
number of distinct non-zero rows of the adjacency matrix of a tree is exactly the
number of leaves minus the number of distinct leaf neighbours that aren’t leaves
themselves. Since the rank of a tree adjacency matrix equals the number of vertices
covered by a maximum matching of the tree [19] it follows easily that the rank
property holds for exactly those trees for which a matching exists that covers all
vertices except the leaves and their non-leaf neighbours.

Moreover, certain generalised line graphs have the rank property, cf. [63]. �

We make use of Theorem 8.1 to state a simply structured basis for the kernel of a
cograph:

Theorem 8.3. Let G be a cograph. Then a simply structured basis of Eig(0; G)
can be obtained as follows:

1. For every O1 cluster M of non-isolated vertices construct |M | − 1 vectors by
assigning weights

• 1 to a fixed vertex of M ,

• −1 in turn to exactly one other vertex of M ,

• 0 to all other vertices of G.

2. For every isolated vertex create a unit vector what has weight 1 on the respec-
tive isolated vertex.

�

8. Cographs 91

Proof. Since O1 clusters cannot overlap the constructed vectors are, obviously,
linearly independent. Using the summation rule it is readily verified that all the
vectors belong to the kernel of G.

Next, observe that the maximal sets of vertices indexed by the redundant rows of
the adjacency matrix of G form exactly the O1 clusters of G and that the all-zero
rows correspond to the isolated vertices. Thus, the basis property of the constructed
vectors follows directly from Theorem 8.1. �

Corollary 8.4. Let G be a cograph. Let M1 be the set of all O1 cluster vertices
of the connected components of G with at least 2 vertices each and let m1 be the
number of such clusters. If by s we denote the number of isolated vertices of G, then

µ(0; G) = |M1| − m1 + s.

�

The next theorem reveals a fundamental relation between the kernel of a graph and
the eigenspace for eigenvalue −1 of its complement.

Theorem 8.5. [81] Let G be a graph with n vertices. Then,

1. Eig(0; G) ∩ Eig(−1; G) = {x ∈ Eig(0; G) : j T x = 0} = {x ∈ Eig(−1; G) :
j T x = 0},

2. | dimEig(0; G) − dim Eig(−1; G)| ≤ 1,

3. Eig(0; G) ⊂ Eig(−1; G) if dim Eig(0; G) < dim Eig(−1; G),

4. Eig(0; G) = Eig(−1; G) if dim Eig(0; G) = dim Eig(−1; G),

5. Eig(0; G) ⊃ Eig(−1; G) if dim Eig(0; G) > dim Eig(−1; G).

�

For cographs, the eigenspace inclusion relation described in Theorem 8.5 is not
arbitrary:

Theorem 8.6. Let G be a cograph. Then, Eig(0; G) ⊇ Eig(−1; G). �

92 8. Cographs

Proof. We proceed by induction over the number of vertices of G. For G = K1

the result is trivially true since the complement G = K1 lacks eigenvalue −1. Let
G be a cograph with at least two vertices and assume that the result holds for all
cographs with fewer vertices.

If G is disconnected, then by the induction assumption the result holds for each of
its components, and hence, by composition, also for G itself.

So let G be connected. We show that for every vector from Eig(−1; G) the sum over
its components vanishes. Then the result follows from Theorem 8.5.

Assume, to the contrary, that there exists a vector v ∈ Eig(−1; G) with j T v 6= 0. It
follows by Theorem 8.5 that Eig(0; G) ⊆ Eig(−1; G) so that every vector from the
kernel of G has vanishing component sum, in particular the kernel basis vectors of
G listed in Theorem 8.3. Hence, according to Theorem 8.5, together with the vector
v they form a basis of Eig(−1; G). Consequently, we may assume without loss that
v vanishes on every O2 cluster of G (recall that the O2 clusters of G are the same
as the O1 clusters of G), except for at most one vertex per cluster.

If there exists an O2 cluster in G, then it contains a split pair with a vertex x on
which v vanishes. Let G′ = G \ {x} and let v′ = v|G′ be the restriction of v to G′.
Then, j T v′ 6= 0 and v′ ∈ Eig(−1; G′), contradicting the induction assumption.

If there exists no O2 cluster in G, then G contains no O1 cluster but necessarily at
least one O2 split pair. Let G′ be the induced subgraph of G obtained by successively
joining O2 split pairs for as long as possible. If G′ = K1, then G is a complete graph,
for which the result of the theorem is trivially fulfilled. Otherwise, G′ contains an
O1 split pair so that G′ contains an O2 split pair. Create a vector v′ that differs
from the null vector only on these O2 split pair vertices, where it takes values 1 and
−1. Clearly, w′ is a valid eigenvector of G′ for eigenvalue −1. Next observe that,
by construction, every vertex of G that is not a vertex of G′ is adjacent to either
both or none of the mentioned O2 split pair vertices. So we can trivially extend
w′ with zeroes to obtain an eigenvector w of G for the same eigenvalue since the
summation rule still holds. G has no O1 cluster and, being connected, no isolated
vertices. It follows from Theorem 8.1 that the adjacency matrix of G has full rank
and further from Theorem 8.5 that dim Eig(0; G) = 0 and dim Eig(−1; G) = 1. We
deduce that w must be a multiple of v. But j T w = 0 and j T 6= 0, so we arrive at
another contradiction. �

Corollary 8.7. Let G be a cograph. For every O2 cluster M construct |M | − 1
vectors by assigning weights

• 1 to a fixed vertex of M ,

• −1 in turn to exactly one other vertex of M ,

• 0 to all other vertices of G.

8. Cographs 93

Then the constructed vectors constitute a simply structured basis of Eig(−1; G).
�

Proof. According to Theorem 8.5 and Theorem 8.6 a basis of Eig(−1; G) is given
by taking all vectors of a basis for Eig(0; G) that have vanishing component sum.
Therefore, the result follows from Theorem 8.3. �

Corollary 8.8. Let G be a cograph. Let M2 be the set of all O2 cluster vertices of
G and let m2 be the number of such clusters. Then,

µ(−1; G) = |M2| − m2.

�

The inclusion relation given in Theorem 8.6 is very remarkable. Exactly the same
property is also exhibited by forests [81]. It would be interesting to find other
common graph classes with this property.

As a consequence of Theorem 8.3 and Corollary 8.7, one can easily construct simply
structured eigenspace bases for eigenvalues 0 and −1 for all graphs created during
the successive construction of a cograph using operations O1 and O2. In a sense, the
eigenspaces bases evolve during the construction process, by means of embedding
and slight modification:

Corollary 8.9. Let G be a cograph and let B be an eigenspace basis for eigenvalue
0 according to Theorem 8.3. Assume that G′ is obtained from G by Oi splitting a
vertex v of G. Let v′ be the newly created vertex in G′. Let B′ initially consist of
all vectors of B embedded into G′ by setting the weight of v′ to zero. Transform the
set B′ according to the following rules:

• Case i = 1: Choose a vector from B′ that does not completely vanish on the
vertices of the O1 cluster that v′ belongs to. Add a new vector to B′ that
resembles the chosen vector, except that the weights of the −1 vertex and of
v′ have been swapped. If no such vector exists, then add to B′ a vector that
is 1 on v, −1 on v′ and zero on all other vertices.

• Case i = 2 and v is not an O1 cluster vertex in G: Leave B′ as it is.

• Case i = 2 and v belongs to an O1 cluster in G: If there exists a vector in B′

that is 1 on v, then choose a fixed vertex w different from v but in the same
O1 cluster of G and swap the weights of v and w for all vectors in B′. In any
case B′ now contains exactly one vector that does not vanish on v. Remove it
from B′.

94 8. Cographs

Then B′ is an eigenspace basis G′ for eigenvalue 0 and coincides with a basis ob-
tainable by application of Theorem 8.3 to G′.

A similar eigenspace evolution can be outlined for eigenvalue −1. �

From Corollary 8.9 we can directly derive how the multiplicities of the eigenvalues
0 and −1 evolve under successive O1 and O2 operations. Clearly, every O1 splitting
of a vertex increases the dimension of Eig(0; G). The dimension of Eig(−1; G) may
remain unchanged or drop by one, depending on whether an O2 cluster has been
”hit”:

Corollary 8.10. Let G be a connected cograph with at least two vertices and let
G′ be obtained by a splitting operation on a vertex of G. Then the dimensions of
the eigenspaces change according to Table 8.1. �

oper. dest. vertex type µ(0; G′) − µ(0; G) µ(−1; G′) − µ(−1; G)

O1 non O2 cluster 1 0
O1 O2 cluster 1 -1
O2 non O1 cluster 0 1
O2 O1 cluster -1 1

Table 8.1: Cograph eigenspace dimension changes under splitting operation

As remarked earlier, the construction process of a cograph can be described by a
series parallel decomposition tree, namely, its cotree. The vertices of the cograph
form the leaves of the (rooted and directed) cotree. Every non-leaf vertex of the
cotree is labelled type 1 or 2, depending on the operation used to obtain its children.

The cotree T of a cograph G = (V, E) can be obtained in O(|V |+ |E|) time, cf. [20],
[45]. Using the cotree T , it is straightforward to compute the multiplicities of eigen-
values 0 and −1 of G. Observe that two vertices of G belong to the same cluster
(or to the set of isolated vertices) exactly if the corresponding leaves of T have a
common parent. Therefore, the clusters and isolated vertices can be determined by
a depth first search starting from the root of T . The respective contributions of the
vertices to µ(0; G) and µ(−1; G) can be calculated using Corollaries 8.4 and 8.8. As
a result, we obtain the following algorithm:

Algorithm 8.11. Let T be the cotree of a connected cograph G. If r is the root of
T , then (µ(0; G), µ(−1; G)) = getMult(r), using the procedure given below.

Pair getMult (Node v)

multZero := 0, multMinusOne := 0, leafCount := 0

for each child w of v

8. Cographs 95

if (w is a leaf)

leafCount := leafCount+1

else

(multZero, multMinusOne) += getMult(w)

if (leafCount > 0)

if (v is part of an O1 cluster)

if (v has a child that is isolated in G)

multZero += leafCount

else

multZero += leafCount - 1

else

multMinusOne += leafCount - 1

return (multZero, multMinusOne)

�

To conclude this section, let us show that it is not possible to restrict the set of
eigenvalues that admit simply structured eigenspace bases for cographs:

Theorem 8.12. For every integer k there exists a non-regular cograph with eigen-
value k and a corresponding simply structured eigenspace basis. �

Proof. The cases k = 0 and k = −1 have already been proved.

For k ≥ 1 consider the graph G = (Kk+1 ∪Kk+1)▽K1 with 2k + 3 vertices. Let v be
a k-eigenvector, i.e. belong to the null space of the matrix

A(G) − kI =

Jk+1 − (k + 1)Ik+1 0 jk+1

0 Jk+1 − (k + 1)Ik+1 jk+1

j Tk+1 j Tk+1 −k

 .

Considering differences between any two of the first k +1 rows we conclude that the
values of v must be the same for all vertices of the first Kk+1. By symmetry, the
same holds for the second Kk+1. It follows that the value of v on the K1 must be
zero. So v is a multiple of a {0, 1,−1}-vector, cf. Figure 8.1.

For k ≤ −2 consider the graph G = K−k▽K−2k−1 with −3k − 1 vertices. Consider
a vector v from the null space of

A(G) − kI =

[

J−k − (k + 1)I−k J−k,−2k−1

J−2k−1,−k −kI−2k−1

]

.

By forming row differences among the first −k rows or among the last −2k−1 rows
we deduce that v must take the same value on all vertices of the K−k and the same
value on all vertices of the K−2k−1. So v is a multiple of a {0, 1,−1}-vector. An
example is shown in Figure 8.2. �

96 8. Cographs

Figure 8.1: Construction for positive eigenvalues (k = 3)

Figure 8.2: Construction for negative eigenvalues (k = −2 and k = −3)

9. Coprime graphs 97

9 Coprime graphs

In the year 1962 Erdős posed the following question [30]: Given some k ∈ N, what
is the largest integer n such that the set {1, . . . , n} does not contain a subset of size
k with mutually coprime elements? Interpreting the set {1, . . . , n} as the vertices
of a graph whose edges are given by the relation of pairwise coprimality of these
numbers, the problem can be rephrased as a clique problem on a graph.

Formally, for every integer n > 1, define the (traditional) coprime graph TCG(n) as
follows. Let {1, 2, . . . , n} be its vertex set and let vertices i, j be adjacent if and only
if gcd(i, j) = 1 (i.e. if they are coprime). Obviously, TCG(n) has a loop at vertex 1.
Removing the loop, we obtain the loopless coprime graph LCG(n).

Several aspects of coprime graphs have been researched, for example finding extremal
cliques [30], extremal anti-cliques [2], [3], [4], [1], matchings [72], extremal cycles [31],
and complete tripartite subgraphs [84]. There also exist several other graphs on the
integers, relating number theory and graph theory [42].

In the following sections, we will determine the nullity of coprime graphs and identify
singular coprime graphs admitting simply structured kernel bases.

With regard to what we intend to prove LCG(n) requires more involved techniques
than TCG(n). For that reason we shall mainly deal with LCG(n) and comment only
in the final section on the corresponding results for TCG(n), which can be obtained
by the same method with less effort.

9.1 Loopless coprime graph

This section deals with the kernel of the loopless coprime graph. Throughout, let
An = (aij) = A(TCG(n)) and let ai denote the i-th row vector of An.

9.1.1 Lower bound on the nullity

We denote by

κ(m) =
∏

p∈P, p|m

p

the square-free kernel of a positive integer m.

For each square-free integer k > 1, the vector b = (b1, b2, . . . , bn) ∈ Rn shall be called
k-basic if

bj =

1 for j = k,

−1 for j = m,

0 else

98 9. Coprime graphs

for some m > k satisfying κ(m) = k.

If b ∈ Rn is k-basic for some square-free k, we call it a basic vector. The set of all
basic vectors b ∈ Rn will be denoted by Bn. Let ν(n) := |Bn| be the number of basic
vectors.

For the next lemma recall that the Moebius function µ : N → {−1, 0, 1} is defined
by

µ(n) =

1 if n is square-free with an even number of distinct prime factors,

−1 if n is square-free with an odd number of distinct prime factors,

0 if n is not square-free.

Lemma 9.1. The number ν(n) of basic vectors satisfies

ν(n) = n −
∑

k≤n

|µ(k)|.

�

Proof. We obviously have

ν(n) = |{b ∈ Rn : b is basic}| = |
n

⋃

k=2
µ(k) 6=0

{b ∈ Rn : b is k-basic}|

=
n

∑

k=2
µ(k) 6=0

|{b ∈ Rn : b is k-basic}| =
n

∑

k=2
µ(k) 6=0

|{k < m ≤ n : κ(m) = k}|

= |{m ≤ n : µ(m) = 0}| = n −
∑

k≤n

|µ(k)|.

�

Lemma 9.2. Bn is linearly independent for every integer n > 1. �

Proof. Let b1, . . . , bν(n) be the elements of Bn. Now let λ1, . . . , λν(n) be real numbers
such that

ν(n)
∑

j=1

λjbj = 0. (9.1)

For 1 ≤ j ≤ ν(n) let bj = (bj,1, . . . , bj,n). Given some arbitrary but fixed index j0

with 1 ≤ j0 ≤ ν(n), the vector bj0 ∈ Bn is k-basic for some square-free k. It follows

9. Coprime graphs 99

that bj0,k = 1 and bj0,m = −1 for some k < m ≤ n with κ(m) = k. It is obvious that
bj,m = 0 for all j 6= j0. This implies by equation (9.1) that

0 =

ν(n)
∑

j=1

λjbj,m = λj0bj0,m = −λj0 ,

so that λj0 = 0. �

Lemma 9.3. Let n > 1 be an arbitrary integer. Then, Bn ⊆ ker LCG(n). �

Proof. Let b = (b1, . . . , bn) ∈ Bn. Since b is k-basic for some square-free k > 1 it
follows that b has entries bi = 0 except bk = 1 and bm = −1 for some m satisfying
k < m ≤ n and κ(m) = k. Then we have aib = ai,k − ai,m = 0 because k and m
have the same prime factors and therefore gcd(i, k) and gcd(i, m) are both 1 or both
greater than 1. This means that b belongs to ker LCG(n). �

We can now derive a lower bound for the nullity of LCG(n):

Theorem 9.4. For any integer n > 1, we have dim ker LCG(n) ≥ ν(n). �

Proof. This follows from Lemma 9.2 and Lemma 9.3. �

We shall prove in the sequel that in fact dim ker LCG(n) = ν(n) for most n. This was
suggested by numerical calculations. It turns out, however, that there are infinitely
many exceptions.

9.1.2 Mertens’ function and the kernel

We make use of a truncated version of the Moebius inversion formula, which can be
shown in the same fashion as the usual formula (cf. [51], Chapter 6.4, Theorem 4.1):

Lemma 9.5. Let n be a positive integer, and let f : {1, 2, . . . , n} → R and g :
{1, 2, . . . , n} → R be arbitrary functions. Then

g(i) =
∑

d|i

f(d) (1 ≤ i ≤ n) ⇐⇒ f(k) =
∑

d|k

µ(d)g
(k

d

)

(1 ≤ k ≤ n).

�

100 9. Coprime graphs

In the sequel, an important role is played by Mertens’ well-known function

M(n) :=

n
∑

k=1

µ(k).

Trivially, |M(n)| < n for all n. The relevance of this function becomes immediately
clear from the facts that M(n) = o(n) is equivalent with the prime number theorem

and M(n) = O(n
1
2
+ε) is equivalent with the Riemann Hypothesis. The famous

Mertens conjecture from 1897 saying that |M(n)| <
√

n was disproved by Odlyzko
and te Riele [68] in 1985.

It is well known that the summatory function ε(n) =
∑

d|n µ(d) of the Moebius
function satisfies

ε(n) =

{

1 for n = 1,

0 for n > 1.

This implies

ε(gcd(i, j)) =
∑

d|i
d|j

µ(d) =

{

1 for gcd(i, j) = 1,

0 for gcd(i, j) > 1.
(9.2)

Lemma 9.6. Let n > 1 be an arbitrary integer. A vector b = (b1, . . . , bn) ∈ Rn lies
in ker LCG(n) if and only if

(M(n) − 1) b1 = 0 and
n

∑

j=k

j≡0 mod k

bj − b1 = 0

for all 2 ≤ k ≤ n with µ(k) 6= 0. �

Proof. From equation (9.2) it follows that

ai,j = ε(gcd(i, j)) − γij (9.3)

for all 1 ≤ i, j ≤ n, where γij equals 1 for i = j = 1 and 0 otherwise.

For a given vector b = (b1, b2, . . . , bn) ∈ Rn let f : {1, 2, . . . , n} → R be defined by

f(k) := µ(k)

n
∑

j=1
j≡0 mod k

bj .

9. Coprime graphs 101

By equations (9.2) and (9.3) it follows for 1 ≤ i ≤ n that

g(i) :=
∑

d|i

f(d) =
∑

d|i

µ(d)
n

∑

j=1
j≡0 mod d

bj

=

n
∑

j=1

bj

∑

d|i
d|j

µ(d) =

n
∑

j=1

bjε(gcd(i, j))

=
n

∑

j=1

ai,jbj + γijb1.

(9.4)

A vector b = (b1, . . . , bn) ∈ Rn lies in ker LCG(n) if and only if
∑n

j=1 ai,jbj = 0 for
1 ≤ i ≤ n. By (9.4) this is equivalent to g(i) = γijb1 for 1 ≤ i ≤ n. By Lemma 9.5
this means that, for 1 ≤ k ≤ n,

f(k) =
∑

d|k

µ(d)g
(k

d

)

= µ(k)g(1) = µ(k)b1,

so that by the definition of f we have

µ(k)
n

∑

j=1
j≡0 mod k

bj = µ(k)b1.

So far we have shown that b ∈ ker LCG(n) if and only if

n
∑

j=1
j≡0 mod k

bj = b1 (1 ≤ k ≤ n, µ(k) 6= 0). (9.5)

We have

n
∑

k=2
µ(k) 6=0

µ(k)
n

∑

j=1
j≡0 mod k

bj =
n

∑

k=2

µ(k)
n

∑

j=2
j≡0 mod k

bj

=

n
∑

j=2

bj

n
∑

k=2
k|j

µ(k) =

n
∑

j=2

bj

j
∑

k=2
k|j

µ(k)

=

n
∑

j=2

bj(ε(j) − 1) = −
n

∑

j=2

bj ,

(9.6)

and by adding the corresponding equations for k = 2, . . . , n with µ(k) 6= 0 in (9.5)
we obtain

−
n

∑

j=2

bj =

n
∑

k=2
µ(k) 6=0

µ(k)

n
∑

j=1
j≡0 mod k

bj =

n
∑

k=2
µ(k) 6=0

µ(k)b1 = b1

n
∑

k=2

µ(k) = b1(M(n) − 1).

102 9. Coprime graphs

The addition of this to the equation for k = 1 in (9.5) gives

b1 =

n
∑

j=1

bj −
n

∑

j=2

bj = b1 + b1(M(n) − 1). (9.7)

Replacing the equation for k = 1 in (9.5) by equation (9.7) does not change the set
of solutions. This completes the proof. �

9.1.3 Nullity and simply structured kernel bases

Theorem 9.7. For any integer n > 1 we have

dim ker LCG(n) =

{

ν(n) for M(n) 6= 1,

ν(n) + 1 for M(n) = 1.
(9.8)

�

Proof. According to Lemma 9.6, a vector b = (b1, . . . , bn) ∈ Rn lies in ker LCG(n)
if and only if b satisfies the following homogeneous system of linear equations:

n
∑

j=k
j≡0 mod k

bj − b1 = 0 (2 ≤ k ≤ n, µ(k) 6= 0),

(M(n) − 1) b1 = 0.

(9.9)

Thus we obtain the following detailed system:

b2 +b4 +b6 +b8 +b10 . . . −b1 = 0
b3 +b6 +b9 . . . −b1 = 0

b5 +b10 . . . −b1 = 0
b6 . . . −b1 = 0

b7 . . . −b1 = 0
b10 . . . −b1 = 0

. . .
... =

...
(M(n) − 1)b1 = 0

(9.10)

Apparently (9.10) is a homogeneous system in row-echelon form with n variables.
Hence the rank of the coefficient matrix Bn obviously satisfies

rk Bn =

{

∑n
k=1 |µ(n)| for M(n) 6= 1,

∑n
k=1 |µ(n)| − 1 for M(n) = 1.

Consequently dim ker LCG(n) = n− rk Bn, so that equation (9.8) follows by Lemma
9.1. �

9. Coprime graphs 103

Corollary 9.8. dim ker LCG(n) = (1 − 6
π2)n + O(

√
n). �

Proof. It is well known [48] that

n
∑

k=1

|µ(k)| =
1

ζ(2)
n + O(

√
n) =

6

π2
n + O(

√
n)

so that the result follows by Lemma 9.1. �

Remark 9.9. Apparently, dim ker LCG(n) depends on the value of M(n), more
precisely whether M(n) = 1 or not. Results of Pintz and others (cf. [71]) show that
M(n) oscillates between ±√

n and, since |M(n+1)−M(n)| ≤ 1, each value between
these bounds is attained infinitely many times. In particular M(n) = 1 for infinitely
many numbers n > 1, the first of these being n = 94, 97, 98, 99, 100, 146, 147, 148.

�

Theorem 9.10. Let n be an integer satisfying M(n) 6= 1. Then:

(i) Bn is a simply structured basis of ker LCG(n).

(ii) For the canonical injection ι : Rn → Rn+1 with ι(b1, . . . , bn) := (b1, . . . , bn, 0)
we have ι(ker LCG(n)) ⊆ ker LCG(n + 1).

�

Proof. The first assertion follows from Theorem 9.7, Lemma 9.1, Lemma 9.2 and
Lemma 9.3.

By virtue of the first assertion and by the fact that ι is a homomorphism it suffices
to prove the second assertion for each b ∈ Bn separately. Each such b = (b1, . . . , bn)
satisfies

bj =

1 for j = k,

−1 for j = m,

0 else,

for some square-free k > 1 and some m > k with κ(m) = k.

Let a′
1, . . . , a

′
n+1 be the row vectors of An+1. Since An is a submatrix of An+1, we

clearly have
a′

iι(b) = aib = 0

104 9. Coprime graphs

for 1 ≤ i ≤ n since b ∈ ker LCG(n). To complete the proof we only have to verify
that

a′
n+1ι(b) = an+1,k − an+1,m = 0.

This is in fact true since κ(m) = k implies gcd(n + 1, k) = 1 if and only if gcd(n +
1, m) = 1. �

Theorems 9.7 and 9.10 imply that in case M(n) = 1, apart from the basic vectors in
Bn, an additional vector b̃n is needed to form a basis of ker LCG(n). It seems that
b̃n cannot be defined in the same easy way as the vectors in Bn.

Let B′ = (b′i,j) be the n × n matrix with

b′i,j =

{

1 if i|j,
0 else .

By deleting in B′ the rows i with i = 1 or µ(i) = 0 as well as the columns j with
j = 1 or µ(j) = 0 we get an sn × sn matrix B̃ with sn :=

∑n
k=2 |µ(k)|.

Further, let B̃j (1 ≤ j ≤ sn) be the matrix obtained from B̃ by replacing the j-th
column by ones.

Theorem 9.11. Let n > 1 be an integer satisfying M(n) = 1. Then Bn ∪ b̃n is a
basis of ker LCG(n), where b̃n = (b̃1, . . . , b̃n) is defined by b̃j = det B̃j . �

Proof. From Lemma 9.1, Lemma 9.2 and Lemma 9.3 we know that Bn is a set
of ν(n) linearly independent vectors of ker LCG(n). By Theorem 9.7, a basis of
ker LCG(n) requires exactly one more vector in ker LCG(n) which has to be linearly
independent of Bn. Since b̃1 = 1, but the first component of all vectors in Bn is 0, the
second condition is obviously satisfied. It remains to show that b̃n ∈ ker LCG(n).

Note that the proof of Theorem 9.7 showed that b ∈ ker LCG(n) if and only if
Bnb̃ = 0, where Bn is the coefficient matrix of (9.10) and b̃ := (b2, b3, . . . , bn, b1).
Consequently, b̃n solves (9.10). By definition, b̃j = 0 for all j with µ(j) = 0 and
b̃1 = 1. Since we have M(n) = 1 by hypothesis, (9.10) is reduced to the system

n
∑

j=k
j≡0 mod k, µ(j) 6=0

b̃j = 1 (2 ≤ k ≤ n, µ(k) 6= 0) (9.11)

with sn equations and the same number of variables. Now B̃ is the coefficient matrix
of the system (9.11), an upper triangular square matrix with ones on its diagonal.
Hence det B̃ = 1, and by Cramer’s rule the claimed formula follows. �

9. Coprime graphs 105

Remark 9.12. Observe that b̃n is not a {−1, 0, 1}-valued vector, so Bn ∪ b̃n is not
a simply structured basis of ker LCG(n). We conjecture that ker LCG(n) does not
have a simply structured basis at all for M(n) = 1. �

9.2 Traditional coprime graph

Let us finally consider the traditional coprime graph TCG(n). We can derive the
following analogues of the results presented in the preceding sections:

Lemma 9.13. Let n > 1 be an arbitrary integer. A vector b = (b1, . . . , bn) ∈ Rn

lies in ker TCG(n) if and only if

b1 = 0 and
n

∑

j=k

j≡0 mod k

bj = 0

for all 2 ≤ k ≤ n with µ(k) 6= 0. �

Theorem 9.14. For every integer n > 1 we have

dim ker TCG(n) = ν(n) = (1 − 6

π2
)n + O(

√
n).

�

Theorem 9.15. For each positive integer n, we have

(i) Bn is a simply structured basis of ker TCG(n).

(ii) For the canonical injection ι : Rn → Rn+1 with ι(b1, . . . , bn) := (b1, . . . , bn, 0)
we have ι(ker TCG(n)) ⊆ ker TCG(n + 1).

�

The proofs of Lemma 9.13, Theorem 9.14 and Theorem 9.15 are easily obtained by
adjusting the proofs of Lemma 9.6, Theorem 9.7 and Theorem 9.10 according to the
different value of a11 in the adjacency matrix.

106 9. Coprime graphs

10. Outlook 107

10 Outlook

In the preceding chapters we have investigated a number of graph classes with re-
spect to simply structured eigenspace bases. Although substantial results have been
obtained, there remain some open questions and many more graph classes to investi-
gate. For example, it would be interesting to characterise all graphs P

(d)
n admitting

simply structured kernel bases in the case 1 ≤ d ≤ n
2
− 1. Moreover, computer

experiments indicate that the following conjectures are probably true:

1. If n is even and dim Eig(0; G) = 1, then P
(d)
n admits a simply structured kernel

basis.

2. Let λ = 1 be an eigenvalue of P
(d)
n . Then d = 1 and λ is a single eigenvalue

that affords a simply structured eigenspace basis.

3. Let λ = 0 be an eigenvalue of P
(d)
n for d even. Then the corresponding

eigenspace always affords a simply structured eigenspace basis.

4. Let λ = −2 be an eigenvalue of P
(d)
n for d odd. Then the corresponding

eigenspace always affords a simply structured eigenspace basis.

5. C
(d)
n has simply structured eigenspace bases for eigenvalues −3 and 1.

6. ker LCG(n) does not have a simply structured basis for M(n) = 1.

7. Every coprime graph (with or without loop) admits a simply structured eigen-
space basis for eigenvalue −1.

The ultimate goal would be to find more general criteria for simply structured bases
that eventually merge more and more of the results found for individual graph
classes.

108 10. Outlook

A. Symbol Index 109

A Symbol Index

ε(n) . 100

Γ(M) . 44

ι(w)(x) . 55

κ(m) .97

µ(n) . 98

µ(λ; G). .9

ν(n) . 98

ωn . 7

τ0, τ1, τ2 . 62

A(G). .8

Bn . 98

Cay(G, C) . 80

Cay(Zn, Un) .80

C . 48

Ci . 34

Cn . 8

C(G) . 33

D . 18

degG(x) . 7

Dq(x) . 71

D̃ . 14

E(G) . 7

Eig(λ; G). .9

F ∗ . 10

F, O, X, X, XO, XO 14

G ∪ H . 8

Ĝ . 14

G▽H . 8

G/M . 33

G − H . 8

G − M . 8

G − x . 8

G . 8

G(r) . 67

Ham(m1, . . . , mr; K) 81

H{labels} .14

I . 7

im M . 7

J . 7

j . 7

ker M . 7

ker G .9

Kn . 8

LCG(n) . 97

M(n) . 100

NEPS

G1 ∗ G2 . 79

G1 ⊲ G2 . 79

G1+ G2 . 79

G1 × G2 .79

110 A. Symbol Index

NG(x). .8

Nλ(G) . 33

Nλ(G, x) . 33

NC
λ (T) . 36

NC
λ (T, x) .34

O1, O2 . 89

ord(p, n) . 73

Pn . 8

rk M . 7

Rv . 19

R̃v . 19

Sλ(T, x) .35

Sλ(T) . 36

Sud(n) . 85

supp(G; λ) . 45

Sw . 19

S̃w . 19

TCG(n) . 97

Un . 80

vec(x) . 30

V (G) . 7

x ∼ y . 7

↼
x . 69

B. List of Figures 111

B List of Figures

1.1 Example graph and its adjacency matrix 1

1.2 Example graph kernel basis . 2

4.1 Example graphs G and D̃ . 15

4.2 Counterexample for Lemma 4.19 . 23

4.3 Kernel basis reconstruction for K1,4 28

4.4 Example tree from John-Schild paper 31

4.5 Kernel basis for example tree from John-Schild paper 31

4.6 Eigenvectors with the same x-skeleton 35

4.7 Eigenvector zero-nonzero patterns of a tree and corresponding skele-
ton forest . 37

4.8 Malformed skeleton example . 45

4.9 Graph without {0, 1,−1} eigenvector for eigenvalue 1 46

4.10 Reduction subgraph and weights for {1,−1} eigenvectors 48

5.1 Graph without a simply structured kernel basis 52

5.2 Kernel basis of a unicyclic graph according to Theorem 5.7 55

5.3 FOX result that illustrates Lemma 5.16 61

6.1 Cosine secant lines with same slopes 73

7.1 Example Sudoku puzzle . 85

7.2 Deriving the graph Sud(2) from a 2-Sudoku puzzle 85

7.3 Selection of Sudoku cells for basis sets S1, S2, S3, B 87

8.1 Construction for positive eigenvalues (k = 3) 96

8.2 Construction for negative eigenvalues (k = −2 and k = −3) 96

112 B. List of Figures

C. List of Tables 113

C List of Tables

8.1 Cograph eigenspace dimension changes under splitting operation . . . 94

114 C. List of Tables

D. References 115

D References

[1] R. Ahlswede and V. Blinovsky. Maximal sets of numbers not containing k+1
pairwise coprimes and having divisors from a specified set of primes. J. Comb.
Theory, Ser. A, Vol. 113, No. 8, pp. 1621–1628, 2006. (cited on page 97)

[2] R. Ahlswede and L.H. Khachatrian. On extremal sets without coprimes. Acta
Arith., Vol. 66, No. 1, pp. 89–99, 1994. (cited on page 97)

[3] R. Ahlswede and L.H. Khachatrian. Maximal sets of numbers not containing
k+1 pairwise coprime integers. Acta Arith., Vol. 72, No. 1, pp. 77–100, 1995.
(cited on page 97)

[4] R. Ahlswede and L.H. Khachatrian. Sets of integers and quasi-integers with
pairwise common divisor. Acta Arith., Vol. 74, No. 2, pp. 141–153, 1996.
(cited on page 97)

[5] S. Akbari, A. Alipour, E. Ghorbani and G. Khosrovshahi. {−1, 0, 1}-Basis
for the null space of a forest. Linear Algebra Appl., Vol. 414, pp. 506–511,
2006. (cited on page 4)

[6] S. Akbari, N. Ghareghani, G. B. Khosrovshahi and H. R. Maimani. The
kernels of the incidence matrices of graphs revisited. Linear Algebra Appl.,
Vol. 414, pp. 617–625, 2006. (cited on page 4)

[7] S. Akbari and S. J. Kirkland. On Unimodular Graphs. International Work-
shop on Combinatorics II. IPM, Tehran, 2006. (cited on page 51)

[8] P. Berrizbeitia and R. E. Giudici. On cycles in the sequence of unitary Cayley
graphs. Discrete Math., Vol. 282, pp. 239–243, 2004. (cited on page 80)

[9] J. H. Bevis, G. S. Domke and V. A. Miller. Ranks of trees and grid graphs. J.
Comb. Math. Comb. Comput., Vol. 18, pp. 109–119, 1995. (cited on pages 3,
24, and 49)

[10] N. Biggs. Algebraic graph theory. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge, second edition, 1993. (cited on pages 4,
7, 9, 54, and 80)

[11] A. Brandstädt, L. Van Bang and J. P. Spinrad. Graph classes: a survey.
SIAM Monographs on Discrete Mathematics and Applications. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. (cited
on page 89)

[12] I. N. Bronstein, K. A. Semendjajew, G. Musiol and H. Mühlig. Taschenbuch
der Mathematik. Verlag Harri Deutsch, 2001. (cited on page 72)

[13] G. J. Chang, L.-H. Huang and H.-G. Yeh. On the rank of a cograph. Linear
Algebra Appl., Vol. 429, pp. 601–605, 2008. (cited on page 90)

116 D. References

[14] B. Cheng and B. Lui. On the nullity of graphs. Electron. J. Linear Algebra,
Vol. 16, pp. 60–67, 2007. (cited on page 3)

[15] L. Collatz and U. Sinogowitz. Spektren endlicher Grafen. Abh. Math. Sem.
Univ. Hamburg, Vol. 21, pp. 63–77, 1957. (cited on page 1)

[16] D. Cvetković and M. Petrić. Connectedness of the non-complete extended
p-sum of graphs. Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu, Ser. Mat.,
Vol. 13, pp. 345–352, 1983. (cited on page 80)

[17] D. Cvetković, P. Rowlinson and S. Simić. Eigenspaces of graphs, Vol. 66
of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 1997. (cited on pages 7, 79, 80, and 89)

[18] D. M. Cvetković, M. Doob and H. Sachs. Spectra of graphs. Johann Ambro-
sius Barth, Heidelberg, third edition, 1995. Theory and applications. (cited
on page 7)

[19] D. M. Cvetković and I. M. Gutman. The algebraic multiplicity of the number
zero in the spectrum of a bipartite graph. Mat. Vesnik, Vol. 9, No. 24, pp.
141–150, 1972. (cited on pages 3, 23, 24, and 90)

[20] G. Damiand, M. Habib and C. Paul. A simple paradigm for graph recognition:
application to cographs and distance hereditary graphs. Theoret. Comput.
Sci., Vol. 263, pp. 99–111, 2001. (cited on page 94)

[21] S. Daugherty. The inertia of unicyclic graphs and the implications for closed-
shells. Linear Algebra Appl., Vol. 429, No. 4, pp. 849–858, 2008. (cited on
page 65)

[22] H. Davenport. Multiplicative number theory. 2nd ed. Rev. by Hugh L. Mont-
gomery. Graduate Texts in Mathematics. Springer, 1980. (cited on page 75)

[23] G. J. Davis, G. S. Domke and C. R. Garner Jr. 4-Circulant Graphs. Ars
Combin., Vol. 65, pp. 97–110, 2000. (cited on page 3)

[24] G. J. Davis, G. S. Domke and C. R. Garner Jr. Ranks of Line Graphs of
Regular Graphs. JCMCC, Vol. 49, pp. 113–128, 2003. (cited on page 3)

[25] P. J. Davis. Circulant matrices. John Wiley & Sons, New York-Chichester-
Brisbane, 1979. A Wiley-Interscience Publication, Pure and Applied Mathe-
matics. (cited on pages 7, 10, and 67)

[26] T. Davis. The Mathematics of Sudoku.
http://www.geometer.org/mathcircles/sudoku.pdf. (cited on page 85)

[27] I. J. Dejter and R. E. Giudici. On unitary Cayley graphs. J. Combin. Math.
Combin. Comput., Vol. 18, pp. 121–124, 1995. (cited on page 80)

[28] R. Diestel. Graph theory. Graduate Texts in Mathematics, Vol. 173. Springer-
Verlag, 1959. (cited on page 7)

D. References 117

[29] C. Elsholtz and A. Mütze. Sudoku im Mathematikunterricht. Math.
Semesterber., Vol. 39, pp. 69–93, 2007. (cited on page 86)

[30] P. Erdős. Remarks on number theory. IV: Extremal problems in number
theory. I. Mat. Lapok, Vol. 13, pp. 228–254, 1962. (cited on page 97)

[31] P. Erdős and G. Sárközy. On cycles in the coprime graph of integers. Elec-
tron. J. Combin., Vol. 4, No. 2, 1997. (cited on page 97)

[32] B. Felgenhauer and F. Jarvis. Mathematics of Sudoku I. Math. Spectrum,
Vol. 39, pp. 15–22, 2005. (cited on page 86)

[33] M. Fiedler. Eigenvectors of acyclic matrices. Czechoslovak Math. J., Vol. 25,
No. 4, pp. 607–618, 1975. (cited on pages 33 and 45)

[34] S. Fiorini, I. Gutman and I. Sciriha. Trees with maximum nullity. Linear
Algebra Appl., Vol. 397, pp. 245–251, 2005. (cited on pages 3 and 24)

[35] G. H. Fricke, S. T. Hedetniemi, D. P. Jacobs and V. Trevisan. Reducing the
adjacency matrix of a tree. Electron. J. Linear Algebra, Vol. 1, pp. 34–43,
1996. (cited on pages 3, 19, 24, and 49)

[36] E. D. Fuchs. Longest induced cycles in circulant graphs. Electron. J. Combin.,
Vol. 12, No. 1, 2005. (cited on page 80)

[37] P. Funk. Über die Berechnung der kritischen Drehzahlen bei homogenen und
fast homogenen Maschinen. ZAMM, Vol. 15, pp. 113–120, 1935. (cited on
page 1)

[38] F. R. Gantmacher. The theory of matrices. Vols. 1, 2. Chelsea Publishing
Co., 1959. (cited on page 9)

[39] C. Godsil and G. Royle. Algebraic graph theory, Vol. 207 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2001. (cited on page 7)

[40] C. D. Godsil. Spectra of trees. Convexity and graph theory (Jerusalem, 1981),
North-Holland, pp. 151–159, 1984. (cited on page 13)

[41] C. D. Godsil. Inverses of Trees. Combinatorica, Vol. 5, No. 1, pp. 33–39,
1985. (cited on page 13)

[42] R. L. Graham, M. Grötschel and L. Lovász (eds.). Handbook of combinatorics.
Vol. 1-2. Elsevier (North-Holland), 1995. (cited on pages 80 and 97)

[43] I. Gutman, S.-L. Lee, Y.-L. Luo and Y.-N. Yeh. Net Signs of Molecular
Graphs: Dependence of Molecular Structure. Int. J. Quantum Chem., Vol. 49,
No. 2, pp. 87–95, 1994. (cited on page 13)

[44] I. Gutman and I. Sciriha. On the nullity of line graphs of trees. Discrete
Math., Vol. 232, pp. 34–45, 2001. (cited on page 89)

118 D. References

[45] M. Habib and C. Paul. A new vertex splitting algorithm for cograph recog-
nition. RR-123800, Rapports internes et prépublications du LaBRI, Univ.
Bordeaux, 2000. (cited on page 94)

[46] F. Harary. Graph theory. Addison-Wesley Publishing Co., Reading, 1969.
(cited on page 7)

[47] F. Harary, W. Slany and O. Verbitsky. On the Computational Complexity of
the Forcing Chromatic Number. SIAM J. Comput., Vol. 37, No. 1, pp. 1–19,
2007. (cited on page 86)

[48] G.H. Hardy and E.M. Wright. An introduction to the theory of numbers. 6th
ed. Oxford University Press, Oxford, 2008. (cited on page 103)

[49] F. Hazama. On the kernels of the incidence matrices of graphs. Discrete
Math., Vol. 254, pp. 165–174, 2002. (cited on page 4)

[50] A. M. Herzberg and M. R. Murty. Sudoku Squares and Chromatic Polyno-
mials. Notices AMS, Vol. 6, No. 54, pp. 708–717, 2007. (cited on page 86)

[51] L.K. Hua. Introduction to number theory. Springer, 1982. (cited on page 99)

[52] E. Hückel. Quantentheoretische Beiträge zum Benzolproblem. I. Die Elek-
tronenkonfiguration des Benzols und verwandter Verbindungen. Z. Phys.,
Vol. 70, pp. 204–286, 1931. (cited on pages 1 and 2)

[53] W. Imrich and K. S. Zar. Product Graphs: Structure and Recognition. John
Wiley, 2000. (cited on page 7)

[54] D. P. Jacobs and V. Trevisan. The Determinant of a Tree’s Neighborhood
Matrix. Lin. Algebra Appl., Vol. 256, pp. 235–249, 1997. (cited on page 19)

[55] P. E. John and G. Schild. Calculating the characteristic polynomial and the
eigenvectors of a tree. Match, No. 34, pp. 217–237, 1996. (cited on pages 3,
19, 23, 24, 30, and 50)

[56] C. R. Johnson and C. M. Saiago. Estimation of the maximum multiplicity of
an eigenvalue in terms of the vertex degrees of the graph of a matrix. Electron.
J. Linear Algebra, Vol. 9, pp. 27–31, 2002. (cited on page 33)

[57] D. Jungnickel. Graphs, Networks and Algorithms (Algorithms and Computa-
tion in Mathematics). Springer, 2007. (cited on page 7)

[58] W. Klotz and T. Sander. Some properties of unitary Cayley graphs. Electron.
J. Combin., Vol. 14, No. 1, 2007. (cited on pages 4, 80, and 84)

[59] A. Leal-Duarte and C. R. Johnson. On the minimum number of distinct
eigenvalues for a symmetric matrix whose graph is a given tree. Math. In-
equal. Appl., Vol. 5, No. 2, pp. 175–180, 2002. (cited on page 33)

D. References 119

[60] J. Li. The determinant of a unicyclic graph’s neighborhood matrix. Linear
Algebra Appl., Vol. 394, pp. 201–216, 2005. (cited on page 3)

[61] L. Lovász. Spectra of graphs with transitive groups. Periodica Math. Hung.,
Vol. 6, No. 2, pp. 191–195, 1975. (cited on page 80)

[62] R. B. Mallion. Some chemical applications of the eigenvalues and eigenvec-
tors of certain finite, planar graphs. Applications of combinatorics (Buck-
inghamshire, 1981), Vol. 6 of Shiva Math. Ser., pp. 87–114, 1982. (cited on
pages 1 and 2)

[63] M. C. Marino, I. Sciriha, S. K. Simić and D. V. Tošić. More about singular line
graphs of trees. Publications de l’Institut Mathmatique (Beograd), Vol. 79,
No. 93, pp. 70–85, 2006. (cited on pages 3 and 90)

[64] J. J. McDonald. Partly zero eigenvectors and matrices that satisfy Au = b.
Linear and Multilinear Algebra, Vol. 33, pp. 163–170, 1993. (cited on page 33)

[65] T. Nagell. Introduction to number theory. Wiley, New York, 1951. (cited on
page 75)

[66] M. Nath and B. K. Sarma. On the null-spaces of acyclic and unicyclic singular
graphs. Linear Algebra Appl., Vol. 427, pp. 42–54, 2007. (cited on pages 3,
4, and 65)

[67] P. Nylen. Null space structure of tree-patterned matrices. Linear Algebra
Appl., Vol. 279, pp. 153–161, 1998. (cited on pages 32–34 and 45)

[68] A.M. Odlyzko and H.J.J. te Riele. Disproof of the Mertens conjecture. J.
Reine Angew. Math., Vol. 357, pp. 138–160, 1985. (cited on page 100)

[69] S. Pavĺıková and J. Krc̆-Jediný. On the inverse and the dual index of a tree.
Linear and Multilinear Algebra, Vol. 28, pp. 93–109, 1990. (cited on page 13)

[70] M. Petrić. Connectedness of the generalized direct product of digraphs. Univ.
Beograd. Publ. Elektrotehn. Fak. (Ser. Mat.), Vol. 6, pp. 30–38, 1995. (cited
on page 80)

[71] J. Pintz. Oscillatory properties of M(x) =
∑

n≤x µ(n). III. Acta Arith.,
Vol. 43, pp. 105–113, 1984. (cited on page 103)

[72] C. Pomerance and J.L. Selfridge. Proof of D. J. Newman’s coprime mapping
conjecture. Mathematika, Vol. 27, pp. 69–83, 1980. (cited on page 97)

[73] T. Pöschl and L. Collatz. Über die Berechnung und Darstellung der Eigenfre-
quenzen homogener Maschinen mit Zusatzdrehmassen. ZAMM, Vol. 18, pp.
186–194, 1938. (cited on page 1)

[74] D. L. Powers. Graph partitioning by eigenvectors. Linear Algebra Appl., Vol.
101, pp. 121–133, 1988. (cited on pages 3 and 33)

120 D. References

[75] G. F. Royle. The Rank of a Cograph. Electron. J. Comb., Vol. 10, No. 4,
2003. (cited on page 90)

[76] E. Russell and F. Jarvis. Mathematics of Sudoku II. Math. Spectrum, Vol. 39,
pp. 54–58, 2005. (cited on page 86)

[77] D. E. Rutherford. Some continuant determinants arising in physics and
chemistry. Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, pp. 229–236, 1947.
(cited on pages 1 and 80)

[78] J. W. Sander and T. Sander. On Simply Structured Bases of Tree Kernels.
AKCE J. Graphs. Combin., Vol. 2, No. 1, pp. 45–56, 2005. (cited on pages 3,
4, 15–24, 27, 29, and 49)

[79] T. Sander. Eigenspace Structure of Certain Graph Classes. Ph. D. Thesis,
TU Clausthal, 2004. (cited on pages 4, 13, and 68–70)

[80] T. Sander. Singular distance powers of circuits. Tokyo J. Math., Vol. 4,
No. 1, pp. 491–498, 2007. (cited on pages 3, 71, and 73)

[81] T. Sander. Inclusion relations of certain graph eigenspaces. Rocky Mt. J.
Math., to appear. (cited on pages 91 and 93)

[82] T. Sander and J. W. Sander. On Simply Structured Kernel Bases of Unicyclic
Graphs. AKCE J. Graphs. Combin., Vol. 4, No. 1, pp. 61–82, 2007. (cited
on pages 4, 18, 20, 25, 26, and 52–65)

[83] T. Sander and J. W. Sander. Tree decomposition by eigenvectors. Linear
Algebra Appl., 2008. DOI: 10.1016/j.laa.2008.07.015. (cited on pages 34–36,
38–41, and 45–48)

[84] G. Sárközy. Complete tripartite subgraphs in the coprime graph of integers.
Discrete Math., Vol. 202, No. 1-3, pp. 227–238, 1999. (cited on page 97)

[85] N. Saxena, S. Severini and I.E. Shparlinski. Parameters of integral circulant
graphs and periodic quantum dynamics. Int. J. Quantum Inf., Vol. 5, No. 3,
pp. 417–430, 2007. (cited on page 84)

[86] C.H. Schilling, D. Letscher and B.O. Palsson. Theory for the systemic defi-
nition of metabolic pathways and their use in interpreting metabolic function
from a pathway-oriented perspectiv. J. Theor. Biol., Vol. 203, No. 3, pp.
229–248, 2000. (cited on page 2)

[87] I. Sciriha. On the construction of graphs of nullity one. Discrete Math., Vol.
181, pp. 193–211, 1998. (cited on pages 3 and 35)

[88] I. Sciriha. The two classes of singular line graphs of trees. 5th Workshop
on Combinatorics (Messina, 1999), Rend. Sem. Mat. Messina Ser. II, Vol. 5,
No. 21, pp. 167–180, 1999. (cited on page 89)

D. References 121

[89] I. Sciriha. A characterization of singular graphs. Electron. J. Linear Algebra,
Vol. 16, pp. 451–462, 2007. (cited on pages 3 and 27)

[90] I. Sciriha. Coalesced and Embedded Nut Graphs in Singular Graphs. Ars
Math. Contemp., Vol. 1, No. 1, pp. 20–31, 2008. (cited on page 2–4)

[91] I. Sciriha and I. Gutman. Nut Graphs: Maximally Extending Cores. Util.
Math., Vol. 54, pp. 257–272, 1998. (cited on pages 3 and 35)

[92] I. Sciriha and I. Gutman. Minimal configuration trees. Linear Multilinear
Algebra, Vol. 54, No. 2, pp. 141–145, 2006. (cited on page 3)

[93] W. So. Integral circulant graphs. Discrete Math., Vol. 306, No. 1, pp. 153–158,
2006. (cited on page 84)

[94] B. Türker. Graph Laplacians and Nodal Domains. Ph. D. Thesis, Universität
Wien, Austria, 2003. (cited on page 90)

[95] W.T. Tutte. The factors of graphs. Can. J. Math., Vol. 4, pp. 314–328, 1952.
(cited on page 1)

[96] R. H. Villarreal. Rees algebras of edge ideals. Commun. Algebra, Vol. 39, pp.
3513–3524, 1995. (cited on page 4)

[97] T. Xuezhong and B. Liu. On the nullity of unicyclic graphs. Linear Algebra
Appl., Vol. 408, pp. 212–220, 2005. (cited on page 3)

[98] A. Zygmund. Trigonometrical series. 2nd ed. Dover Publications, New York,
1955. (cited on page 71)

	Title
	Contents
	1 Introduction
	2 Basics
	3 General criteria
	4 Trees
	4.1 The FOX algorithm
	4.2 FOX on trees
	4.3 Storing FOX vectors
	4.4 Gaussian elimination
	4.5 Partitioning trees by eigenvectors
	4.5.1 Tree eigenvector decomposition
	4.5.2 Tree eigenvector composition
	4.5.3 Tree pattern matrices

	4.6 Eigenspace bases for eigenvalues 1 and -1
	4.6.1 {1,-1} eigenvectors for eigenvalue 1
	4.6.2 {0,1,-1} eigenvectors for eigenvalue 1

	5 Unicyclic graphs
	5.1 Uncracked cycles
	5.2 Cracked cycles
	5.3 Algorithmic, algebraic and structural characterisations

	6 Distance powers of paths and circuits
	6.1 Path distance powers
	6.2 Circuit distance powers

	7 Product graphs and related classes
	7.1 NEPS
	7.2 Cayley graphs and Hamming graphs
	7.3 Sudoku graphs

	8 Cographs
	9 Coprime graphs
	9.1 Loopless coprime graph
	9.1.1 Lower bound on the nullity
	9.1.2 Mertens' function and the kernel
	9.1.3 Nullity and simply structured kernel bases

	9.2 Traditional coprime graph

	10 Outlook
	A Symbol Index
	B List of Figures
	C List of Tables
	D References

