119 research outputs found

    A Survey on Facilities for Experimental Internet of Things Research

    Get PDF
    International audienceThe initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged and uniquelly identified by RFID transponders. However, the concept has grown into multiple dimensions, encompassing sensor networks able to provide real-world intelligence and goal-oriented collaboration of distributed smart objects via local networks or global interconnections such as the Internet. Despite significant technological advances, difficulties associated with the evaluation of IoT solutions under realistic conditions, in real world experimental deployments still hamper their maturation and significant roll out. In this article we identify requirements for the next generation of the IoT experimental facilities. While providing a taxonomy, we also survey currently available research testbeds, identify existing gaps and suggest new directions based on experience from recent efforts in this field

    Routing Protocols for Large-Scale Wireless Sensor Networks: A Review

    Get PDF
    With the advances in micro-electronics, wireless sensor gadgets have been made substantially littler and more coordinated, and large-scale wireless sensor networks (WSNs) based the participation among the noteworthy measure of nodes have turned into a hotly debated issue. "Large-scale" implies for the most part large region or high thickness of a system. As needs be the routing protocols must scale well to the system scope augmentation and node thickness increments. A sensor node is regularly energy-constrained and can't be energized, and in this manner its energy utilization has a very critical impact on the adaptability of the protocol. To the best of our insight, at present the standard strategies to tackle the energy issue in large-scale WSNs are the various leveled routing protocols. In a progressive routing protocol, every one of the nodes are separated into a few gatherings with various task levels. The nodes inside the abnormal state are in charge of data aggregation and administration work, and the low level nodes for detecting their environment and gathering data. The progressive routing protocols are ended up being more energy-proficient than level ones in which every one of the nodes assume a similar part, particularly as far as the data aggregation and the flooding of the control bundles. With concentrate on the various leveled structure, in this paper we give an understanding into routing protocols planned particularly for large-scale WSNs. As per the distinctive goals, the protocols are by and large ordered in light of various criteria, for example, control overhead decrease, energy utilization mitigation and energy adjust. Keeping in mind the end goal to pick up a thorough comprehension of every protocol, we feature their imaginative thoughts, portray the basic standards in detail and break down their points of interest and hindrances. Also a correlation of each routing protocol is led to exhibit the contrasts between the protocols as far as message unpredictability, memory necessities, localization, data aggregation, bunching way and different measurements. At last some open issues in routing protocol plan in large-scale wireless sensor networks and conclusions are proposed

    Routing Protocols for Large-Scale Wireless Sensor Networks: A Review

    Get PDF
    With the advances in micro-electronics, wireless sensor gadgets have been made substantially littler and more coordinated, and large-scale wireless sensor networks (WSNs) based the participation among the noteworthy measure of nodes have turned into a hotly debated issue. "Large-scale" implies for the most part large region or high thickness of a system. As needs be the routing protocols must scale well to the system scope augmentation and node thickness increments. A sensor node is regularly energy-constrained and can't be energized, and in this manner its energy utilization has a very critical impact on the adaptability of the protocol. To the best of our insight, at present the standard strategies to tackle the energy issue in large-scale WSNs are the various leveled routing protocols. In a progressive routing protocol, every one of the nodes are separated into a few gatherings with various task levels. The nodes inside the abnormal state are in charge of data aggregation and administration work, and the low level nodes for detecting their environment and gathering data. The progressive routing protocols are ended up being more energy-proficient than level ones in which every one of the nodes assume a similar part, particularly as far as the data aggregation and the flooding of the control bundles. With concentrate on the various leveled structure, in this paper we give an understanding into routing protocols planned particularly for large-scale WSNs. As per the distinctive goals, the protocols are by and large ordered in light of various criteria, for example, control overhead decrease, energy utilization mitigation and energy adjust. Keeping in mind the end goal to pick up a thorough comprehension of every protocol, we feature their imaginative thoughts, portray the basic standards in detail and break down their points of interest and hindrances. Also a correlation of each routing protocol is led to exhibit the contrasts between the protocols as far as message unpredictability, memory necessities, localization, data aggregation, bunching way and different measurements. At last some open issues in routing protocol plan in large-scale wireless sensor networks and conclusions are proposed

    Support for heterogeneous dynamic network environments through a reconfigurable network service platform

    Get PDF
    In a future internet of things, an increasing number of every-day objects will be connected with each other. These objects can be very diverse in terms of their network protocols and communication technologies. As more resource constrained devices such as sensor networks and PDAs are added to our environment, supporting efficient communication between these heterogeneous devices becomes a key challenge in next-generation networks. To realize this challenge, this paper presents a reconfigurable network framework (IDRA) that supports direct connectivity between heterogeneous co-located devices, without the need for complex translation gateways

    Reconfigurable middleware architectures for large scale sensor networks

    Get PDF
    Wireless sensor networks, in an effort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task reconfiguration and high-level object recomposition. Through the layered approach of SENSIX, the software developer creates a domain-specific sensing architecture by defining a customized task specification and utilizing object inheritance. In addition, SENSIX performs better at large scales (on the order of 1000 nodes or more) than other sensor network middleware which do not include such unified facilities for vertical integration

    A Survey of Applying Ad Hoc Wireless Sensor Actuator Networks to Enhance Context-Awareness in Environmental Management Systems

    Get PDF
    Sensor mesh networking is set to be one of the key tools for the future of Ambient Intelligence (AmI) due to new emerging technologies in Ad hoc Wireless Sensor Networks (AWSNs). AWSNs symbolize the new generation of sensor networks with many promising advantages applicable to most networked environments. Unfortunately, however, these practical technologies have some technical problems and, as a consequence, this fascinating field has created novel and interesting challenges, which in turn, have inspired many ongoing research projects and more are likely to follow. Almost certainly, there will be notable improvements in the management of control/actuator networks as a consequence of enhancing the sensitivity capabilities of systems. With an emphasis on Ad hoc Wireless Sensor Actuator Networks (AWSANs) this study presents a systematic analysis of the different existing techniques to improve such systems. It also discusses, analyzes and summarizes the advantages these technologies offer in certain applications and presents a generic solution, in the form of a case study, for an AmI system to enhance the overall environmental management of a campus based on a hierarchical network using an AWSAN

    An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks

    Get PDF
    An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs) encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR) scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability

    A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    Get PDF
    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio
    • …
    corecore