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Abstract

Wireless sensor networks, in an effort to be energy efficient, typically lack the

high-level abstractions of advanced programming languages. Though strong, the

dichotomy between these two paradigms can be overcome.

The SENSIX software framework, described in this dissertation, uniquely inte-

grates constraint-dominated wireless sensor networks with the flexibility of object-

oriented programming models, without violating the principles of either. Though

these two computing paradigms are contradictory in many ways, SENSIX bridges

them to yield a dynamic middleware abstraction unifying low-level resource-aware

task reconfiguration and high-level object recomposition.
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Through the layered approach of SENSIX, the software developer creates a domain-

specific sensing architecture by defining a customized task specification and utilizing

object inheritance. In addition, SENSIX performs better at large scales (on the order

of 1000 nodes or more) than other sensor network middleware which do not include

such unified facilities for vertical integration.
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Chapter 1

Integrating Wireless Sensor

Networks into Large Systems

This dissertation describes and analyzes a middleware approach that efficiently in-

tegrates wireless sensor networks with large distributed object systems, with a focus

on scalability. Middleware is software that connects distributed components across

different systems for the sake of interoperability, often masking the details of the

requisite interactions. Whereas previous wireless sensor network software efforts cre-

ated custom, ad hoc, and typically direct-to-the-user interfaces to the sensor network,

this middleware approach, embodied in the SENSIX open-source implementation∗,

considers the sensor network as an extension of a larger system and supports a

domain, language and operating system independent means of programming and in-

teracting with the sensor network with an emphasis on seamless vertical integration.

SENSIX unifies the low-level, event-driven, data-centric paradigm of wireless sensor

networks and the high-level abstraction of object-oriented systems, without violating

the principles of either. This dichotomy is the core issue that SENSIX addresses.

∗http://sensix.sourceforge.net
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1.1. WIRELESS SENSOR NETWORKS

Once SENSIX is programmed for a particular sensory domain, the run-time offers

dynamic addition of nodes, functional reconfiguration and presents the sensors as

software objects to other components beyond the tightly resource-constrained sensor

network. Furthermore it achieves all this more efficiently in terms of both messag-

ing and memory footprint than several leading wireless sensor network middleware

implementations and, when balanced, is shown to be far more scalable in very large

networks.

This introductory chapter reviews the unique challenges of sensor networks and

how they compare with other computing paradigms. It then summarizes the SEN-

SIX approach in the light of a concrete example before moving on to later chapters

covering the state-of-the-art in wireless sensor networks and middleware, the SEN-

SIX architecture, a reference implementation and an experimental evaluation of its

performance.

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are very small form factor computing platforms,

wirelessly inter-networked, sensing some surrounding environment in-situ. These cu-

bic centimeter-scale (or smaller) nodes, called motes, differ from previous sensing

architectures in three major ways: (a) they are self-powered, (b) they communicate

wirelessly (usually through radio frequencies) and (c) they have some computation

capability. The primary and most daunting constraint these networks face is severely

limited power, and as such the minimization of energy consumption drives further

constraints such as computation, communication and storage limitations. The wire-

less network is usually constrained to the very limited transmission range of ISM-

band and 802.15.4 radios, although significantly wider ranges are available through

WiFi or, more rarely, cellular networks. Messaging may be reduced by in-network

2



1.1. WIRELESS SENSOR NETWORKS

data aggregation. Exfiltration of important data out of the network is usually accom-

plished through multihop routing. It cannot be stressed enough that the most vexing

hardware limitation of all in WSNs is that of the power supply, because this limita-

tion touches every other part of the system: what and how well it can detect, how far

it can communicate, how much it should compute, and how much data it may store.

Environmental energy harvesting, wherein mote operational power is extracted from

the surroundings (solar, vibration, etc.), can yield continuous power, but, as reflected

in [54], at such a low rate that WSNs are still heavily power-constrained.

The term wireless sensor network has been used to include hardware nodes much

larger than the mote as well. Herein, unless otherwise noted, WSN refers to mote-

based sensor networks.

Power limitations are not the only concern in sensor networks; scalability is also

prominent. Initially wireless sensor networks were seen as enabling a ‘real-world’

Internet: hundreds, thousands, even millions of these minuscule detecting/process-

ing/communicating platforms cooperating and coordinating to get live data to end-

users on the other side of the globe. WSNs have been cited as prime solutions for a

number of potential and actual applications including ecological and environmental

studies, human health observation, defense and nonproliferation surveillance, trans-

portation traffic monitoring or manufacturing process tracking. Small-scale networks

have been deployed for habitat monitoring [76, 107], volcanic seismology [112], agri-

cultural micro-climate observations [66] and petroleum facility management [55]. A

larger system (approximately 1200 nodes) has demonstrated perimeter surveillance

[7, 10]. Despite these examples, long-term and/or large-scale systems in unattended

deployments have not yet been demonstrated.

The wireless sensor network computing paradigm is data-centric and event-driven,

meaning that the intermittent arrival of event data dictates the behavior of the

sensing application. Due to the resource constraints, and contrary to traditional

3



1.1. WIRELESS SENSOR NETWORKS

client-server based distributed computing, WSN computation is highly asynchronous

and communication is tightly controlled. Sensor network software must be robust

and reduce costly and invasive user administration by being self-configuring. WSN

messaging and communications must also be minimized in motes because wireless

transmission is the single most costly activity in terms of energy. Sensory data

character, plus the quality of a particular datum, will influence message priority

and aggregation capability, both involved in reducing message volume. The natural

spatial and temporal localization of events in the environment also gives network

traffic a bursty nature, further emphasizing the need for bandwidth minimization.

Violation of any of these data-centric principles degrades efficiency and, therefore,

network lifespan.

Early WSNs were organized in a star topology. The current drive is towards

greater multihop and ad hoc (self-organizing) networking. Typical fielded topologies

are either single-tiered and fully ad hoc with under a hundred small sensor nodes

multihopping data to a controlling laptop, or a two-tier system wherein clusters of

small motes report via short multihop paths to more powerful gateway nodes which

themselves may form their own multihop network of greater range to report data to

a controlling laptop or exfiltration point. The 1200-node ExScal experiment [7] is an

example of such a two-tiered topology.

With sensor networks acting as a cornerstone of the vision of ubiquitous comput-

ing (sensors and computational resources everywhere), WSNs have been optimisti-

cally projected to encompass many thousands of nodes per user [30]. This vision has

yet to be realized. While part of the reason may have to do with the opportunity (or

lack thereof) to assemble so many nodes into a network, the staggering effort required

to complete ExScal implies that there is more to sensor network scaling than just

funding issues. Wireless sensor network research, by and large, sees these networks

as a stand-alone end unto themselves. At least among WSN hardware vendors, this

4



1.1. WIRELESS SENSOR NETWORKS

attitude has begun to change. WSNs are probably best utilized as the sensory leaf

nodes of a much larger and potentially more complex system tree. Given the volume

of data that a very large sensor network (or network of sensor networks) would gener-

ate, the most appropriate consumer to WSN data production is in fact another data

system − not a human user. WSNs are inherently cyber-physical systems, and this

meeting of physical and computing elements demands a different mode of thinking.

Wireless sensor networks with their constraints and capabilities are very differ-

ent from other distributed computing paradigms. Mobile, ad hoc, socially-oriented

computing devices, as embodied by the ubiquitous cell phone, though somewhat sim-

ilar in their wireless networking and constraint bounds, are highly user interactive

− eliminating the need for self-administration and mitigating energy constraints.

Likewise, sensor networks, though highly parallel, are not similar enough to high

performance computing systems − we cannot directly use a Message Passing Inter-

face (MPI) programming library here. Although WSNs pass messages throughout

the network, MPI (or for that matter the abstract models of PRAM, BSP, or LogP)

is inappropriate because it assumes a homogeneous, low-latency, topologically static

and, moreover, reliable network. Without an intervening layer to meet or mitigate

those assumptions, MPI cannot be applied to sensor networks.

Nor do distributed object-oriented (OO) middleware approaches directly fit in

such a constrained environment. Gone are the MPI requirements of homogeneity

and static network topology, but for flexibility and dynamism, these OO systems

ship inefficient objects across the network for remote operations − a very bad idea

in an efficiency-sensitive wireless sensor network. OO systems also tend to have a

larger memory footprint, which is why simpler procedural languages, like C, dominate

embedded programming. Ultimately, like MPI, OO embodies high-level abstractions

which are desirable for the power of their problem-space modeling, but at a cost

to efficiency. Distributing objects remotely is, for efficiency reasons, arguably a

5



1.2. DISTRIBUTED COMPUTING THROUGH
OBJECT-ORIENTED MIDDLEWARE

poor choice even in low-constraint environments, but given the prevalence of the

object-oriented paradigm and the complexity of OO middleware implementations,

this fundamental inefficiency is beyond the scope of this work.

1.2 Distributed Computing through

Object-Oriented Middleware

The OO approach embeds behavior (as methods or function calls) in self-contained

data structures called objects. These objects are meant to mock real-world ideas

and forms, and interact by passing messages (through their methods) to each other,

in contrast to direct manipulation embodied in the procedural approach. This en-

capsulation, governed by method interfaces, enables inheritance and polymorphism,

which means that hierarchies of related objects (from general to specific) can be

created. For instance, a ‘Cat’ class of object can derive much of its non-cat-specific

functionality from a ‘Mammal’ class, from which ‘Dog’ also inherits. In a distributed

environment, this message passing is taken to its logical conclusion, passing object

messages through the network, instead of just within a single application process.

This distributed middleware hides much, such as data marshalling and network ar-

bitration among heterogeneous participants. Although this high-level abstraction

yields greater power, particularly for modeling, it comes at a cost of greater internal

complexity and more overhead − in both computation and communication.

The Common Object Request Broker Architecture (CORBA) is an object-oriented

middleware that is valuable for its platform and language heterogeneity through the

abstract Interface Definition Language (IDL), its runtime discovery (through dy-

namic invocation), its asynchronous messaging (distributed callbacks) and its exist-

ing high-level services (such as Security, Event and Trader services), but most of
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1.3. SENSIX BY EXAMPLE

all for its standardization. In fact, CORBA is the standard for distributed object

computing.

CORBA is prevalent in, and has standardized services for, the domains of fi-

nance, healthcare, defense, manufacturing, telecommunications, and transportation.

CORBA is in your last phone call, debit card transaction and in your Linux Gnome

desktop. As such CORBA is commodity software. To qualify as commodity soft-

ware, a product must be so widely used that it is itself a standard − in practice,

if not in principle. Commodity is not an expressly positive denotation. On the ad-

vantageous side, commodity means software with high availability through several

competing vendors, is extensively used and tested, has a familiar development envi-

ronment with a shallow learning curve and is highly interoperable. Unfortunately,

trying to be very general-purpose also means that it may be too broad a solution,

be heavyweight (having excessive overhead) and be difficult to optimize. CORBA is

all this.

1.3 SENSIX by example

An example to show the SENSIX approach in context is in the domain of healthcare.

The CodeBlue project at Harvard has developed prototype motes that collect blood-

oxygenation, electrocardiogram, electromyogram, or blood pressure data, as well as

the software to serve these data on a PDA [74]. The role of CodeBlue is as a tool for

emergency responders in disaster relief efforts. Such wireless monitoring might also

be advantageous in a hospital setting, and almost certainly would be so in a nursing

home or in telecare (where the patient, living at home, is monitored 24/7 through

wearable devices).

The healthcare industry has been slow to go paper-less − and for good reason:

7



1.3. SENSIX BY EXAMPLE

security and trust are vital concerns surrounding sensitive patient information. When

and where it has gone electronic, healthcare had difficulty leveraging the promised

potential due to software incompatibilities. This difficulty gave rise to Health Level

Seven (HL7), a nonprofit, all-volunteer standards organization that now has global

impact. The purpose of HL7 is to unify software interfaces for healthcare such that,

for example, a patient could go to a new medical provider and have their entire record

history available, including test results, greatly increasing the quality and efficiency

of care.

HL7 standards are in turn based on middleware standards such as CORBA and

the Service-Oriented Architecture (SOA). Chapter 3 addresses SOA; for now, this

example focuses on CORBA.

Figure 1.1 represents an example CORBA/HL7 compliant system interfacing with

wireless vital sign monitoring. The service components in rounded boxes here are

either existing or upcoming CORBA standards. These standards provide object-

oriented interfaces for clinical data collection, decision tools, integrated billing fa-

cilities, and even interfaces to national databases. The wireless body-area network

which is monitoring the patient must interface with this coherent, standardized sys-

tem, either locally, or remotely through telecare. The wireless network interacts with

the Person Identification Service to securely associate sensor data with a particular

patient medical record, and the Clinical Observations Access Service which collects

the vital sign data. Figure 1.2 provides a detailed view of the boundary between

the object-oriented CORBA/HL7 system and the body-area sensor network running

the efficient TinyOS run-time with CodeBlue components. The SENSIX framework

bridges this boundary, which is not only a software interface but also a divide between

software paradigms.

Recent developments in the CORBA standard such as CORBA/e, a pared-down

specification that targets embedded platforms [81], a mobile wireless InterORB Pro-

8



1.3. SENSIX BY EXAMPLE

Figure 1.1: Wireless sensing in a healthcare context.

tocol (IOP) [80] and a real-time specification [79], make CORBA more appropriate

for certain wireless devices. However, these advances are still incompatible with

WSNs: even the slimmest CORBA/e footprint is still around one megabyte (too big

for motes), and the wireless IOP is not tuned for WSN-style efficiency. Moreover, the

mere fact that CORBA maintains object state over the wire violates the efficiency

principles of WSNs, so a direct graft of CORBA onto mote networks will not work

well.

There are a number of conflicting goals when attempting to accomplish a total

clinical observation system with wearable devices as illustrated in Figure 1.1. First

and foremost is standards compliance, which ultimately means interoperability with

9



1.3. SENSIX BY EXAMPLE

Figure 1.2: SENSIX as a bridge in the context of healthcare.

CORBA. Second is typical software engineering practices, with a toolset that is

dominated by object-oriented methods and approaches. Third is software flexibility:

the ability to reconfigure, recombine, extend and expand modular objects to achieve

new functionality. Lastly comes the counter-point of the event-driven data-centricity

of WSNs and their inherent incompatibility with the distributed object paradigm.

Any solution to this incompatibility must honor the important aspects of each side.

The SENSIX framework provides just such a solution. Leveraging multiple layers

to achieve controlled ad hoc networking (Access layer), reconfigurable and parametric

sensing (Functor layer), domain-specific functionality (Morphic layer) and an object-

oriented presentation (Transformative layer), SENSIX bridges the data-centric and

object-oriented approaches independent of the operating system, the implementation

10



1.4. HYPOTHESIS

language or the sensing domain. We can apply SENSIX equally to complex defense

systems or wide-area, extended-term ecological monitoring.

1.4 Hypothesis

The hypothesis for this dissertation is:

The SENSIX approach scalably bridges commodity object-oriented mid-

dleware and event-driven, data-centric sensorware without the loss of the

dynamic flexibility of the former or the constraint-sensitive efficiency of

the latter.

To show this, I qualitatively examine the flexibility of the object-oriented side of

SENSIX and quantitatively evaluate the efficiency of the mote side.

The primary contributions of SENSIX and this dissertation are:

• a bridging facility between mote software and object-oriented software systems,

• a means of defining WSN applications independent of programming language,

network protocol, or mote infrastructure/operating system,

• a reference implementation of a tasking mini-language to guide other domain-

specific efforts and

• an efficient means of achieving very large scale sensing networks.

While SENSIX achieves its bridging capability through its multiple layers, its lan-

guage, protocol and infrastructure independence is largely a by-product of the mote

IDL compiler and Transformative layer. Scalability, when the network is properly

balanced, comes about mostly due to efficient implementation of the Functor layer.

11



1.5. OVERVIEW

1.5 Overview

• Chapter 2 reviews recent WSN research, CORBA middleware and tradeoffs,

and work in WSN reconfigurable middleware.

• Chapter 3 delves into the details of the SENSIX software architecture as

a bridging facility and returns to the healthcare example to show how it is

applied.

• Chapter 4 discusses a reference implementation that embodies generic, mote-

compatible sensing and explores the tradeoffs involved in using SENSIX through-

out a large heterogeneous sensory system that uses far more than just mote-

scale platforms.

• Chapter 5 proves the hypothesis of this dissertation by using this implemen-

tation in analytical and empirical efficiency measurements, comparing against

representative WSN middleware implementations while addressing SENSIX dy-

namism and flexibility.

• Chapter 6 explores incomplete aspects of SENSIX, improvements and future

directions.

• The Appendices contain SENSIX IDL code, an encoding table for the refer-

ence implementation mini-language and the IDL for the reference implementa-

tion.

Full source code for SENSIX is available on SourceForge at http://sensix.sourceforge.net.

12



Chapter 2

Background

To make the dichotomy between the wireless sensor network and object-oriented

computing paradigms apparent, this chapter reviews the issues of WSNs and OO

programming, as well as middleware approaches for both, with particular attention

on object-oriented CORBA.

2.1 Wireless Sensor Networks

Wireless sensor networks are a relatively new field. Spawned by the Defense Ad-

vanced Research Projects Agency (DARPA) in 1991, the Network Embedded Soft-

ware Technology (NEST) program (beginning with the Smart Dust project) aimed

at producing millimeter-scale general-purpose sensor platforms capable of full sit-

uational monitoring. Throughout the lifetime of this initiative, the University of

California (UC) has been at the forefront, with UC Berkeley leading in systems en-

gineering - so much so that the MICA platform and TinyOS software [49] that they

developed came to dominate the field. This field of research has now moved into an

era of industrial development, sprouting numerous start-up companies. Though the
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initial projects are now completed and there is now a wide variety of university and

industry innovation, the earliest UC work continues to frame the discourse in this

field. One of the first papers from Estrin et al., detailed their data-centric, applica-

tion specific and localized approach to these systems, demonstrated through directed

diffusion routing [30]. This data-centrism has become an underlying assumption in

WSN development. Several years later, it is again UC that articulates the developing

vision of wireless sensor networks. These networks are to be untethered, unattended

(perhaps even unreachable), very large scale in coverage, either mobile or exhibiting

“stationary mobility” due to dynamic environmental variability (i.e. mobile obsta-

cles to sensing), autonomous, localized and dynamic (i.e. rapidly switching from low

activity to high activity upon event detection) [29].

2.1.1 Example deployments

One of the distinguishing characteristics of WSN systems research is the fact that,

from early on, experimental sensor network deployments were multidisciplinary −

combining WSN system development with productive sensing in some other science

domain. The data concerns of these other domains have driven WSN development.

These selected experiments exemplify aspects of sensor network energy-efficiency and

data-centricity, issues in WSN software robustness and scalability, and the opaque

nature of these non-interactive systems.

Storm Petrels

In this first example project, a UC Berkeley team deployed about 150 motes mon-

itoring temperature, humidity, burrow occupancy (ambient light) and barometric

pressure to reveal micro-climate details of Storm Petrel nests in a nature preserve

on Great Duck Island, Maine [104, 105]. Operating over 123 days, these nodes, run-
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ning TinyOS (see Section 2.1.3), were divided into one single-hop network and one

multihop network.

This project used the Crossbow MICA2DOT, a round, slightly smaller repack-

aging of the popular MICA2 mote. Both are single board computers with an 8-bit

4 MHz microcontroller, a 433 MHz radio offering up to 40 Kbps, a 512 KB flash

memory and an on-board Analog-to-Digital Converter (ADC). On separate boards,

usually linked to the main board by a 51-pin connector, are a variety of low-power

sensors. The MICA2 is the same length and width as the pair of AA batteries it

uses, while the MICA2DOT is 25 mm in diameter and uses a 3V coin cell battery.

The main sensor network systems insight revealed by this project was that while

duty-cycle has a strong effect on network lifetime, multihopping drastically reduces

lifetime (by about half). Also a variety of fault modes were seen here: in sensor

readings, networking, and total node failure.

California Redwoods

This next project looked at micro-climatic effects in the boughs of a giant redwood

tree in Northern California. Again MICA2DOTs were deployed, this time in special

packaging, to measure temperature, humidity, and incident and reflected light. The

motes were running TinyOS, and, instead of a custom binary application, the TinyDB

reconfigurable middleware (see Section 2.3.2). This motes used multihop routing,

facilitated by the MintRoute component of TinyOS, to a base-station at the bottom

of the tree.

The UC Berkeley team found that “battery failure was correlated with most of

the outliers in the data” [107]. Mote sensors were calibrated before deployment, so

when unexpected data noise turned up, the team was able to isolate the issue as due

to physical node orientation.
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Volcán Reventador

This three week deployment of 16 motes in Ecuador, studied earthquake wave prop-

agation and volcanic source mechanisms. This project’s goals were vastly different

from those of the preceding projects. Specifically, this volcanology study required

high data-fidelity and throughput over a widely separated network in a much more

event-driven application [113]. These motes also ran TinyOS, but were TMote Sky

units (predecessor of the TelosB), similar to the MICA2, but with less available

memory, a 16-bit processor and an additional ADC board.

Geophones and microphones measured seismic and acoustic phenomena. The

software used circular buffer logging to overcome the low radio data rate, since events

were sparse but intense. To avoid false detections, the motes voted on event occur-

rence and, upon a successful election, the local logging laptop would instigate a data

pull from the motes. Sensors were deactivated during this data pull, and so data on

sequential events was lost. The logging laptop represented a single point of failure,

and, as such, was responsible for several days of lost data when its batteries drained.

As opposed to the more gradual and easier to capture events of the previous

deployments, this project pushed the boundaries of unattended, low-power sensing,

demonstrating the need for greater emphasis on total systems research, particularly

in vertical integration.

LOFAR-agro

This deployment of 150 motes over three months sought to monitor micro-climate

conditions in a potato crop to detect and isolate the occurrence of a fungal dis-

ease [66]. This project used TNode motes, which are very similar to MICA2DOTs,

running TinyOS with MintRoute and the T-MAC Medium Access Control layer pro-
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tocol. It also used Deluge, a wireless reprogramming facility which transmits the

application binary image, flashes it into memory and reboots into the new image.

This project failed to gain sufficient data to achieve its crop monitoring goal. As

a result and unlike other deployment studies, this paper emphasizes the software

engineering issues involved in deploying WSNs, isolating key weaknesses:

• need for development formality

• insufficiency of the existing Application Programming Interfaces (APIs)

• lack of software robustness

• pre-deployment testing

• lack of fine-grained, component-level diagnostic tools

• super-linear increase in complexity with a linear increase in scale

• battery exhaustion

Except for battery exhaustion, these issues are well known and studied distributed

computing and software engineering problems. The unique constraints brought on

by requirements for low-power only make these already hard problems that much

harder.

In the rush to solve the resource-constraint issues of WSNs, it is vital not to ignore

the complexity of distributed computing or the pitfalls of software engineering, nor

to discard the partial solutions we already have for them.

ExScal

Our final example, a series of scalability experiments led by Ohio State University

(OSU), still under the auspices of NEST, uncovers additional issues. The first exper-
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iment was a deployment of just more than 90 MICA2s for intrusion detection, and

one of the key conclusions of this study was “that communication in dense sensor

networks is significantly unreliable” [6].

This project then grew significantly in scale: 983 MICA2-based eXtreme Scale

Motes (XSMs) equipped with infrared, magnetic and acoustic sensors, plus 203 Cross-

bow Stargates, equipped with GPS. The Stargate is a traditional single board com-

puter running Linux with a 400 MHz Intel Xscale processor, 64 MB of memory, and

Ethernet, Serial, USB, and PCMCIA interfaces. These were arranged in a five-row

deep planned perimeter topology, tasked with detecting and classifying intrusions

(human or vehicle).

This experiment found increased messaging reliability due to multi-tier network

heterogeneity, versus their previous homogeneous experiment. The authors also claim

overall reliability of 73%, including routing yield and hardware, software and localiza-

tion faults. However, this deployment used in-network Sensor Network Management

System (SNMS) querying to provide ground truth − which admittedly only covers

“about half of the deployed network” [10].

These OSU experiments emphasize the opacity of WSNs and the importance

of network autonomy. Here, much more attention was given to vertical integration

issues, but there was no apparent attempt to use standard tools beyond those already

prevalent in WSNs.

2.1.2 Unique issues

As these example deployments demonstrate, in-situ wireless sensor network comput-

ing is drastically different from programming for business applications. The unique-

ness of WSNs revolve around their special emphasis on “energy efficiency, robust-

ness, and scalability” [90]. The focus on energy efficiency is seen most strongly in
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the WSN principle of data-centrism, particularly in networking. The data-centric

principle means what it says: data is central, everything else is overhead. Deploy-

ment, network layers and applications are all driven by the data. Since the data is

associated with events: quick, intense and bursty as in volcanology, or slow, gradual

and leisurely as in micro-climatology, WSNs are also event-driven. Energy-efficient

scalability is also prominent in the wireless sensor networking literature, yet software

scalability is hardly addressed. Equally, a strong emphasis on overall robustness is

evident in the form of networks that are self-organizing and self-healing, but little or

no application of this in the sensor software development process.

Thus, while sensor network software is very adept at energy efficiency, it tends

to disappoint in terms of scalability and particularly robustness, again leading back

to distributed computing and software engineering concerns. The focus of the work

described in this dissertation is to unify these issues to achieve robust software scal-

ability efficiently, using common tools as appropriate and wherever possible.

For WSNs, these tools are in the form of embedded operating systems and spe-

cialized programming environments.

2.1.3 Run-time and operating systems

Addressing these issues starts at the level of the mote operating system (OS). At

this level, the first choices are made in the tradeoff between low-level efficiency and

high-level power and convenience. The following exemplar operating systems exhibit

incremental advancement in features, carefully choosing and justifying the tradeoffs.
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TinyOS

TinyOS, open-source software from UC Berkeley, is not an operating system per

se, but rather a collection of components “wired” together, that upon compilation

provide a feature-full run-time environment. TinyOS is event-driven; specifically it

uses a split-phase programming model, which is closer to the action of hardware

interrupts: the scheduler can interrupt a task, switch to handlers for sensor data or

incoming packets, and return to the long-running task. It is optimized for code plus

data size, is statically linked, and all memory is preallocated − there is no heap.

TinyOS’s companion language, nesC, serves as the means to tie those components

together into an application, and to create new components. NesC also performs

concurrency analysis at compile time to avoid race conditions [49].

TinyOS cannot, however, dynamically load a new executable without a complete

image replacement and reboot, and thus lacks fine-grained flexibility. NesC’s pro-

gramming model, though based on C, is sufficiently different that it has a notoriously

steep learning curve (see [66, 77]). Nonetheless, it is the de facto standard tool for

WSN programming, with its componentization being a key feature.

SOS

SOS improves on TinyOS by providing dynamic memory allocation, loadable mod-

ules and a kernel. Application programming is in C, a much more common and

familiar language. The kernel takes care of network messaging, dynamic memory

allocation, and module loading and unloading [43]. For over-the-network reprogram-

ming, TinyOS requires that the entire mote image be shipped and the mote reboot,

whereas SOS enables the use of smaller modules that can be dynamically loaded.

SOS is still event-oriented like TinyOS, but in terms of network reprogramming effi-

ciency, SOS wins because of the finer granularity of its modules. However, SOS does
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not emphasize software component recomposition like TinyOS does.

MANTIS

MANTIS introduces preemptive thread scheduling. A preemptive scheduler is par-

ticularly important to enforce fairness among threads or tasks [14]. MANTIS also

provides multi-granular code injection: at the level of the whole system, a single

thread, or even thread variables. This provides dynamic and efficient run-time repro-

grammability, even after a network has been deployed. MANTIS offers POSIX-style

system calls in C and a remote interactive shell. Of these three, MANTIS is the

most familiar to the UNIX programmer, offering the most high-level OS services.

There are many more operating systems that are WSN-specific and offer addi-

tional features, like Nano-RK [31], Contiki [28] and eCOS [70], and still others that

are merely real-time embedded-platform-specific, such as QNX [47] and VxWorks.

2.2 Object-oriented programming and design

In stark contrast to the low-level attention that WSNs require is the high-level ab-

stractions of object-orientation. The OO approach has so thoroughly saturated soft-

ware engineering that it has become a commodity technology − a de facto standard.

Object-oriented programming is an imperative (versus declarative) style in which

the developer defines abstract data types that encapsulate state and behavior. Though

there are numerous OO languages (C++, Java, Python, Ruby, C#, Eiffel, Smalltalk

and more), they share some features beyond this information-hiding and behavioral

interfaces − such as object inheritance, functional polymorphism, late-bound dy-

namic dispatch and open recursion (a ‘self’ or ‘this’ pointer). Run-time objects are
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self-contained, interacting only through their methods, or function calls. This ap-

proach encourages fine-grained modularity, ‘real-world’ modeling and strong typing.

Inheritance, whereby an object gains the functionality of an ancestor, and polymor-

phism, where a named method may have object-specific functionality, enable both

static (compile-time) and dynamic (run-time) software reuse, which itself leads to

greater extensibility, reliability and maintainability.

Although any Turing-complete language can accomplish these same features (since

all Turing-complete languages are mathematically equivalent), the focus of object-

oriented programming is to make these desirable outcomes easier to realize. There

is a price to be paid, however. Dynamic dispatch, which enables polymorphism and

open recursion, means that a method call must, at run-time, route through a lookup

table to use the correct executable code. As a result of this complexity, OO run-time

libraries (or interpreters) tend to be quite large − often far too much to be used in

embedded systems.

From the point of view of application design, OO is a bottom-up strategy (re-

ducing large problems into smaller, more manageable components) as opposed to

top-down (detailed stepwise instruction). The use of object-oriented programming

should encourage high module cohesion and low module coupling, increasing reuse.

Object-oriented software engineering tools and processes abound for most OO lan-

guages and these concepts dominate the field of software engineering:

• use cases

• Unified Modeling Language (UML) diagrams

• Class-Responsibility Collaboration (CRC) cards

• design patterns

• design by contract
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• unit testing frameworks

• self-documentation

• coupling, cohesion and complexity metrics

• Rational Unified Process (RUP)/eXtreme Programming (XP)/Scrum

2.3 Middleware

Middleware is supportive software that hides direct operating system and network

software interfaces from an application. The purpose of this masking may be for

mere simplification, portability, or, most often, for a unified distributed computing

environment across diverse hardware, network, and/or software platforms. This sec-

tion looks at both traditional distributed computing middleware and that which is

specifically for WSNs.

2.3.1 Distributed computing

Distributed computing has its own constraints. Waldo et al. note that distributed

systems must (and often don’t) take into account: latency, memory access, concur-

rency and partial failure [111].

One of the earliest and certainly most successful distributed computing mid-

dleware implementations is the Transmission Control Protocol and Internet Proto-

col (TCP/IP) networking stack, particularly as embodied through Berkeley sockets.

This bedrock of the Internet was so successful that it is now embedded in the kernel

of most operating systems, and is the assumed base of the remaining middleware

discussed in this subsection.
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The Open Software Foundation’s Distributed Computing Environment (DCE)

is a far more complete programming environment, providing IDL defined Remote

Procedure Call (RPC) service, POSIX threads, a Naming Service, Kerberos secu-

rity, the Distributed File System and the Distributed Time Service [26]. Originally

supporting just C, it expanded to support object-orientation and C++. Microsoft’s

Distributed Component Object Model (DCOM) is an extension to the Component

Object Model (COM). COM builds on the (non-OO) DCE RPC with a layer that

enables object-orientation. CORBA is an object-oriented standard for distributed

computing from the Object Management Group (OMG), a large consortium of soft-

ware vendors. CORBA uses an ORB (Object Request Broker), as opposed to RPC, to

provide location transparency for distributed objects. Object-oriented DCE, DCOM

and CORBA were all concurrent competing technologies in the 1990s.

Since that time, Microsoft has switched to .NET which supports both binary

and XML data, and more web-oriented approaches, such as XML-RPC, SOAP and

others, offer eXtensible Markup Language (XML) based data exchange, collectively

known as SOA. Java supports both CORBA and the less complex Remote Method

Invocation (RMI).

The Internet Communications Engine (ICE) from ZeroC is a new, non-standard

incarnation of CORBA. It offers mappings for C++, Java, C#/.NET, Python, PHP,

Objective-C and Ruby (all of which exist for CORBA as well). Its overall architec-

ture is almost identical to CORBA (although the names of components have been

changed).

CORBA in depth

Since SENSIX is implemented with CORBA, this subsection examines this archi-

tecture in greater detail. Figure 2.1 demonstrates both the client/server basis of
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Figure 2.1: Basic CORBA architecture.

CORBA, and the layering of CORBA which allows for individual components to

be swapped out. For instance, The Internet Inter-ORB Protocol (IIOP) which uses

TCP/IP can be replaced by DIOP (Datagram IOP) to use UDP, or SSLIOP for

access to the Secure Sockets Layer (SSL), or LW-IOP (for lightweight) which is op-

timized for wireless communications. The abstract GIOP (General IOP) gives the

framework for these specific implementations, consisting of the Common Data Repre-

sentation (CDR), which maps data types to on-the-wire representation, Interoperable

Object References (IORs), essentially non-local object pointers and message formats

(Request, Reply, etc.) for managing object requests and so forth.

The Object Adapter (again an abstract facility, usually implemented by the Per-

sistent Object Adapter) serves as a generic interface between the ORB and served

objects. It registers object implementations, generate IORs, maps the reference to
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the implementation, invokes methods and activates or deactivates the object [96].

In addition to basic remote object access, OMG has also defined other standards,

categorized as CORBAservices, and both horizontal and vertical CORBAfacilities.

CORBAservices serve bootstrapping needs such as locating objects (Naming Service,

Trader Service) and security. Horizontal CORBAfacilities are widely usable modules

such as user interfaces, system management and task management, while vertical

CORBAfacilities are industry specific (telecommunications, manufacturing, finance,

etc.) [96]. OMG has also produced standard subsets of the full CORBA specification

in the form of CORBA/e for embedded platforms, with both compact and micro

profiles [81], which perform much better than full CORBA [36] at the expense of less

functionality.

The reasoning for basing the SENSIX framework on CORBA is two-fold. First,

CORBA is a commodity technology. Commodity means open standards, multiple

vendors and wide acceptance. TCP/IP is the ultimate software commodity. Com-

modity software yields competitive cost, low differentiation in implementations and,

thus, high interoperability, high reliability (to stay competitive), familiar develop-

ment skills and knowledge and an existing, well-supported infrastructure. Compared

to ‘boutique’ software which results in high-priced vendor lock-in with a high po-

tential cost for failure and requiring specialized developer knowledge, commodity

computing is by far preferable. CORBA, as the only mature and complete stan-

dard for distributed object-oriented computing, is distinctly qualified as commodity.

Second, CORBA out-performs its direct (i.e. platform independent) competitors.

SOAP and XML-RPC have significantly higher network bandwidth consumption

than CORBA [38, 83]. While Java RMI and CORBA have similar network perfor-

mance [38], CORBA scales better in the face of increased load than RMI [56].
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CORBA is dead

CORBA is periodically declared obsolete, most recently by Michi Henning, co-author

of “Advanced CORBA Programming with C++” and currently chief scientist of

ZeroC. In a series of articles across several publications and online forums, Henning

criticizes CORBA’s technical flaws and particularly the design-by-committee process

[46].

CORBA usage and development is very active, particularly in telecommunica-

tions, manufacturing, government and healthcare. Because it is a mature standard,

much of this work is hidden. It’s not new, there’s no hype, CORBA just works.

CORBA is put to work for diverse customers such as travelocity, weather.com

and the Keck Observatory. Example deployments of CORBA also include wood

product manufacturing, food packaging, fueling systems, traffic management, steel

manufacturing, shipping, visual effects creation and bottling beer [100].

Which is not to say that CORBA does not have true problems, the most pre-

dominant of which are a direct consequence of a standards process run by competing

vendors. The CORBA standard tends to be under-specified, and, at times, inco-

herent due to committee in-fighting, leading to subsequent problems with vendor

implementation interoperability. Another often-raised issue is that CORBA servers

are unreachable behind firewalls. This is a red-herring: there are IIOP-proxies that

can forward information through port 80, as well as CORBA-aware firewalls. These

problems and more are also being mitigated by ongoing research and development

([3, 8, 19, 37, 58, 61, 84, 93, 94, 108, 110] represent a recent sampling) and an active

standards process.

There is, however, the core issue of potentially invalid across-the-wire object

pointers (IORs) and high-overhead state transmission. This is not necessarily a fun-

damental and inherent issue for CORBA, as evidenced by recent specification trends.
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CORBA is, ever-so-slowly, moving toward greater applicability in the mobile and em-

bedded market. CORBA/e, LW-IOP, and Lightweight Services (Event, Naming and

Time, optimized for resource-constrained systems [78]) demonstrate a trend toward

greater efficiency. For mote-based WSNs, however, this trend is not nearly enough.

2.3.2 Middleware in WSNs

Sensor network middleware, unlike the traditional version, usually just masks the

complexity of distributed sensing on one particular mote infrastructure to allow pro-

gramming the sensor network as a whole. There is an enormous amount of research

activity in middleware for sensor networks with no real consensus on what is the best

approach. Römer et al. proposed three design principles for WSN middleware: lo-

calized and adaptive fidelity algorithms, data-centric communication and application

knowledge in the nodes themselves [90]. These principles can be seen to a greater or

lesser degree in the WSN middleware surveyed here, falling into the paradigm cat-

egories of databases, mobile agents, virtual machines, neural networks, web services

and novel techniques.

Databases

TinyDB [75], Cougar [16] and SINA [101, 52] all treat the sensor network as a virtual

database, queried through an SQL-like language. In TinyDB, for example, each

sensor node has its own query processor. The network forms a spanning tree rooted

at the user. Once a query reaches the leaves, they respond periodically with readings.

Parent nodes may aggregate or merely collate their own data with that of their

children, iterating to the root. ESS [42] and DsWare [69] also fall into this category.

Note that SQL is not a Turing-complete language and hence not fully expressive −

a distinct drawback.
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Mobile Agents

While the mobile agent concept for sensor networks has been explored fairly exten-

sively (for example [91, 15, 86, 21]), actual mote-compatible implementations are far

fewer. Agilla accepts tasks written in an assembly-like language for injection into

the network [33]. Agent code and state propagation is governed by move and clone

instructions specified over a grid topology. For efficiency reasons, Agilla mixes its

metaphors by also providing a neighbor-accessible tuple-space within each agent for

inter-agent coordination. SensorWare similarly transmits mobile scripts for state-

ful execution, but does not support motes [17]. In contrast, Kensho provides a

group programming facility using publish/subscribe interactions [50]. Here applica-

tion code moves fluidly through the network in response to local network state and

activity, as opposed to explicit instructions in individual nodes. Finally, Impala from

the ZebraNet project also embodies the mobile agent paradigm [72]. However, its

goals in an extremely mobile, often disconnected, herd tracking mission are highly

specialized.

Virtual Machines

Similar to the mobile agent concept, in that arbitrary code from the network can

be run, virtual machine middleware is more general because it does not associate

state with code updates. In fact, Agilla was built on top of the Maté Virtual Ma-

chine (VM). “Maté is a bytecode interpreter that runs on TinyOS” [67]. Maté uses

viral code infection to reprogram a network. Because VM execution involves code

interpretation, there is a significant run-time overhead cost compared to native bi-

nary code. Maté is itself a framework under which specific customized VMs can be

created. Its default incarnation is called Bombilla. Support for constructing other

VMs is pending, so further references to the Maté implementation actually refer to
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Bombilla. Maté proves to be fairly similar to SENSIX at the mote level in two key

ways. Both allow for domain-specificity: Maté by customized VMs, SENSIX through

specialized IDL; and provide a default implementation, which for Maté is Bombilla.

They both are also tuned for efficiency, discussed in detail in Chapter 5.

MagnetOS provides an object-oriented virtual machine as a single system image

[11]. The programmer sees a single Java VM mapped over the sensor network.

Despite its sensor-centricity and power-awareness, it is based on Java/Linux and

therefore inapplicable on motes.

Neural Networks

Intuitively, the neural network approach seems like a good fit for constrained sensors.

Both [87] and [63] post-process previously collected data for aggregation. Oldewurtel

and Mähönen, however, implemented an artificial neural net on Telos nodes running

TinyOS for light, temperature and humidity readings [82]. Although ‘fuzzy’ event

detection requires a preprocessing step, bit-error correction is quite strong. Note

that this paradigm only addresses data aggregation within the network.

Web Services

Using SOAP within WSNs has been proposed multiple times [25, 2, 4, 23], citing

programming simplicity and flexibility. Janeček manages to squeeze a SOAP server

(minus XML parsing) into a footprint suitable for a mote [53], but none of these

proposals address the very significant added network overhead of textual (XML)

transmission.
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Other

Other notable middleware that do not fit into the categories above include En-

viroTrack, MIRES, MiLAN, Kairos, DFuse, AutoSeC and ATaG. These middle-

ware range from general-purpose to fairly application-specific. EnviroTrack is a

TinyOS-compatible middleware that facilitates network-wide object tracking by us-

ing nearest-neighbor groupings of sensory context to aggregate data [1]. Enviro-

Track is rather limited in that it focuses only on tracking types of tasks. MIRES

concentrates on network interactions, featuring a publish/subscribe service for inter-

application network messaging, also implemented for motes [99]. In contrast, ATaG

(Abstract Task Graph) emphasizes dynamic tasking across the network governed by

graphs of information flow, and adjusts to network conditions at run-time [9]. Mi-

LAN also uses task graphs, but concentrates on providing abstractions that bridge

network device heterogeneity [45]. Both DFuse [88] and AutoSeC [44] are service-

oriented. DFuse separates structure, correlation and compute services specifically to

facilitate data fusion. AutoSec provides generic and dynamic service composition,

similar to CORBA at a high level. Kairos is a macroprogramming middleware that

emphasizes global behavior, and uses only three primitives (variable read/write, iter-

ating through one-hop neighbors, and addressing arbitrary nodes) in its programming

model [39]. Not all of these middleware are meant for use in mote-level WSNs, and

many are not governed by the data-centric and event-driven principles of constraint-

bound sensor networks.

Finally, there are several papers that touch on issues particularly relevant to SEN-

SIX. Lake proposes IDL-driven sensor fusion in [65]. Here both sensor objects and

fusion collectors are defined in language independent IDL code. Though developed

independently, this concept is central to the SENSIX reference implementation as

described in Chapter 4. Both Villanueva et al. and Buckl et al. propose CORBA-

on-the-mote implementations. Buckl in [20] emphasizes domain-specific languages,
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while Villanueva in [109] focuses on compatibility with ICE. The SENSIX approach

contends that pushing CORBA onto mote sensor networks is fundamentally wrong.

Like the SOAP implementations above, these direct CORBA implementations ignore

the extreme constraints of mote networks, particularly in network messaging costs.

It is clear that object-oriented software engineering principles and tools would

bring a welcomed maturity to the challenges of WSN software development. It is

also clear that there are fundamental incompatibilities between the high-level OO

approach and low-level WSN constraints. In bridging these two, a secondary, but

by no means distant, concern is to use pre-existing, preferably commodity, software

tools and infrastructure wherever possible to avoid duplication of effort. For SENSIX,

this means unifying TinyOS and all that it offers for WSNs, with CORBA and its

vast array of distributed object services. This facilitates an object-oriented style of

software engineering for sensor networks. SENSIX is the first step in creating energy

efficient, robust and scalable sensory solutions with familiar and appropriate tools.
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Chapter 3

The SENSIX Framework

Tanenbaum et al. have justly critiqued, “although researchers have developed ef-

fective solutions to network problems easily simulated in the lab, they have not ad-

dressed the systems challenges associated with deployment in real-world conditions,”

[106]. This fact was particularly revealed in the example deployments discussed in

Chapter 2. SENSIX begins to address some of these distributed systems and soft-

ware engineering issues guided by the supreme WSN principles of energy efficiency,

robustness and scalability.

Chapter 1 introduced the concept of integrating wearable vital sign monitoring

devices into an HL7-compliant system. This chapter will continue to use this example

to illustrate SENSIX concepts and usage, but keep in mind that the SENSIX ap-

proach is not domain-specific and can be applied wherever a wireless sensor network

must interface with object-oriented software.

As mentioned in Chapter 2, XML-based SOA has been proposed for WSNs else-

where [4, 24]. However, everything that is inappropriate about the object-oriented

approach inside a WSN is doubly so with a human-readable data format. Therefore,

while SOA is a valid part of HL7 standards, it is too extreme in its inefficiency to
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Figure 3.1: Wireless sensing in an ambulatory healthcare context.

serve as a direct WSN interface. Moreover, CORBA has standardized services that

provide conversions to and from SOA protocols, which can be placed where it is

appropriate − at the boundary to the user.

Figure 1.1 on page 9 depicts the overall HL7-compliant system and Figure 3.1

provides details of the ambulatory (in-home telecare) portion. In the in-home health

network, the telecare gateway bridges the OO and WSN segments of the total system

before transmitting data to the remote collection service. Given this comprehensive

and coherent environment of the CORBA/HL7 system, tacking on multiple wearable

vital sign WSNs through arbitrary, ad hoc software is a poor fit. Instead of consider-

ing the sensor network in isolation as most middleware implementations do, SENSIX

achieves seamless vertical integration, resolving paradigmatic differences through its

layered approach.

There are a number of conflicting requirements here. The first and most general is
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that of the object-oriented versus event-driven and data-centric software paradigms.

The object-oriented approach is important for its dynamic flexibility and its domain

modeling; whereas within the WSN, the event-driven, data-centric paradigm is vital

to preserve constraint efficiency. OO is highly abstract software; event-driven means

the software is much closer to the hardware (event handlers are triggered by hardware

interrupts); likewise, the data-centric approach in its asynchronous data transfer

is very concrete. For this domain, the ability to dynamically add new software

components or service abstractions, and the means to efficiently accommodate the

added load of a security layer are crucial.

Next, and more specifically, is the conflict between the ease of adding, replacing

or removing wearable devices and the need for network separation and security. We

do not want two patients to pass in the hall and have their monitors reassign based

on proximity, yet swapping out sensors should be as simple as their physical removal.

Finally, the wearable system needs to allow for dynamically individualized pa-

rameterization, per patient and per sensor. A caregiver should be able to alter alarm

parameters, for instance, on the fly in response to a changing treatment protocol.

These requirements touch SENSIX’s software reconfigurability, network reconfig-

urability and bridging capabilities in a domain-specific manner. First we’ll examine

the SENSIX build process with respect to this example, then how the SENSIX run-

time fulfills these requirements and resolves the conflicts.

3.1 Building a SENSIX architecture

Through its multi-step build process, the SENSIX framework produces domain-

specific architectures, which are themselves further specified into deployment-specific

implementations. The sensor network architect coordinates with the user/program-
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Figure 3.2: Generic SENSIX build process.

mer to define the system. The architect is a WSN expert involved only in this

one-time process, whereas the user/programmer is a domain expert who administers

and reconfigures the system frequently. Figure 3.2 shows the generic build process

for creating a SENSIX deployment: code provided by the architect is lightly shaded,

code and tools provided by SENSIX are shaded darkly, and the remainder are typ-

ical programming tools and components. This overall process is an extension of,

and very similar to, building a CORBA-only application. The top half of the fig-

ure corresponds to the CORBA side of the bridging facility and the bottom half

is devoted to the mote side of the bridge. The initial input consists of IDL code,

part of the CORBA system. To implement SENSIX, this consists of three parts:

SENSIX-specific IDL, domain-specific IDL and IDL that defines network access.

The SENSIX IDL (see the code listing in Appendix A1) defines the generic Func-

tor layer of the SENSIX run-time. Functors are usually described as function objects,

or independent software components that have, or embody a single method. On the

object-oriented side of the bridge, this definition holds true; but on the mote side,

a functor is just a data query or other simple sensory-oriented function. In imple-
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mentation, a functor resembles code from a functional programming language like

LISP, and indeed, following functional programming principles, at the mote level it

is stateless and its data is immutable.

The domain-specific IDL uses inheritance to declare what particular functors are

available to the overall application. As in the UNIX philosophy per Raymond [89],

this allows the creation of an application-specific mini-language. Elsewhere, such

tightly focused languages are also termed domain-specific languages and this is a

long-studied, yet active, field of research [13, 34, 85]. Some examples from UNIX

that were directly involved in typesetting this document are latex, make, m4 and

awk. Each has its own syntax and semantics; some are Turing-complete, some are

not; none are meant to serve as a general-purpose programming language, but rather

to do the task at hand in the most flexible way.

The access IDL defines the means by which new nodes that are added to the net-

work are integrated into the software system. In other words, do new nodes broadcast

their presence and capabilities, or register with a central server, or something else

entirely? This is also where security services are invoked.

All this code is input to both the CORBA IDL compiler (available from various

commercial and open-source vendors) and the SENSIX mote IDL compiler. The

output is intermediate source code, called skeleton code, that is specific to CORBA

on the one hand, and the chosen mote infrastructure on the other. At this point the

user provides implementation details (the domain-specific ‘how’ of the functors) to

fill in the gaps of the generated skeleton code. If the implementation language is the

same for both, this code will be very similar for both CORBA and the motes.

All this, including the SENSIX-specific common code, is sent to the respective

language compilers to produce the SENSIX run-time for the specified platforms. Fig-

ure 3.3 duplicates Figure 3.2 except where it is specific to our healthcare example.
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Figure 3.3: SENSIX build process for an HL7-compliant system.

Here the domain IDL will embody HL7 Reference Information Model concepts, par-

ticularly the Arden Syntax for vital sign queries, which interfaces with the Clinical

Observations Access Service. The access IDL will interface with CORBA’s Person

Identification Service to establish the patient-local network and initialize security.

Here the CORBA implementation will likely be C++, and the mote implementation

would probably use TinyOS plus CodeBlue components.

3.2 The SENSIX run-time

This recomposable build process already begins to shape the run-time interactions.

Once a node has joined a network through the access processing, it will await a

functor command to parameterize its sensing tasks. Figure 3.4 shows the conceptual

layers of SENSIX. The Access layer corresponds to the functionality defined in the

access IDL described above. The Functor layer is also already familiar from the

SENSIX IDL definition above.
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Figure 3.4: SENSIX layers.

The Morphic layer is called so because it is defined by the domain IDL which

gives SENSIX the domain-specific ‘shape’ of its functionality. The root “morph”

comes from the Greek, meaning ‘form’ or ‘shape’.

Finally, each mote infrastructure has its own packet structure or data encoding;

the Transformative layer converts this packetized functor or tagged data to a CORBA

object and vice versa. This Transformative layer, specific to each mote infrastructure,

is included in the SENSIX common code.

An early SENSIX implementation returned data within the functor that gener-

ated it in an object-like style, but performance testing rapidly showed this to be

an unnecessary and costly overhead. Instead, currently, tagged functors have a se-

quence number built in, and returned data is simply marked with that sequence

number. Figure 3.5 shows the difference between the two approaches in terms of

the average bytes transmitted per mote. This example is returning a total of 128

bytes of actual sensory data for both approaches (over a period of time); the dis-

covery and command phases are identical, but the data portion of the right bar also

includes the extra overhead of packing this data into a functor representation for

network transmission. The left bar, on the other hand, only includes a node ID and

a functor-tracking ID with the sensor data, reducing data transmission by half of
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Figure 3.5: SENSIX data return efficiency.

the object-like style. This demonstrates the power of the data-centric principle to

eliminate excessive network overhead, which can become quite significant over large

network scales and/or lifetimes.

Thanks to the inheritance of the domain IDL interface from the SENSIX functor

IDL, the functor provides the programming interface to the sensor network. The

flow of control starts on the CORBA side: a functor object is invoked by a Request

object’s apply method. The Transformative layer converts the object and transmits

the functor. On reaching the appropriate node(s), the functor guides sensor node

activity − potentially over a long term. Data is either collated, aggregated or im-

mediately transmitted, marked with a unique functor identifier. The Transformative

layer loads the data into the original functor object and performs a dataready call-

back on the Request object. Multiple functors may be running on a single node,
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sharing a single sensor or multiplexing across several. At this level, there is no in-

dication of network protocols or routing within the WSN, those details are provided

in the mote implementation code and, except where it impacts the Access layer,

SENSIX is independent of those choices.

Figure 3.6: SENSIX Request object interactions.

Appendix A1 contains the IDL code that defines these objects. This IDL defines

a single type for both integer and floating-point data, the above Request object, the

Functor base class, and a Task object that is responsible for Functor tracking. All

these objects are implemented in the SENSIX common code.

Notice that nowhere in this description of architecting the SENSIX framework

has a specific application been overlaid onto the system. SENSIX requires only that

the capabilities of the sensor network be defined. If the domain IDL closely models

the sensors that are resident on the motes, then the flexibility of the overall system

with respect to the sensing portion of the network is maximized and any constraints

are entirely hardware driven, since SENSIX exposes this model in an object-oriented

way. This, then, is the power of such a hybrid object-oriented/event-and-data-driven

system. As a collection of independent software components, distributed object

systems maximize flexibility and dynamic reconfigurability. Individual objects do
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not have any fixed relationship to each other except in whatever limitations their

interfaces impose. These objects can be rearranged and re-composed to provide new

functionality during run-time. SENSIX elevates WSNs to this same level of flexibility

while remaining sensitive to the constraints that make WSNs unique and challenging.

This chapter has shown how SENSIX takes advantage of its own separation of

layers to split the CORBA and mote implementations. SENSIX also provides flex-

ibility through both the generic and recomposable nature of the build process, and

the dynamic and re-taskable run-time environment.

While this chapter examined SENSIX from the point of view of an example

in healthcare, the next chapter describes a generic reference implementation. The

domain and access specific portions of SENSIX, which have been hypothetical so far,

will be fleshed out in detail. The next chapter will also look at SENSIX in a nested,

as opposed to merely bridging, configuration.
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Chapter 4

The Reference Implementation

Wireless sensor network middleware should provide “mechanisms for formulating

complex high-level sensing tasks, communicating this task to the WSN, coordination

of sensor nodes to split the task and distribute it to the individual sensor nodes, data

fusion for merging sensor readings of the individual sensor nodes into a high-level

result, and reporting the result back to the task issuer . . . [and] for dealing with the

heterogeneity of sensor nodes” [90]. SENSIX accomplishes all of this.

While Chapter 3 described the SENSIX architecture and how it provides sen-

sitivity to the target sensory domain, that is only part of the story. SENSIX also

enables strong scalability and the reference implementation of SENSIX is particularly

tuned to this, while providing generic sensing. Our previous example of healthcare

highlighted the bridging aspect of SENSIX and its application in a pre-existing soft-

ware infrastructure. This example is also an urban sensing domain, wherein the

CORBA side of SENSIX has very low constraints on power consumption and ben-

efits from wired network bandwidth. However, in settings without ready access to

electrical infrastructure, even the higher capacity nodes running the CORBA side

will be constraint-bound (though less so than motes). To make these scaling concepts
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more concrete, this discussion will invoke a wide-area environmental science example

which is itself a system of systems, or supersystem.

4.1 Object-Oriented Heterogeneous Sensing

Contrary to small scale WSNs composed of tens of motes, or large scale systems like

ExScal’s 1200 nodes, this supersystem example involves tens to hundreds of thou-

sands of nodes, here termed a very-large-scale system. In this supersystem, nodes are

classified by level: of size, computational capability, sensory range, communications

range and on-board power − all of which are considered to grow proportionally.

At level one, the lowest level, are the leaf nodes of the total system tree: motes

that sense micro-climate information within relatively small spatial bounds. These

motes can form a peer-to-peer network, but their primary communication is with at

least one level-two node. Level two nodes are significantly larger than motes, with

greater resources available. These nodes may also contribute to sensory data, but at

a different level of perceptivity. Whereas the motes gather fine-grained data, level

two nodes have a broader but coarser field of view. Level two nodes have a much

wider transmission range, are more sparse and directly administer level one motes.

The relationship of level three nodes to level two is similar, and so on up the

physical hierarchy. The network between levels one and two is physically separate

from that between two and three because motes tend to use different network tech-

nologies, and more importantly, this prevents throughput reductions brought on by

overlapping networks which will hinder scaling. This separation is continued up the

system hierarchy, as is the trend to more resources and rougher granularity. Figure

4.1 presents an example topology of such a supersystem.

This topology does not explicitly address network density. Although Gupta and
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Figure 4.1: An example supersystem deployment (and visualization output of the
SENSIX deployment tool).

Kumar show that per node throughput scales as O( 1√
N

), where N is the number of

nodes per unit area [41, 40], Shepard shows an adaptive means around that limitation

[95]. Hence this discussion ignores such potential limitations.

Why this topological complexity? First is the advantage in sensing. Like the fa-

ble of the blind men describing an elephant, motes may be seriously limited in their

sensory extent, but a multi-level system offers increasingly broader overviews, po-

tentially capturing macro-phenomena that motes alone cannot. Such a supersystem

bridges the complementary perspectives of local phenomena observation and remote
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sensing. Remote sensing refers to a stand-off acquisition of information on objects

or phenomena from distant platforms such as aircraft or spacecraft. Remote sensors

cannot yield the detail or diversity of in-situ sensors, but they can provide a broad

picture and set the environmental context for data from the ground. This supersys-

tem example uniquely offers an entire spectrum of viewpoints from micro to macro.

The second reason for this topology is increased scalability. For a datum to traverse

an ad hoc network, in the worst case it must be forwarded O(N) hops, where N is

the size of the network. The physically-based topology described here accomplishes

the same traversal in O(logN) hops. While such network scalability may be a mere

optimization, as described in [115, 71], sensory scalability may be vital to the correct

completion of the supersystem’s mission.

In our multi-tiered, example ecological study, stationary motes are very adept at

uncovering the micro-climate where an elk forages, but are significantly challenged in

tracking and discriminating between individual animals. However, these same motes

can cue more powerful and more sparsely distributed nodes for which localized track-

ing is more feasible. These, in turn, can coordinate with higher-level identification

and classification nodes.

SENSIX was itself inspired by such a multi-tiered mission. At Los Alamos Na-

tional Laboratory, the Distributed Sensor Networks with Collection Computation

project (DSN-CC) was tasked with creating a prototype traffic monitoring WSN.

The system ultimately combined disparate sensory data from MICA2 motes and

Crossbow Stargates, feeding into a decision engine. The motes ran TinyOS and were

the most reliable segment of the system. The remainder of the software was, due

to extreme time constraints, a rapidly-prototyped hack of sockets linking bare algo-

rithms, and was prone to sudden and mysterious failure, exasperated by hardware

malfunctions in a harsh environment. Ours was not the only project to experi-

ence such difficulties. Others, such as LOFAR-agro [66], had difficulty primarily at
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the mote level, while ExScal [10] was quite challenged at multiple levels of network

administration despite new in-network tools created specifically to reduce human

intervention. SENSIX was born from exactly these issues of vertical integration with

standard software development and engineering tools.

The DSN-CC traffic monitoring system used the TCP/IP network protocol for

its reliability, and this approach has been proposed in [27] as well. However, the

assumptions inherent in TCP/IP make it, like CORBA, inappropriate for highly

constrained portions of such a supersystem. Delay Tolerant Networking can address

some of these assumptions such as continuous connectivity [32], but not (like the

CORBA/e specification) WSN-specific efficiency issues. These tradeoffs in commod-

ity network protocols mirror those of CORBA commodity middleware.

The SENSIX reference implementation embodies a whole-system remedy. To

achieve network and sensory coverage, SENSIX offers a deployment tool. It assumes

random placement of level-one motes when there is no a priori information on the

sensing environment. Based on given radio ranges, it minimizes the number of nodes

of each subsequent level while maintaining full network coverage, as seen in the

example in Figure 4.1. If sensory coverage information is available, the tool can

utilize such feature maps to constrain level-one placement.

These network-forming aspects all fit within the Access layer of SENSIX. The

Morphic layer represents the sensory tasks that the network will perform. The next

section discusses the models that back the reference implementation’s Morphic layer.

4.2 Sensing and Tasking Model

Supersystem middleware must allow for heterogeneity: of sensors, of processors, of

energy consumption, of data storage capacity and of communication modalities. To
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achieve dynamic reconfigurability the middleware layer must also handle high-level

task decomposition down into the network as well as the resultant data fusion upward,

all in a resource sensitive manner. Assuming such a deployment depicted (without

features) in Figure 4.1 and a network topology as described above, the SENSIX

reference implementation handles ad hoc network and sensory capability discovery,

task decomposition down into the hierarchy tree and data aggregation back to the

root.

JDL Boyd SENSIX

act evaluation

refinement

impact

 decide inferencing

situation

object

 orient


follow multi-target

target tracking

data observe detect

Table 4.1: A comparison of data fusion models

The task decomposition and data aggregation in this SENSIX implementation

are governed by a data fusion model that derives from several standard models, such

as the Joint Directors of Laboratories’ (JDL, a DoD R&D committee) data fusion

model [114]. The JDL model separates data fusion processing into levels that assess

object, situations, threats (impact) and the fusion process itself. Subsequent work

has added a sub-object level and defined how these levels may interact [102, 73].

The Boyd control cycle [18] is another prominent data fusion processing model,

also known as an OODA loop for its linked phases: observe→orient→decide→act.

Bedworth and O’Brien integrate these models, and others, in the Omnibus model,

itself a looped construct [12]. Table 4.1 shows how the SENSIX data fusion model

fits alongside both the OODA loop and the five-level JDL model. Whereas these
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Figure 4.2: The SENSIX data fusion/network tasking cycle.

other models seek to be general and open to interpretation, the SENSIX model is

fairly specific to sensory data fusion.

Figure 4.2 shows this SENSIX fusion model as a cyclic process. Note that, as

currently implemented, the inferencing, evaluation, retasking and new hypothesis

steps require human input. The remaining steps describe the task decomposition

within the hierarchical supersystem as sensory viewpoints shrink and become more

specific, and then the corresponding data aggregation in the reverse direction. Not

reflected in these diagrams is the fault modeling that is necessary, but often ignored

in data fusion models. In the SENSIX model, faults are handled as close to their

origin as possible, and are propagated through the network only as far as they are

relevant. This data fusion model therefore implies that decisions, however simple,

are being made at every level of the supersystem tree. How all this is accomplished
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and realized is defined by the SENSIX reference implementation’s domain-specific

mini-language.

4.3 Sensing Mini-language

The table in Appendix A2 details the functor extensions of the reference implementa-

tion language. Appendix A3 lists the corresponding IDL definitions. There are three

categories of functors here: data, series and aggregate, each encoded as a single byte

with limited parameters available. This encoding scheme ensures efficient network

representation, while functor nesting allows for task complexity. Listings 5.1 through

5.4 on pages 58 and 59 show several simple examples of SENSIX task source code.

Task decomposition can either (a) be explicitly specified by including a hierarchi-

cal level parameter (see Appendix A2) to each functor which specifies at what tier the

functor is stripped, or (b) follow the default decomposition which strips aggregate

and series functors right before the mote leaf level. Figure 4.3 illustrates the functor

object method calls that implement the SENSIX data fusion model cycle. Expand-

ing on the bridging facility of Figure 3.6 on page 41, this figure demonstrates how

SENSIX extends the CORBA client/server infrastructure into a peer-to-peer con-

figuration. This is primarily accomplished by combining server and client processes

on each node. The apply call sends a Functor across the network, and devolve

triggers task decomposition. The dataready call receives collected data, while the

aggregate function performs Functor-governed data fusion.

Normal CORBA usage requires a central Naming Service to find remote objects;

the reference implementation of SENSIX bypasses this limitation by using a discovery

phase. In discovery, nodes broadcast their presence to their neighbors. Aligned

with the network topology described above, such messages are separated by a node’s
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Figure 4.3: SENSIX Request/Response objects implementing the data fusion/net-
work tasking cycle.

position in the hierarchy. Ancestor messages announce higher-level nodes, descendant

messages the presence and capabilities (and in CORBA, the IOR of those capability

objects) for use by parent nodes, and sibling messages share this information among

peers. These discovery message types are distinct because, on a particular node,

they may be sent out on separate network interfaces. Figure 4.4 details this process

in the style of a Unified Modeling Language (UML) Sequence diagram, along with

the tasking process. Although this sequence shows ancestor messages triggering

descendant messages, the addition of a node anywhere in the network will cause it

to send all three message types, resulting in a cascade through the network.

For tasking the network, the user provides a LISP-like nesting of functors. These

include the data functors, sense and peaksense; the latter ignores values that are
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Figure 4.4: A UML Sequence diagram of the SENSIX run-time under the reference
implementation.

not beyond a certain threshold. Both require a sensor parameter and may take an

optional sampling rate parameter. The timeseries functor collects readings over a

time span and must envelop at least one data functor (functors may be combined with

logical AND and OR). Likewise, the spatialseries functor combines readings over a

certain location. Although GPS is available for motes, it is power-hungry. Instead,

motes are considered to have the coordinates of their parent in the hierarchy. This

is reasonable considering the several meter resolution of basic GPS, but may be

supplemented by other WSN-specific localization schemes.
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Finally, the aggregate functors all require one or more series functors. Sum, delta,

mean and sigma each have their mathematical meaning. Recite simply collates

readings. Lambda, however, can run arbitrary bytecode over its constituent data.

Here, this is implemented as Java bytecode injection and obviously is not applicable

to the motes. Under certain mote infrastructures that support it, such as Mantis (but

not TinyOS), lambda may be implemented for motes with on-demand compilation

of code modules to binary.

Although a three-level nesting of these functors is readily apparent, a task can

nest functors almost arbitrarily, combining newly sensed data with aggregated re-

sults at any level. As the sensory tasking phase of Figure 4.4 demonstrates, the

symmetric task decomposition and data aggregation process, spawned by user input

and resulting in output to the user/programmer, allows any mix of data acquisition

and fusion.

The error handling phase of Figure 4.4 shows the fault model mentioned above,

wherein errors (represented by the X) are handled as close to the source as is rea-

sonable. Rather than just report the error to the user, the supersystem attempts to

resolve it reactively. This may consist of re-commanding a task, rerouting commu-

nications, or running a different task.

This mini-language couples the Access and Morphic layers of SENSIX under the

physically hierarchical assumption that data density, energy budget and transmission

range all increase as the network tree is traversed from leaves to root. Such coupling

is not necessary; in fact decoupling these layers would lead to greater software reuse

by reducing the interdependency that now exists.
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This chapter detailed the task decomposition and data aggregation cycle and the

physical network tree of the SENSIX reference implementation. There now only

remains the question of SENSIX bridging performance and the extent of the impact

of CORBA and object-orientation on such a vertically integrated supersystem. The

next chapter utilizes the network topology and data fusion modeling as implemented

here to evaluate the performance of SENSIX by way of specific tasking case studies.

54



Chapter 5

Metrics, Experiments and Results

While previous chapters covered high-level SENSIX concepts and its low-level imple-

mentation details, this chapter will show how this approach performs with respect to

other sensor network middleware in terms of task complexity, data aggregation, and

messaging overhead. This chapter also presents the tradeoff of commodity object-

orientation, and discusses the circumstances that may influence the adoption and

extent of a commodity approach.

5.1 Middleware Emulation and Simulation

Out of the myriad of sensor network middleware mentioned in Chapter 2, I have se-

lected three that represent disparate middleware paradigms: namely, TinyDB which

treats the sensor network as a database to be queried, Maté where the network is a

virtual machine, and Agilla based on mobile agents. The main criterion for selecting

these implementations is that they actually exist in implementation and are readily

available in the TinyOS repository. Other reconfigurable middleware were either not

implemented (MiLAN), not publicly available (Cougar, SINA, Impala, DSWare), or
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did not fit into motes or the TinyOS simulation framework (like SensorWare).

To run large scale experiments, simulation is a must. A true test-bed deploy-

ment would be preferred, but at scales above 1000 nodes this is cost-prohibitive.

In order to simulate potentially large scale sensor networks, I modified the built-in

TinyOS simulator, TOSSIM [68], to work within a cluster computing environment.

To accommodate this, these modifications (a) allow node numbering that does not

directly index state structures in the simulation process, (b) routes out-of-process

messages through a centralized networking simulation server, and (c) requests ADC

input from a centralized sensory simulation server. The networking server acts to

join the TOSSIM instances into a single network. It accepts messages, calculates

noise and collisions, and re-injects those messages as appropriate. TOSSIM, which

handles local collisions and noise, delivers an injected packet as-is, and so requires

extra (non-local) noise and collision handling by the networking server. To produce

sensor data, the sensory simulator loads a file produced by a GUI program that

combines the predefined sensor network node layout with point-and-click user input

defining the behavior of sensory phenomena.

In contrast to simulation frameworks, such as ns-2, that focus exclusively on

network interactions, this TOSSIM-based framework is far less concerned with the

fidelity of the network simulation and more intent on component software interac-

tions. Since TOSSIM is merely a recompilation of the same mote TinyOS code to the

x86 architecture, with some additions for simulation effects, this framework in more

emulative than ns-2 − which may in fact be a better choice for multihop networks

[51]. Whereas simulation explicitly and abstractly models the system or interactions

being studied, emulation focuses on reproducing the external behavior of the system

(not the internal state). This approach also avoids the problems of model validation

that plague wireless network simulations [5, 64, 62]. Emulation is also appropriate

in this case because internal state is far less important here than the interactions of
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system components. The CORBA/Java portion of SENSIX ties into this TOSSIM

framework via the Transformative layer, but otherwise does not simulate a wireless

network. Again the aim of this emulative approach is not to analyze network proto-

col performance, but to compare the efficacy and relative efficiencies of the software

systems in question.

The core comparison here is among Maté, Agilla, TinyDB and the mote-side of

SENSIX, all instrumented in the same way with identical network layouts, sensory

inputs and timing. Sensory input is produced as described above, and since these

middleware implementations are used in a reactive fashion, the timing is closely tied

to this input.

Networking assumptions were trickier to unify. As covered in Chapter 4, large-

scale SENSIX is organized such that the network topology dictates a routing tree. In

contrast, Maté and TinyDB use the standard MintRoute component from TinyOS.

Agilla assumes a grid network (addresses are in the form of an x, y grid position).

In the end, the simplest solution was to share the same network topology and

TOSSIM connectivity graph among the four middleware. The SENSIX discovery

phase, MintRoute, and a diagonal grid for Agilla all come to the same conclusion

for the routing tree. The arrangement of the other middleware into this topology

nullifies any advantage the SENSIX implementation may derive due to a networking

hierarchy. The connectivity graph for TOSSIM was created using the deployment

tool described in Section 4.1.

Liu et al. establish a lower bound limit for such multi-tiered topologies: for n

nodes in tier levels i and j, nj ≥
√
ni, where i < j [71]. Tier level numbering increases

from leaves to root. For these experiments, individual tier node counts were set at

nj ≈
√
ni, with non-integer counts always increasing to the next integer. This also

very roughly corresponds to the relationship between the transmission ranges for

motes (on the ground), 802.11-based radios, and long-range ISM-band (i.e. 900
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Listing 5.1: Basic reading task� �
recite ( spatialseries ( sense ( sensor=l i g h t , rate=5)))� �

Listing 5.2: Event detection task� �
recite ( spatialseries ( peaksense ( sensor=l i g h t , rate=5, low threshold=2) &&

peaksense ( sensor=acce l , rate=5, high threshold=3)))� �
MHz) radios.

These experiments were run on the custom N-sim cluster at Los Alamos Na-

tional Laboratory. The cluster nodes booted a Debian Live netboot image, and were

administered using the kanif tool based on TakTuk [22].

5.2 Tasking Case Studies

Exhaustive empirical testing and comparison is just not feasible, therefore I have

selected four tasks implemented in each middleware version. These tasks represent

the common missions of intrusion detection, tracking, and environmental monitoring,

plus a minimal single-reading task. These tasks are represented in the SENSIX

reference mini-language (as source code, not bytecode) in Listings 5.1 and 5.2, and

5.3 and 5.4 on the following page. For the remainder of this discussion, these tasks

will be labeled as follows: the basic reading task is a minimal single-reading task

(from an ambient light sensor); the event detection task performs intrusion detection

by a reduction of ambient light and an increase in accelerometer vibration at the

same time; the event tracking task traces the intrusion by monitoring the same

readings as the second task, but over a time series; the environmental monitoring

task watches for a significant increase in ambient light and temperature across several

nodes to detect a fire (environmental monitoring). These tasks are linked together
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Listing 5.3: Event tracking task� �
recite ( timeseries ( peaksense ( sensor=l i g h t , rate=5, low threshold=2) &&

peaksense ( sensor=acce l , rate=5, high threshold=3) , duration=10))� �
Listing 5.4: Environmental monitoring task� �

recite ( spatialseries ( peaksense ( sensor=l i g h t , rate=5, low threshold=2) &&

peaksense ( sensor=temp , rate=5, high threshold=3) &&

peaksense ( sensor=s i b l i n g s , low threshold=2)))� �
through predetermined and scripted triggers in order to demonstrate the dynamic

reconfigurability of the network.

These task cases are easily applicable to the multi-tier environmental science

example, yet equally feasible for a mote-only deployment under the same network

topology.

Not all middleware are created equal. The last three tasks were the most difficult

to realize in TinyDB, as a result of its query abstraction, more than anything else.

In contrast, Agilla and Maté, which are much more flexible and expressive, also

required much more extensive source code. SENSIX, embodied in the reference

implementation, manages to be both concise and expressive for this set of tasks.

There certainly are other tasks for which this reference implementation is not suited,

but unlike Agilla and Maté (in the form of Bombilla), with SENSIX that is easily

remedied. The earlier healthcare application provides just such a counter-example:

the reference implementation does not directly support data streaming, which is

likely a primary mode for a vital sign body area network. Such domain-specificity,

as provided by SENSIX, ensures a close and efficient fit of tasks to desired outcomes.

In comparing metrics among these four middleware, it is important to disregard

the impact of the object-oriented side of SENSIX for now, since the other middleware

are mote-only. The next two sections look at strictly mote-only tasking and messag-
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ing metrics, but Section 5.5 does look at the effect of CORBA on overall supersystem

performance.

5.3 Task Complexity Metric

A typical metric of source code complexity counts lines of code (LoC). Since task

source code is widely varying here: for TinyDB it is SQL-like, for Agilla assembly-

like, for Maté C-like, and for SENSIX Lisp-like, using a strict LoC metric would

be invalid. However, since whitespace is syntactically meaningless across all four

middleware, except to separate tokens, counting non-whitespace characters as in

the top half of Figure 5.1, seems to have more validity. A better metric looks at

the bytecode representation of each. This is a byte count of the task code as it is

transmitted wirelessly. This bytecode metric answers concerns, raised by Kaner and

Bond in [57], that the reputed measurement actually means what we think it does.

The bytecode metric directly impacts the network performance shown in Figure 5.3.

The top half of Figure 5.1 looks similar to the bottom bytecode bar graph, ex-

cept that the scale is about an order of magnitude larger. The Agilla and TinyDB

bytecode have a direct correspondence to the source code complexity, but SENSIX

has a slight improvement and Maté a rather significant improvement. The tradeoff

between task code complexity and the expressiveness of the middleware abstraction

is very apparent here. Agilla sacrifices efficiency in propagating tasks to achieve gen-

eral purpose utility, whereas TinyDB appears to do just the opposite. SENSIX, too,

chooses efficiency over expressiveness at the level of a particular implementation, but

does not suffer as a result thanks to its domain-specific build process.
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Figure 5.1: Middleware task complexity in bytes: source code (top) and bytecode
(bottom).
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Figure 5.2: Compiled middleware engine size and mote capacity.

Figure 5.2 shows another source code based metric that does not have a direct

impact on task reconfiguration, but is important nonetheless. The metric is that

of the compiled footprint size, which has an impact on additional mote components

that may be included. SENSIX leaves plenty of room for expansion, even for the

flash-memory-poor TelosB.

5.4 Messaging and Energy

For WSNs the most important metric is energy consumption. Mote power usage is

dominated by message transmissions, as is readily seen in Table 5.1, which summa-

rizes the power constraints listed on the datasheets of the most common motes. As

such, minimizing the bytes transmitted wirelessly reduces the energy expenditure

of the unit, and of the network as a whole. There are other potential issues, such

as network bottlenecks, that may be detrimental to network lifespan, but they are

not considered here because they are network topology and protocol dependent, and
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µC/CPU TX/RX
MICA2 24 81/30
MICAz 24 57/54
TelosB 6 57/54
BTnode 24 81/30

TMote Sky 18 53/59
IRIS 24 51/48

TinyNode 584 6 180/42
eyesIFX 7 36/28
FireFly 18 51/57

Table 5.1: Mote energy consumption in milliwatts

thus out of scope for this evaluation.

One hundred simulations were run, as described above, for network scales of 100,

1000 and 10000 nodes. Although 100000-node simulations were planned, they were

deemed to be unnecessary, and sensory data production at this scale also proved

extremely time consuming. TOSSIM has a ‘packet’ debug switch that outputs so

much information about network transmissions that it can interfere with simulation

performance. Instead, each middleware was instrumented such that it tracked the

number of bytes sent, binned into one of two types (three for SENSIX), namely task

propagation, or data return, or, for SENSIX alone, capability discovery. The task

complexity metric above directly impacts the empirical task propagation measure.

Besides scaling and task complexity, there are other variables that can shift the

outcome of the relative middleware transmission efficiencies, namely the number of

bytes returned per node, the extent of data aggregation in the network, and, specific

to the SENSIX discovery phase, the number of sensory capabilities.

Figure 5.3 shows the average bytes transmitted per node over the lifetime of each

task. Variation over individual simulations is very small: the average is approxi-

mately 0.1 percent of the total throughput. This is intentional. Network topology,
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Figure 5.3: Task messaging average per node.

network density and event timing between simulation runs was tightly controlled.

This was to eliminate wireless network effects as much as possible, focusing instead

on the software overheads. Because SENSIX and Maté are difficult to see here,

Figure 5.4 presents the same data, focusing on just those two middleware.

After determining that TinyDB traded expressiveness for efficiency, why does it

perform so (relatively) poorly? The answer is two-fold: first Maté goes to great

lengths to ensure that every network transmission is minimal, with excellent results;

second the tradeoff between expression and efficiency is neither proportional nor

straightforward. Increased expressivity may positively impact efficiency, especially

for complex tasks, and when retasking is infrequent compared to the volume of data

returned. It seems that TinyDB, particularly when not utilizing its aggregation

attributes, is too simplistic to scale well under a variety of task complexities.

Agilla’s performance is strongly degraded by its wrapping the returned data in

a mobile agent, coupled with its large bytecode representation. When the volume
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Figure 5.4: Task messaging average per node − closeup on SENSIX and Maté.

of data returned per node is very large, Agilla does much better; however, this is in

opposition to normal WSN principles of in-network data aggregation and network

responsiveness.

Maté performs remarkably well. Investigating the reasons for this performance

led to the SENSIX optimization mentioned in Section 3.2 − wherein the functor

which wrapped returning data was discarded in favor of tagging and tracking. At

the Transformative layer where functor objects are turned into mote functors, the

Task object assigns a unique tag to the mote functor. When this functor’s data

returns from the mote, the tag allows the data to be matched to the original functor

object. Maté, too, assigns version numbers to its code capsules, but does not need to

provide tracking beyond this since it does not provide vertical integration. Maté seeks

to be general-purpose, which drives the size of its in-network task representation,

and this in turn causes it to not perform as well as SENSIX. The SENSIX reference

implementation does not try to be general-purpose at this level of deployment, but

pushes those decisions domain-specificity into the architecture build phase.
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Maté also incurs a performance hit during execution because it is interpreting

instructions. In contrast, SENSIX functors are binary executables waiting to be

activated. Also, for run-time systems that support it, bytecode functors (like lambda)

can run arbitrary functionality, but the energy-cost of this is made more explicit by

the extra step it requires in tasking the network.

The average number of capabilities per node only affects the SENSIX discovery

phase, causing its throughput to grow minimally. An increase in the number of bytes

returned per node (normally directly related to task complexity) causes the data

messaging phase to grow, but disproportionately among the different middleware

due to wrapping and potential aggregation. Data aggregation is not expressed in

these relatively simple tasks, and this lack has a detrimental effect on TinyDB. Post-

experiment analysis indicates that the extent of aggregation has a large influence on

performance, and warrants its own metric. However, that has no bearing on this

discussion, because while variation along such an aggregation metric will show vast

improvement with increased aggregation for TinyDB, Agilla will still perform poorly

due to stateful transmissions, and Maté and SENSIX will continue to perform well

thanks to their data-centric networking.

Task complexity has an effect well predicted by the bottom bar graph of Figure

5.1. The effect of network scaling is rather flat in terms of average bytes per node,

as reflected in Figure 5.5. This means that overall network scaling of throughput is

linear for mote-only SENSIX, Maté, Agilla and TinyDB. Whether this simulation

result is reflective of reality is discussed further in the next section.
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5.5 Commodity tradeoff

Up to this point, the comparisons have all involved mote-only middleware. The

CORBA side of SENSIX has been assumed to be running on low-constraint units

and thus external to the measured WSN. CORBA should not run on motes, but

what if, as in the supersystems of Chapter 4, we wish to run the CORBA side on

more constraint-driven devices. How does CORBA affect the network?

Consider an example network deployment composed of iMote devices which can

run either TinyOS or Linux with CORBA/Java. Chapter 4 described the physically

tiered network topology that the SENSIX reference implementation assumes. Under

this topology, the CORBA side of SENSIX always occupies the tiers nearest to, and

including, the root. An example full-SENSIX deployment, then, would run CORBA

SENSIX in the top three tiers of iMotes, and mote SENSIX in the bottom two (most

populous) tiers.

In addition to the mote simulation described above, a set of full-SENSIX simula-

tions were run, varying not just network scale but also the percentage of the network

devoted to the CORBA side of SENSIX. CORBA instrumentation to produce task-

ing versus data versus discovery byte counts was included as well. The number of

tiers of the topology that CORBA occupied was varied, and the variations performed

for the mote-only runs were also included here. The graph in Figure 5.5 shows the

average bytes transmitted per node as both network size and task complexity vary

independently. Task complexity is unified for all four middleware here as a single

number. Under this unification, the basic reading task has a metric of 2, the metric

for event detection is 4, and both the event tracking and environmental monitoring

tasks have a metric of 5. Here CORBA occupies all but the bottom one or the

bottom two tiers, which corresponds very roughly to two percent and one percent of

the network, respectively. A 3D surface is fitted to the empirical measures here to
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clarify overall trends.

Figure 5.5: Middleware messaging over increasing scale (including CORBA).

In the lower graphs of Figure 5.5, it is apparent that the CORBA side of SENSIX

can have enormous impact when it infiltrates too far into the network. When this

occurs, it also seriously magnifies the impact of increasing task complexity. However,

in the lower right graph, SENSIX performs better than Maté at scales of greater than
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1000 nodes, when the CORBA side occupies three out of five and then four out of six

tiers. The lower left graph shows how task complexity contributes, when CORBA

occupied 5 of the 6 tiers. The top graphs in this figure show that these interactions

can be controlled better by keeping the percentage of CORBA infiltration steady as

the network scales.

Figure 5.6 shows the effect of varying CORBA penetration into the network. Here

this is varied by tier depth and by corresponding percentage. At scales below 1000

nodes, it is apparent that the tiered approach has difficulty balancing the increased

throughput of CORBA at all. Again with CORBA as a strict percentage of the

network this is a linear relationship.

Figure 5.6: CORBA influence on performance.

As Figure 5.5 shows, it is clear that Maté would serve well as a benchmark

for CORBA network infiltration. However, the above mentioned variables of task

complexity, data return volume, aggregation, and capabilities reported by SENSIX

all have disparate effects of these middleware.

Table 5.2 represents the range of the percentage of allowable CORBA network in-

filtration when benchmarked against each of the three alternative middleware. Here

69



5.5. COMMODITY TRADEOFF

the minimum network scale is 1000 nodes. CORBA infiltration is most restricted by

extensive discovery (many capabilities), particularly large data sets and poor aggre-

gation. The minimum values here represent special circumstances which are favorable

to the middleware in question, so the median is a better benchmark for a CORBA

upper bound. The TinyDB maximum is also a highly unfavorable circumstance and

not reflective of a valid benchmark.

Min Median Max

Maté 0.4 1.1 4.2
TinyDB 0.7 4.5 20.3
Agilla 1.0 8.9 14.7

Table 5.2: Percentage of allowable CORBA network infiltration given different mid-
dleware benchmarks.

In general, a CORBA infiltration of about one to two percent is the best guideline.

It is worth repeating that this comparison is for resource-bound CORBA nodes.

Also note that this benchmark considers identical resource availability (iMote versus

iMote). Where node resources become less restrictive, this upper bound too relaxes.

When node constraints disappear, this upper bound also disappears. Furthermore,

this evaluation examines CORBA using IIOP; use of the more efficient LW-IOP is

certain to produce better performance.

From these experiments, there appears to be no upper bound on the scalability of

SENSIX, however, this may be partially an artifact of simulation. In [35], Ganesan et

al. found that a relatively small scale network of approximately 150 nodes exhibited

irregular and sometimes counter-intuitive wireless behavior. This complexity and

irregularity is not well-reflected in simulation. The topology of the SENSIX reference

implementation, deployed in reality, would minimize those effects, but not eliminate

them. Properly optimized network protocols go a long way to mitigating these

problems of long links, deep fades and asymmetry.
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SENSIX software scalability may be affected by high node density. With the

density bounded by the nj ≈
√
ni rule, this topology experiences no degradation

with scale. However, other, more dense topologies might. Thanks to the low data

rate of mote communications, such degradation will be bound by wireless throughput

limitations, and not computational limitations at the SENSIX Transformative layer.

This chapter found that, in comparison to three leading WSN middleware imple-

mentations,

• the SENSIX task representation is smaller and thus more efficient,

• the SENSIX middleware engine is more compact and more extensible,

• mote-only SENSIX uses less bandwidth over a variety of tasks,

• SENSIX continues to perform well despite variation in task complexity, data

volume and data aggregation and

• if kept within a small percentage of the network, the CORBA side of SENSIX

is competitive in terms of network efficiency.

Although a hierarchical topology was used in the SENSIX reference implementa-

tion, it is not a requirement. Other topologies should not see any degradation of

performance beyond that induced by the wireless network.

This chapter evaluated SENSIX performance analytically for its task representa-

tion complexity and empirically through simulation for its messaging overhead. In

this case-study evaluation, SENSIX out-performs several WSN middleware. Addi-

tionally, the overhead of the CORBA side of SENSIX proves to be manageable.
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The final chapter discusses incomplete portions of the SENSIX framework and

further directions for improvement.
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Chapter 6

Conclusions and Extensions to

SENSIX

The preceding chapters have described the SENSIX architecture, its reference imple-

mentation, and its analytical and empirical performance. These performance eval-

uations show that the SENSIX middleware provides object-oriented flexibility and

data-centric efficiency that scales better than leading WSN middleware paradigms,

supporting the hypothesis of this dissertation. There is one caveat: SENSIX requires

balance to perform well, specifically the CORBA side of SENSIX cannot be permit-

ted to dominate more than a small portion of the network, unless that portion is

constraint-free (or nearly so). As an interesting side note, the Maté middleware offers

performance close to SENSIX, and the customizable virtual machine paradigm is sim-

ilar to the SENSIX approach. Unfortunately Maté does not extend its VM paradigm

beyond the mote network, whereas SENSIX explicitly does make this extension. This

high-level object-oriented abstraction coupled with low-level data-centric efficiency

is unique to SENSIX.
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Thus, the primary contributions of SENSIX and this dissertation are:

• a bridging facility between mote software and object-oriented software systems,

• a means of defining WSN applications independent of programming language,

network protocol, or mote infrastructure/operating system,

• a reference implementation of a tasking mini-language embodying task decom-

position and data aggregation and

• an efficient means of achieving very large scale sensing networks.

There are some secondary, incidental contributions also:

• an extended TinyOS-based WSN simulator, capable of simulating several hun-

dred thousand, perhaps even millions of motes and

• a hierarchical supersystem deployment-planning tool.

6.1 Unfinished aspects of SENSIX

SENSIX is a work in progress. Unfortunately, the mote IDL compiler, a key piece of

SENSIX, is not complete. Attempting to use the official CORBA 3.0 grammar has

broken this tool, which is currently based on the Spirit library from the Boost C++

template library collection. The reference implementation was completed by hand.

Although Spirit is easy to write for (the grammar looks very similar to Extended

Backus-Naur Form), being template-based it is nearly impossible to debug since

symbol resolution is highly obfuscated. Continuing work on SENSIX will switch to

Lex/Yacc or ANTLR to complete a CORBA 3.0 compatible mote compiler.
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Other issues are both less pressing and less difficult. The SENSIX common code

is fully fleshed out for Java, but not complete for the C++ or C language versions,

nor are there any other languages included yet. There are both TinyOS and Mantis

versions of the SENSIX common code, but there is not yet any Mantis Transformative

layer, and it might be desirable to include other mote infrastructures as well. TinyOS

1.x is fully supported, but TinyOS 2.x support is incomplete.

6.2 Extensions to SENSIX

The object-oriented side of SENSIX is not limited to just CORBA. Rather CORBA

demonstrates that this concept of mixing paradigms can be applied with any dis-

tributed middleware. Although it is very Microsoft-specific, SENSIX can work

with the .NET framework and its Windows Communication Framework (WCF),

Microsoft’s latest competitor to CORBA and descendant of DCOM. Likewise, the

Java language-specific Java RMI and Enterprise Java Beans (EJB) could quite easily

replace the CORBA portion of SENSIX. Web services (SOAP, REST, WSRF and

the like) are also a possibility. Each of these alternatives has its advantages and its

drawbacks − lack of efficiency and/or platform universality being common to most.

One of the major advantages of CORBA, of course, is that it has no platform

limitations and a very wide variety of languages from which to choose. ICE from

ZeroC can also be a CORBA substitute in SENSIX with very little alteration. The

only material differences are (a) ICE is not bound by CORBA standards, (b) ICE

focuses hard on performance, and (c) ICE follows an open source development model

with ZeroC as the final arbiter of conflicts. Item (a), while it provides opportunities

for improvement, may actually be detrimental because it creates vendor lock-in.

Item (b) is nothing new, most CORBA vendors emphasize performance in their

implementations and it is a common selling-point. As for the effectiveness of item
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(c), only time will tell if design-by-committee is actually worse than a single-vendor

solution (which ICE will continue to be so long as ZeroC is the final arbiter of change).

Nonetheless, SENSIX could very easily integrate with ICE.

The future of WSNs is certain to see increased miniaturization; Moore’s Law is

alive and well at the scale of the mote. The Sun SPOT, approximately the same

size as a MICAz, boasts a 32 bit ARM9 core that runs the Squawk Java VM di-

rectly on the hardware (without an intervening operating system) [97]. Squawk is

Java 2 Micro Edition (J2ME) Connected Limited Device Configuration specification

(CLDC) compliant, which means that CORBA may be out of reach, but Java RMI is

not [103]. Squawk introduces an interpreted, object-oriented run-time and an IPv6

stack at the mote level. As the cubic centimeter scale lowers its constraints, cubic

millimeter scale devices fill the high constraint niche. The Spec node prototype has

an 8-bit RISC core, 3K of memory, ADC, radio, UART and SPI all in a 5 mm2 chip

[48]. In short, as long as there is utility in highly constrained sensor nodes, there

will be a use for SENSIX.

6.3 Autonomy for Ubiquitous Systems

Blending WSN data into other software systems with SENSIX is just the first step.

Ultimately, as WSNs are integrated into large ubiquitous systems, the complex-

ity of software will become overwhelming. These systems therefore need to be-

come autonomic computing resources, being self-configuring, self-optimizing, self-

healing, self-adapting and self-protecting [60, 59]. Such auto-management concepts

already permeate WSN research in the goals of being self-organizing, self-healing,

self-optimizing, self-diagnostic and self-sustaining [92]. Software that realizes these

sensor network concepts must also be extended to the larger supersystem. SENSIX

has preliminary support for such system self-regulation. On the mote side, both the
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energy used by a functor and the time it takes to respond can be tracked, and this

information propagated and accumulated in the functor object. In addition, SENSIX

can close the loop on the task decomposition/data aggregation flow (see Figure 4.2

on page 49) by using aggregated data plus metadata, such as energy usage, as feed-

back to a decision-making engine, which in turn guides a task planning engine to

retask the sensory network. Currently this consists of PROLOG for decision-making

and Simple Hierarchical Ordered Planner for Java (JSHOP) for task planning, but

these are not yet hooked into the SENSIX data flow. SENSIX also allows for task

prioritization, which could be used by motes that are low on energy to decide to

refuse low priority tasks, thereby extending lifespan. Such a facility effectively yields

a self-scheduling of resources.

This proposed autonomic system would also require additional services, such

as are the norm for distributed operating systems. These common OS services are

interprocess communications (usually in the form of RPC), synchronization, resource

scheduling, a file system, naming and security [98]. Of these, SENSIX already covers

IPC and scheduling. There are WSN components that offer time synchronization and

security, but these need to be tied-in with the larger system. While some services,

such as a distributed file system, do not and should not have a place in the mote

portion of this system, others such as node naming are vital. In the case of naming,

any implementation is likely domain-specific and easily resides in SENSIX’s Access

layer, as does mote security. However, whereas distributed operating systems are

supposed to emphasize transparency, anywhere WSNs are involved it is important

to not mask too much − particularly location and faults. The occurrence of failures

and errors can be even more vital than sensory data. SENSIX has support for that

too, as mentioned in Chapter 4.
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SENSIX exposes networked sensors as distributed objects, offering customized

and seamless vertical integration with object-oriented systems. This vertical inte-

gration benefits wireless sensor networks by allowing high-level abstractions to ad-

minister and carefully infiltrate the sensor network, and by providing a new toolset

with which to develop WSN software. This vertical integration also has the potential

to provide benefits in the opposite direction as well, pulling WSN-style autonomy

into wider, ubiquitous systems.
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Appendix 1

SENSIX IDL

#define IDL

#include "sensix.h"

module sensix {

union Data switch ( char ) {

case 'd' :

case 'i' :

case 'u' :

case 'x' :

long long iresult ;

case 'f' :

case 'e' :

case 'g' :

case 'a' :

double fresult ;

} ;
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Appendix 1. SENSIX IDL

typedef sequence <Data> Series ;

enum FunctorError {

Refused , Incapable

} ;

typedef sequence <FunctorError> ErrorList ;

interface Functor ; // f o rwa rd d e c l a r a t i o n

typedef sequence <Functor> FunctorList ;

// b a s i c d i s t r i b u t e d f u n c t i o n a l o b j e c t

interface Functor {

const octet ID = INVALID ;

readonly attribute octet identifier ;

readonly attribute unsigned long sequencer ;

attribute octet priority ;

attribute FunctorList subfunctors ;

attribute Series results ;

attribute ErrorList errors ;

string asString ( ) ;

} ;
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Appendix 1. SENSIX IDL

// //////////////////////////////////////

// doe s a c t u a l data c o l l e c t i o n

interface Capability {

readonly attribute octet identifier ;

// l o ad l o c a l data i n t o a Functor

void acquire (in Functor f ) ;

} ;

// ' c l i e n t ' s i d e

interface Response {

// c a l l b a c k from remote s e r v e r

oneway void aggregate (in Functor f ) ;

// t a s k i n g out to l o c a l c l i e n t ; r e t u r n s e r r o r code

long devolve (in Functor f ) ;

// c a n c e l out to l o c a l c l i e n t ; r e t u r n s e r r o r code

long detask (in Functor f ) ;

} ;
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Appendix 1. SENSIX IDL

// ' s e r v e r ' s i d e

interface Request {

// t a s k i n g out to remote s e r v e r

oneway void apply (in Functor f , in Response callback ) ;

// c a n c e l out to remote s e r v e r

oneway void cancel (in Functor f ) ;

// c a l l b a c k from l o c a l c l i e n t

void dataready (in Functor f ) ;

// add/ r e g i s t e r l o c a l c a p a b i l i t y

void addCapability (in octet type , in Capability c ) ;

} ;

// //////////////////////////////////////

typedef sequence <Request> ReqList ;

// p r o v i d e s Functor t r a c k i n g

interface Task {

readonly attribute Functor f ;

readonly attribute Functor superf ;

readonly attribute Response callback ;

readonly attribute ReqList subtasks ;
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Appendix 1. SENSIX IDL

attribute long numPeers ;

attribute boolean cancelled ;

void addSubtask (in Request r ) ;

} ;

} ;

84



Appendix 2

Sensing Mini-Language

The following table shows the SENSIX reference implementation mini-language en-

coding. As described in Chapter 4, the functors here are divided into the categories of

data, series, aggregate, network and location. The components column lists optional

(in parenthesis) and required parameters for each, which are themselves categorized

as general metadata, or sensor types. The data, series and aggregate functors are

the Morphic (domain-specific) portion of this particular SENSIX architecture, while

the network and location functors fall within the Access layer. Not shown here is an

internal power functor that tracks battery status, which can be seen in the IDL code

of Appendix A3.
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Appendix 2. Sensing Mini-Language

Level Symbol Encoding Meaning Components

α 0xE1 basic signal, a single sample ς, (ν, ι)
data

β 0xE2 local maxima (peak sensing) ε+
and/or ε−, ς, (ν, ι)

Θ 0xC8 time series α or β,N , and τ, (ι)
series

Ψ 0xD8 spatial series α or β,N , and ρ, θ, T, (ι)

I 0xDF recite (list) Θ or Ψ, (ι)
Σ 0xD3 sum Θ or Ψ, (ι)
∆ 0xC4 max variation (difference) Θ or Ψ, (ι)

aggregate
x̄ 0xAA mean Θ or Ψ, (ι)
σ 0xF3 statistical deviation Θ or Ψ, (ι)
Λ 0xCB aggregate function bytecode and Θ or Ψ, (ι)

Γ 0xC3 ancestors N
network A 0xC1 siblings N

K 0xCA descendants N

T 0xD4 GPS position φ, λ, (ζ)
φ 0xF6 latitude –
λ 0xEB longitude –

location
ζ 0xE6 elevation/altitude –
ρ 0xF1 polar distance (in meters) –
θ 0xE8 polar angle (in radians) –

ς 0xF2 sensor type (see sensors) light, temp, etc.
ι 0xE9 hierarchical level –
ν 0xED sample frequency –
ε+ 0xE5 upper threshold –

metadata ε− 0xA7 lower threshold –
Φ 0xD6 energy cost –
τ 0xF4 time (duration/cost) –
δ 0xE4 task priority –
N 0xCD series/array size –

light 0x01 ambient light –
temp 0x02 thermistor –
accel 0x03 accelerometer –
mag 0x04 magnetometer –

sensors
mic 0x05 microphone –

humid 0x06 humidity –
press 0x07 barometric pressure –

0x08 - 0x3F . . . other sensors –

Table A2.1: Task and aggregation domain-specific language
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Appendix 3

Generic Sensing IDL and

Discovery IDL

Sensing IDL

#include "sensix.idl"

module sensix {

module sensing {

interface Location : Capability {

const octet ID = GPS ;

readonly attribute double latitude ;

readonly attribute double longitude ;

readonly attribute double altitude ;

readonly attribute unsigned long long time ;

} ;
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Appendix 3. Generic Sensing IDL and Discovery IDL

interface Power : Capability {

const octet ID = BATTERY ;

readonly attribute double ratio ;

} ;

/// /////////////////////////////////////

interface Sensory : Functor {

const octet ID = INVALID ;

readonly attribute octet level ;

readonly attribute octet sensor ;

attribute unsigned long long timeused ;

attribute double energyused ;

} ;

typedef sequence <Sensory> SensoryList ;

/// /////////////////////////////////////

// F l e x i b l e component i n t e r f a c e s :
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Appendix 3. Generic Sensing IDL and Discovery IDL

interface Sense : Sensory {

const octet ID = ALPHA ;

attribute double rate ;

} ;

interface PeakSense : Sense {

const octet ID = BETA ;

attribute double highthreshold ;

attribute double lowthreshold ;

} ;

interface Collection : Sensory {

attribute Sensory sense ;

} ;

typedef sequence <Collection> CollectionList ;

interface TimeSeries : Collection {

const octet ID = THETA ;

attribute unsigned long long duration ;

} ;
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Appendix 3. Generic Sensing IDL and Discovery IDL

interface SpatialSeries : Collection {

const octet ID = PSI ;

attribute double distance ;

attribute double angle ;

} ;

interface Aggregate : Sensory {

readonly attribute SensoryList senses ;

attribute CollectionList collectors ;

} ;

interface Recite : Aggregate {

const octet ID = IOTA ;

} ;

interface Sum : Aggregate {

const octet ID = SUMMA ;

} ;

interface Delta : Aggregate {

const octet ID = DELTA ;

} ;

interface Mean : Aggregate {
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Appendix 3. Generic Sensing IDL and Discovery IDL

const octet ID = BARX ;

} ;

interface Sigma : Aggregate {

const octet ID = SIGMA ;

} ;

typedef sequence <octet> ByteCode ;

interface Lambda : Aggregate {

const octet ID = LAMBDA ;

attribute ByteCode code ;

} ;

} ;

} ;

Discovery IDL

#include "sensix.idl"

module sensix {

module discovery {

#define IDL

#include "sensix.h"

#include "discovery_service.h"
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Appendix 3. Generic Sensing IDL and Discovery IDL

typedef sequence <octet> CapabilityList ;

typedef sequence <NodeId> NodeList ;

exception DiscoveryException {

DiscoveryError error ;

string description ;

} ;

typedef sequence <Request> RequestList ;

/// /////////////////////////////////////

struct AnnounceHeader { // s i z e 8

octet magic ; // 'D '

octet version ; // 0xMm ( Major , minor )

octet flags ; // 0 − b i g endian , 1 − l i t t l e end i an

octet announceType ; // 1 , 2 , 3 , o r 4 ( s e e be low )

unsigned long announceSize ; // s e e be low pe r type

} ;

struct Announce { // type 1 , s i z e 5

NodeId nodeIdent ;

octet hLevel ;

} ;
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Appendix 3. Generic Sensing IDL and Discovery IDL

struct Report { // type 2 , s i z e 6

NodeId nodeIdent ;

octet hLevel ;

octet cType ;

} ;

struct Require { // type 3 , s i z e 10

NodeId nodeIdent ;

octet hLevel ;

octet cType ;

NodeId targetIdent ;

} ;

struct Share { // type 4 , s i z e 6 + s t r l e n ( i o r )

NodeId nodeIdent ;

octet hLevel ;

octet cType ;

string ior ;

} ;

/// /////////////////////////////////////

// h i e r a r c h i c a l c o n t e x t

interface Family {

const octet ID = INVALID ;
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Appendix 3. Generic Sensing IDL and Discovery IDL

readonly attribute NodeList nodes ;

// r e l a t i o n query

boolean findNode (in NodeId id ) ;

} ;

// u n i t s h i g h e r i n the h i e r a r c h y

interface Ancestors : Family {

const octet ID = ANCESTORS ;

} ;

// u n i t s a t your l e v e l o r be low i n the h i e r a r c h y

interface Peers : Family {

const octet ID = INVALID ;

readonly attribute CapabilityList capabilities ;

// query p e e r s f o r a c a p a b i l i t y

RequestList queryNetwork (in octet capability )

raises ( DiscoveryException ) ;

// query a p a r t i c u l a r p e e r

Request queryNode (in NodeId id , in octet capability )

raises ( DiscoveryException ) ;

} ;
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// u n i t s a t your l e v e l i n the h e i r a r c h y

interface Siblings : Peers {

const octet ID = SIBLINGS ;

} ;

// u n i t s l owe r i n the h e i r a r c h y

interface Descendants : Peers {

const octet ID = DESCENDANTS ;

} ;

/// /////////////////////////////////////

// c o l l e c t i o n o f a l l r e l a t e d nodes

interface Others {

readonly attribute Ancestors ancestors ;

readonly attribute Siblings s i b l i n g s ;

readonly attribute Descendants descendants ;

// query node e x i s t e n c e

boolean findNode (in NodeId id ) ;

// query a l l s i b l i n g s and d e s c e ndan t s

RequestList queryNetwork (in octet capability )

raises ( DiscoveryException ) ;
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// query one p a r t i c u l a r s i b l i n g o r d e s c endan t

Request queryNode (in NodeId id , in octet capability )

raises ( DiscoveryException ) ;

} ;

// t h i s u n i t

interface Self {

readonly attribute octet level ;

readonly attribute NodeId identifier ;

readonly attribute CapabilityList capabilities ;

// r e g i s t e r a c a p a b i l i t y wi th the d i s c o v e r y s e r v i c e

void registerObject (in octet capability , in Request obj )

raises ( DiscoveryException ) ;

// p r o x i e s :

boolean findNodeInFamily (in NodeId id )

raises ( DiscoveryException ) ;

RequestList queryFamilyNetwork (in octet capability )

raises ( DiscoveryException ) ;

Request queryFamilyNode (in NodeId id , in octet capability )

raises ( DiscoveryException ) ;

boolean findNodeInDescendants (in NodeId id )

raises ( DiscoveryException ) ;
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RequestList queryDescendantNetwork (in octet capability )

raises ( DiscoveryException ) ;

Request queryDescendantNode (in NodeId id , in octet capability )

raises ( DiscoveryException ) ;

CapabilityList descendantCapabilities ( )

raises ( DiscoveryException ) ;

NodeList descendantNodes ( )

raises ( DiscoveryException ) ;

boolean findNodeInSiblings (in NodeId id )

raises ( DiscoveryException ) ;

RequestList querySiblingNetwork (in octet capability )

raises ( DiscoveryException ) ;

Request querySiblingNode (in NodeId id , in octet capability )

raises ( DiscoveryException ) ;

CapabilityList siblingCapabilities ( )

raises ( DiscoveryException ) ;

NodeList siblingNodes ( )

raises ( DiscoveryException ) ;

boolean findNodeInAncestors (in NodeId id )

raises ( DiscoveryException ) ;

NodeList ancestorNodes ( )

raises ( DiscoveryException ) ;

} ;

} ;

} ;
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