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Abstract—In a future internet of things, an increasing number
of every-day objects will be connected with each other. These
objects can be very diverse in terms of their network protocols
and communication technologies. As more resource constrained
devices such as sensor networks and PDAs are added to our
environment, supporting efficient communication between these
heterogeneous devices becomes a key challenge in next-generation
networks. To realize this challenge, this paper presents a re-
configurable network framework (IDRA) that supports direct
connectivity between heterogeneous co-located devices, without
the need for complex translation gateways.

I. INTRODUCTION

New communication technologies are introduced and de-
ployed on a regular basis. Even common everyday objects
nowadays come equipped with (wireless) communication pos-
sibilities. As a result, several authors have described an ‘inter-
net of things’ view of the future, in which every object is con-
nected with every other object [1] (Figure 1). By connecting
these different objects, intelligent next-generation applications
such as wireless building automation applications [2] or e-
health applications [3] become possible.

However, as the number of communicating objects in-
creases, so does the number of co-located communication
technologies. When multiple networks operate in the same
geographical environment, co-located networks overhear trans-
missions from multiple networks. Most often, overhearing
these transmissions results in harmful interference and perfor-
mance degradation, since the overheard transmissions can not
be interpreted by devices that are not part of the originating
network. This is especially a problem in ‘last mile’ home
and office networks. A typical example is the interference
in the free license ISM band, which is used by a variety
of communication technologies such as IEEE802.1 (WiFi),
car alarms, baby monitors, IEEE802.15.1 (bluetooth), cordless
DECT phones and IEEE802.15.4 (zigbee) personal body area
networks.

Even when co-located devices use the same radio tech-
nology, direct communication between devices is not always
supported. For example, existing sensor and actuator networks
often use propriety network technologies that are incompatible
with technologies from other vendors, even though the devices

Fig. 1. In the vision of the internet of things, everyday objects will all
become interconnected using a variety of communication technologies. These
objects can use different communication technologies, different packet types
and different network protocols.

use the same radio chip. Currently, communication between
heterogeneous devices is supported using one of the following
methods. (i) Multiple (proprietary) communication stacks can
be installed on a single device. The main disadvantage of
this approach is that the memory overhead of using multiple
communication stacks is significant. As a result, this approach
is not well-suited for resource-constrained devices. (ii) An al-
ternative approach is the use of technology specific translation
gateways. All communication is routed through these (remote)
translation gateway. These gateways terminate the connection
from one network and set up a new connection to a second
network. However, translation gateways break the end-to-end
communication paradigm and have proven to be inherently
complex to design, manage and deploy [4]. In addition, setting
up a communication path to the (remote) gateway results in
additional packet overhead, which in turn leads to increased
interference, lower throughput and a lower network lifetime.
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In this paper, we will discuss a third option: an architecture
that is small enough to fit on resource-constrained embedded
devices and that can be used to support direct communication
between heterogeneous co-located devices.

II. RELATED WORK

Before describing the IDRA architecture, this section first
gives an overview of related work, i.e.: architectures that
are designed to support direct network connectivity between
heterogeneous networks. Two main approaches are discussed:
(i) incremental ‘evolutionary’ architectures and (ii) clean slate
‘revolutionary’ architectures.

A. Evolutionary internet-of-things approaches

Advocates of an evolutionary approach to a heterogeneous
internet of things create new architectures by reusing as many
components as possible from existing networking solutions.
In their vision, the current internet should ‘evolve’ into an
architecture that is more suited for a heterogeneous networks.
A first approach is to gradually improve the existing commu-
nication stacks, replacing one function at a time, whenever
the need arises. A typical example is the introduction of IPv6
addresses to replace current IPv4 addresses. For this approach
to be successful, architectures should be easily extensible.
Otherwise, this approach results in a difficult adoption of new
technologies, as shown by the problematic transition into IPv6
we are witnessing at the moment.

An alternative evolutionary approach is the use of virtual-
ized network components. Network virtualization [5] is used to
present underlying network layers in a uniform way towards
a high level application. Different devices are connected by
forming virtual networks on top of existing networks: logical
links are created between distributed systems using native
internet routing and standard IP addresses. Well known ex-
amples are Virtual Private Networks (VPN) [6] or peer-to-peer
applications [7]. The FP7 4WARD project [8] considers virtual
networks to be a fundamental part of the design of future
internet devices. The project includes virtualized network
solutions for in-network management, generic connectivity
and content-centric information objects [9]. Similarly, the
MAGNET project [10] offers network virtualization at both
layer 2 and layer 3, whereas the ITEA2 usenet project [11]
focuses on network virtualization for machine-to-machine
communication.

In the context of an internet of things, network virtualization
can be viewed in two ways [12]. First, these techniques can be
used as a tool for evaluating new disruptive architectures on a
large scale using existing networks. Secondly, virtualization
can be regarded as a fundamental part of next generation
architectures, whereby multiple ‘overlay’ networks coexist by
creating different logical networks for communication pur-
poses [13]. However, for directly connecting heterogeneous
networks (such as described in our vision of the internet of
things), the use of virtualization techniques has the following
disadvantages. (i) Network virtualization is not yet proven to
be highly scalable, since setting up an overlay network is often

difficult and time-consuming. (ii) Virtualization techniques
are often too complex and inefficient to be implemented on
resource-constrained embedded devices. And (iii) virtualiza-
tion techniques are often too high in the protocol stack to
efficiently bridge networks that use different communication
technologies.

B. Revolutionary internet of things approaches

Opponents of the evolutionary approach emphasize the need
for a redesigned, clean slate architecture that inherently copes
with next generation network challenges [14], [15], sometimes
even abandoning IP based addressing in favor of different
addressing schemes. Clean slate initiatives are not always
meant to be used directly in new devices, but can be used
to sketch a revolutionary new perspective, which can then be
brought into existing networks. Several approaches have been
proposed.

(i) Database centric architectures hide the heterogeneity
of underlying networks by only allowing access to network
information using database operations. For example, the SEN-
SEI project [16] solves the inaccessibility of low-resource end
devices by collecting all data from the end devices and making
it available in a centrally accessible remote database. Un-
fortunately, this approach often results in significant network
overhead.

(ii) Content centric architectures focus on describing the
information that is exchanged between networks. For example,
the SemsorGrid4Env project [17] focuses on the development
of a semantic middleware layer. At the network layer, network
protocols are implemented semantically using a ‘descriptive
language’ [18] that focuses on functionality rather than im-
plementation. Unfortunately, support for directly connecting
different networks at low network layers is still lacking.

(iii) Cloud computing approaches try to offload resource in-
tensive tasks to more capable nodes. Typically, cloud comput-
ing can offer infrastructure, platforms or software as a service
to less capable devices [19], [20]. Since cloud computing is
regarded as a high layer service, this approach does not solve
connectivity challenges.

(iv) Modular approaches have also been proposed, whereby
the protocol stack is divided into different modules which can
be combined to create new network protocols with different
functionalities. As such, these approaches can easily integrate
new network technologies by updating a single module. Mod-
ular frameworks, such as SNA [21], can be used to design new
network layers. However, most existing modular frameworks
compile these distinct modules into a static network layer.
In addition, current modular approaches do not focus on
supporting connectivity in heterogeneous environments. Thus,
although promising, existing modular approaches offer no
additional run-time flexibility when compared to traditional
layered approaches. In contrast, the NewArch project [22]
discusses how a flexible internet architecture can be created
whereby different roles can dynamically be combined at run-
time to form ‘heaps’ [23] which can be adapted to the needs



of the network. Unfortunately, the project did not result in a
practical proof-of-concept implementation.

C. The need for new architectures

As shown in the previous sections, several research projects
are currently involved with the design of new network archi-
tectures. However, an economically viable solution might still
be a long way off:

• Though several research projects are currently involved
with future internet research, most of these efforts focus
on the design of a (high-speed) future internet backbones.
These solutions are not suitable for use in resource-
constrained environments.

• As cited in [24] ‘too many future internet proposals are
just extensions of existing protocols or architectures’. As
such, these proposals lack the innovation to cope with
specific internet of things challenges.

• Finally, too many proposals remain ‘paperware’: there is
a definite lack of implemented prototypes [14], [25].

As such, more practical implementations are needed be-
fore a decision can be made regarding the feasibility of an
all-encompassing internet of things solution. Especially for
resource-constrained devices, there is still room for several
improvements. More specifically there exists not yet a simple
architecture that

• enables optimized communication at a network and link
level between co-located heterogeneous networks without
the use of complex translation gateways;

• has been implemented and evaluated as a prototype in a
large scale experimental setting;

• is compact enough to fit even on low resource embedded
devices;

• is fully clean slate, but is also backwards compatible with
legacy networks;

In the following section, we will discuss how our IDRA
architecture fills this gap.

III. IDRA: A RECONFIGURABLE ARCHITECTURE

To support direct communication with neighboring devices,
the following challenges need to be solved. (i) The co-located
devices can use MAC and routing protocols with a different
behavior (e.g.: reactive versus proactive routing). (ii) The co-
located devices can use different packet types (e.g.: IPv4, IPv6
or zigbee packets).

To limit the memory overhead, the architecture should
make it possible to transparently combine (at run-time) any
of networking protocol with any packet type. This section
discusses how the IDRA architecture supports this goal. A
conceptual representation of the IDRA architecture is given in
Figure 2.

A. Decoupling of protocol logic and packet representation

In heterogeneous networks, the use of different packet types
can be required for communication with different neighboring
devices. To transparently support multiple packet types on a
single device, IDRA has decoupled the protocol logic from

packet representation. Network protocols do not interact di-
rectly with packets, but can instead retrieve information about
any received packet through a ‘packet facade’ (Figure 2b).
Through this packet facade, standardized packet attributes
(metadata) can be added, updated or requested. This metadata
can represent header fields such as ‘destination’, ‘quality-of-
service’ or ‘time-to-live’, but can also be used to describe extra
context information such as the packet origin or destination lo-
cation, the packet owner or additional descriptive information
about the packet.

To interpret the structure of received packets, the packet
facade uses one or more ‘packet descriptors’. These packet
descriptors describe at which header offset packet attributes
are stored, as well as which representation is used to store the
packet attributes (little/big endian, number of bits, encryption
method, etc.) (Figure 2c). This way, network protocols can
interact with any packet type as long as the correct packet
descriptor is available. By providing the packet descriptors
of legacy devices, IDRA services can also interpret packets
from legacy networks and interact with legacy packet types.
Since there is no direct interaction between network services
and packet descriptors, the network protocols can request
information from a wide range of packet types.

A packet identification service is responsible for selecting
the correct packet descriptor to process incoming packets. The
following packet identification methods can be used.

• A publicly available, standardized packet type identifica-
tion can be added as a unique identification field to each
outgoing packet.

• Alternatively, networks that utilize multiple communi-
cation technologies can associate a packet type with
each interface (e.g: an 802.11 packet type for the WiFi
interface, an 6lowpan packet type for the IEEE 802.15.4
interface, etc).

• Some radios offer hardware address recognition features
that can be used to identify the address of the sending
node. In this case, a shared neighbor table can be used to
describe the expected packet type of each neighboring
node. This approach is not possible for networks that
use non radio-compliant MAC headers or networks that
include address-free communication interfaces (such as
USB interfaces).

• Finally, a last option is to compare incoming packets with
the descriptors of existing packet descriptors using bitmap
operations.

This wide range of identification methods ensures that network
designers that use the IDRA architecture can always choose
the most optimal method for identifying incoming packets.
The IDRA system automatically drops all packets that are not
recognized by any of these packet identification services.

Finally, IDRA includes automatic packet conversion fea-
tures. To ensure that outgoing IDRA packets can be interpreted
by neighboring devices, an entry can be made in the neighbor
table that indicates the preferred packet type for each neighbor.
When the specified outgoing packet type is different from the
current packet type, the system automatically dismantles the



Fig. 2. Network services can transparently interact with any packet type. (a) Network services can associate metadata with, or retrieve metadata from, stored
packets using the packet facade. (b) Only the packet facade requires knowledge about the packet format. As long as the correct packet descriptor is available,
the packet facade knows how and where metadata is stored. (c) Finally, the packet facade accesses the correct header offset or the packet payload.

packet: all packet attributes are retrieved and stored sequen-
tially. A new packet type is created and all packet attributes are
associated with the new packet. As such, packet conversion is
fully transparent for the network protocols.

B. Information driven network protocols

To limit the dependence of network protocols on specific
(radio) technologies, IDRA network protocols are technology
independent. When network protocols wish to exchange in-
formation with a remote device, they do not create a packet.
Instead, network protocols hand over to the IDRA system any
information they wish to send. IDRA uses the packet facade
to create the actual packet, encapsulates the information in the
payload and stores the resulting packet in a system wide queue.
Using the neighbor table, IDRA will use the correct packet
structure to encapsulate the payload. This information driven
approach ensures that all information exchanges between
network protocols are technology independent.

C. Support for multiple MAC protocols

In heterogeneous environments, neighboring devices some-
times use different MAC protocols. The interaction between
the MAC protocol and the communication interface is also
descriptive in nature. For example, a MAC protocol can
describe when and how each packet is allowed to be trans-
mitted (e.g: the maximum tolerated background noise, the
scheduled sending time, the radio frequency, etc) and how
the communication interfaces should be configured (listening
frequency, power state, etc.). A conflict resolution scheme is
used to detect conflicting settings and inform the MAC service
of undesired behavior. As a result, multiple MAC services can
reside on the same node, each with one or more associated
communication interfaces.

D. Network service broker

Due to the information driven nature of IDRA network
protocols, the network protocols do not need to implement
any code for creating packets, interacting with packets or
storing packets. As a result, network protocols in IDRA are
significantly smaller in terms of memory requirements [26]
than network protocols in traditional layered architectures.
The network protocols behave similar to small services, which
can be added and activated whenever required. To cope with
neighboring devices that use different network protocols, net-
work services can be dynamically added, removed or updated
according to the needs of the network. As such, it is feasible to
add network services on a per-need base (see Section III-D),
depending on the characteristics of the neighboring devices.

Rather than having a strict execution order (such as in lay-
ered networks), network services are activated only when they
needed. To his end, IDRA includes a simple service broker.
Based on the packet characteristics, the service broker can
identify which packet types should be processed by specialized
network services. For example, proprietary packets can be
processed automatically by a proprietary routing service, or
a key-distribution service can be activated when a device is
detected that requires secure communication. This approach
shares several concepts with service-oriented architectures
(SOAs) [27], where network services can be combined to reach
a specific goal.

E. Protocol independent QoS support

Heterogeneous networks typically use a wide variety of
quality-of-service (QoS) solutions. To ensure that IDRA net-
work services have a small memory footprint, IDRA includes
a separate module that implements all QoS solutions. The QoS
module manages the queue and decides which packets should
be processed first, which packets can be dropped (in case



Network service ROM RAM
Link level duplicate detection 460 26
Label management 294 4
AODV routing protocol [28] 2664 240
HYDRO routing protocol [29] 1924 692(+28 per route)
Positioning algorithm [30] 1584 1832
Low power listening MAC protocol [31] 822 176
Synchronized MAC protocol [32] 1126 184

TABLE I
MEMORY REQUIREMENTS (IN BYTES) OF THE CURRENTLY AVAILABLE

IDRA NETWORK SERVICES.

of congestion), which network services should process high-
priority packets and which packets should be transmitted first.
Since all packets are stored in a shared packet queue, the QoS
module can monitor all available packets. As a result, the QoS
module has a clear view on the number of packets, their current
processing state and their expected delay. Through the packet
facade, the QoS module can read and modify the attributes
of relayed packets at any processing stage. This information
can be taken into account for intelligent packet selection and
dropping strategies. Similarly, network protocols can request
all QoS related attributes and act upon them to the best of
their abilities.

IV. IMPLEMENTATION

According to [14], [33], the development of actual proto-
types is crucial to prove the merit of future protocol architec-
tures. Most of the concepts above have been implemented in a
proof-of-concept architecture [26]. The following performance
metrics demonstrate the feasibility of the IDRA architecture
for use in heterogeneous, resource-constrained networks.

• Memory overhead. The memory overhead of the overall
IDRA architecture (including queue management, the net-
work service broker, the packet facade, a IEEE802.15.4
packet descriptor and an IPv6 packet descriptor) is less
than 30 kB ROM and 4 kB RAM. As such, the concepts
can be used even on resource-constrained devices.

• Processing overhead. On a resource-constrained
TMoteSky device [34] using a 8MHz processor, the total
overhead to process a packet is about 6-7 msec [26].
About 1 msec of this processing overhead is caused by
the use of the packet facade. Packet conversion is more
complex, but should only be supported in devices that
border two different networks. On devices with more
processing power, the processing overhead becomes
negligible.

• Network services. By delegating common tasks, such as
buffer management, packet creation, QoS management
and aggregation, IDRA network services have a low
memory footprint [35]. Table I gives an overview of
the memory requirement of several network services
that are currently available. Due to the low memory
requirements of the IDRA network services, it is feasible
to combine a multitude of network services, even on
resource constrained nodes.

Fig. 3. The coverage of an existing legacy network is expanded by installing
an additional next generation backbone using a different communication stack.
By using the IDRA framework, the next generation network can converge with
existing networks and use direct communication paths, thus prolonging the
operational lifetime of legacy networks.

• Feasibility. Finally, the architecture has been evaluated
in the DEUS project [36] using a large scale testbed
of 200 TMoteSky nodes and in two real-life network
deployments (the arts center ‘Vooruit’ and a home for the
elderly). Devices were installed that use different routing
protocols (DYMO, HYDRO or AODV) [37]. Depending
on their neighbors and the packet metadata, the nodes
automatically selected the appropriate routing protocol,
thus enabling direct connectivity between these different
devices (Figure 3). As a result, even on such a large
scale, devices running IDRA are capable of efficient
direct communication by using packet conversion and
a dynamic network service broker on each intermediate
hop.

• Using existing network protocols in IDRA. Converting
existing layered network protocols to IDRA services
typically requires two changes to existing implementa-
tions. (i) Whenever a legacy network protocol generates
a packet, the protocol should hand over an information
exchange to the IDRA architecture instead. (ii) Whenever
a network protocol interacts with a packet, this interaction
should take the form of retrieving or updating a packet
attribute through the packet facade.

IDRA currently includes several network services such as
routing, MAC, topology control, duplicate detection, packet
identification, packet ownership, quality-of-service and local-
ization services, which can all be combined as required by the
network. In addition, network negotiation, network detection
and network management services are under development.
IDRA is freely available online as an open-source project at
http://idraproject.net.

V. CONCLUSION

Our everyday environment is equipped with an increasing
number of communication technologies, from high speed
internet backbones to ‘last mile’ access and cable replacement
technologies such as WiFi, bluetooth or UMTS. This trend



will likely not change, prompting the need for internet of
things architectures that inherently cope with this diversity.
This paper gave an overview of existing promising architec-
tural approaches. However, at the moment, no solutions exist
that enable efficient direct communication between co-located
resource-constrained devices that use different communication
technologies.

This paper argues that this gap can be filled by the IDRA
architecture: IDRA enables direct connectivity between de-
vices that utilize different network protocols and/or packet
types. The following contributions of IDRA towards a future
internet architecture were discussed in greater detail. (i) By
decoupling the protocol logic from the packet representation,
network services can interact with any packet type. (ii) IDRA
copes with changing network and application requirements by
introducing a dynamic service broker responsible for selecting
the most optimal network services. (iii) The complexity of
IDRA is low enough to implement even on low resource
devices. And finally, (iv) IDRA has fully been implemented
and evaluated, which proves the feasibility of the proposed
concepts. As such, the IDRA architecture is a promising can-
didate to integrate legacy devices with network developments,
or to connect heterogeneous next generation networks in a
straightforward way.
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