16 research outputs found

    Analysis of design strategies for RF ESD problems in CMOS circuits

    Get PDF
    This thesis analyses the design strategies used to protect RF circuits that are implemented in CMOS technologies. It investigates, in detail, the physical mechanisms involved when a ggNMOS structure is exposed to an ESD event and undergoes snapback. The understanding gained is used to understand why the performance of the current RF ESD clamp is poor and suggestions are made as to how the performance of ggNMOS clamps can be improved beyond the current body of knowledge. The ultimate aim is to be able to design effective ESD protection clamps whilst minimising the effect the circuit has on RF I/O signals. A current ggNMOS based RF ESD I/O protection circuit is analysed in detail using a Transmission Line Pulse (TLP) tester. This is shown to be a very effective diagnostic tool by showing many characteristics of the ggNMOS during the triggering and conducting phase of the ESD event and demonstrate deficiencies in the clamp design. The use of a FIB enhances the analysis by allowing the isolation of individual components in the circuit and therefore their analysis using the TLP tester. SPICE simulations are used to provide further commentary on the debate surrounding the specification required of a TLP tester for there to be a good correlation between a TLP test and the industry standard Human Body Model (HBM) ESD test. Finite element simulations are used to probe deeper in to the mechanisms involved when a ggNMOS undergoes snapback especially with regard to the contribution parasitic components within the ggNMOS make to the snapback process. New ggNMOS clamps are proposed which after some modification are shown to work. Some of the finite element experiments are repeated in a 0.18ÎĽĎ€7. process CMOS test chip and a comparison is made between the two sets of results. In the concluding chapter understanding that has been gained from previous chapters is combined with the published body of knowledge to suggest and explain improvements in the design of a ggNMOS for RF and standard applications. These improvements will improve homogeneity of ggNMOS operation thus allowing the device size to be reduced and parasitic loading for a given ESD performance. These techniques can also be used to ensure that the ESD current does not take an unintended path through the chip

    A methodology for memory chip stress levels prediction

    Get PDF
    The reliability of electronic component plays an important role in proper functioning of the electronic devices. The manufacturer tests electronic components before they are used by end users. Still at times electronic devices fail due to undue stresses existing inside the microelectronic components such as memory chips, microcontrollers, resistors etc. The stresses can be caused by variation in the operating voltage, variation in the usage frequency of the particular chip and other factors. This variation leads to variation in chip temperature, which can be made evident from thermal profiles of these chips. In this thesis, effort was made to study two different kind of stress existing in the electronic board, namely signal stress based on variation in duty cycle/frequency of chip usage and the voltage stress. Memory chips were stressed using these stresses causing change in heating rates, which were captured by infrared camera. This data was then extracted and plotted to obtain different curves for the heating rate. The same experiment was done time and again for a large number of chips to get heating rate data. This data consisting of average heating rate for large number of chips was used to build Neural Network model (NN). Back Propagation algorithm was used for modeling because of its advantage of converging to solution faster compared to other algorithms. To develop a prediction model, data sets were divided into two-third and one-third parts. This two-thirds of the data was used to build the prediction model and remaining one third was used to evaluate the model. The designed model would predict the stress levels existing in the chips based on the heating rates of the chips. Results obtained suggested 1. There is difference in heating rate for chips stressed at different stress levels. 2. Accuracy of the model to predict the stress is high (greater than 90 %). 3. Model is robust enough that is it can yield efficient results even if there is presence of noise in the data. 4. Generic methodology can be proposed based on the experiments. This work is a progress in direction of making predictive model, for a complete electronic device, which can predict the stress level existing on any component in the device and will provide an opportunity to either protect the data or removal of the defected components timely before it even fails

    Semiconductor Device Modeling, Simulation, and Failure Prediction for Electrostatic Discharge Conditions

    Get PDF
    Electrostatic Discharge (ESD) caused failures are major reliability issues in IC industry. Device modeling for ESD conditions is necessary to evaluate ESD robustness in simulation. Although SPICE model is accurate and efficient for circuit simulations in most cases, devices under ESD conditions operate in abnormal status. SPICE model cannot cover the device operating region beyond normal operation. Thermal failure is one of the main reasons to cause device failure under ESD conditions. A compact model is developed to predict thermal failure with circuit simulators. Instead of considering the detailed failure mechanisms, a failure temperature is introduced to indicate device failure. The developed model is implemented by a multiple-stage thermal network. P-N junction is the fundamental structure for ESD protection devices. An enhanced diode model is proposed and is used to simulate the device behaviors for ESD events. The model includes all physical effects for ESD conditions, which are voltage overshoot, self-heating effect, velocity saturation and thermal failure. The proposed model not only can fit the I-V and transient characteristics, but also can predict failure for different pulses. Safe Operating Area (SOA) is an important factor to evaluate the LDMOS performance. The transient SOA boundary is considered as power-defined. By placing the failure monitor under certain conditions, the developed modeling methodology can predict the boundary of transient SOA for any short pulse stress conditions. No matter failure happens before or after snapback phenomenon. Weibull distribution is popular to evaluate the dielectric lifetime for CVS. By using the transformative version of power law, the pulsing stresses are converted into CVS, and TDDB under ESD conditions for SiN MIMCAPs is analyzed. The thickness dependency and area independency of capacitor breakdown voltage is observed, which can be explained by the constant ?E model instead of conventional percolation model

    Reliability Analysis of Power Electronic Devices

    Get PDF
    The thesis deals with the reliability of Power Electronic Devices to the purpose of evaluating the phenomena which mainly dictate the limiting conditions where a power device can safely operate. Reliability analyses are conducted by means of either simulations and experimental measurements

    ELECTROSTATIC DISCHARGE AND ELECTRICAL OVERSTRESS FAILURES OF NON-SILICON DEVICES

    Get PDF
    Electrostatic discharge (ESD) causes a significant percentage of the failures in the electronics industry. The shrinking size of semiconductor circuits, thinner gate oxides, complex chips with multiple power supplies and mixed-signal blocks, larger chip capacitance and faster circuit operation, all contribute to increased ESD sensitivity of advanced semiconductor devices. Therefore, understanding and controlling ESD is indispensable for higher quality and reliability of advanced device technologies. This thesis provides a comprehensive understanding of ESD and EOS failures in GaAs and SiGe devices. In the first part of this thesis, characteristics of internal damage caused by several ESD test models and EOS stress in non-silicon devices (GaAs and SiGe) are identified. Failure signatures are correlated with field failures using various failure analysis techniques. The second part of this thesis discusses the effects of ESD latent damage in GaAs devices. Depending on the stress level, ESD voltage can causes latent failures if the device is repeatedly stressed under low ESD voltage conditions, and can cause premature damage leading eventually to catastrophic failures. Electrical degradation due to ESD-induced latent damage in GaAs MESFETs after cumulative low-level ESD stress is studied. Using failure analysis, combined with electrical characterization, the failure modes and signatures of EOS stressed devices with and without prior low-level ESD stress are compared. To predict the power-to-failure level of GaAs and silicon devices, an ESD failure model using a thermal RC network was developed. A correlation method of the real ESD stress and square wave pulse has been developed. The equivalent duration of the square pulse is calculated and proposed for the HBM ESD stress. The dependence of this value on the ESD stress level and material properties is presented as well

    Design And Characterization Of Noveldevices For New Generation Of Electrostaticdischarge (esd) Protection Structures

    Get PDF
    The technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications\u27 performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the design of robust protection structures and circuits remains challenging because ESD failure mechanisms continue to become more acute and design windows less flexible. The sensitivity of smaller devices, along with a limited understanding of the ESD phenomena and the resulting empirical approach to solving the problem have yielded time consuming, costly and unpredictable design procedures. As turnaround design cycles in new technologies continue to decrease, the traditional trial-and-error design strategy is no longer acceptable, and better analysis capabilities and a systematic design approach are essential to accomplish the increasingly difficult task of adequate ESD protection-circuit design. This dissertation presents a comprehensive design methodology for implementing custom on-chip ESD protection structures in different commercial technologies. First, the ESD topic in the semiconductor industry is revised, as well as ESD standards and commonly used schemes to provide ESD protection in ICs. The general ESD protection approaches are illustrated and discussed using different types of protection components and the concept of the ESD design window. The problem of implementing and assessing ESD protection structures is addressed next, starting from the general discussion of two design methods. The first ESD design method follows an experimental approach, in which design requirements are obtained via fabrication, testing and failure analysis. The second method consists of the technology computer aided design (TCAD)-assisted ESD protection design. This method incorporates numerical simulations in different stages of the ESD design process, and thus results in a more predictable and systematic ESD development strategy. Physical models considered in the device simulation are discussed and subsequently utilized in different ESD designs along this study. The implementation of new custom ESD protection devices and a further integration strategy based on the concept of the high-holding, low-voltage-trigger, silicon controlled rectifier (SCR) (HH-LVTSCR) is demonstrated for implementing ESD solutions in commercial low-voltage digital and mixed-signal applications developed using complementary metal oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) technologies. This ESD protection concept proposed in this study is also successfully incorporated for implementing a tailored ESD protection solution for an emerging CMOS-based embedded MicroElectroMechanical (MEMS) sensor system-on-a-chip (SoC) technology. Circuit applications that are required to operate at relatively large input/output (I/O) voltage, above/below the VDD/VSS core circuit power supply, introduce further complications in the development and integration of ESD protection solutions. In these applications, the I/O operating voltage can extend over one order of magnitude larger than the safe operating voltage established in advanced technologies, while the IC is also required to comply with stringent ESD robustness requirements. A practical TCAD methodology based on a process- and device- simulation is demonstrated for assessment of the device physics, and subsequent design and implementation of custom P1N1-P2N2 and coupled P1N1-P2N2//N2P3-N3P1 silicon controlled rectifier (SCR)-type devices for ESD protection in different circuit applications, including those applications operating at I/O voltage considerably above/below the VDD/VSS. Results from the TCAD simulations are compared with measurements and used for developing technology- and circuit-adapted protection structures, capable of blocking large voltages and providing versatile dual-polarity symmetric/asymmetric S-type current-voltage characteristics for high ESD protection. The design guidelines introduced in this dissertation are used to optimize and extend the ESD protection capability in existing CMOS/BiCMOS technologies, by implementing smaller and more robust single- or dual-polarity ESD protection structures within the flexibility provided in the specific fabrication process. The ESD design methodologies and characteristics of the developed protection devices are demonstrated via ESD measurements obtained from fabricated stand-alone devices and on-chip ESD protections. The superior ESD protection performance of the devices developed in this study is also successfully verified in IC applications where the standard ESD protection approaches are not suitable to meet the stringent area constraint and performance requirement

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Un modèle simple de température des processeurs pour une fréquence d’horloge turbo déterministe

    Get PDF
    As power dissipation and circuit temperature constrain their performance, modern processors feature turbo control mechanisms to adjust the voltage and clock frequency dynamically so that circuit temperature stays below a certain limit. In particular, turbo control exploits the fact that, after a long period of low processor activity, the thermal capacity of the chip, its package and the heatsink can absorb heat at a relatively fast rate during a certain time, before the temperature limit constrains that rate. Hence power dissipation can be temporarily boosted above the average sustainable value. The turbo control must monitor circuit temperature continuously to maximize the clock frequency. Temperature can be monitored by reading the integrated thermal sensors. However, making the clock frequency depend on thermal sensor readings implies that processor performance depends on ambient temperature. Yet this form of performance non-determinism is a problem for certain processor makers. A possible solution is to determine the clock frequency not from the true temperature but from a thermal model based on the nominal ambient temperature. Such model should be as accurate as possible in order to prevent sensor-based protection from triggering but sporadically, without hurting performance by overestimating temperature too much. The model should also be simple enough to provide calculated temperature in real time. This document proposes such thermal model and a turbo control based on that model.La performance des processeurs modernes étant contrainte par la consommation électrique et la température des circuits, ceux-ci comportent des mécanismes de contrôle turbo dont la fonction est de régler la tension électrique et la fréquence d’horloge afin de maintenir à tout instant la température des circuits sous la limite. En particulier, le contrôle turbo exploite le fait qu’après une longue période de faible activité du processeur, la capacité thermique de la puce, de son boitier et du radiateur peut absorber la chaleur à un taux relativement élevé pendant un certain temps, avant que la limite en température ne restreigne ce taux. Ainsi la consommation électrique peut temporairement dépasser la valeur moyenne que la puce peut dissiper sur une période prolongée. Le contrôle turbo doit évaluer la température constamment afin de maximiser la fréquence d’horloge. La température peut être obtenue en lisant les capteurs intégrés sur la puce. Cependant, rendre la fréquence d’horloge dépendante des capteurs impliqueque la performance du processeur dépend de la température ambiante. Or cette forme de non-déterminisme de la performance est un problème pour certains fabricants de processeurs. Une solution possible est de déterminer la fréquence d’horloge non pas à partir de la température réelle mais à partir d’un modèle de température basé sur la température ambiante nominale. Un tel modèle doit être aussi précis que possible afin d’empêcher les capteurs intégrés d’enclencher la protection thermique sauf de manière occasionnelle, tout en évitant de nuire à la performance par une surestimation excessive de la température. Le modèle doit aussi être suffisamment simple pour fournir une température calculée en temps réel. Ce document propose un modèle de température répondant à ces critères, et un contrôle turbo basé sur ce modèle

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications
    corecore