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Abstract 

Device and Circuit-level Models for Carbon Nanotube and 
Graphene Nanoribbon Transistors 

 
Michael Loong Peng Tan 

 
Metal-oxide semiconductor field-effect transistor (MOSFET) scaling throughout the 

years has enabled us to pack million of MOS transistors on a single chip to keep in 

pace with Moore’s Law.  After forty years of advances in integrated circuit (IC) 

technology, the scaling of silicon (Si) MOSFET has entered the nanometer dimen-

sion with the introduction of 90 nm high volume manufacturing in 2004. The latest 

technological advancement has led to a low power, high-density and high-speed gen-

eration of processor.  Nevertheless, the scaling of the Si MOSFET below 22 nm may 

soon meet its’ fundamental physical limitations. This threshold makes the possible 

use of novel devices and structures such as carbon nanotube field-effect transistors 

(CNTFETs) and graphene nanoribbon field-effect transistors (GNRFETs) for future 

nanoelectronics. The investigation explores the potential of these amazing carbon 

structures that exceed MOSFET capabilities in term of speed, scalability and power 

consumption.  The research findings demonstrate the potential integration of carbon 

based technology into existing ICs.  In particular, a simulation program with inte-

grated circuit emphasis (SPICE) model for CNTFET and GNRFET in digital logic 

applications is presented.  The device performance of these circuit models and their 

design layout are then compared to 45 nm and 90 nm MOSFET for benchmarking. 

It is revealed through the investigation that CNT and GNR channels can overcome 

the limitations imposed by Si channel length scaling and associated short channel 

effects while consuming smaller channel area at higher current density. 
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Chapter 1  

Introduction

1.1 Background 
 
Complementary metal-oxide-semiconductor (CMOS) device scaling has enabled 

MOS transistors to be shrunk from a micrometer into the sub-100 nm regime with 

the number of transistor doubled by a factor of two every 18 months in accordance 

to Moore’s Law. As channel length enters the sub-100 nm region, silicon (Si) device 

performance is hampered by short channel effects. The end of planar CMOS scaling 

is forecast to be at the 22 nm node as shown in Table 1.1.  

 

Table  1.1: Progress on transistor scaling and process technology capabilities. 

(Source: Intel) 

 
         

High Volume Manufacturing 2004 2006 2008 2010 2012 2014 2016 2018

Feature Size (nm) 90 65 45 32 22 16 11 8

Integration Capacity 
(Billions of transistors) 

2 4 8 16 32 64 128 256 
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As we approach the limits of the Si roadmap, carbon nanotube (CNT) and 

graphene nanoribbon (GNR) field-effect transistors (FETs) are being explored as 

breakthrough structures for use in future electronic systems [1-5].  These one-dimen-

sional (1D) structures have remarkable electron transport properties including high 

mobility and symmetric band structure [6].  They have the potential to be 

integrated onto Si substrates as a new hybrid CNTFET-CMOS and GNRFET-

CMOS [7] to overcome economical and technological challenges [8]. Nanotubes and 

nanoribbons are synthesized ex-situ and purified before they are deposited on a 

conventional Si substrates at specific locations [9, 10]. 

 The research reported in this dissertation focuses on the modeling and simulation 

of CNTFETs and GNRFETs as alternatives to Si CMOS transistor circuits. While 

significant progress has been achieved in the structural and mechanical nanotube 

and nanoribbon characterization, much works is still required in electronics design, 

particularly in digital logic systems before it can be implemented in practical 

circuits. As such, device modeling plays a vital route in evaluating and 

understanding the capabilities of a carbon channel material in an integrated circuit 

design. 

The approach taken is to design digital gates implemented in a simulation 

environment for integrated circuits. The SPICE circuit simulator is used. Robust, 

accurate and computationally efficient CNTFET and GNRFET models are 

developed for the simulation. The research explores the potential of these carbon 

nanoscale materials as a substitute for a silicon channel in scaled MOSFETs for logic 

applications.  The device performance of the circuit models is compared to design 

layout specifications extracted from a predictive 45 nm technology model and 90 nm 

foundry technology platforms for all other design parameters e.g. contact size, metal 

widths, etc. 
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SPICE is a widely accepted simulation environment for circuit design analysis 

and verification. Many models have been developed over the years by various 

computer aiding engineering (CAE) software vendors for SPICE to support the 

semiconductor industry. Circuit simulation time has been substantially reduced 

through algorithm improvement and hardware enhancement through high 

performance computing (HPC) platforms. Given its ‘industry standard’ status for 

computer aided design and analysis in integrated circuits, the models developed for 

CNTFETs and GNRFETs are implemented within SPICE. 

 

1.2  Problem Statements 
 
Device simulation of current transport models of CNTFETs and GNRFET are 

essential for assessing their performance as post-Si channels in integrated circuits.  

Carrier transport in carbon-based transistors can be quasi-ballistic or scattering-

limited depending on the contact interface and channel properties. Therefore, it is 

essential to take non-idealities into account together with their particular 

fundamental physics properties when describing the carrier transport in CNTFETs 

and GNRFETs.  Questions which were addressed in this research are  

 
(i) How carbon nanotube and graphene nanoribbon perform as alter-

native to silicon MOSFET channel. 

(ii) How do we transfer compact models from developed mathematical 

environments to more general ECAD tools? 

(iii) What is the performance of carbon channel devices in a digital 

circuit? 

(iv) How does one layout of carbon logic circuits compared to those in Si? 
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1.3 Objectives  
 
This focus of this research is on the development of CNTFET and GNRFET device 

and circuit level models which can be transferred into standard ECAD tools to 

enable digital logic circuit design.  The simulation is based on semiconducting (20,0) 

zigzag CNT and (19,0) armchair GNR. The following are the objectives of this  

research 

 

(i) To formulate analytical and semi-empirical equations for CNTFETs 

and GNRFETs  

(ii) To implement circuit compatible  compact device models for SPICE 

(iii) To customize the physical layout of carbon channel MOSFET circuits 

compatible with  45 nm and 90 nm Si technology nodes 

(iv) To explore the device and circuit performance based on physical and 

electrical parametric variations 

(v) To investigate the circuit performance of CNTFETs and GNRFETs 

in prototype digital logic gates 

(vi) To verify the accuracy the compact models with published 

experimental results and other accomplished models 

 

1.4 Contributions  
 
MOSFET-based integrated circuits have become the dominant driving force in 

realizing high performance computation with digital logic.  When current Si 

transistor features cannot be scaled to smaller sizes to keep improving performance, 

alternative material based transistors come into focus. Carbon nanotubes are 

essentially a rolled-up sheet of graphene about a nanometer in diameter and several 

hundreds of nanometers in length.  These structures are mechanically strong and 

exhibit an array of remarkable electronic properties such as very high carrier 

mobilities, quantized conductance and unique one-dimensional (1D) transport 

phenomena.  
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 Therefore, carbon-based devices hold great promise for post-Si nanoelectronics 

and could outperform the state of the art Si MOSFET that we have today. In this 

research, the potential of CNTFETs and GNRFETs in circuits is evaluated by 

formulating quantitative models which match experimentally measured devices. 

From these base models, logic circuit blocks such as NAND, NOR gates and ring 

oscillators are constructed and evaluated in terms of performance.  This enables the 

assessment of CNT and GNR performance in practical digital circuit applications. 

The impact of interconnects on the overall circuit performance metric is also 

quantified. These contributions mark a major step towards understanding the 

integration of carbon nanodevices into existing circuit architectures. 

 

1.5 Thesis Organization 
 
This thesis consists of 7 chapters. Chapter 1 introduces the background and 

motivation of this research. Chapter 2 provides an overview of the literature relevant 

to the research.  A detailed description of carbon and silicon-based transistor 

technologies are also presented. This includes the overview of the physical 

properties, synthesis and current transport model development for the CNTFET and 

GNRFET. A comparable device modeling for silicon MOSFETs is also summarized.  

Chapter 3 discusses the model formulation and device architecture of carbon 

devices.  The model is verified against experimental data and other compact models.  

In addition, the analytical model for the propagation delay in a circuit environment 

is also presented.  

In Chapter 4, performance evaluation is carried out on the simulated drain and 

gate characteristic between CNTFETs and GNRFETs, and compared with Si 

MOSFETs. The effect of parametric variations in contact size, substrate insulator 

thickness and interconnect length for CNTFET and GNRFET logic gates are also 

considered. They are benchmarked against the Si MOSFET based circuits in term of 

power-delay-product (PDP) and energy-delay-product (EDP).  
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Chapter 5 describes a CMOS type layout using CNTFETs and GNRFETs within 

45 nm and 90 nm process nodes. This allows direct comparison with the equivalent 

Si technologies. The calculation of load capacitance for each transistor in the logic 

circuit and ring-oscillator is described. The influence of interconnect capacitance on 

unity current gain cutoff frequency is also considered. 

In Chapter 6, conclusions are drawn from the research and suggestions for future 

work are given. Appendix A describes the design methodology carried out using 

MATLAB, SPICE and Cadence to develop the transistor models. Appendix B 

summarizes the derivation of quasi-low dimensional modeling presented in Chapter 

3. 

 



 
 
 
 
                                                                                                                       References 

 
 

 7

1.6 References 
 
 
[1] P. Avouris, "Molecular Electronics with Carbon Nanotubes," Accounts of 

Chemical Research, vol. 35, pp. 1026-1034, 2002. 
[2] H. S. P. Wong, "Field effect transistors-from silicon MOSFETs to carbon 

nanotube FETs," in Microelectronics, 2002. MIEL 2002. 23rd International 
Conference on, 2002, pp. 103-107 vol.1. 

[3] M. Lundstrom, "A top-down look at bottom-up electronics," in VLSI Circuits, 
2003. Digest of Technical Papers. 2003 Symposium on, 2003, pp. 5-8. 

[4] J. Kong and A. Javey, "Carbon Nanotube Field-Effect Transistors," in Carbon 
Nanotube Electronics, A. Chandrakasan, Ed.: Springer US, 2009, pp. 1-24. 

[5] F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, pp. 487-
496, 2010. 

[6] Z. Zhang, S. Wang, Z. Wang, L. Ding, T. Pei, Z. Hu, X. Liang, Q. Chen, Y. 
Li, and L.-M. Peng, "Almost Perfectly Symmetric SWCNT-Based CMOS 
Devices and Scaling," ACS Nano, vol. 3, pp. 3781-3787, 2009. 

[7] A. Javey and J. Kong, Carbon Nanotube Electronics (Integrated Circuits and 
Systems) vol. 1. New York: Springer 2009. 

[8] N. Z. Haron and S. Hamdioui, "Why is CMOS scaling coming to an END?," in 
Design and Test Workshop, 2008. IDT 2008. 3rd International, 2008, pp. 98-
103. 

[9] X. M. H. Huang, R. Caldwell, L. Huang, S. C. Jun, M. Huang, M. Y. Sfeir, S. 
P. O'Brien, and J. Hone, "Controlled Placement of Individual Carbon 
Nanotubes," Nano Letters, vol. 5, pp. 1515-1518, 2005. 

[10] I. Meric, V. Caruso, R. Caldwell, J. Hone, K. L. Shepard, and S. J. Wind, 
"Hybrid carbon nanotube-silicon complementary metal oxide semiconductor 
circuits," Journal of Vacuum Science & Technology B, vol. 25, pp. 2577-2580, 
Nov 2007. 

 
 
 



 8

Chapter 2  

Overview of Carbon and Silicon-Based 
Technology 

2.1 Carbon Nanotubes 
 
A carbon nanotube is a cylindrical nanostructures with sp2 bonded carbon atoms 

arranged in honeycomb lattice. It is a part of the graphene family that not only has 

tube-like but also ellipsoidal and spherical structures. A carbon nanotube also known 

as a buckytube compared to spherical fullerene which is called buckyball [1, 2]. The 

nanotube can be considered in this context as an elongated buckyball with a hemi-

spheric end capped structure.  

 Fullerenes were first discovered by Kroto, Curl and Smalley in 1985 who received 

the 1996 Nobel Prize in Chemistry. Ijiima [3] identified multi-walled carbon nano-

tubes (MWCNTs) at the NEC Corporation in 1991 while conducting a fullerene syn-

thesis experiment.  These structures consist of several concentric nanotubes nested 

inside one another.  Two year later, Bethune's group at IBM, [4] and Iijima and 

Ichihashi at NEC, [5] independently synthesized single-walled carbon nanotubes 

(SWCNTs) by using metal catalysts. Typically, the diameter of the MWCNT is tens 

of nanometer while SWCNTs can be one or five nanometers wide.  
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Although much more work is needed to control complex tube growth with specific 

chirality, shapes and sizes, CNT fabrication technology can build on existing silicon-

based device processing steps [6]. The buckyball (C60), MWCNT and SWCNT are 

depicted in Figure 2.1, Figure 2.2 and Figure 2.3 respectively. By using density gra-

dient ultracentrifugation (DGU), semiconducting and metallic tubes can be separat-

ed with 99% high purity. In addition, small diameter SWCNT (HiPco) with mean 

diameter ≈1.0 nm and length from ≈ 100-1000 nm can be obtained. NanoIntegris is 

an establish supplier of  SWCNTs of uniform diameter and mono-chirality (semicon-

ducting or metallic) which uses DGU techniques [7]. In this process, CNT are  

dispersed using a mixture of surfactants.  During the interaction, the surfactants  

selectively bind themselves with the CNTs. Following that, the CNTs are placed in-

to a density gradient for separation. At this stage, it can be seen that the CNTs are 

distributed based on density along the centrifuge tube. After the centrifugation pro-

cess, the CNTs gradient are fractionated to obtain metallic, semiconducting and ul-

tra high purity SWCNTs.   

 
Figure 2.1:  Buckyball C60 

 

 
Figure 2.2:  Multi-walled carbon nanotube 

 
Figure 2.3:  Single-walled carbon nanotube 
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 A nanotube can be metallic or semiconducting according to the direction they 

are wrapped [8] as depicted in Figure 2.4 and Figure 2.5.  This direction is best de-

scribed by the chirality indexes (n, m) of the nanotube where n and m are integers 

of the chiral vector, Ch = n a1 + m a2 = (n, m).  Basis vectors a1 and a2 are described 

by  

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
1

3 13
2 2cca a x y ,    

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
2

3 13
2 2cca a x y

               
 (2.1)  

where 0.14 nm≈cca  is the nearest C-C bonding distance. The corresponding recip-

rocal lattice vector [9] is given by 

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠1
2 1

3
πb x y
a

,     
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠2

2 1
3

πb x y
a

                        
 (2.2)  

On this basis the nanotube can be classified as a zigzag, armchair or chiral nanotube 

which has semiconducting and metallic characteristic as illustrated in Figure 2.6.  

Nanotubes can be made into nanoscale transistors and on-chip interconnects [6, 7] 

that have higher current carrying capacity and thermal conductivity than copper. 

 

 

 
Figure 2.4:    Map of chiral vectors (n, m) of carbon nanotube  
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               (a)                                 (b)                                   (c) 
 
Figure 2.5:   The creation of (a) (3,3) armchair nanotube, (b) (4,0) zigzag nanotube, 

(c) (4,2) chiral nanotube  

 

 
Figure 2.6:  Classification of nanotubes 
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2.1.1 Energy-Momentum Relation 
 
The energy dispersion (E-k) for a quasi-one dimensional (Q1D) structure such as 

nanotube and nanoribbon can be derived from the electronic properties of graphene 

[7, 8] that is expressed by  

( ) ( ) ( )( )= ± + ⋅ + ⋅ + ⋅ −1 2 2 13 2 2 2E(k ) t cos k a cos k a cos k a a
          

(2.3) 

The tight binding model can be rewritten to become [10] 

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎜ ⎜= ± + +⎟⎜ ⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎟ ⎟⎝ ⎠ ⎜ ⎜⎝ ⎠ ⎝ ⎠
23 3 31 4 4

2 2 2
cc cc cc

x y x y y
a a aE(k ,k ) t cos k cos k cos k        (2.4) 

The positive sign refers to the conduction band whereas the negative sign refers to 

the valence band.  To satisfy the periodic boundary condition, the wavevector k 

around the circumferential direction is quantized while the wave vector along the 

axis of the nanotube can take any value. It is given that  

 
⋅ = 2k C πv

                                            
(2.5) 

where C is the chiral circumference vector, k is the quantized wavevector (kx or ky) 

and v is a subband index integer. An armchair nanotube has C along the x-axis and  

a zigzag nanotube has C along the y-axis while a chiral nanotube has C lying in be-

tween. Figure 2.7 depicts the formation of zigzag, armchair and chiral nanotubes.  

 

 

 

 

 

 

 

 

 

 

Figure 2.7:  Formation of nanotubes. T is the translational vector. 
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2.1.2 Bandstructure of a Zigzag Nanotube 
 
 
 
 
 
 
 
 

 

Figure 2.8:  A zigzag nanotube with quantized ky 

 
The energy dispersion for (n,0) zigzag nanotube can be obtained by indentifying the 

chiral C shown in Eq. (2.5). Since the zigzag nanotube is rolled in the y-direction as 

shown in Figure 2.8, wavevector ky is quantized. The E-k relation is given by 

 

( ) ( )= − = − =1 2 3 ccC n, n n a a n a y
                                      

(2.6) 

⋅ = =
22 thus
3y

cc

πvk C πv k
n a

                                         
(2.7) 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜= ± + +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠
231 4 4

2 2
cc

x
a vπ vπE(k) t cos k cos cos

n
                       (2.8) 

 

Eq. (2.8) is used in the device modeling in Chapter 3 to calculate the density of 

states. The lowest subband index, v for (n,0) semiconducting zigzag carbon nanotube 

is given by  

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
2integer
3
nv                                            (2.9) 
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Figure 2.9 shows the E-k relation for (20,0) zigzag nanotube with subband index v 

from 13 to 23.  

-1 -0.5 0 0.5 1
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-2

0
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4
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(e

V)

kx/kxmax  
Figure 2.9:  Energy dispersion of (20,0) zigzag nanotube with n=20, subband 

index v from 13 to 23 and quantized ky  

 
2.1.3 Schottky Barrier CNTFET 
 
The Schottky barrier CNTFET shown in Figure 2.10 works on the principle of direct 

tunneling through the Schottky barrier and thermionic emission over the barrier at 

the source-channel junction as illustrated in Figure 2.11. Electron tunneling is the 

passage of electrons through a potential barrier which they would not be able to 

cross according to classical mechanics but can be explained in quantum mechanics. 

The barrier width is modulated by the application of gate voltage. Thus, the trans-

conductance of the device is dependent on the gate voltage. The carrier transport of 

a SB-CNTFET is via thermionic emission and quantum tunneling at the conduction 

and valence band resulting in a lower ON state current and limited conductance.  

 
 
 
 
 
 
 
 
 
 

Figure 2.10: Schottky barrier CNTFETs (adapted from  [6, 7])  
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SB-CNTFETs are terminated by metal source and drain contacts [11] and exhibit            

ambipolar conduction. It has an undesirable leakage current which can be sup-

pressed by adopting an asymmetric device structure. For example, a SB-CNTFET 

can be fabricated to have different bottom oxide thickness at the source and drain 

contacts or the gate can be moved closer to the source  [12].   

 

 
 
 
 
 

 

Figure 2.11: Schottky barrier CNTFET with ambipolar transport (adapted from 

[13]) 

  
MOSFET-like CNTFETs operates on the principle of charge modulation by applica-

tion of the gate potential as shown in Figure 2.12. It has many advantages over the 

SB-CNTFET such as low leakage current for the same tube dimension and minimal 

parasitic capacitance. Furthermore, it is suitable for digital logic and can deliver 

more drain current for faster switching operation [14]. 

MOSFET-like CNTFETs can be realized by using appropriate metals with work 

function comparable to the intrinsic nanotube that does not require any doping               

effect. In Ohmic contacted CNTFETs, the Schottky barrier is reduced significantly 

to enhance unipolar current-voltage characteristics.  For electron transport, metals 

like Scandium (Sc), Aluminium (Al) or Calcium (Ca) can be chosen for the contacts 

to obtain n-type CNTFET operation. Similarly, hole current can be encouraged by 

using metals such as Paladium (Pd) that has very small Schottky barrier, φBp ≈0 at 

the valence band. The barrier height on the conduction band φBn ≈ EG shall restrain 

electrons from tunneling in the conduction band. 
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                     (a)                                                          (b) 

 
Figure 2.12: Sketch of a full band ohmically contacted SWNT-FETs for (a) elec-

tron and (b) hole transport 

Another aspect of MOSFET-like CNTFET design is based on the doping of the 

source and drain regions of intrinsic nanotubes similar to conventional MOSFET 

shown in Figure 2.13. The highly p or n-doped source and drain suppress the inser-

tion of minority carriers such as holes in n-type CNTFETs and electrons in p-type 

CNTFETs when ohmic contacts are made at the two ends [11, 14] .  An n-type 

CNTFET with potassium (K) doped source and drain region was reported by Javey 

et. al. It uses a top gated design with a Hafnium oxide (HfO2)  high-κ gate dielectric 

deposited by atomic layer deposition (ALD) [15]. It has a high on/off ratios of 106 

and subthreshold swing of 70 mV/decade.  These results clearly show the potential 

of SWNTs that can rival 90 nm node Si n-MOSFET and beyond.  

 

  
 
 

 

 

 

 

      

                          (a)                       (b) 

Figure 2.13: MOSFET-like CNTFET with chemically doped contacts for (a) bot-

tom and (b) top gate design (adapted from [11, 15]) 
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2.1.4 Synthesis 
 
Carbon nanotubes can be synthesized by this following common methods; arc dis-

charge, laser ablation and chemical vapor deposition (CVD). The arc discharge 

technique produced the first large scale production of CNTs. It uses two graphite 

electrode rods that are sustained at a fixed distance with an applied direct (DC) or 

alternating current (AC) potential. They are placed in a chamber filled with inert 

gas (Argon, Helium) at a controlled pressure. The two rods that are loaded with me-

tallic catalyst (Ni, Fe, Mo) and graphite powder, are brought closer together to gen-

erate plasma arcing [16, 17] where the positive electrode is consumed during the pro-

cess. The depositions of CNTs are found on the negative electrode. 

Laser ablation [18] uses a continuous or pulse laser to vaporize graphene rods 

which contain a mixture of catalyst in a chamber filled with a pressurized inert gas. 

The hot plasma is cooled down swiftly to encourage the formation of nanotube 

structures, which are collected at the cold target. The overall process yield can be 

improved by varying the amount of catalyst in the target composition, growth tem-

perature and laser power [19].  

 Another growth mechanism that has been previously used to produce a wide 

range of carbon materials, such as carbon fibers, is CVD. It is suitable for large-scale 

production of high purity nanotubes and offers good controlled growth on patterned 

substrates.  The chemical reactions in the reactor form a solid material (nanotubes) 

on the substrate surface from gaseous hydrocarbon (C2H2, CH4) molecules. The CVD 

growth process for SWNTs from methane required temperature of up to 900 °C [20]. 

Therefore, plasma-enhanced chemical vapor deposition (PECVD) [21] is introduced 

for device fabrication processes that cannot endure high temperature operation. 

PECVD operates at a much lower wafer temperature operation than thermal CVD 

so that any photoresist coated for masking and selective growth can be kept intact.  
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2.2 Graphene 
 

Graphene is a zero gap material which has a linear dispersion with electron-hole 

symmetry.  The single layer of carbon atoms are arranged in a honeycomb structure 

where each atom having 4 valence electrons forming three sp2 orbital and one pz or-

bital. At ground state, carbon electron configuration is given as 1s22s22px
12py

1
. In       

excited state, this electronic configuration becomes 1s2 2s1 2px
1 2py

1 2pz
1. In graphene 

hybridization, one 2s orbital together with  2px
1 and 2py

1 orbitals form three sp2             

hybridized orbitals with neighbouring three carbon atoms. The three sp2 orbitals lie 

in the same a plane with each carbon atom at 120° angles. All sp2 orbitals form                 

σ-bonds while the remaining electron in the 2pz
1 orbital forms a π-bonds with 

neigboring 2pz
1 orbitals [22].  Figure 2.14 shows sp2 hybridization in graphene and            

Figure 2.15 shows the 2pz orbitals. 

 
Figure 2.14: sp2 hybridization (taken from [22]) 
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Figure 2.15: 2pz orbitals (taken from [22]) 

 

 

The conduction and valence bands of graphene converge into a single Dirac point 

as illustrated in Figure 2.16.  The Dirac points K and K’ are located at (2π/3a, 

2π/3√3a) and (2π/3a, -2π/3√3a) respectively.  The electronic structure of graphene 

can be described using a nearest neighbour tight-binding model [23]. Unless a 

bandgap is induced, graphene in its present state is not suitable for logic devices 

since it has a very low Ion/Ioff ratio.  Nevertheless, logic devices and circuits on               

graphene can still be realized by using bandgap engineered narrow graphene                    

nanoribbons.   

In GNR, we assume the wave vector ky is parallel to the GNR length direction 

while the transverse wave vector kx is quantized [24, 25] with separation of π/W 

where W is the width of the GNR.  The material becomes metallic when the trans-

verse wave vector passes through any dirac point as shown in Figure 2.16 (c). Oth-

erwise, it is semiconducting. Through tight binding calculation [26], armchair GNRs 

can have either metallic or semiconducting characteristic while zigzag GNRs are al-

ways metallic.  
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                             (a)                                                  (b) 
 
 
 
 
 
 
 
 
 
 
                           (c)                                                            (d)   
 
Figure 2.16:  (a)  Energy bands near the Fermi level in graphene. (b) Brillouin 

zone of the honeycomb lattice.  A closer look at the (c) metallic and (d) semicon-

ducting conic structure (taken from [27]) 
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Integer N shown in Figure 2.17 gives the width of the nanoribbon that determines 

the electronic properties (semiconducting or metalic) of the device.  For a perfectly 

terminated edge, integers j=0 and j=N+1 are introduced as a periodic boundary 

condition. The edge atoms are passivated with Hydrogen. Table 2.1 shows the elec-

trical and mechanical properties of graphene-based nanostructures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.17: Honeycomb lattice of an armchair (left) and a zigzag graphene nano-

ribbon [28]  

 

Table 2.1:  Electrical and mechanical properties of carbon nanotubes and gra-

phene or GNR [29, 30] 

 
Parameter Carbon nanotubes Graphene or GNR 
Electrical Conductivity Metallic or semiconducting 
Electrical Transport Ballistic and scattering limited 
Mobility  100000 cm2/ V·s 200000 cm2/ V·s 
Energy gap (semiconductor) ≈ 1/d (nm) ≈ 1/W (nm) 
Maximum current density ≈ 1010 A/cm2 ≈ 109 – 1010 A/cm2 
Tensile Strength 150 GPa (MWCNT) 130 GPa 
Thermal conductivity ≈ 3500 W m-1K-1 ≈5000 W m-1K-1 
E-modulus 1000 GPa 
  

 
 
 
 
 
 
 

Hydrogen atoms 

W
id

th
 

 
j=N 
j=N+1 

Length 

W
id

th
 

x 
j=0
j=1 
j=2 
j=3 
j=4

 j=N 
 j=N+1 

…
…

…
.. 

y 
Length 

j=0 
j=1 
 
j=4 
j=5 
 

Hydrogen atoms

Hydrogen atoms 



 
 
 
 
                                                                                                   Synthesis 
 
 

 22

2.2.1 Synthesis 
 
There are many approaches to synthesize graphene.  In 2004, Novoselov’s group at 

the University of Manchester successfully isolated a single layer of graphene using 

mechanical exfoliation [31].  The top layer of the graphite flake is peeled using 

scotch tape and the process is repeated several times until it gets thinner. Eventual-

ly, the sample is pressed against oxided silicon wafer and taken for optical inspec-

tions [32].  It is a painstaking process that requires patience and a trained eye to 

find the fairly low quantity of mono layer graphene.  Alternatively, graphene can be 

grown epitaxially on a silicon carbide (SiC) substrate [33].  The wafer is annealed for 

a few minutes in ultra high vacuum (UHV) chamber for the graphene growth to 

take place on the silicon while the flow of argon (Ar) reduces the wafer temperature.  

To pattern the graphene into nanoribbons, Poly(methyl methacrylate) (PMMA) can 

be used as the mask for etching by ebeam irradiation [34]. Graphene can also be cut 

using scanning tunnelling microscope (STM) lithography by applying  a constant 

bias potential on the STM tip when navigating along the sample [30]. 

Recently, graphene growth using CVD has been made possible where nickel (Ni)  

catalyst is annealed in a carbonaceous gas [29, 35, 36].  The CVD approach produces 

samples with exceptional electronic and optical properties as there are no severe  

mechanical or chemical treatments involved [37].  Tour’s group in Rice University 

has demonstrated that the carbon nanotube itself can be transformed into graphene 

nanoribbon.  They started by cracking the middle of the tube using a concentrated 

sulphuric acid and an oxidizing agent. Then, the wall structure is untangled along a 

longitudinal line to reveal a flat graphene ribbon [36]. At Stanford University, Dai’s 

group has developed an Ar plasma etching method on  multiwalled nanotubes. The 

tubes are submerged in PMMA and placed on a Si substrate. After baking, the              

polymer-nanotube film is taken off and exposed to Argon plasma to remove the top 

wall. Depending on the etching time, a variety of  single-, bi- and multilayer GNRs 

[29, 35] are obtained. 
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2.3 Carbon-based Nanoelectronics 
 
The control of orientation, density, consistent diameter, width, type, chirality of 

nanotubes and nanoribbons are of utmost importance to realize industrial mass-

production of carbon-based nanoelectronic devices.   In early 1998, researchers at 

Stanford introduced the synthesis of SWCNTs on patterned silicon wafers by placing 

a catalyst island on the spot where selective growth is desired [38, 39].  On the other 

hand, researchers at Cambridge demonstrated the growth of high quality SWCNT 

without amorphous carbon by using rapid growth at high temperature [40]. The 

most recently developed technique has effectively improve the orientation control of 

CNTs growth where they can be orthogonally [41] and horizontally [42] aligned on 

crystal sapphire (R-Al2O3) wafers  [43, 44] and single-crystal quartz (SiO2) wafers for 

the implementation of logic circuits [45].   

Various separation methods of semiconducting and metallic tubes have been 

proposed such as eliminating metallic tubes at high current in air [46] or chromato-

graphically separating DNA-SWCNT hybrids [47-50]. Nevertheless,  many research-

ers are still tackling the challenges that lie ahead particularly for chirality controlled  

nanotube growth [51].  

The potential high-frequency performance of CNTFETs is appealing.  The pro-

jection of the CNTFET compact model [52] indicates that it can have switching 

speed 50× faster than a 32 nm MOSFET. However, in the design back-annotation 

process, the speed is limited to 2-10× due to interconnect and parasitic capacitance. 

In 2007, SW-CNTFETs of dense CNT networks were reported to deliver an intrinsic 

current gain cutoff frequency of 30 GHz [53, 54].  It increased sharply to 80 GHz  in 

2009 as 99% pure semiconducting CNTs [55] were  obtained using the density-

gradient ultracentrifugation (DGU) technique [56]. 

    CNTs were initially fabricated using bottom-gated geometry [57]. These 

CNTFETs have high threshold voltage and low drain current [58]. The limitations 

prompted researchers to look into more conventional top-gated structural design. 

Among the advantages of top-gated CNTFETs are lower local gate biasing, reduced 
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gate hysteresis and  improved switching speed due to parasitic capacitance reduction 

[59].  Similar advantages are also observed in top gated GNRFETs [60].  

There has also been promising progress in controlled etching of graphene, [61] 

where  graphene nanoribbons up to 10 nm wide can be realized [62].  In 2008, gra-

phene transistors produced using  exfoliation technique have shown to have cutoff 

frequency of 26 GHz [63]. Two years later, epitaxially grown graphene FET synthe-

sized on a two-inch SiC wafer gave an impressive 4 fold improvement on the former, 

operating  at 100 GHz [64].  

A 5nm wide GNRFET is reported to have an Ion/Ioff  ratio of 104  at room tem-

perature where thin Al lines are used as the etch mask instead of electron beam re-

sist.  The narrow nanoribbon is a result of a gas phase etching process that took 

place after 20 nm wide GNRs were derived through electron-beam lithography [65].  

These advances certainly give an encouraging outlook for nanotube synthesis and 

circuit integration [45] where bottom-up technology complements the top-down ap-

proach.  The next materials of choice in the imminent future appear  to be III-V 

material, silicon germanium (SiGe) while the unconventional geometries for Si 

MOSFET devices includes an ultra-thin body (UTB) fully-depleted silicon-on-

insulator (FD-SOI) MOSFET and double-gate (DG) MOSFET [66]. 

  

2.4 Current Transport Models  
 
The operation of a MOSFET is based on the modulation of current flow in the in-

version layer of the MOS structure.  The entry and exit terminals for the current are 

the source and drain, respectively.  An inversion layer is formed when a sufficiently 

large positive bias is applied at the gate terminal for an n-channel MOSFET.  For a 

p-channel MOSFET, negative bias is applied at the gate terminals to form the in-

version layer.  A planar bulk NMOS is shown in Figure 2.18 and can be described by 

a number of basic parameters such as channel length L, channel width W and gate 

insulator thickness tox . 
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Figure 2.18: Basic structure of a n-channel MOSFET 

 

A long channel I-V (current voltage) device is based on the classical Shockley 

square-law MOSFET model [67]. The drain current can be modeled based on the 

gradual channel approximation (GCA) where the Pao and Sah method [68] can be 

adopted to calculate inversion charge numerically. Under the GCA assumption, the 

change of the electric field in the y-direction along the channel is smaller than the 

perpendicular variation in the x-direction as in Eq. (2.10) 

                   y xE E
y x

∂ ∂
<<

∂ ∂
                                          (2.10) 

As a result, the two dimensional problem can be separated into two independent one 

dimensional problems to be solved individually. The first piece would be the vertical 

electrostatics problem relating the gate voltage to the channel while the second piece 

is the longitudinal problem involving the voltage drop along the channel.  The drain 

current can be calculated by solving the latter equation for the inversion charge per 

unit area numerically.  A charged sheet approximation approach [69] was shortly 

introduced to make the algorithm simpler. This method considers the inversion layer 

to be a sheet of conducting plane and offers a consistent result from the  

subthreshold to the saturation region. 
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The second order effects (SOE), particularly velocity saturation become crucial 

in submicron transistor designs. The impact of saturation velocity has been widely 

investigated [70, 71] and the short channel model is reported to be more accurate for 

nanoscale MOSFETs than the long channel approach.  Newer models incorporate a 

quasi-two-dimensional (Q2D) analysis by solving the Poisson's equation in the pres-

ence of a high electric field.   The conventional mobility model is tailored to have 

not only transverse and longitudinal fields but channel doping of diverse degeneracy  

[72]. Constant mobility is no longer accurate as the drain current saturates earlier 

than predicted due to mobility degradation.  It is found that velocity saturation de-

teriorates the current drive strength in the new CMOS generation when devices are 

gradually scaled down to gain higher speed and integration density [73]. 

 In low-dimensional nanostructures, cross over from conventional scattering lim-

ited transport in long channel devices to collision-free ballistic transport is possible 

when the length of the devices is shorter than the electron mean free path. Many 

advances has been accomplished to comprehend the quasi-ballistic nature in na-

noscale MOSFETs [74, 75]  that facilitate the development in Q1D modeling namely 

nanowire, nanotube and nanoribbon transistors. One of these approaches has been 

led by Lundstrom [76] who developed a semi-classical approach to explore carrier 

transport in ballistic DG-MOSFETs. In semi-classical approach, a simplified path 

integral formalism is used to explore quantum physics. By using the Landauer-

Buttiker formalism, the current can be obtained from the integration of a net Fermi 

Dirac distribution between the source and drain terminal coupled with a transmis-

sion coefficient (see Chapter 3.3 for comprehensive device modeling using Landauer-

Buttiker formalism). A simplified version of the formalism is based on the product of 

quantum conductance and transmission coefficient, T propagating within the chan-

nel. It is given as   

( )
1

2 M

n F D
n

qI T E V
h =

= ∑                                        (2.11) 

 

where M is the number of the subbands. The formalism is applicable to both nano-

ribbon and nanotube transistors that have a top-gated design. 
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Another crucial component in current transport modeling is the inclusion of 

quantum capacitance. In 1987, Luryi [77] was the first to use quantum capacitance, 

CQ to describe the extra energy required to move charges in a low dimensional elec-

tronic system, such as in a 2D electron gas (2DEG) system. This quantum capaci-

tance, CQ, can be modeled as a capacitance in series with the electrostatic capaci-

tance, CE, as shown in Figure 2.19. 

 

 

 
 
 
 
 
Figure 2.19: Circuit representation of electrostatic and  quantum capacitance                   

in series 

 

Quantum capacitance appears due to poor screening properties in quasi-one and two 

dimensional system [78].  In CNTs and GNRs, quantum capacitance is utilized to 

account for excess gate field penetration through the honeycomb surface [79] . The 

quantum capacitance is directly proportional to the density of states. In Q1D                  

devices, the density of states is usually small which results in low CQ .  A large drop 

of voltage across CE is desired to control the channel. CE is inversely proportional to 

the dimension of the device (CE=tins/d). As the dimension of the device becomes 

smaller, the value of CE becomes comparable to CQ . Therefore, there will be a large 

voltage appearing across CQ .  In this case, CQ  can no longer be neglected.  The gate 

substantially loses control of the channel as a result of insufficient free charges in the 

semiconductor to screen the applied potential. The remaining charges are attracted 

to CQ.  Therefore, the drain current model will not be accurate without  considering 

quantum capacitance [77].  The  analytical model (see Chapter 3.5) captures the ef-

fect of quantum capacitance on a nanoscale transistor, a noteworthy expansion of 

Natori’s ballistic MOSFET model [80]. 
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2.5 Device Modeling 
 
Semiconductor device modeling creates models to characterize the behavior of elec-

trical devices based on fundamental physics. A meticulous method to describe the 

operation of the transistor is to write semiconductor equations in three dimensions 

and solve it numerically by using software programs. This approach is not recom-

mended for general circuit simulation. Therefore, the most efficient way is to employ 

compact or Computer Aided Design (CAD) models. 

  There are various types of well-known compact models  [81].  Amongst these are 

physical models based purely on device physics and empirical models that rely on 

curve fitting using coefficients that may or may not have any physical significance.  

The first model is based on device physics formulation and each parameter in the 

model has a physical significance such as flat band voltage, doping concentration 

and Fermi potential. The combination of both models mentioned beforehand is 

called a semi empirical model. This model is based on device physics formulation 

and partly on empirical measurements as a curve fitting expression. It includes an 

additional non-physical coefficient that is used to best fit the experimental data. 

Lastly, a compact model which places the input and output data in a two column 

table is a table model. This saves a great deal of processing time as no calculation is 

involved. 

 There are a couple of approaches to selecting the types of compact modeling 

(CM) according to the derivation technique defined in Table 2.2. Charged based 

(CB) and surface potential based models (SP) are available commercially in model-

ing tools known as Electronic and Electrical Computer Aided Design (ECAD).   

 

Table 2.2:  Compact modeling approaches 
 

Charge-Based Models Surface-Potential Based Models 
BSIM - Berkeley Short-channel 

IGFET Model 
PSP -  An Advanced Surface-Potential 

Based Compact MOSFET Model 
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BSIM has been the standard model for deep submicron CMOS circuit design. It is 

widely adopted by IC companies such as Intel, IBM, AMD, National Semiconductor, 

Texas Instrument, TSMC, Samsung, Infineon and NEC for modeling devices with 

good accuracy [82]. The BSIM model was developed by the BSIM Research Group 

at the University of California, Berkeley. Table 2.3 shows the SPICE level of each 

BSIM since it was first released in 1984. 

 
Table 2.3:  BSIM SPICE Level 

 
MOSFET Model Description SPICE Level 

BSIM1 13 

BSIM2 29 

BSIM3 39 

BSIM3v2 47 

BSIM3v3 49 

BSIM4 54 
  

 

Surface-Potential (SP) based compact models have been gaining ground since the 

early 2000’s.  In 2006, Pennsylvania State University and Philips developed the PSP 

model (an enhancement of the SP model) that succeeded the BSIM3 and BSIM4 

model. It became the latest industry standard for the 65nm technology node and 

beyond [83, 84].  PSP has been selected to be the standard for a new generation of 

integrated circuits over inversion-charge-based model given the fact that it enables 

faster circuit simulation with fewer parameters [85]. It provides an accurate simula-

tion of transistor performance that includes both RF and analogue circuit. 

SPICE is a general purpose analog circuit simulator [86]. It is used to check cir-

cuit design and to simulate the circuit behavior from board level to IC design. 

SPICE can predict the performance of analog and mixed analog/digital systems by 

solving equations in frequency and time domains. The modeling of a CNTFET for 

circuit simulation can be also based on the surface-potential-based model [87].  The 

surface-potential-based circuit model can be incorporated in SPICE for various tran-
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sistor simulations by understanding the physics behind the ballistic and quantum 

transport models [88]. 

 Although the full potential of this research is still unrealized, recent research on 

semi-empirical SPICE models for a CNT has provided a solid ground for modeling of 

nanoscale dimension three terminal devices.  A semi-empirical SPICE model for a 

carbon nanotube has been successfully implemented by Dwyer et. al [89]. The 

CMOS design utilized genuine p-type CNTFET experimental data [90] and a con-

structed n-type CNTFET illustrated in Figure 2.20 to execute logic gates operation, 

combinational logic circuits and an SR latch.  

 
 

Figure 2.20: Circuit model of CNT complementary circuits 

 

  It has been reported that the CNTFET has a positive technology outlook in digi-

tal electronics and could offer far more advantages than silicon technology [91, 92]. 

CNTFETs  are suitable for logic applications owing to the fact that they have high 

ON current density and moderately high on-off ratio, the highest ratio reported to 

date is six orders of magnitude [93, 94]. Electromechanically driven switches such as 

carbon nanotube-based nonvolatile random access memory [95] have also been 

demonstrated whereby an electric field induces a nanotube to bend and make con-

tact with a static nanotube to allow current flow and single bit storage [96].  
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Table 2.4 : CNTFET compact model 

 

Group Ref. Year Model Descriptions Coefficients 

Purdue U.  [87] 2003 Top of the barrier modeling approach EF,VG, Vd, Vs 
Florida U. [97] 2005 Treatment of phonon scattering in CNT-

FETs using non-equilibrium Green’s func-
tion 

Hamiltonian matrix 
and self-energies  

Σ1,  Σ2 and ΣS 
Stanford U.   [98] 2006 Schottky barrier CNTFET modeling EF,VG, Vd, Vs 
Stanford U.   [99, 100] 2007 HSPICE model of  CNT for logic circuit 

simulation  EF,VG, Vd, Vs 

Stanford U.   [101] 2007 
CNT  density of states, effective mass, 
carrier density, and quantum capacitance 
analytical model 

EF,VG, Vd, Vs,CQ 

Arizona State U. [102] 2007 Surface potential approach to calculate 
ballistic current and tunneling probability EF,VG, Vd, Vs Arizona State U. [103] 2008 

Southampton U. [104] 2009 Non-linear approximation of mobile 
charge density versus channel potential EF,VG, Vd, Vs 

Southampton U. [105] 2009 Modeling non-ballistic effects in CNT 
modeling EF,VG, Vd, Vs 

Southampton U. [106] 2009 VHDL-AMS model of  CNT for logic cir-
cuit simulation EF,VG, Vd, Vs 

     

 

 

Table 2.4 lists the development of  CNTFET compact models for process-design  

exploration.  There are two approaches for modeling CNT by using a simpler surface 

potential method [87, 102, 103] or  a non-equilibrium Green’s function (NEGF)  

method [97]. Most of the surface potential models use terminal voltage coefficients 

such as VG, Vd and Vs and Fermi energy, EF.  The NEGF uses the Hamiltonian ma-

trix and self-energies Σ1,  Σ2 and ΣS to describe how the channel couples to the source 

contact, drain contact and scattering process. Non-ideality effects such as Schottky 

barriers and phonon scattering can be added to improve the accuracy of the circuit 

[101, 105].  By integrating these models into HSPICE [99, 100] and VHDL-AMS 

[106], it is possible to perform large scale simulations at circuit and system level.  

The compact model should not be too complicated as otherwise it will consume more 

CPU time and increase the computing cost [104].   
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Table 2.5 depicts the numerous methodologies adopted to control the type of nano-

tubes either p or n-type, their stability in air, compatibility with silicon processes 

and voltage gain. 

 

Table 2.5 : Comparison of CNTFET and GNRFET devices 

 

 
 
 
 
 

 

 

 

 

    CNTFET  

 
Group 

 

 
Ref. 

 

 
Year 

 

 

p/n control 
method 

 

p-type 
 

n-type 
 

Stability 
in air 

 

 

Si process 
compatibility 

 

Voltage 
gain 

 

Peking U. [107] 2007 S/D work 
function Pd contact Sc contact N/A Bad 11 

Tsinghua U. [108] 2009 S/D work 
function Pd contact Sc contact N/A Bad 160 

Stanford U. [109] 2002 Insulator and 
annealing 

ZrO2 insula-
tor 

H2 anneal-
ing Bad Good 60 

IBM [110] 2001 Doping and 
annealing O2  doping Annealing 

in vac. Bad Good 0.6 

IBM [111] 2001 Doping Pristine K doping Bad Bad 2 

IBM [112] 2006 Gate work 
function 

Pd gate 
metal 

Al gate 
metal Good Good 5 

Nagoya U. [113, 114] 2010 Interface 
charge 

Al2O3 gate 
insulator 

HfO2 gate 
insulator Good Good 26 

GNRFET 

Tsinghua U. [115] 2007 Doping Pristine N doping N/A Bad N/A 

Stanford U. 
Florida U. 

[116] 2009 Annealing Pristine Ammonia 
annealing N/A Good N/A 
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2.6 Conclusion 
 
In this chapter, the current transport model developments for CNTs are described. 

In addition, the device physic and synthesis of this 1D carbon material are reviewed. 

Carbon nanotubes and graphene nanoribbon transistors have similar properties in 

many ways. They are both quasi-one-dimensional (Q1D) structures that can be         

either metallic or semiconducting with a direct bandgap depending on their chirality, 

diameter or width. The bandstructure of these carbon materials are derived from the 

electronic properties of graphene. Their unique electrical properties, high mobility, 

current density and physical strength give them potential advantages over Si 

MOSFETs in terms of performance. As such, both CNTFETs and GNRFETs have 

the potential to overcome the 100 GHz cutoff frequency barrier.  

The industry standard model for compact MOSFET modeling prior to 2007 was 

the charge-based BSIM formulation. The Compact Modeling Council (CMC) re-

placed BSIM with the PSP model to overcome the challenges of RF design efficiency 

and provide a more accurate model in the sub-threshold region.  Potential along the 

channel surface changes with gate bias whereby a Surface Potential Equation (SPE) 

relationship can be formulated.  SPE can also be adopted to model the CNTFET 

and GNRFET and provide straightforward calculations compared to NEGF.  

GNRFET modeling can be based upon the CNTFET modeling approach shown in 

Table 2.4. For example, the Landauer-Buttiker formalism can be used to calculate 

the drain current with minor adjustment on the quantum conductance and density 

of states. 

 There has been progressive development of CNTFET and GNRFET device fab-

rication techniques to enable controlled assembly and etching with precision. There 

are numerous techniques to control the carrier type (p or n-type). It can be done by 

manipulating the source or drain workfunction, annealing at high temperature or 

channel doping. For instance, to obtain an n-type CNTFET, a HfO2 gate insulator 

can be deposited on the contact metal and nanotube interface and introduces posi-

tive fixed charges. The positive fixed charges induce opposing negative charges at 

the metal interface that ultimately reduces the Schottky barrier thickness. It is not 
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yet clearly understood where the fixed charges originate from [113]. However, it is 

assumed that the charges are introduced when oxygen is desorped from the HfO2 

layer during the ALD process at high temperatures.  With the steady improvement 

of voltage gain, stability in air and silicon process compatibility of CNTFETs, the 

development of GNR fabrication processes will also be greatly accelerated. 
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Chapter 3 

Device Model  

3.1 Introduction 
 

In this chapter, the device models of the CNT and GNR FETs are described. A brief 

overview of MOSFET modeling is also given. The work requires device performance 

comparison of CNT and GNR against silicon in scaled MOSFETs. For a fair assess-

ment, both carbon and silicon-based devices are assessed at similar current drive 

strength. The models have been customized to take account of the transistors from 

single to multiband transport.  Besides that, substrate and quantum capacitance 

(Csub and CQ) together with channel, quantum and contact resistance (Rchannel,               

RQ and Rcontact) are included in the model.  The subsequent enhancement of this 

model is carried out in the circuit design simulation framework where the intrinsic 

parasitic capacitances such as gate to source capacitance, Cgs and interconnect ca-

pacitance, Cint are included.  Our device model results agree well with published da-

ta. Initially, the model codes are written in MATLAB to solve complicated non-

linear equations.  Subsequently, the device model is implemented in PSPICE and 

HPISCE by replacing a Newton-Raphson iteration with non-linear approximation.  

In addition, the RC time constants and propagation delays of CNTFET and 

GNRFET are explored to investigate the speed of digital signal transmission in a 

RC circuit. 
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3.2 Modeling Approaches 
 

The preliminary device modeling is based on transport theories developed by 

Lundstrom [1] and Datta [2].  On the whole, SW-CNTFET and GNRFET can be 

modeled either by using non-equilibrium Green’s function (NEGF) or a ballistic 

transport model established by Natori, [3] further developed by Guo [4].  NEGF is a 

quantum transport device modeling solution to the Schrödinger wave equation with 

open boundary conditions [5, 6].  It uses a bottom up simulation approach and is 

suitable for mesosopic device modeling. The Green’s function consists of a Hamilto-

nian matrix (N × N) based on a discrete lattice with N grid points [7].  In addition, 

the influence of scattering into the source and drain contact as well as scattering 

within the channel is represented by self-energy matrices Σ1,  Σ2 and ΣS respectively 

[1, 2, 6] as illustrated in Figure 3.1. The Green’s function can be incorporated in 

Landauer current formula via transmission coefficients [8, 9].  For a system with 

massive grid points, the computing cost can be enormous. Though NEGF modeling 

is quite accurate, it is difficult to obtain a closed form of analytical model which is 

the key factor in the development of compact models in circuit simulation [8]. In this 

case, a simpler ballistic model that is able to capture and solve the device physics 

effectively and efficiently is preferred to explore the early stage process design  for 

analog or digital application [8].  The top-of-the-barrier model originating from the 

analytical MATLAB script codenamed Fettoy proposed by Rahman [9-11] was ini-

tially used to simulate a ballistic I-V of a Double-Gate (DG) Ultra-Thin-Body 

(UTB) MOSFET and then a CNTFET.  Wang  [9] extended the work for ballistic 

high electron mobility (HEM) and nanowire (NW) transistors. 
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Figure 3.1:  General matrix model for nanoscale device connected to two con-

tacts. (Adapted from [10]) 

 

3.3 Low Dimensional Structure Modeling 
 

The field-effect-transistor is a four terminal solid state electronic device that can be 

used as a switch or amplifier. In the transistor circuit model representation shown in 

Figure 3.2, the semiconductor channel is driven by the gate voltage VG, drain                 

voltage Vd  and source voltage Vs  with substrate voltage Vsub.   There are also four 

prominent parasitic capacitances in a non-ideal transistor associated with the                    

terminal; gate capacitance CG, drain capacitance Cd, source capacitance Cs and                   

substrate capacitance, Csub. The gate capacitance is a series combination of electro-

static capacitance, CE and quantum capacitance, CQ. 

Cs

Vd

VG

Cd

CG

Vs

Vsub

Csub

Cs

Channel Vd

VG

Cd

CG= CECQ/(CE+CQ)

Vs

Vsub
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Figure 3.2:  Transistor circuit model with parasitic capacitances 
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In equilibrium, the number of carriers populating the positive and negative velocity 

(or momentum) vectors filled from the source and drain respectively are equal thus 

giving a zero drift velocity as illustrated in Figure 3.3. Non-equilibrium mobile 

charge is generated when an electric field is applied across the channel from the 

drain and source terminal.  The mobile charge  [11, 12] can be expressed by   
 

( )Δ = + + 0s dQ q N N N                             (3.1) 
 

where Ns is the density of positive velocity states, Nd is the density of negative veloc-

ity states and N0 is the electron density at equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 3.3:    Population of k-states at equilibrium at the top of the barrier                             
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A self-consistent voltage Vsc formalism was introduced by Datta in order to calculate 

the voltage potential at the top of the barrier along the channel [2].  Vsc is also 

known as the channel surface potential [11].  When gate and drain voltage is ap-

plied, the barrier voltage in the device is pushed down and is described by VL. How-

ever, the charge brought by the additional electron shifts the potential up by VP 

[12].  The self-consistent voltage  is given by   

∑

− + Δ
= + = t

sc L P
Q QV V V

C
                                         (3.2)     

where Qt and ∑C  are the total charge and capacitance at all four terminals given as  

= + + +t s s G G d d sub subQ C V C V C V C V                                    (3.3)      

∑ = + + +s G d subC C C C C                                             (3.4)      

The carriers obey the Fermi-Dirac probability distribution and the densities in Eq. 

(3.1) and Eq. (3.2)  

( ) ( )
+∞

−∞

= −∫
1
2s SFN D E f E U dE                                     (3.5)      

( ) ( )
+∞

−∞

= −∫
1
2d DFN D E f E U dE                                     (3.6)      

( ) ( )0 FN D E f E E dE
+∞

−∞

= −∫                                       (3.7)      

where USF and UDF are defined as 

= −SF F scU E qV                                                  (3.8)      

= − −DF F sc dsU E qV qV                                             (3.9)      

The 1D density of state function is given by  

 

2 2

2( )
3 ( 2 )

v s

cc i G

g g ED E
πa t E E

=
−

∑                                          (3.10) 

where = 1.42Å, t = 3 eVcca  is the C-C bonding energy,  EG is the bandgap energy, 

gs is the spin degeneracy and gv is the valley  degeneracy. In armchair GNRs, two 

Dirac points (K and K’ ) are merged into one valley (gv=1), whereas those of CNTs 

have two discrete valleys (gv=2).   
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A generic circuit model with self consistent voltage at the top of the barrier with 

grounded source and substrate is illustrated in Figure 3.4 

 

 
Figure 3.4:  A generic electrostatic capacitance model for ballistic transistor 

(adapted from [12]) 

 

The model description in Figure 3.4 are relatively similar to Deng and Wong’s com-

prehensive CNTFET model from Stanford University [13]. In their work, Cs, Cd and 

Vsc are represented by  these  corresponding expression   

( )= −1s cC β C                                                (3.11)      

=d cC βC                                                    (3.12)      

= Δsc BV Φ q                                               (3.13)  

 

where BΦ  is channel surface potential.  Both coupling capacitor Cc and β  are fitting 

parameters [13].   
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When a low drain bias is applied, carriers occupying the negative velocity k-states 

are reduced by qVd as illustrated in Figure 3.5.  In high drain bias, all the carriers 

populate the positive velocity k-states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.5:    Population of k-states at non-equilibrium at the top of the barrier                          
 

Under thermal equilibrium, carriers move in random directions through a channel 

with an average thermal velocity, vth and kinetic energy proportional to kT at room 

temperature. The general thermal velocity is given as  

∗=
2 B

th
kv
m

T                                                        (3.14) 

Electrons begin to drift when an electric field is applied. Here, we defined the drift 

velocity as the average intrinsic velocity given as  

( ) ( )
C

top

id
E

v D E f E dE
≈∞

= ∫                                      (3.15) 

E 

kx 

EF 

Source Drain 

Top of the  
barrier 

EC(x) 

EF2=EF-qVd

Contact 1 Contact 2 
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Guo [4] also uses this velocity vector in his drain current formulation but the term 

injection velocity is used instead. The maximum intrinsic velocity at the highest 

Fermi energy level will give the saturation velocity and can be utilized to generate 

an equivalent drain current characteristic.  The analytical solution for Eq. (3.15) 

with density of states and Fermi distribution is shown to be  

( )

( )

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞+ ℑ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
=

⎛ ⎞ ℑ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

1
2

2
2

1
2

2

dd

id th
dd

d ηΓ
v v

d ηΓ
                                       (3.16) 

where Γ(x) is a Gamma function [14]. Dimension d=1 is used for quasi-1D structure 

such as a nanotube and nanoribbon while d=2 for quasi-2D MOSFET. The deriva-

tions are given in Appendix B. Based on Eq. (3.5) and Eq. (3.6), the carrier densities 

and velocities of the quasi-one-dimensional (Q1D) charges [1, 12, 14] injected from 

the source and drain can be rewritten as 

 

( )
−

= ℑ1 1
2

s D cN N η                                                     (3.17)      

( )
−

= ℑ −1 1
2

d D c dN N η U                                                (3.18)      

( )
( )

+

−

ℑ
= ⋅

ℑ
0

1 2

c th

c

η νv
η π

                                                  (3.19)      

( )
( )

−

−

ℑ −
= ⋅

ℑ −
0

1 2

c d th

c d

η U νv
η U π

                                             (3.20)      

where                                      

( )= −c F sc Bη E U / k T                                              (3.21)      

=d d BU qV / k T                                                   (3.22)       

=1 2
2 *

B
D

m k TN
π

                                                     (3.23)      
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with the Fermi-Dirac integral function shown to be 
∞

−ℑ =
+ +∫

0

1
1 1

i

i ( x η)
x(η) dx

Γ(i ) e
                                     (3.24) 

Eq. (3.17) to Eq. (3.20) can be easily modified to include Q2D carriers in a          

nanoscale MOSFET to give   
( )= ℑ2 0s D cN N η                                                     (3.25)      

( )= ℑ −2 0d D c dN N η U                                              (3.26)      

( )
( )

+ ℑ
= ⋅

ℑ
1 2

02
c

th
c

ηπv ν
η

                                         (3.27)      

( )
( )

− ℑ −
= ⋅

ℑ −
1 2

02
c d

th
c d

η Uπv ν
η U

                                 (3.28)      

The current can be evaluated from the rate of electric charge travelling into the 

source and drain 

( ) ( ) ( )
+∞

+

−∞

= −∫
1
2 SFI qv E D E f E U dE                         (3.29)  

( ) ( ) ( )
+∞

−

−∞

= −∫
1
2 DFI qv E D E f E U dE                         (3.30)    

For a Q1D structure, Eq. (3.29) and Eq. (3.30) can be rewritten as       

( )0ON
B

c
k TI G η
q

+ = ℑ                                       (3.31) 

( )0ON
B

c d
k TI G η U
q

− = ℑ −                                (3.32) 

while current in a Q2D structure is expressed as        

( )1 2ON
B

c
k TI G η
q

+ = ℑ                                       (3.33) 

( )1 2ON
B

c d
k TI G η U
q

− = ℑ −                                (3.34) 

where ONG is the ON-conductance. The quantum conductance limit of a ballistic 

SWCNT and GNR is 24ONG q h=  and 22ONG q h=  respectively.  



 
 
 
 
                                                               Low Dimensional Structure Modeling 
 
 

 53

The net current is given as the difference between the positive and negative currents 

based on the Landauer-Buttiker formalism [15]  

⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟= ℑ −ℑ⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
0 0ON

SFB DF
ds

B B

Uk T UI G
q k T k T

             (Q1D structure)   (3.35)              

⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟= ℑ −ℑ⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
1 2 1 2ON

SFB DF
ds

B B

Uk T UI G
q k T k T

           (Q2D structure)   (3.36)                     

The drain current, Ids computation requires self consistent solution of  Eq. (3.1),  Eq. 

(3.2) and Eq. (3.5) to Eq. (3.7) [16] as shown in Figure 3.6.  Initially, a random         

value of N is assigned to yield an arbitrary potential called Usc. Iteration is per-

formed until a converged N and Usc  is found.  Once that is achieved, we can calcu-

late the injected current from the source and drain (I+ and I-)  for a fixed gate and 

drain voltage bias.  

 

 
 

 

 

 

 

 

 

Figure 3.6:  Self consistent solution for USC  and carrier density N

 

In the simulation of CNTFET and GNRFET, Eq. (3.35) can be rewritten in Vd, Vs 

and VG coefficients. 

( ) ( )( )( )( )

( )( )( )( )

⎡ ⎤= + −⎢ ⎥⎣ ⎦

⎡ ⎤− + − − −⎢ ⎥⎣ ⎦

1

1

ON

ON

B
ds G d s F sc G d s B

B
F sc G d s d s B

k TI V ,V ,V G log exp q E V V ,V ,V k T
q

k TG log exp q E V V ,V ,V V V k T
q

           (3.37) 
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3.4 Electrostatic Capacitance 
 
The intrinsic gate capacitance, CG of a nanoscale field-effect transistor consists of 

electrostatic capacitance, CE and quantum capacitance, CQ  [17].  The CE of a CNT-

FET [18-20] is 

⎛ ⎞+ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
2Nanotube 2 ins

E ins
t dC πε ln

d
                          (3.38) 

 
and GNR-FET [21] is shown to be 

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠
Nanoribbon 1E ins

ins

WC ε
t

                                   (3.39) 

where tins is the thickness of the insulator, d  is the diameter of the nanotube, εins is 

the permittivity of the gate insulator and W is  the width of the nanoribbon as de-

picted in Figure 3.7. 

 

 
 
 
 
 
 

 
(a)                                                       (b) 

 
Figure 3.7:  Structure of a (a) carbon nanotube  and (b) graphene nanoribbon 

field effect transistor  

 

Apart from this, the substrate capacitance Csub for CNT  can be given by Eq. (3.38) 

where tins is the insulator thickness on the substrate layer. Similarly, the Csub  for 

GNR can be obtained from Eq. (3.39).  
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3.5 Quantum Capacitance 
 

CNT and GNR transistor with high dielectric constant (high-κ) gate materials ex-

hibit high drain current performance in addition to suppressed leakage current [22]. 

However, given that CE is considerably larger than the CQ, it severely affects the 

gate/intrinsic CG. This is because when two capacitors are placed in series, the total 

capacitance will be less than value of the smaller capacitor. Figure 3.8 shows the to-

tal CG as a combination of CE and CQ. 

 
Figure 3.8:  Metal–Insulator–Semiconductor capacitors (electrostatic, quantum, 

gate capacitance) with channel and gate voltage 

 

The origin of quantum capacitance is described below. When a voltage is applied 

and a charge Q is added to a Q1D device, the electrochemical potential energy is 

shifted by [23] 

( )2

2 E

δQ
δE

C
=                                               (3.40) 

This conventional calculation method is valid for large DOS devices where the                  

process of adding an extra electron does not require a substantial amount of energy. 

When the DOS is low, particularly for CNTs and GNRs, more energy is needed to 

occupy higher states due to large separation of the discrete energies.  In this case, 

Eq. (3.40) becomes 

( ) ( ) ( )2 2 2

2 2 2E Q G

δQ δQ δQ
δE

C C C
= + =                                (3.41) 
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CQ is directly proportional to the DOS of the semiconductor but inversely propor-

tional to the electrochemical potential energy.  When CQ becomes smaller than CE, a 

large quantity of the electrochemical potential energy is needed to occupy the states 

above the Fermi energy. These impact the overall gate capacitance and limit the 

channel charges in a quantum device. Figure 3.9 shows a shift of electrochemical po-

tential energy, δE  above the Fermi level in a mesoscopic device when the voltage is 

applied.   

 
Figure 3.9:  Energy versus wavevector for a Q1D device. Available states are                  

denoted by dashed lines. The shaded area represents filled states. Current flows 

when there is a shift in electrochemical potential energy and excess carriers at the                 

positive k-states (taken from [23]). 

 

Thus, the contribution of quantum capacitance in low dimensional structure model-

ing has to be taken into account.  It is expressed by [24-27] 

( )= −
−

∑
2

2 2

2 2
( 2)

v s
Q Gi

F i Gi

g g q EC Θ E E
hv E E

             (3.42) 

 
where gs is the spin degeneracy,  gv is the valley   degeneracy, EGi  is the bandgap  

energy and vF is the Fermi velocity.  A step function, ( )xΘ  is equal to one when 

x>0 and zero when x<0.   In addition to that, the channel voltage in Figure 3.8 is 

given by  

E
channel G

E Q

CV V
C C

=
+

                                     (3.43) 

δE 

E

k 
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3.6 Channel, Quantum and Contact Resistance 
 

The channel resistance for the GNR and CNT is given by  

= 22channel
v

h LR
g q

                                                    (3.44) 

where gv is the number of the valley. For instance, two Dirac points (K and K’) are 

merged into one valley (gv=1) in an armchair GNR while  there are two discrete val-

leys (gv=2) in a CNT [28].   L is the channel length while electron mean free path 

(MFP), for the CNT and GNR are  

( ) ( )
−⎛ ⎞+ − ⎟⎜ ⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1

AP OP,abs OP,ems

1 11 +
λ λ λ

o OP o OP
CNT

- f E ω - f E ω
                   (3.45) 

−⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠

1

AP OP

1 1 1+
λ λ λGNR

EDGE
                                 (3.46) 

The  MFP of the optical phonon and the acoustic phonon in CNT are λOP,300 ≈15d 

[29] and  λAP,300 ≈  280d at T=300K where d is the tube diameter.  Whereas for GNR, 

λAP, λOP and λEDGE vary from 10nm to 15nm  [30, 31].  The expressions for λAP and 

λOP [32] are expressed by 

( )
( )

( ) ( )
( )+

=
+ ± ∓

0
OP OP,300

300 1
λ λ

1 2 1 2
OP s

OP OP F

N v EDE,T
N T DOS E ω v

         (3.47) 

( )
( )

( )
= 0

AP AP,300
300λ λ s

F

v EDE,T
T DOS E v

                       (3.48) 

where 

=0
2 v s

F

g gD
hv

                                                (3.49) 

 
( )

=
−

1
1OP

OP B
N

exp ω k T
                                   (3.50) 

=
1

s
dEv
dk

                                                (3.51) 
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The upper (lower) signs in Eq. (3.47) correspond to optical phonon emission (ab-

sorption).  In addition to that, NOP is the phonon occupation number,  vs is the 

band-structure-limited velocity [33] and OPω  is the optical-phonon energy.  The 

total on resistance can be extracted from the linear region of I-V characteristic. It 

can also be calculated from  

= +ON channel contactR R R                                        (3.52) 
 
where Rcontact is a summation of RQ and non-transparent resistance, Rnc. Rcontact  re-

duces to RQ [34] when transparent contacts [35] to the channel are formed indicating  

quasi-ballistic transport.  Rcontact and RQ are described by      

 = +contact Q ncR R R                                            (3.53) 

 = 22Q
v

hR
g q

                                                (3.54) 

where gv is valley degeneracy and RQ is the minimum resistance of a nanostructure 

(nanotube or nanoribbon) when the length of the devices is shorter than the electron 

mean free path giving scattering-free transport. The ON-conductance for such devic-

es is given by the reciprocal of Eq. (3.52)            

=
1

ON
ON

G
R

                                                (3.55) 

The maximum conductance of  a CNT and GNR in the ballistic limit are  

=
24

CNT
qG M
h

                                              (3.56) 

=
22

GNR
qG M
h

                                              (3.57) 

with M is the number of subbands between the source and drain. 
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3.7 Source and Drain Resistance 
 
Electrical resistance decreases with increasing area, while resistance increases with a 

thicker source and drain terminal.  It is shown that  

T TR
A WL

= =ρ ρ                                              (3.58) 

The layout of the source or drain terminal is depicted in Figure 3.10.    

 

 

 

 

 

 

 

(a)                                                   (b) 

Figure 3.10: Source/drain terminal geometry (a) top view  and  (b) side view 

  
Table 3.1 lists the resistance of Aluminium, Scandium, Calcium and Paladium for 45 

nm, 65 nm, 90 nm and 180 nm technology processes with thickness T=10 nm.  The 

contact via size is as follow; 45 nm process,  60 nm × 60 nm; 65 nm process,  90 nm 

× 90 nm; 90 nm process,  120 nm × 120 nm; 180 nm process,  220 nm × 220 nm. 

 
Table 3.1:  Source and drain terminal resistance  

 
 

Elements 
  
 

 
 
Resistivity,  
ρ (nΩm) 
   

Intrinsic Resistance, R (Ω) with T=10 nm 
45 nm 65 nm 90 nm 180 nm 
C=60 nm C=90 nm C=120 nm  C=220 nm
S=20nm S=40nm S=50nm S=100nm
W=L=100 nm W=L=170 nm W=L=220 nm W=L=420 nm 

      

Aluminium 26.5 0.027 0.009 0.005 0.002
Scandium 550 0.550 0.190 0.114 0.031
Calcium 33.5 0.034 0.012 0.007 0.002
Palladium 105 0.105 0.036 0.022 0.006
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3.8 Energy Dispersion in GNR and CNT 
 
To obtain the energy gap versus chirality, the bandgaps for GNR  [36, 37] is given 

as  

  
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠+

22 3
1 3

i
Gi _GNR

pE πt
n

                              (3.59) 

and CNT [1] are evaluated as 

⎛ ⎞− − − ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

6 3 1
4

i
cc

Gi _CNT
a πt i ( )E
nb

                           (3.60) 

where b= ( )cca 3  2π  is a constant, =acc 1.42Å, t=3 eV is the C-C bonding ener-
gy,  i is the subband index and n is the chirality index.  Table 3.2 indicates the cal-
culation of subband indices, pi based on chirality (18,0), (19,0) and (20,0) for both 
for GNR and CNT [1, 36, 37]. In the device and circuit simulation, (20,0) CNT and 
(19,0) GNR are used. 
 

Table 3.2:  CNT and GNR bandgap calculation  

Parameter GNR (n,0) Zigzag CNT (n,0) 
Type  S S M M S S 
N  3a 3a+1 3a+2 3a 3a+1 3a+2 
Subband 1, p1 2a+1 2a+1 2a+2 2(n/3) 2(n/3) 2(n/3) 
Subband 2, p2 2a 2a+2 2a+3 2(n/3)+1 2(n/3)+1 2(n/3)+1 
Subband 3, p3 2a+2 2a 2a+1 2(n/3)+2 2(n/3)+2 2(n/3)+2
(N,0) for a=6 (18,0)   (19,0)   (20,0) (18,0)        (19,0)        (20,0) 
Subband 1, p1 (integer) 13 13 14 12 13 13 
Subband 2, p2 (integer) 12 14 15 13 14 4 
Subband 3, p3 (integer) 14 12 13 14 15 15 
Width / Diameter (nm) 2.12 2.25 2.37 1.40 1.47 1.55 
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The energy dispersion relation is the basis for the computation of the density of 

states and velocity. It is given by  

= +2 23
2 CC tE(k) ta β k                                          (3.61) 

where β is the quantized wavevector and can be written as = 3Gi ccβ E a t .  The av-

erage intrinsic velocity can be computed by 

=
∫
∫

s
i

v D(E) f(E) dE
v

D(E) f(E) dE
                                         (3.62) 

It is reduced to  

( )= ℑ0
C

i F
C

Nv η
n

v                                                 (3.63) 

The Fermi velocity can be extracted from Eq. (3.63) for the CNT and the GNR. 

They can be written as  

    ( )= 3 4F Gi _CNTv dE                                        (3.64) 

( )= 5 9F Gi _GNR Wv E                                         (3.65) 
 
Based on Table 3.2, the relation between the GNR width and N can be approximat-

ed by the expression  

= −0 125 0 127W . N .                                             (3.66)  

 

The diameter of the CNT is given by  

d=2 π .nb                                                     (3.67) 
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Figure 3.11  shows that when bandgap energy increases, chiral vector decreases (eg. 

smaller  tube and  narrower ribbon). The GNR width versus chirality is shown on 

the right axis extracted from Ref. [36].  The bandgap vanishes when devices become 

metallic.  The bandgap for CNT and GNR  can be simplified into  

=
0 85

Gi _CNT
.E
d

                                                (3.68) 

=
1 15

Gi _GNR
.E
W

                                                 (3.69) 
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Figure 3.11:  Energy bandgap (left axis) versus chirality n for CNT (solid 

lines) and GNR (dashed lines). GNR width versus chirality n  (right axis) 
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3.9 Model Verification 
 
The device model is verified against 80 nm n-type  and p-type SW-CNTFET exper-

imental results. The p-type CNTFET is undoped whereas the n-type CNTFET is 

heavily doped with potassium (K) at both source and drain regions. The devices are 

biased from VG =±0.2 to ±1.0V in ±0.1V steps as shown below [38]. The simulation 

based on Eq. (3.37) was able to fit fairly well with the linear region of the I-V char-

acteristic in the p-type CNTFET. The simulation slightly underestimates the satura-

tion current at lower gate voltage. This mismatch can be clearly seen at the n-type 

CNTFET.  The diameters of the synthesized CNTs are identified between 1.4-1.6 

nm. For simplicity, it is assumed that the model uses (20,0) semiconducting zigzag 

nanotube with 1.54 nm in diameter in the model verification. 
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Figure 3.12:   Comparison of simulated CNT drain characteristic (solid lines)  

versus 80 nm experimental data (filled diamonds) [38].  
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The simulated n-type CNTFET is also in good agreement with the compact model 

from Arizona [8, 39] for a MOS-CNT as depicted in Figure 3.13.  
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Figure 3.13:  Comparison of our CNTFET simulated results (solid and dotted 

lines) against 10 nm Arizona CNTFET model [8, 39] for VG= 0.6 and 0.8V.  Arizona 

simulated results are denoted by filled circles for MOS-CNT. (d = 1nm, tins = 2nm) 

 

In addition to that, the models are able to capture the electrical properties predicted 

by the Stanford CNTFET model with minor adjustment. It is found that the steps 

in the I-V characteristics vary quadratically with VG. This quadratic dependence is 

incorporated as (VG-VT)2  into our model for the fitting as shown in Figure 3.14.    
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Figure 3.14:  Comparison of our CNTFET simulated results (solid lines) 

against 50 nm single-tube Stanford CNTFET model (bullets) from VG=1V (top) 

with 0.1V spacing.  
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Recently, it has been observed experimentally that CNT-based CMOS devices are 

able to produce an almost perfectly symmetric inverter [40] as shown in Figure 3.15.  

This is done by using a doping-free nanotube [41] and metal contact, that forms a 

very small Schottky barrier.  Metal contact such as Scandium has a work function 

comparable to nanotubes. As a result, it forms a near perfect contact with the nano-

tube conduction band. It has also been demonstrated that Scandium can be used to 

give high performance n-type nanotube [42, 43]. Therefore, this investigation uses a 

perfectly matching model for both n- and p-type CNTFET and GNRFET.  The n-

type model is created by inverting both the Ids and Vds data from the p-type transis-

tor [44, 45].  

 

 
 

Figure 3.15: Characteristics of the almost perfectly symmetric CNT-based CMOS 

inverter fabricated on the same SWCNT with d= 2 nm with gate length of L=4.0 

μm (taken from [40]) 

 

 

 

 

 

 

 



 
 
 
 
                                                                             MATLAB Implementation 
 
 

 66

3.10   MATLAB Implementation 
 

The I-V drain characteristic shown in Figure 3.16 is obtained by plotting vector V 

from across the matrix row against vector I down column vector.  This is shown in 

Figure 3.17.   
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Figure 3.16:   Drain characteristics from VG=1V to 0V (top to bottom) with  

0.1 V spacing for n-type device (solid lines) and VG=0V to 1V (top to bottom) with 

0.1 V spacing  for p-type device (dashed lines). The filled circle represents the circuit 

current in CMOS during switching. 

 

            
 

Figure 3.17:   Matrix row vector versus matrix column vector plotting 
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Both matrices (I and V) must have the same dimension to obtain the gate charac-

teristic (Ids-VG) depicted in Figure 3.18.  In this particular circumstance, vector V is 

now plotted against vector I along the matrix row vector as shown in Figure 3.19.   
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Fig 3.18: Gate characteristic for CNTFET and GNRFET at Vds=0.1V (top curves) 
and 1V (bottom curves). 

 
 
 

           
 

Figure 3.19:  Matrix row vector versus matrix row vector plotting 
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Figure 3.20 (a) depicts a CMOS-like inverter circuit with CNTFETs  and 

GNRFETs.  The current and voltage  transfer curves  are given in Figure 3.20 (b) 

and Figure 3.20 (c).  DC gain of 20 is observed for both CNTFET and GNRFET. 

Peak current of  18.4 µA for CNTFET and 6.3 µA for GNRFET are drawn at the 

gate when switching from "low" to "high" and vice versa. For both carbon materi-

als, the maximum input voltage that is recognized as a low input logic level is 0.41 

V while the minimum input voltage for the high input logic level is 0.57V.  The 

noise margins for low and high input level is NML=0.38 and NMH=0.42V respective-

ly. 
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                  (a)                            (b)                                  (c)      
 

 
Figure 3.20:   (a) CMOS-like circuit for (b) CNTFET and (c) GNRFET. The 

solid lines represent the voltage transfer curve (left axis) while the dashed lines de-

pict the current transfer curve (right axis)  
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3.11   Analog Behavior Modeling in PSPICE 
 
The carbon-based models are implemented in PSPICE using an Analog Behavior 

Model (ABM) based black box model. Unlike MATLAB, the mathematical expres-

sion here is simplified to remove the need of Newton-Raphson iterations for solving 

the Fermi integral and nonlinear self-consistent voltage, Vsc [46] equation   that is 

given the form of  

( )
( )+ = −1

n
n n

n

f x
x x

f ' x
                                     (3.70) 

where  

( ) = 0nf x ,   ( )
( ) ( )( )

∑

− + + +
= − 0t s n d n

n n
Q q N x N x N

f x x
C

            (3.71) 

 
=n scx V                                                 (3.72) 

 
 
In PSPICE, Newton-Raphson iteration for Eq. (3.2) is replaced by introduction of a 

non-linear approximation for Vsc dependence on Vd and VG in the form of fourth or-

der polynomial. The expression is given as 

 

( ) = + + + + +4 3 2
sc G d d G G G GV V ,V AV BV CV DV EV F                (3.73) 

 

where A, B, C, D, E and F are coefficients obtained by curve fitting Eq. (3.71).This 

non-iterative model allows cross-platform simulation, faster execution time  and re-

duced computational cost [39].  The coefficients for Vsc for CNT is given as  

 

− +−= +−+ 4 3 20 035 0 664 0 877 0 349 0 921 3 821 -4sc d G G G GV V V V. * . . . V . EV .   (3.74) 

 

For GNR, it is expressed as 

− +−= +−+ 4 3 20 035 0 419 0 517 0 185 0 898 1 853 -5sc d G G G GV V V V. * . . . V . EV .  (3.75) 
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Figure 3.21 and Figure 3.22 illustrate the ABM model of an n-type CNTFET and n-

type GNRFET respectively. These models employed six main algebraic operators to 

solve for drain current.  The operators are plus, minus, multiply, divide, exponent 

and logarithm. Figure 3.21 uses Eq. (3.37) and Eq. (3.74) for the I-V simulation on 

Figure 3.23. 

 

 
 
 

Figure 3.21:  PSPICE ABM CNTFET macro-model  
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Figure 3.21 uses Eq. (3.37) and Eq. (3.75) to give the I-V characteristic on Figure 

3.24. 

 

 
 
 
 

Figure 3.22:  PSPICE ABM GNRFET macro-model 
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Figure 3.23 and Figure 3.24 illustrate the I-V characteristic of the CNTFET and 

GNRFET ABM models respectively. They are similar to the characteristics of the 

simulation obtained from MATLAB. In addition to that, the simulation process time 

has also been reduced tremendously in PSPICE as the Newton-Raphson iteration 

method has been replaced by a non-linear polynomial. 
 
 
 
 

 
 
 
Figure 3.23: PSPICE I-V characteristic of the n-type CNTFET from Figure 3.21 

 
 

 
 
 
Figure 3.24: PSPICE I-V characteristic of the n-type GNRFET from Figure 3.22 
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3.12   Comparison with MOSFET model 
 
Unlike CNTFET and GNRFET modeling approaches, nanoscale MOSFETs utilize 

charge-based current models to derive the expression for drain current in the linear 

and saturation regions.  The I-V characteristic for a short channel MOSFET is given 

as  

        

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
=

+

1
2

1

GT D D
G f

D
D

c

V V VC μ W
I VL

V

        ≤ ≤0 D DsatV V    (3.76) 

where  VDsat  is the drain saturation current and fμ is the low-field mobility. The 

critical   voltage is expressed by =
fc satV v L / μ .   The drain current saturation is 

expressed as 

( )= −Dsat G GT Dsat satI αC V V Wv      (3.77) 

where = D satα v / v  is the ratio of drain velocity to saturation velocity that varies 

with drain voltage.  Figure 3.25 gives the I-V characteristics of an 80 nm NMOS 

transistor at room temperature. 
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Figure 3.25: I-V characteristics of 80-nm MOSFET for VGS =0.7, 0.8, 0.9, 1.0, 1.1, 

and 1.2. Solid lines are from Eq. (3.76) in the range ≤ ≤0 D DsatV V . The dotted 

lines are from Eq. (3.77) and are extension for ≥D DsatV V .  The filled squares are 

experimental data taken from [47] (adapted from [48] ) 
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The rise in the slope of the I-V characteristic in the saturation region or channel 

length modulation can be represented by parameter α . When = 1α , I-V reaches a 

constant saturation current. It is found that ≈ 1α  in the macrochannel and < 1α  

in the nanoscale channel [48, 49].  The rising envelope curves show the drain current 

saturation points for the = 1α and  < 1α  model.  Solid and dotted lines are simu-

lated results while the filled squares are the experimental data.  In addition, the 

MOSFET shows good accuracy and consistency with measured experimental data 

taken from IBM and TSMC as depicted in Figure 3.26 [48-50].  
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Figure 3.26: (a) Simulated 45 nm MOSFET (solid lines) drain characteristic ver-

sus 45nm TSMC experimental data (diamond) [51] at VG =0.6V, 0.8V and 1.0V (b) 

comparison of simulated data (solid lines) against 45nm IBM NMOS and PMOS ex-

perimental data (diamond) [52] VG = 0.4V, 0.6V, 0.8V and 1.0V 
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3.13   RC and Propagation Delay 
 

Transit delay is caused by resistive-capacitive elements in a circuit. The delay con-

sist of RC delay tRC, high to low propagation delay tPHL, low to high propagation de-

lay tPLH, rise time trise and fall time tfall.  In this section, the CNT and GNR are each 

modeled as an effective resistor connected in series with the copper interconnect. 

Figure 3.27 shows the method of measuring tRC, tPHL, tPLH,  trise and tfall while Figure 

3.28 illustrates the RC circuit during the charging and discharging process-

es.

 
Figure 3.27: Measurement tPHL and tPLH between input and output voltage, and 

tRC,  trise and tfall  in time domain  

                                 
Figure 3.28: Equivalent RC circuit from the p-type and n-type device charging 

(left) and discharging  (right) processes. Z is impedance, R is resistance and X is re-

actance 
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First, I-V characteristics of the device are obtained. As both p-type and n-type                 

I-V models are symmetrical, either curve can be selected. Subsequently, the I-V 

curve of the p-type/n-type device at VGS = -1V/1V is fitted with an empirical, tan-

gent hyperbolic equation for the charging /discharging process [53-55]. The curve 

fitting is shown in  Figure 3.29 and  given as 

=
a/b

sat
c

Vi I tanh ( )
V

                                                 (3.78) 

where a and b are fitting parameters and V is the supply voltage.  
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Figure 3.29: Fitting curve between CNTFET and GNRFET I-V model (solid 

lines) with empirical equation (dashed lines). 

 

The total voltage for the RC circuit is  the sum of resistance voltage and capacitor 

voltage [56] 

  −
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= + = +⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

1
b/a

R CAP c
sat

i qV v v V tanh
I C

                  (3.79) 

Next, Eq. (3.79) is differentiated with respect to time t  to find 

  
−

−
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟ = −⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦ −

1
1

2 2

1 1

1

b
a

c
sat o

sat

b i diV tanh dtia I i R C( )
I

              (3.80) 

 
where =o C satR V / I  and =o oR C τ  is the RC time constant. 
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Then, integration of Eq. (3.80) is carried out with the separation of variables to give 

 
−

−
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟ = − +⎜ ⎟⎢ ⎥⎜ ⎛ ⎞⎛ ⎞⎟⎜⎝ ⎠⎢ ⎥ ⎟ ⎟⎜ ⎜⎣ ⎦ ⎟ ⎟− +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

∫
1

1 1

1 1

b
a

c
sat o

sat sat

b i di tV tanh ln k
a I i τi i

I I

             (3.81) 

 
Parameter k is  introduced as a constant of integration. By replacing the left hand 

side (LHS) numerator in Eq. (3.81) by a cubic polynomial equation, we find 

+ + +
⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟− +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

∫ 3 2 1

1 1
sat sat

Wi Xi Yi Z di
i i i

I I

                        (3.82) 

The next step is to rearrange the right hand side (RHS) of Eq. (3.82) using partial 

fractions. Eq. (3.82) becomes 

 

+ + +
= + + +

⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜ − +⎟ ⎟− +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

∫ ∫
3 2

1 11 1
sat satsat sat

Wi Xi Yi Z A B Cdi D dii i ii i i I II I

    (3.83) 

 
Coefficients W, X, Y, Z are obtained from a curve fitting a cubic expression to this 

expression  

= + + +3 2y Wi Xi Yi Z                                              (3.84) 

−
−

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

1
1

b
a

c
sat

b iy V tanh
a I

                                       (3.85) 
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The results of the basic fitting is depicted in Figure 3.30 for both a CNTFET and 

GNRFET. 
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Figure 3.30: Approximation for real equation (dashed lines) and polynomial equa-

tion (filled circles). 

 
Coefficients A, B, C and D can be obtained from Eq. (3.80) once W, X, Y, Z are 

found. Using the RHS of Eq. (3.83), the expression now can be written as 

+ + + = − +
− +

∫
1 1 o

sat sat

A B C tD di ln ki i i τ
I I

    (3.86) 

 
and ultimately becomes 
 

  ( )
( )

−+
=

−

2 718sat

o

sat

tI B C Di
sat τ

I A
sat

I i i .
ke

I i
     (3.87) 

 
When t = 0, i in Eq. (3.87) is substituted by =0 a/b

sat ci( ) I tanh(V V ) . Constant k 

is solved to yield  
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤⎢ ⎥⎟⎜ ⎟⎜ ⎢ ⎥⎟⎟⎜ ⎜ +⎢ ⎥⎟⎟⎜ ⎜ ⎢ ⎥⎟⎟⎟⎢ ⎥⎜ ⎜ ⎟⎜ ⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦=
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sat
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VI B C D I tanh( )a/b a/b
V

sat sat
c c

I Aa/b

sat
c

V VI tanh( ) I tanh( ) e
V V

k
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          (3.88) 
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Eq. (3.88) is rearranged to find the current i(t) as a function of time t using the 

Newton-Raphson method.  The iteration process will solve for i that satisfies Eq. 

(3.89).  

( )
( )

−+
− =

−

2 718
0

sat

o

sat

tI B C Di
sat τ

I A
sat

I i i .
ke

I i
                               (3.89) 

Figure 3.31 shows the current versus time in a RC circuit derived from Eq. (3.89). 
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Figure 3.31: The current i(t) response to an RC circuit where C is total capaci-

tance from the gate, source, drain, substrate and wire capacitances. A 15 μm             

copper interconnect is used in the simulation 

 

By applying Eq. (3.78) and (3.79), the following resistor and capacitor voltage re-

sponse are easily obtained as illustrated in Figure 3.32 and Figure 3.33 respectively. 
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Figure 3.32: The resistor voltage in the RC circuit as a response to time 
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Figure 3.33: The capacitor voltage in the RC circuit as a response to time 

 

As shown in Figure 3.33, the rise time of our PMOS model is approximately 0.2 ns 

for the CNFET and 0.4 ns for the GNRFET each with a 2 fF load capacitor. By 

changing the simulation time step, we are able to track the capacitor voltage re-

sponse in Figure 3.34, Figure 3.35 and Figure 3.36.  
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Figure 3.34: RC waveforms with large time scale. 570RC constant for the CNT 

(left) and 211RC constant for the GNR (right) 
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Figure 3.35: RC waveforms with medium time scale. 27RC constant for the CNT 

(left) and 17RC constant for the GNR (right) 
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Figure 3.36: RC waveforms with small time scale. 1RC constant for both the 

CNT (left) and GNR (right). 

 
 
 
 
 
 
 
 
 



 
 
 
 
                                                                                                 Conclusion 
 
 

 82

3.14   Conclusion 
 

This chapter has provided details regarding the models of the CNTFET and the 

GNRFET using the top-of-the-barrier model. The model is a simpler ballistic           

approach compared to NEGF modeling. Many of the CNTFET modeling approaches 

can also be utilized for GNRFET modeling. This can be done by modifying the en-

ergy dispersion and density of states according to the GNR chirality. By having the-

se changes, the drain current versus drain voltage or gate voltage characteristic can 

be simulated to study the performance limits of the GNRFETs.   

Transient effects in RC circuits for digital signal processing of CNTFETs and 

GNRFETs are evaluated.  Simulations show the rise and fall delays of the GNRFET 

is twice that of the CNTFET. This because of the additional current available from 

a CNT and due to the valley degeneracy of 2 compared to 1 for the GNR (see Eq. 

(3.10) and Eq. (3.42)). Nevertheless, these delays can be improved when GNRs are 

able to provide higher drain current with improved contact interface.  An example of 

a charge-based modeling approach for a short channel nanoscale MOSFET is also 

presented in comparison with the surface potential model for CNTFET and 

GNRFET.  Our MOSFET model has good agreement with 45 nm channel length 

experimental data from TSMC and IBM.  Similarly, the CNTFET analytical model 

provides a good fit to an 80 nm experimental data using the Stanford and Arizona 

model data. 

 In order to capture the physics behind the current transport accurately, non-

idealities such as a Schottky barrier at the channel contact and phonon scattering 

need to be taken into consideration. By using a non-linear approximation equation 

as a substitute for Newton-Raphson iterations, the compact model can be made 

more efficient, fast and portable. The portability of these codes can now be easily 

implemented in most circuit-level EDA programs such as PSPICE, HSPICE and 

VHDL-AMS. 
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Chapter 4  

Performance Prediction of the CNT-
FET and the GNRFET  

4.1 Introduction 
 

The CNTFET and the GNRFET have been assessed qualitatively and compared 

against the silicon MOSFET 45 nm and 90 nm process technology. The performance 

metrics such as cutoff frequency, drain-induced-barrier-lowering (DIBL), subthresh-

old swing (SS) and on-off ratio (Ion/Ioff) are presented. Energy delay product (EDP) 

and power delay product (PDP) of carbon and silicon-based logic gates are also ob-

served. These metrics are given as  

T DSDIBL V V= ∂ ∂                                      (4.1)           

( )10GS DSSS V log I= ∂ ∂                                (4.2) 

xav pPDP P t=                                            (4.3) 

x pEDP PDP t=                                          (4.4) 

where VT is the threshold voltage, VDS is the drain voltage, VGS is the gate voltage, 

IDS is the drain current, Pav is the average power and tp is the propagation delay. 

These device performance metrics provide significant insight into the potential of 

carbon-based materials in electronic applications such as switches and logic arrays. 
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4.2 Performance Metric 
 
The potential of the CNT and the GNR as a substitute for a silicon channel in a 

scaled MOSFET for logic applications are explored in this chapter.  We compare the 

channel dimensions of CNTFETs and GNRFETs against Si MOSFET [4] and ex-

tracted key parameter such as SS and DIBL from the drain and gate characteristics 

of these devices. Output drain current is critical in determining the switching speed 

of a transistor in logic gates. In the same current output vicinity, there is a signifi-

cant   reduction of SS and DIBL in the CNT and GNR when compared to short and 

long channel nanoscale Si MOSFETs.  However, the modeling results show that the 

Ion/Ioff ratio of the MOSFET channel is slightly superior to its carbon counterpart. 

Table 4.1 lists the performance metric for 50 nm CNTFET, 20 nm GNRFET and 

45nm and 200 nm gate lengths MOSFET in a 45 nm process node.   

 
Table 4.1 Performance metric for CNTFET, GNRFET and MOSFET 

 

 

 

Parameter   
 

CNTFET Benchmarking GNRFET Benchmarking 
CNTFET MOSFET GNRFET MOSFET 

Channel Length, L 50 nm 45 nm 20 nm 200 nm 
Channel Width, Wchannel - 125 nm - 120 nm 
Contact Width, Wcontact 100 nm - 100 nm - 
Effective Channel Area 5 x 10-15  m2 5.625 x 10-15  m2 2 x 10-15  m2 2.4 x 10-14  m2 
CNT diam. / GNR Width 1.5437 nm - 2.2  nm - 
Chiral Vector [n,m] [20,0] - [19,0] - 
Maximum Current , Idmax 46.56 µA 50.20 µA 19.92 µA 25.40 µA 
Transconductance, gm 68.1 µS 148 µS 27.98 µS 63.8 µS 
Carrier Density, Idmax / [d or W] 30.16 µA/ nm 0.40 µA/ nm 9.05 µA/ nm 0.21 µA/ nm 
Load Capacitance, CL at 1GHz 46.54 fF 50.13 fF 19.9 fF 25.1 fF 
Gate Capacitance, CG 14.85 aF 65.8 aF 5.55 aF 269.6 aF 
Drain Capacitance, Cd 0.59  aF 19.0  aF 0.54 aF 18.60 aF 
Source Capacitance, Cs 1.43  aF 78.7  aF 0.22 aF 267.00 aF 
Substrate Capacitance, Csub 1.60  aF 6.52  aF 0.71 aF 28.50 aF 
Total Terminal Capacitance, Cter 18.47  aF 209.02 aF 7.01 aF 619.70 aF 
Wire Capacitance (5 μm), CW 783.7  aF 783.7  aF 783.7 aF 783.7 aF 
Intrinsic Capacitance, Cint 21.29  aF 37.40  aF 12.29 aF 36.10 aF 
Extrinsic Capacitance, Cext 44.07  aF 384.0  aF 16.48 aF 1190 aF 
Total Capacitance, ΣC 867.5  aF 1414.12 aF 819.48 aF 2629.5  aF 
Cutoff Frequency, ft    12.49 GHz 16.65 GHz 5.43 GHz 3.86 GHz 
DIBL 40.85 mV/V 83.89 mV/V 40.91 mV/V 115.2 mV/V 
SS 72.3 mV/dec 113.67 mV/dec 70.20 mV/dec 111.7 mV/dec
On-off ratio 2.99 × 104 9.54 × 106 3.08 × 104 4.08 × 106 
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The CNT has lower cutoff frequency than the 45 nm gate length MOSFET by 25 % 

due to MOSFET high transconductance whereas the cutoff frequency for the GNR is 

considerably higher than the Si MOSFET by 40 %. The cutoff frequency, fT is given 

as  

1
2

m
T

G s d sub int ext w

gf
π C C C C C C C

=
+ + + + + +

                  (4.5) 

Figure 4.1 shows the density of states for a quasi-one-dimensional (Q1D) [20,0] 

zigzag CNT and armchair GNR with three van Hove singularities. As the energy 

span widens, more electrons are capable of occupying the singularities pinned be-

tween source and drain Fermi levels.  In multimode transport [1], the contribution of 

the other subbands (second subband in particular) is taken into consideration when 

evaluating the drain current. The contribution of higher subbands in multimode 

transport becomes substantial in nanotubes with larger diameters and smaller sub-

band separation.  Figure 4.1 (b) shows the carrier concentration for a semiconduct-

ing zigzag CNT up to the second subband. The bandgap for both GNR and CNT is              

EG = 0.5480 eV. According to the simulation, the inclusion of the second subband  

contributes ≈ 9% of the total current. 
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Figure 4.1:  (a) Electronic density of states calculated for a [19,0] armchair gra-

phene nanoribbon (solid lines)  and  [20,0] and zigzag carbon nanotube (dashed 

lines). (b) The carrier concentration in the first and second subband for nanotube. 

(a) (b) 

Fi
rs

t S
ub

ba
nd

 

Se
co

nd
 S

ub
ba

nd
 



 
 
 
 
                                                                                      Performance Metric 
 
 

90 

Our simulation results in Figure 4.2 indicate that the CNTFET is able to pro-

vide drain current performance comparable to a 45 nm gate length MOSFET. The 

model is successful in predicting the expected output current levels in a sub-100 nm 

channel CNT transistor experimental data (50 nm semiconducting and 85 nm metal-

lic  CNT). The DIBL effects and SS are better suppressed in the CNT and GNR de-

vice, while the silicon transistor demonstrates a moderate SS due to short channel 

effects. Although the CNT and GNR have similar ON-current, it sustains an Ion/Ioff 

ratio two orders of magnitude lower than a Si MOSFET.  The quantum conductance 

limit of a ballistic SWCNT and GNR with a perfect contact is G = 4e2/h and G0 = 

2e2/h  (twice the fundamental quantum unit of conductance) respectively. 
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Figure 4.2:  Drain characteristic of a 50 nm long zigzag single-walled carbon nano-

tube model (solid lines) demonstrated in comparison to L ≈ 50 nm semiconducting 

CNT experimental data (filled circle) and L ≈ 85 nm metallic  CNT experimental 

data (filled diamond) [2]. Inset shows a 45 nm MOSFET characteristics. Initial VG 

at the top for CNT and MOSFET is 1 V  with 0.1 V steps. 

 
We projected the device performance of the CNTFET and GNRFET for two 

conditions; an ideal nanotube contact without non-transparent resistance, Rnc and a 

non-ideal electrical contact with Rnc. In non-ballistic transport, the conductivity falls 

below the 2G0 for the CNT and the G0 ballistic limits for GNT. It has been demon-

strated that conductivity reduces when there is a defect within the nanotube and 

imperfect electrical contact between the electrodes and the nanotube or nanoribbon 
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[17]. CNTs outperform GNRs (≈ 2×) as illustrated due to valley degeneracy where 

the quantum resistance, RQ of GNRs is double that of the CNTs.  Figure 4.3 shows 

the I-V characteristic of a ballistic CNTFET and GNRFET (Rnc≈ 0 Ω).  
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Figure 4.3:  Drain characteristic of graphene nanoribbon (solid lines) and zigzag 

carbon nanotube (dashed lines) with perfect contact at linear ON-conductance of 

2e2/h  and  4e2/h  respectively.  The maximum VG is 1V with 0.1V gate spacing. 

(Rnc≈ 0 Ω). 

 

By reducing the  maximum conductance, 4e2/h by half, we found that the CNT 

model fits quantitatively well with the 50 nm non ideal SWCNT at room tempera-

ture as reported by Javey [19].  The resistances in Table 4.2 can be calculated using 

Eq. (3.44) and Eq. (3.52) to Eq. (3.54) where Rnc is a fitting parameter. 

 

Table 4.2 Contact, channel and quantum resistance 
 

Parameter GNR CNT 
Chiral Vector (19,0) (20,0) 
Length 20 nm 50 nm 
RQ 12.906 kΩ 6.453 kΩ 
Rnc 1.365 kΩ 3.231 kΩ 
Rcontact 14.271 kΩ 9.681 kΩ 
Rchannel 17.208 kΩ 3.225 kΩ 
RON 31.479 kΩ 12.906 kΩ 
GON 0.41 G0 G0 
Mean Free Path 15  nm 100 nm 
   

 

GNR 

CNT 

G=4e2/h  G=2e2/h   
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The result is depicted in Figure 4.4. The ON conductance, GON  is calculated to be 

0.41 G0 for the GNR and G0  for CNT.  The existence of thermionic emission and 

tunneling at the ohmic metal-tube interface [18] increases the contact resistance and 

causes a reduction of drain current. Drain current up to 46 μA can be drawn from a 

single CNT and 20 μA from GNRFET.  
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Figure 4.4:  Drain characteristic of graphene nanoribbon (solid lines) and zigzag 

single-walled carbon nanotube (dashed lines) with linear ON-conductance of  

0.2 × 4e2/h  and 0.5 × 4e2/h respectively. CNT have good agreement with the   ex-

perimental data (filled circle) of  Pd ohmically contacted 50nm channel nanotube. 

The maximum VG is 1V with 0.1V gate spacing. (Rnc≠ 0 Ω). 
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Based on the technology process, channel length, width and area for the MOSFET, 

GNRFET and CNTFET are described in Table 4.3. It is shown that by using a 

nanotube, a reduction area of 11 % is viable for an n-type CNTFET and 36 % for a 

p-type CNTFET of tnode=45nm compared to MOSFET. The nanoribbon provides the 

most efficient area consumption by reducing the area by nearly 90 % for both the  

n-type and p-type GNRFET. The maximum Ids for the quasi-ballistic GNRFET is 

around 20 μA. It is found that for the MOSFET to provide a similar current as the 

GNRFET (in the region of 20-25 μA), the MOSFET channel length has to be in-

creased from the minimum gate feature size.  

  

Table 4.3:  Dimension for MOSFET, GNRFET and CNTFET channel (width, 

length and area) of a 45 nm and 90 nm process technology  

 

 tnode= 45nm 
TYPE MOSFET CNTFET Percentage Change 

 W  L    A W L   A ΔW ΔL    ΔA 
N-FET  125 nm  45 nm 5.63 fm2 100 nm 50 nm 5 fm2 -0.20 +0.11 -0.11 
P-FET 175 nm  45 nm 7.88 fm2 100 nm 50 nm 5 fm2 -0.42 +0.11 -0.36 
    
 MOSFET GNRFET Percentage Change 

 W L    A W L   A ΔW ΔL    ΔA 
N-FET  120 nm  200 nm 24 fm2 100 nm 20 nm 2 fm2 -0.17 -0.90 -0.92 
P-FET 140 nm  200 nm 28 fm2 100 nm 20 nm 2 fm2 -0.29 -0.90 -0.93 
    

 tnode= 90 nm 
TYPE MOSFET CNTFET Percentage Change 

 W L    A W L   A ΔW ΔL    ΔA 
N-FET  120 nm 200n 24 fm2 220 nm 50 nm 11 fm2 +0.83  -0.75 -0.54 
P-FET 270 nm 200n 54 fm2 220 nm 50 nm 11 fm2 -0.19 -0.75 -0.80 
    
 MOSFET GNRFET Percentage Change 

 W L    A W L   A ΔW ΔL    ΔA 
N-FET  120 nm 500n 60 fm2 220 nm 20 nm 44 fm2 +0.83 -0.96 -0.93 
P-FET 250 nm 500n 125 fm2 220 nm 20 nm 44 fm2 -0.12 -0.96 -0.96 
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4.3 Performance Benchmarking  
 
The power-delay-product (PDP) and energy-delay-product (EDP) of CNTFET and 

GNRFET logic gates are simulated and benchmarked against 45 nm                     

(tnode=45 nm) and 90 nm (tnode = 90 nm) silicon CMOS logic technology. The geome-

tries of the source, drain and contact for the CNTFET and GNRFET are scaled ac-

cording to the CMOS design rules provided by the TSMC foundry and the Cadence 

generic PDK.  Table 4.4 lists the interconnect capacitance for 1 μm and 5 μm cop-

per wire of 45 nm and 90 nm process technology. Table 4.5 lists the substrate insula-

tor capacitance for CNTFET and GNRFET of different thickness. 
 
 

Table 4.4:  Copper interconnect capacitance of 45 nm and 90 nm process technol-

ogy for 1 μm and 5 μm interconnect length 

 
 

Technology Process 
 

Interconnect Capacitance, Ccu  

1 μm 5 μm 
   

45 nm 156.7 aF 783.7 aF 
90 nm 184.7 aF 923.6 aF 

   

 
 
 

Table 4.5:  Substrate insulator capacitance of CNTFET and GNRFET for 100 

μm and 500 μm thickness  
 

 

Devices 
 

Substrate Capacitance, Csub  

100 nm 500 nm 
   

CNTFET (L = 50 nm) 1.9510 aF 1.5130 aF 
GNRFET (L = 20 nm) 0.7058 aF 0.6934 aF 
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The PDP and EDP of CNTFET, GNRFET and MOSFET are given below with var-

iation of substrate insulator thicknesses, interconnect length for 45 nm technology 

node is listed in Table 4.6 and 90 nm technology node in Table 4.7. 
 
 
 

Table 4.6:  PDP and EDP of CNTFET  logic gates benchmarking  with 45nm 

and 90 nm CMOS technology. Copper interconnect lengths  of (a)  1μm and (b) 5 

μm are chosen to demonstrate the wire capacitance. The influence of substrate insu-

lator thickness variation (100 nm and 500 nm) on PDP and EDP are also presented.  
 

Table 4.6 (a) 
 

 
Logic 
Gates 
 

PDP with 1 μm interconnects EDP with 1 μm interconnects 
CNTFET (tsub=100nm) MOSFET CNTFET (tsub=100nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm 

CMOS 0.17 × 10-18 0.29 × 10-18 7.034 × 10-18 50.90 × 10-18 3.19 × 10-31 0.69 × 10-30 0.35 × 10-28 0.70 × 10-27 
NAND2   0.32 × 10-18 0.73 × 10-18 15.53 × 10-18 132.8 × 10-18 9.45 × 10-31 3.05 x 10-30 1.35 × 10-28 3.44 × 10-27 
NAND3 0.50 × 10-18 1.27 × 10-18 25.25 × 10-18 341.1 × 10-18 20.5 × 10-31 7.07 x 10-30 2.87 × 10-28 15.3 × 10-27 
NOR2 0.31 × 10-18 0.70 × 10-18 16.90 × 10-18 224.5 × 10-18 9.98 × 10-31 3.25 x 10-30 1.49 × 10-28 7.25 × 10-27 
NOR3 0.46 × 10-18 1.24 × 10-18 28.65 × 10-18 681.7 × 10-18 17.7 × 10-31 6.68 x 10-30 3.34 × 10-28 39.4 × 10-27 
    
Logic 
Gates 

CNTFET (tsub=500nm) MOSFET CNTFET (tsub=500nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm 

CMOS 0.16 × 10-18 0.23 × 10-18 7.034 × 10-18 50.90 × 10-18 2.90 × 10-31 0.51 × 10-30 0.35 × 10-28 0.70 × 10-27 
NAND2   0.28 × 10-18 0.41 × 10-18 15.53 × 10-18 132.8 × 10-18 8.05 × 10-31 1.42 × 10-30 1.35 × 10-28 3.44 × 10-27 
NAND3 0.43 × 10-18 0.63 × 10-18 25.25 × 10-18 341.1 × 10-18 17.0 × 10-31 2.99 × 10-30 2.87 × 10-28 15.3 × 10-27 
NOR2 0.28 × 10-18 0.41 × 10-18 16.90 × 10-18 224.5 × 10-18 8.33 × 10-31 1.46 × 10-30 1.49 × 10-28 7.25 × 10-27 
NOR3 0.39 × 10-18 0.59 × 10-18 28.65 × 10-18 681.7 × 10-18 14.3 × 10-31 2.63 × 10-30 3.34 × 10-28 39.4 × 10-27 
      

 
 
 

Table 4.6 (b) 
 

 
Logic 
Gates 
 

PDP with 5 μm interconnects EDP with 5 μm interconnects 
CNTFET (tsub=100nm) MOSFET CNTFET (tsub=100nm) MOSFET 

tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm tnode= 45nm tnode 90nm 
CMOS 3.77 × 10-18 5.55 × 10-18 7.034 × 10-18 50.90 × 10-18 3.53 × 10-29 6.33 × 10-29 0.35 × 10-28 0.70 × 10-27 
NAND2   5.44 × 10-18 8.54 × 10-18 15.53 × 10-18 132.8 × 10-18 7.06 × 10-29 13.4 × 10-29 1.35 × 10-28 3.44 × 10-27 
NAND3 7.43 × 10-18 12.61 × 10-18 25.25 × 10-18 341.1 × 10-18 12.7 × 10-29 26.7 × 10-29 2.87 × 10-28 15.3 × 10-27 
NOR2 5.41 × 10-18 8.45 × 10-18 16.90 × 10-18 224.5 × 10-18 7.11 × 10-29 13.7 × 10-29 1.49 × 10-28 7.25 × 10-27 
NOR3 7.27 × 10-18 12.41 × 10-18 28.65 × 10-18 681.7 × 10-18 12.2 × 10-29 25.8 × 10-29 3.34 × 10-28 39.4 × 10-27 
    
Logic 
Gates 

CNTFET (tsub=500nm) MOSFET CNTFET (tsub=500nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm tnode= 45nm tnode 90nm 

CMOS 3.72 × 10-18 5.25 × 10-18 7.034 × 10-18 50.90 × 10-18 3.45 × 10-29 5.8 × 10-29 0.35 × 10-28 0.70 × 10-27 
NAND2   5.36 × 10-18 7.42 × 10-18 15.53 × 10-18 132.8 × 10-18 6.95 × 10-29 11.3 × 10-29 1.35 × 10-28 3.44 × 10-27 
NAND3 7.15 × 10-18 9.99 × 10-18 25.25 × 10-18 341.1 × 10-18 12.1 × 10-29 19.8 × 10-29 2.87 × 10-28 15.3 × 10-27 
NOR2 5.28 × 10-18 7.31 × 10-18 16.90 × 10-18 224.5 × 10-18 6.85 × 10-29 11.1 × 10-29 1.49 × 10-28 7.25 × 10-27 
NOR3 6.95 × 10-18 9.82 × 10-18 28.65 × 10-18 681.7 × 10-18 11.5 × 10-29 19.2 × 10-29 3.34 × 10-28 39.4 × 10-27 
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Table 4.7:  PDP and EDP of GNRFET  logic gates benchmarking  with 45 nm 

and 90 nm CMOS technology. Copper interconnect length  of (a)  1 μm and (b)      

5 μm are chosen to demonstrate the wire capacitance. Substrate insulator thickness 

of 100 nm and 500 nm on EDP and PDP are also assessed. 
 

Table 4.7 (a) 
 

 
Logic 
Gates 
 

PDP with 1 μm interconnects EDP with 1 μm interconnects 
GNRFET  (tsub=100nm) MOSFET GNRFET  (tsub=100nm) MOSFET 

tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm tnode= 45nm tnode 90nm 
CMOS 0.38 × 10-18  0.69 × 10-18 20.03 × 10-18 298.8 × 10-18 1.73 × 10-30 0.43 × 10-29 0.23 × 10-27 1.25 × 10-26 
NAND2   0.63 × 10-18 1.32 × 10-18 59.61 × 10-18 843.1 × 10-18 4.16 × 10-30 1.24 × 10-29 1.27 × 10-27 7.81 × 10-26 
NAND3 0.92 × 10-18 2.17 × 10-18 98.55 × 10-18 1779 × 10-18 8.22 × 10-30 2.82 × 10-29 2.87 × 10-27 27.1 × 10-26 
NOR2 0.62 × 10-18 1.32 × 10-18 62.06 × 10-18 1188 × 10-18 4.31 × 10-30 1.34 × 10-29 1.30 × 10-27 12.5 × 10-26 
NOR3 0.89 × 10-18 2.14 × 10-18 89.07 × 10-18 1803 × 10-18 7.85 × 10-30 2.75 × 10-29 2.37 × 10-27 32.7 × 10-26 
      
Logic 
Gates 

GNRFET  (tsub=500nm) MOSFET GNRFET  (tsub=500nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm tnode= 45nm tnode 90nm 

CMOS 0.36 × 10-18 0.54 × 10-18 20.03 × 10-18 298.8 × 10-18 1.56 × 10-30 2.95 × 10-30 0.23 × 10-27 1.25 × 10-26 
NAND2   0.55 × 10-18 0.84 × 10-18 59.61 × 10-18 843.1 × 10-18 3.60 × 10-30 6.52 × 10-30 1.27 × 10-27 7.81 × 10-26 
NAND3 0.78 × 10-18 1.21 × 10-18 98.55 × 10-18 1779 × 10-18 6.53 × 10-30 12.5 × 10-30 2.87 × 10-27 27.1 × 10-26 
NOR2 0.55 × 10-18 0.83 × 10-18 62.06 × 10-18 1188 × 10-18 3.44 × 10-30 6.66 × 10-30 1.30 × 10-27 12.5 × 10-26 
NOR3 0.75 × 10-18 1.18 × 10-18 89.07 × 10-18 1803 × 10-18 6.19 × 10-30 12.1 × 10-30 2.37 × 10-27 32.7 × 10-26 
    

 
 
 

Table 4.7 (b) 
 

Logic 
Gates 

PDP with 5 μm interconnects EDP with 5 μm interconnects 
GNRFET  (tsub=100nm) MOSFET GNRFET  (tsub=100nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm tnode= 45nm tnode 90nm 

CMOS 8.92 × 10-18 12.88 × 10-18 20.03 × 10-18 298.8 × 10-18 2.00 × 10-28 0.34 × 10-28 0.23 × 10-27 1.25 × 10-26 
NAND2   12.60 × 10-18 19.17 × 10-18 59.61 × 10-18 843.1 × 10-18 3.93 × 10-28 7.22 × 10-28 1.27 × 10-27 7.81 × 10-26 
NAND3 15.85 × 10-18 23.91 × 10-18 98.55 × 10-18 1779 × 10-18 6.28 × 10-28 11.5 × 10-28 2.87 × 10-27 27.1 × 10-26 
NOR2 12.37 × 10-18 18.92 × 10-18 62.06 × 10-18 1188 × 10-18 3.76 × 10-28 7.16 × 10-28 1.30 × 10-27 12.5 × 10-26 
NOR3 15.68 × 10-18 23.68 × 10-18 89.07 × 10-18 1803 × 10-18 6.15 × 10-28 11.3 × 10-28 2.37 × 10-27 32.7 × 10-26 
    
Logic 
Gates 

GNRFET  (tsub=500nm) MOSFET GNRFET  (tsub=500nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm tnode= 45nm tnode 90nm 

CMOS 8.80 × 10-18 12.18 × 10-18 20.03 × 10-18 298.8 × 10-18 1.96 × 10-28 3.16 × 10-28 0.23 × 10-27 1.25 × 10-26 
NAND2   12.13 × 10-18 17.17 × 10-18 59.61 × 10-18 843.1 × 10-18 3.70 × 10-28 6.18 × 10-28 1.27 × 10-27 7.81 × 10-26 
NAND3 15.39 × 10-18 20.77 × 10-18 98.55 × 10-18 1779 × 10-18 6.07 × 10-28 9.48 × 10-28 2.87 × 10-27 27.1 × 10-26 
NOR2 12.09 × 10-18 17.10 × 10-18 62.06 × 10-18 1188 × 10-18 3.65 × 10-28 6.18 × 10-28 1.30 × 10-27 12.5 × 10-26 
NOR3 15.09 × 10-18 20.51 × 10-18 89.07 × 10-18 1803 × 10-18 5.84 × 10-28 9.26 × 10-28 2.37 × 10-27 32.7 × 10-26 
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Table 4.8 shows the benchmark of CNTFET, GNRFET logic gates with 45 nm and 

90 nm MOSFET in term of PDP and EDP. The variation of PDP and EDP due to 

substrate insulator thickness (100 nm and 500 nm) is also examined. This investiga-

tion does not take into account the effects of intermediate wire capacitance. 

 

Table 4.8:  PDP and EDP of CNTFET and GNRFET logic gates benchmarking  

with 45 nm and 90 nm MOSFET technology.    

 
Table 4.8 (a) 

 
 
Logic 
Gates 
 

PDP without interconnects EDP without interconnects 
CNTFET (tsub=100nm) MOSFET CNTFET (tsub=100nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm 

CMOS 0.237 × 10-20 1.141 × 10-20 7.034 × 10-18 50.90 × 10-18 0.463 × 10-33 0.510 × 10-32 0.35 × 10-28 0.70 × 10-27 
NAND2   1.447 × 10-20 9.582 × 10-20 15.53 × 10-18 132.8 × 10-18 7.566 × 10-33 11.26 × 10-32 1.35 × 10-28 3.44 × 10-27 
NAND3 3.454 × 10-20 22.13 × 10-20 25.25 × 10-18 341.1 × 10-18 27.98 × 10-33 36.15 × 10-32 2.87 × 10-28 15.3 × 10-27 
NOR2 1.208 × 10-20 10.18 × 10-20 16.90 × 10-18 224.5 × 10-18 7.177 × 10-33 17.67 × 10-32 1.49 × 10-28 7.25 × 10-27 
NOR3 2.822 × 10-20 20.30 × 10-20 28.65 × 10-18 681.7 × 10-18 19.20 × 10-33 30.29 × 10-32 3.34 × 10-28 39.4 × 10-27 
   
Logic 
Gates 

CNTFET (tsub=500nm) MOSFET CNTFET (tsub=500nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode= 45nm tnode 90nm 

CMOS 1.326 × 10-21 2.341 × 10-21 7.034 × 10-18 50.90 × 10-18 0.186 × 10-33 0.455 × 10-33 0.35 × 10-28 0.70 × 10-27 
NAND2   8.252 × 10-21 14.31 × 10-21 15.53 × 10-18 132.8 × 10-18 3.236 × 10-33 7.442 × 10-33 1.35 × 10-28 3.44 × 10-27 
NAND3 19.70 × 10-21 34.17 × 10-21 25.25 × 10-18 341.1 × 10-18 12.04 × 10-33 27.54 × 10-33 2.87 × 10-28 15.3 × 10-27 
NOR2 7.814 × 10-21 13.49 × 10-21 16.90 × 10-18 224.5 × 10-18 3.673 × 10-33 8.463 × 10-33 1.49 × 10-28 7.25 × 10-27 
NOR3 15.61 × 10-21 27.91 × 10-21 28.65 × 10-18 681.7 × 10-18 7.852 × 10-33 18.89 × 10-33 3.34 × 10-28 39.4 × 10-27 
    
Logic 
Gates 

GNRFET  (tsub=100nm) MOSFET GNRFET  (tsub=100nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm 

CMOS 0.155 × 10-20 0.169 × 10-19 20.03 × 10-18 298.8 × 10-18 0.415 × 10-33 0.144 × 10-31 0.23 × 10-27 20.03 × 10-18 
NAND2   1.130 × 10-20 1.089 × 10-19 59.61 × 10-18 843.1 × 10-18 8.143 × 10-33 2.489 × 10-31 1.27 × 10-27 59.61 × 10-18 
NAND3 2.738 × 10-20 2.635 × 10-19 98.55 × 10-18 1779 × 10-18 30.86 × 10-33 9.340 × 10-31 2.87 × 10-27 98.55 × 10-18 
NOR2 1.079 × 10-20 1.080 × 10-19 62.06 × 10-18 1188 × 10-18 9.507 × 10-33 3.051 × 10-31 1.30 × 10-27 62.06 × 10-18 
NOR3 2.305 × 10-20 2.506 × 10-19 89.07 × 10-18 1803 × 10-18 22.26 × 10-33 8.415 × 10-31 2.37 × 10-27 89.07 × 10-18 
   
Logic 
Gates 

GNRFET  (tsub=500nm) MOSFET GNRFET  (tsub=500nm) MOSFET 
tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm tnode=45nm tnode =90nm 

CMOS 0.575 × 10-21 0.174 × 10-20 20.03 × 10-18 298.8 × 10-18 0.083 × 10-33 0.458 × 10-33 0.23 × 10-27 20.03 × 10-18 
NAND2   3.586 × 10-21 1.093 × 10-20 59.61 × 10-18 843.1 × 10-18 1.436 × 10-33 7.739 × 10-33 1.27 × 10-27 59.61 × 10-18 
NAND3 8.596 × 10-21 2.643 × 10-20 98.55 × 10-18 1779 × 10-18 5.387 × 10-33 29.25 × 10-33 2.87 × 10-27 98.55 × 10-18 
NOR2 3.413 × 10-21 1.041 × 10-20 62.06 × 10-18 1188 × 10-18 1.648 × 10-33 8.998 × 10-33 1.30 × 10-27 62.06 × 10-18 
NOR3 6.828 × 10-21 2.222 × 10-20 89.07 × 10-18 1803 × 10-18 3.522 × 10-33 21.05 × 10-33 2.37 × 10-27 89.07 × 10-18 
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Figure 4.5 and Figure 4.6 shows the PDP of CNTFET and MOSFET logic gates for 

the 45 nm and 90 nm processes.  The simulation results show that the PDP of 

CNTFET-based gates are lower than MOSFET-based gates by orders of magnitude 

[3]. For the 45 nm process, the PDP of CNTFET-based gates is 2× smaller than that 

of the MOSFET-based gates with Lwire = 5 μm.  The PDP increases to 1000×  when 

there are no interconnect (Lwire = 0 μm).  
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Figure 4.5:  PDP of CNTFET and MOSFET logic gates for 45 nm process 
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Figure 4.6:  PDP of CNTFET and MOSFET logic gates for 90 nm process 
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Figure 4.7 and Figure 4.8 show the PDP of GNRFET and MOSFET logic gates for 

a 45 nm and 90 nm processes.  Inverter or NOT gates have the lowest PDP. As the 

fan-in increases so does PDP. It is also shown that NAND2 has almost equal PDP to 

NOR2 and vice versa for NAND3 and NOR3. 
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Figure 4.7:  PDP of GNRFET and MOSFET logic gates for 45 nm process 
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Figure 4.8:  PDP of GNRFET and MOSFET logic gates for 90 nm process 
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Figure 4.9 and Figure 4.10 shows the EDP of CNTFET and MOSFET logic gates 

for the 45 nm and 90 nm processes.  The EDP for the MOSFET increases tremen-

dously as the process technology progresses. The EDP gap between CNTFET-based 

logic gates of tsub =100 nm and tsub = 500 nm decreases as interconnect length in-

creases. 
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Figure 4.9:  EDP of CNTFET and MOSFET logic gates for 45 nm process 
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Figure 4.10: EDP of GNRFET and MOSFET logic gates for 90 nm process 
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Figure 4.11 and Figure 4.12 shows the EDP of GNRFET and MOSFET logic gates 

for the 45 nm and 90 nm processes.  It is noted that substrate insulator thickness 

crucial becomes important when shorter interconnect are being used. For Lwire = 5 

μm,  tsub does not have any effect on EDP.  This indicates that the energy and delay                  

efficiency of a GNRFET can be easily overwhelmed by wire capacitance if the length 

is too long. 
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Figure 4.11: EDP of GNRFET and MOSFET logic gates for 45 nm process 
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Figure 4.12: EDP of GNRFET and MOSFET logic gates for 90 nm process 
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Figure 4.13 shows a 3D plot of PDP and EDP for a CNTFET with copper intercon-

nect up to 5 μm in length. Figure 4.13 (a) shows the PDP and EDP for a 45 nm 

process with 500 nm substrate insulator thickness. Whereas Figure 4.13 (b) depicts 

the PDP and EDP for the 90 nm process with 500 nm substrate insulator thickness. 

We observe a 28% improvement in the PDP while 39% in the EDP for a NAND3 

using a 45 nm process compared to a 90 nm process. 
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Figure 4.13: 3D plot of PDP and EDP of CNTFET logic gates with copper inter-

connect length up to 5 μm for (a)  tnode = 45 nm and tsub = 500 nm (b) tnode = 90 nm 

and tsub = 500 nm 
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Figure 4.14 illustrates a 3D plot of PDP and EDP for a GNRFET with copper in-

terconnect up to  5 μm long. Figure 4.14 (a) shows the PDP and EDP for a 45 nm 

process with 500 nm substrate insulator thickness while Figure 4.14 (b) portrays the 

PDP and EDP for a 90 nm process with 500 nm substrate insulator thickness. Note 

that PDP for GNRFET increases by ≈2× compared to CNTFET.  As for EDP, it is 

≈4.5× larger than that of the CNTFET. 
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Figure 4.14: 3D plot of PDP and EDP of the GNRFET logic gates with copper 

interconnect length up to 5 μm for (a)  tnode = 45 nm and tsub = 500 nm (b) tnode = 90 

nm and tsub = 500 nm 
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The results are also compared to the work done by Cho et. al [3] where the PDP of 

a 32 nm PTM (predictive technology model) Si MOSFET and 32 nm CNTFET logic 

gates are studied using  HSPICE.  Cho et. al [3] used the same gate length for both 

devices and multi-channel CNTFETs whereas both our MOSFET and CNTFET 

model is scaled to have same current strength.  Nevertheless, both simulation results 

are quite similar where it is shown that PDP for CNTFET is much lower than that 

of the MOSFET by at least 100×.  

The digital logic circuits with CNTFETs shown in Figure 4.15 have been suc-

cessfully demonstrated on a full wafer-scale. The wafer also contained back-gated 

transistors, top-gated transistors and inverters. 

 

 
 

Figure 4.15 Nanotube circuit on a 4 inch Si/SiO2 wafer (taken from [4]) 
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The synthesis of array multi-channel aligned nanotubes in carried out on a 4 

inch quartz and sapphire substrates. Then, gold film is deposited onto the nanotubes 

for the transfer process. A thermal tape is then applied to the gold film. Subsequent-

ly, the tape is peeled together with the gold film and nanotubes onto a Si/SiO2 sub-

strate target. The gold strip is etched off using gold etchant. Standard Si CMOS 

technology particularly projection photolithography plays a major role in device fab-

rication of the integrated nanotubes. In the final stages of the wafer scale processing, 

device patterning and electrodes metal and gate dielectric deposition are carried out 

to construct the nanotube circuits.  

Each logic circuit in the wafer uses multi-channel aligned nanotubes with current 

density per unit length of 20 μA/μm and minimum gate length of 0.5 μm.  The ana-

lytical CNT model is shown to be able to deliver current density as much as 931.2 

μA/μm by only using sub-100 nm single channel nanotube. This can be realized 

provided Schottky barriers at the ohmic contact of the nanotube–metal junctions 

can be suppressed efficiently thus increasing the channel conductivity. In other 

words, the interface between the channel and contact can be improved in light of 

this advancement in nanotube assembly and integration. 

The layout design and wafer scale assembly of carbon-based NOR2 and NAND2 

are shown in Figure 4.16. In these carbon based layout design, the minimum contact 

area can be used.  Unlike the MOSFET layout illustrated in Chapter 6, the channel 

width for CNTs is smaller than the contact width in 45 nm and 90 nm process tech-

nology nodes (see Table 4.1). CNTs and GNRs can have the same contact width for 

both p-type and n-type conduction to produce an almost perfectly symmetrical               

inverter whereas a MOSFET has a larger channel width for the p-type conduction 

due to a lower hole mobility (see Table 4.3). As a result, wafer scale CNTFET and 

GNRFET provide higher integration potential than Si MOSFET. 
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Figure 4.16 depicts the layout for carbon-based NOR2 and NAND2 gates and their 

corresponding nanotube circuits built on a 4 inch Si/SiO2 wafer [4].

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16 Layout of carbon-based NOR2 and NAND2 gate (adapted from [5]) 

with input A, B and output Z.  Wafer scale assembly of carbon nanotubes digital 

logic circuits based are shown on the right (taken from [4])  
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Figure 4.17 and Figure 4.18 shows the layout of NOR3 and NAND3 gates for CNT-

FETs and GNRFETs.

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.17 Layout of carbon-based NOR3 with input A, B, C and  

output Z  

 
 
 
 
 
 
 
 
 
 

 

Figure 4.18 Layout of carbon-based NAND3 with input A, B, C and output Z  
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4.4 Conclusion 
 
The performance prediction of CNTFET and GNRFET is compared with each oth-

er, and with Si MOSFET transistors for the 45 nm and 90 nm processes. In particu-

lar, the quasi one dimensional (Q1D) transport properties of the GNRFET is com-

pared to the CNTFET. In both cases the possibility of ballistic transport allows the 

mitigation of short channel effects seen in Si transistors.  In addition to that, we also 

observed a 9% increase of the total current from the second subband in multimode 

transport.  By using the tight–binding energy dispersion approximation discussed in 

Chapter 2, the performance of semiconducting CNT and GNR are assessed in terms 

of device specification, drain current drive strength, band gap, density of states, sub-

threshold swing, drain-induced-barrier-lowering and on-off ratio. Subsequently, 

CNTFET and GNRFET device models are implemented in HSPICE as digital logic 

gates such as NAND, NOR, NAND2 and NOR3. A 15 ring-oscillator is also demon-

strated using interconnects for the 45nm and 90 nm processes. The carbon-based 

devices are also compared to MOSFET design layout specifications extracted from a 

predictive 45 nm technology model and 90 nm foundry technology platform in terms 

of  power-delay-product and energy-delay-product.  The PDP for a GNRFET dou-

bled compared to CNTFET where as its EDP quadrupled compared to that of the 

CNTFET. Both devices have extremely low PDP and EDP compared to the Si 

MOSFET by at least four orders of magnitude. Even when the interconnect is taken 

into consideration, the PDP for a distribution of logic gates with 5 µm wire length 

are 46 % better than that of the MOSFET.  These estimated results can be further 

enhanced by using new material for the production of fine interconnects made from 

metallic GNR and CNT as shown in Figure 4.19. They have resistances and capaci-

tances much lower than copper interconnects thus improving the performance metric 

of CNTFETs and GNRFETs. We also found that thicker substrate insulator can 

help to reduce the EDP and PDP considerably when the interconnect is kept shorter 

than 5 μm.  
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Figure 4.19  Single layer SW-CNT interconnect (adapted from [6]) 

 

When the CNT maximum conductance 4e2/h is reduced by half, it is seen that 

the model has a particularly good fit with the 50 nm channel SWCNT experimental 

data. Given the same bandgap, CNTFETs outperform GNRFETs due to valley de-

generacy. Conductivity reduces when there is an imperfect electrical contact between 

the electrodes and the channel.  The existence of  thermionic emission and tunneling 

at the  ohmic metal-tube interface also  increases the contact resistance. The quality 

of device contacts will determine ultimate transistor performance, especially in terms 

of channel conductivity and hence output ON-current 

 

 

 

 

 



 
 
 
 
                                                                                                  References 
 
 

110 

4.5 References 
 
[1] J. Appenzeller, J. Knoch, M. Radosavljevicacute, and P. Avouris, "Multimode 

Transport in Schottky-Barrier Carbon-Nanotube Field-Effect Transistors," 
Physical Review Letters, vol. 92, p. 226802, 2004. 

[2] A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, and H. Dai, "High Per-
formance n-Type Carbon Nanotube Field-Effect Transistors with Chemically 
Doped Contacts," Nano Letters, vol. 5, pp. 345-348, 2005. 

[3] G. Cho, Y.-B. Kim, and F. Lombardi, "Assessment of CNTFET based circuit 
performance and robustness to PVT variations," in Circuits and Systems, 
2009. MWSCAS '09. 52nd IEEE International Midwest Symposium on, 2009, 
pp. 1106-1109. 

[4] K. Ryu, A. Badmaev, C. Wang, A. Lin, N. Patil, L. Gomez, A. Kumar, S. Mi-
tra, H. S. P. Wong, and C. W. Zhou, "CMOS-Analogous Wafer-Scale Nano-
tube-on-Insulator Approach for Submicrometer Devices and Integrated Cir-
cuits Using Aligned Nanotubes," Nano Letters, vol. 9, pp. 189-197, Jan 2009. 

[5] W. Zhang, N. K. Jha, and I. C. Soc, "ALLCN: An automatic logic-to-layout 
tool for carbon nanotube based nanotechnology," in 2005 IEEE International 
Conference on Computer Design: VLSI in Computers & Processors, Proceed-
ings Los Alamitos: Ieee Computer Soc, 2005, pp. 281-288. 

[6] A. Naeemi and J. D. Meindl, "Design and Performance Modeling for Single-
Walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in 
Gigascale Integrated Systems," Electron Devices, IEEE Transactions on, vol. 
54, pp. 26-37, 2007. 

 
 



 111

Chapter 5  

Layout and Circuit Analysis 

5.1 Introduction 
 
In this chapter, the potential of CNTs and GNRs in layout and circuit design in 

comparison with Si MOSFETs are analyzed.  First, MOSFET logic circuits are built 

based on a 45 nm generic process design kit (GPDK) and the 90 nm TSMC foundry 

PDK.  The MOSFET designs are then compared with carbon-based circuit models 

that consist of prototype digital gates implemented in an HSPICE circuit simulator.  

These CNTFET and GNRFET circuit models are generated according to the 45nm 

and 90nm technology process design rules particularly the contact, source and drain 

area as in their Si counterpart.  

 For a fair assessment, we tailored the MOSFET digital design for two cases, for 

45 nm and 90 nm technology process nodes. First, a high current (≈ 50 μA) 

MOSFET circuit design is presented for comparison with the CNTFET compact 

model    followed by low current (≈ 25 μA) design for the GNRFET. The schematic 

diagram of the MOSFET logic gate is created using the transistor models from the 

45 nm technology library in Cadence IC 6.14. Next, the layout of the logic gate de-

sign is drawn.  Subsequently, a design rule check (DRC) is carried out to check any 

layout design rule violation using Cadence's Assura DRC.  This is followed by an 

Assura layout versus schematic (LVS) check to make sure that the layout matches 
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the schematic. Once the layout design is verified, the Layout parasitic can be ex-

tracted using the Assura Parasitic Extraction (RCX). These extracted parasitic re-

sults are then inserted into the circuit simulation environment for a full device simu-

lation. At this stage, logic operation can be simulated to investigate the propagation 

delay of the logic gate.  

CNT and GNR circuit logic operation is simulated in HSPICE based on the 

compact models described in Chapter 3.  Each CNT and GNR device has a high and 

low current model for comparison with the 45 nm and 90 nm MOSFET process. The 

layout of the carbon-based devices is described in detail in Section 5.3.  The propa-

gation delay of these devices is computed with and without parasitic interconnect.    

 
5.2 Generic 45 nm PDK 
 
The predictive 45 nm Si MOSFET model was developed by Accelicon Technologies. 

It can be downloaded from the Cadence Foundry Solutions Portal at 

http://pdk.cadence.com. In this section, two MOSFET layout designs are presented, 

namely high current and low current MOSFET, to be compared with the CNT and 

GNR designs respectively.  Figure 5.1 shows the I-V characteristics of the high and 

low current CMOS. 
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Figure 5.1:  I-V characteristic of high and low current 45 nm CMOS model for (a) 

CNTFET and (b) GNRFER benchmarking. Top VG = 1V with 0.2 V steps. 
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5.2.1  MOSFET Layout for CNTFET Bench-
marking 
 
Five CMOS digital logic gates are implemented in Cadence using the 45 nm GPDK. 

The logic gates are inverter (NOT), 2-input (NAND2), 3-input NAND (NAND3), 2-

input NOR (NOR2) and 3-input NOR (NOR3) as shown in Figure 5.2. The contact 

via area size is for the 45 nm process is 60 nm × 60 nm denoted by the black 

squares. 

 

                   
     (a)                (b)                     (c)                   (d)                     (e) 
 

Figure 5.2:  (a)  NOT (b) NAND2 (c) NAND3 (d) NOR2  (e) NOR3 

logic circuit for 45 nm process technology with L = 45 nm 

 

 
                

Figure 5.3:  15 stage ring-oscillator circuit for 45 nm process technology                     

with L = 45nm 
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A 15 ring-oscillator is also implemented with propagation delay of 9.89 ps per gate. 

The delay increases by 62 % to 16.06 ps with backanotated parasitic resistance and 

capacitance components. The oscillator logic circuit is shown in Figure 5.3. Table 5.1 

lists the width dimensions, low-to-high propagation delay (tpLH) and high-to-low 

propagation delay (tpHL) with and without the back-anotation process.  Figure 5.4 

show the results of average propagation delay, tp = ½ (tpHL+tpLH) for logic gate NOT, 

NAND2, NAND3, NOR2 and NOR3 during pre-layout and post-layout simulation. 

  
Table 5.1:  45 nm process delay computation for the comparison with CNTFET 

 
 

MOSFET 
circuits 
 

Specifications (L= 45 nm) Delay (before  backanotation) Delay (after  backanotation) 
PMOS Width 

(nm) 
NMOS Width 

(nm) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 

NOT 175 125 3.663 3.71 5.000 5.009 
NAND2   175 260 5.734 5.722 8.667 8.770 
NAND3 175 350 8.559 8.613 10.915 11.77 
NOR2 375 125 6.672 6.689 8.770 8.824 
NOR3 475 125 8.710 8.680 12.040 11.270 
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Figure 5.4:  MOSFET 45 nm process propagation delay for logic gates NOT, 

NAND2, NAND3, NOR2 and NOR3. These gates will be compared with CNTFET 

logic circuits.  
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5.2.2  MOSFET Layout for GNRFET Bench-
marking 
 
Logic gates NOT, NAND2, NAND3, NOR2 and NOR3 based on a 45 nm MOSFET 

technology are shown in Figure 5.5. 

 

             
       (a)                    (b)                  (c)                   (d)                   (e) 
 

Figure 5.5:  (a)  NOT (b) NAND2 (c) NAND3 (d) NOR2  (e) NOR3 

logic circuit for 45 nm process technology with L = 200 nm 

 

 

 
 

Figure 5.6:  15 ring-oscillator circuit for 45 nm process technology with L = 200 

nm 
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A 15 stage ring-oscillator shown in Figure 5.6 was designed and simulated. The 

propagation delay for the ring-oscillator is 20.37 ps per gate. When the backanotated 

parasitic components are taken into consideration the delay increases to 36.06 ps per 

gate.  This is a 77 % increase. Table 5.2 lists the width dimension, tpLH and tpHL with 

and without the backanotation process. Figure 5.7 depicts the average tp for logic 

gate NOT, NAND2, NAND3, NOR2 and NOR3 during pre-layout and post-layout 

simulation. 

 
Table 5.2:  45 nm process delay computation for the comparison with GNRFET 

 
 

MOSFET 
circuits 
 

Specifications (L= 200 nm) Delay (before  backanotation) Delay (after  backanotation) 
PMOS Width 

(nm) 
NMOS Width 

(nm) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 

NOT 140 120 9.235 9.181 11.57 11.47 
NAND2   140 215 14.41 15.04 20.33 21.99 
NAND3 140 270 20 20.06 27.74 30.49 
NOR2 250 120 15.44 15.47 21.29 20.74 
NOR3 290 120 19.05 18.91 28.06 25.25 
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Figure 5.7:  MOSFET 45 nm process propagation delay for logic gates NOT, 

NAND2, NAND3, NOR2 and NOR3. These gates will be compared with GNRFET 

logic circuits.  
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5.3 TSMC 90 nm PDK 
 
The process design kit is developed by TSMC and available at www.europractice-

online.be.  Using the 90 nm foundry kit, a low and high current MOSFET logic cir-

cuits are implemented to be compared with GNR and CNT transistors respectively.  

Figure 5.8 shows the I-V characteristic of the high and low current CMOS. Alt-

hough the I-V of the NMOS and PMOS is asymmetrical because the PMOS has 

lower current than the NMOS, both devices have a comparable fall and rise propa-

gation delay. 
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Figure 5.8:  I-V characteristic of high and low current 90 nm MOSFET model for 

(a) CNTFET and (b) GNRFER benchmarking. Top VG = 1V with 0.2 V steps. 
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5.3.1 MOSFET Layout for CNTFET Benchmark-
ing 
 
The MOSFET logic gates NOT, NAND2, NAND3, NOR2 and NOR3 are imple-

mented using a 90 nm process technology and are shown in Figure 5.9.   The contact 

via area size for the 90 nm process is 120 nm ×120 nm as denoted by the black 

squares.  

 

                      
            (a)                  (b)                (c)                (d)                  (e) 
 

Figure 5.9  (a)  NOT (b) NAND2 (c) NAND3 (d) NOR2  (e) NOR3 

logic circuit for 90 nm process technology with L = 200 nm 

 

 
Figure 5.10: 15 ring-oscillator circuit for 90 nm process technology with L = 200 

nm 
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The propagation delay time of the 15 ring-oscillator, shown in Figure 5.6, is 33.61 ps 

per gate. The delay increases by 37 % to 46.07 ps per gate when backanotated para-

sitic components are considered.  Table 5.3 lists the width dimension, tpLH and tpHL 

with and without backanotation process. Figure 5.11 illustrates the average tp for 

logic gate NOT, NAND2, NAND3, NOR2 and NOR3 during pre-layout and post-

layout simulation. The post-layout delay increases as the logic circuit becomes larger 

as shown by NAND3 and NOR3.  

 

Table 5.3:  90 nm process delay computation for the comparison with CNTFET 
 

 

MOSFET 
circuits 
 

Specifications (L= 200 nm) Delay (before  backanotation) Delay (after  backanotation) 
PMOS Width 

(nm) 
NMOS Width 

(nm) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 

NOT 270 120 10.42 10.49 14.23 13.4
NAND2   270 165 23.69 24.64 26.58 25.28 
NAND3 270 240 40.45 39.36 48.71 41.13 
NOR2 460 120 29.07 30.14 33.41 31.21
NOR3 610 120 51.57 50.85 63.27 52.24 
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Figure 5.11: MOSFET 90 nm process propagation delay for logic gates NOT, 

NAND2, NAND3, NOR2 and NOR3. These gates will be compared with CNTFET 

logic circuits.  
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5.3.2 MOSFET Layout for GNRFET Benchmark-
ing 
 
The 90 nm process MOSFET logic gates featuring NOT, NAND2, NAND3, NOR2 

and NOR3 are depicted in Figure 5.12. 

 
 

             
        (a)                 (b)                  (c)                 (d)                     (e) 

 

Figure 5.12:  (a)  NOT (b) NAND2 (c) NAND3 (d) NOR2  (e) NOR3 logic 

circuit for 90 nm process technology with L = 500 nm 

 

 
 

Figure 5.13: 15 stage ring-oscillator circuit for 90 nm process technology with                  

L = 500 nm 
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The propagation delay time for the 15 ring-oscillator shown in Figure 5.6, is 72.66 ps 

per gate. The delay increases by 69 %  to 123 ps per gate when backanotated para-

sitic components are considered.  The large increase can be attributed to the long 

wire delay connecting the last gate to the first gate.  Table 5.4 lists the width di-

mension, tpLH and tpHL with and without the backanotation process. Figure 5.14 illus-

trates the average tp during pre-layout and post-layout simulation for logic gate 

NOT, NAND2, NAND3, NOR2 and NOR3. 

 
Table 5.4:  90 nm process delay computation for the comparison with GNRFET 

 
 

MOSFET 
circuits 
 

Specifications (L= 500 nm) Delay (before  backanotation) Delay (after  backanotation) 
PMOS Width 

(nm) 
NMOS Width 

(nm) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 
Rising, tpLH 

(ps) 
Falling, tpHL 

(ps) 

NOT 250 120 34.81 34.46 43.5 40.48 
NAND2   250 150 85.91 87.33 95.83 89.5 
NAND3 250 230 138.9 138.8 162.3 142.2 
NOR2 380 120 96.93 97.6 113.5 97.52 
NOR3 520 120 157.9 159.9 202.6 160.2 
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Figure 5.14: MOSFET 90 nm process propagation delay for logic gates NOT, 

NAND2, NAND3, NOR2 and NOR3. These gates will be compared with GNRFET 

logic circuits.  
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5.4 Digital Logic Circuit for CNTFET and 
GNRFET 

 
CNTFET and GNRFET logic circuits have been assessed for two distinct technolo-

gies, namely the 45 nm and 90 nm process nodes. First, the carbon-based circuit de-

sign is simulated using 45 nm contact design rules. This is followed for the 90 nm 

design rules.   

The contact design rules for the 45nm process were extracted from the Cadence 

GPDK.  The maximum and minimum contact width × length: 60 nm × 60 nm. The 

minimum oxide to contact enclosure is assumed to be at least 20 nm. The contact 

design rules for the 90 nm PDK is taken from the TSMC foundry kit. The maximum 

and minimum contact width versus length is 120 nm  × 120 nm.  The minimum poly 

to contact enclosure is 50 nm.   

The size of the contact is important because it determines the parasitic capaci-

tance between the bulk and source/drain terminal and resistance of the ohmic con-

tact.  Figure 5.15 shows the contact size adopted in the HSPICE simulation. 
 

 
 
 
 
 
 
 
 
  

                       (a)                                        (b) 
       

Figure 5.15: Contact design rules for (a) 45 nm and (b) 90 nm process nodes 
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The top view of a CNTFET and GNRFET with the source and drain contact is 

shown in Figure 5.16. The filled black rectangular represents the contact enclosure 

described in Figure 5.15.  Nine capacitances are introduced into carbon-based mac-

romodel illustrated in Figure 5.16. They are the gate oxide capacitance Cox, quantum 

capacitance CQ, source capacitance Cs, drain capacitance Cd, substrate capacitance 

Csub, source-to-bulk capacitance Csb,  drain-to-bulk capacitance Cdb,  gate-to-source ca-

pacitance Cgs and drain-to-bulk capacitance Cgd.   

 
Figure 5.16: Top view of CNTFET or GNRFET 
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Figure 5.17: HSPICE macro-model for CNTFET and GNRFET   
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The size of the contact is crucial as it ultimately influences Csb and Cdb. They are 

given in Table 5.5 and can be written as   

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
sb db ins

ins

WLC or C ε
t

                                           (5.1) 

where tins is the thickness of the insulator, W is the width of the contact, L is the 

length of the contact and  εins is the permittivity of the insulator. The Cgs and Cgd 

are given as   

⎡ ⎤+⎢ ⎥= ⎢ ⎥+⎢ ⎥⎣ ⎦2
g ox Q s

gs
tot Q

L C C C
C

C C
                                          (5.2) 

 
⎡ ⎤+⎢ ⎥= ⎢ ⎥+⎢ ⎥⎣ ⎦2

g Q d
gd ox

tot Q

L C C
C C

C C
                                          (5.3) 

 
where Cs and Cd are source and drain capacitance fitting parameters [1, 2] and Lg is 

the length of the gate. Ctot is expressed by   

                      = + + +tot ox sub s dC C C C C                                         (5.4) 

The substrate insulator capacitance Csub  for CNTFET and GNRFET is given by 

( )
=sub_CNTFET

2C
4 dsub

πε
ln H

                                       (5.5) 

( )= +sub_GNRFETC 1subε W H                                       (5.6) 

where Hsub is the substrate oxide thickness, d is the diameter of CNT and W is the 

width of GNR. From Table 5.5, Csb and Cdb reduce when Hsub is increased. There is 

also major reduction of the capacitance from the 180 nm to the 45 nm process tech-

nology where the area size of the contacts is scaled 94% smaller than its predecessor. 

The maximum drain current for both carbon-based devices at VG = 1V show mini-

mal change when the substrate insulator thickness is varied from 10 nm to 500 nm. 

Across the Hsub range, a current change of 1.41 % is observed for the CNTFET and 

0.82 % for the GNRFET. 
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Table 5.5:  Source and drain capacitance for multiple substrate                      

insulator thickness 

 

 
The performance of the CNTFET and GNRFET NOT gate are analyzed for two 

substrate insulator thicknesses, 100 nm and 500 nm, across both the 45 nm and 90 

nm process technologies. The cutoff frequency (the frequency at which the current 

gain is 1) is used to describe the high-frequency performance of a transistor. The 

current unity gain cutoff frequency of the intrinsic transistor [1, 2] without intercon-

nect capacitance is given by  

=
+ + + +

1
2    

m
T

G s d sub

gf
π C C C C Cint

                           (5.7) 

and is listed in  Table 5.6. Devices with thicker substrate insulator (for instances, 

500nm) and smaller contact area have higher unity cutoff frequency. 

 

Table 5.6:  Intrinsic capacitance and unity cutoff frequency for CNTFET and 

GNRFET based on Si MOSFET the 45 nm and 90 nm processes 

 
Parameter CNTFET GNRFET 

Silicon Technology Node 45 nm 90 nm 45 nm 90 nm 
Substrate Insulator Thickness (nm) 100nm 500nm 100nm 500nm 100nm 500nm 100nm 500nm 
S/D to Bulk Capacitance (aF) 3.45 16.71 0.69 3.34 3.45 16.71 0.69 3.34
Total Terminal Capacitance (aF) 18.82 18.39 18.82 18.39 7.01 7.00 7.01 7.00
Intrinsic Capacitance, Cint (aF) 21.29 15.87 47.81 21.17 12.29 6.77 38.81 12.07
Intrinsic Cutoff Unity Freq. (GHz)  270 316 162 274 233 323 97 233
         

 
 

 

Thickness 
(nm) 

 

Source/ Drain to Bulk Capacitance (aF) 
 

Maximum Drain Current 
(μA) at VG = 1V 45 nm 65 nm 90 nm 180 nm

W=L=100 nm W=L=170 nm W=L=220nm W=L=420 nm Carbon  
nanotube 

Graphene 
nanoribbon A= 10fm2 A=28.9 fm2 A=48.4 fm2 A=176.4 fm2

       

10 34.530 99.790 167.100 609.100 47.395 20.139 
20 17.270 49.900 83.560 304.600 47.382 20.135 
50 6.906 19.960 33.430 121.800 47.340 20.125 
100 3.453 9.979 16.710 60.910 47.272 20.108 
200 1.727 4.990 8.356 30.460 47.135 20.075 
300 1.151 3.326 5.571 20.300 46.998 20.041 
400 0.863 2.495 4.178 15.230 46.860 20.007 
500 0.691 1.996 3.343 12.180 46.723 19.973 
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Table 5.7:  Intrinsic and unity cutoff frequency unity cutoff frequency for Si 

MOSFET 45 nm and 90 nm process technology. They are benchmarked against for 

CNTFET (high current) and GNRFET (low current). 

 
MOSFET High Current (50 µA) Low Current (25 µA) 

Silicon Technology Node 45 nm 90 nm 45 nm 90 nm 
S/D to Bulk Capacitance (aF) 201.70 628.10 590.60 1571.00 
Total Terminal Capacitance (aF) 37.4 83.3 36.09 83.23 
Intrinsic Capacitance, Cint (aF) 9.31 27.74 30.05 86.41 
Intrinsic Cutoff Unity Freq. (GHz) 95.9 19.2 15.49 4.64 
     

 
 

From Table 5.7, the intrinstic capacitance, Cint is the sum of Cgd and Cdb while ex-

trinsic  capacitance, Cext is the sum of  wire capacitance Cw, and Cgs and CG of the 

following  gate. The capacitance load of a circuit, CL is the total of intrinstic and ex-

trinsic capacitance [3]. Component Cgs and CG  can be omitted when  Cw is very 

large.  

( ) ( )= + = + + + +L ext gd db w gs GC C C C C C C Cint                           (5.8) 
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Figure 5.18:  Two cascaded inverter gate with parasitic capacitance (adapted 

from [4] ) 
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Local, intermediate and global copper and MWCNT interconnect capacitances for 32 

nm, 22 nm and 14 technology process are shown in Table 5.8 [5]. These capacitances 

are calculated using the finite element method (FEM) extracted from Ref.  [6].  

 

Table 5.8:  ITRS 2005 based simulation parameters (adapted from [5]) 
 

Technology Process (nm) 32 22 14 
 Width W (nm) 32 22 14 

Local & Intermediate ILD Thickness tox (nm) 54.4 39.6 25.2 
 Ccu (pF/m) 144.93 131.01 111.83 
 Cmwcnt (pF/m)  130.15 117.70 100.51 
 Width W (nm) 48 32 21 

Global ILD Tickness tox (nm) 110.4 76.8 52.5 
 Ccu (pF/m) 179.78 163.3 139.03 
 Cmwcnt (pF/m)  163.81 148.9 126.78 
     

 
 

The interconnects between cascading logic gates are assumed to be in the intermedi-

ate layer [7] and vary from 1μm to 100μm in length [8]. For 0.18um technology, av-

erage interconnect lengths are found to be 7 μm per fanout [9].  The interconnect 

capacitance for 90 nm, 65 nm and 45 nm process technology can be extrapolated 

from Table 5.9. The approximation values are extracted using a cubic spline curve 

function and are shown in Figure 6.19. These values are listed in Table 5.8 
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Figure 5.19:  Extrapolated interconnect capacitance for copper and MWCNT for 

90 nm, 65 nm, 45 nm process based on 32 nm, 22 nm and 14 nm technology process 

 
 

Table 5.9:  Extrapolated interconnect capacitance 
 

 

Capacitance 
 

Technology Process (nm)
90 65 45 

    

Ccu   (pF/m) 184.72 172.52 156.73
Cmwcnt   (pF/m) 154.80 140.68 130.15
    

 
 
The unity current gain cutoff frequency for the CNTFET and GNRFET circuit 

model is depicted in Figure 5.20 and Figure 5.21. The models use a copper intercon-

nect of the 45 nm and 90 nm node technology with two distinct substrate insulator 

thicknesses and contact area. The interconnect length varies from 0.01 μm to 100 

μm. 
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It is found that cutoff frequency is inversely proportional to interconnect length. 

When the interconnects is longer than 10 μm, the frequency remains the same re-

gardless of the technology node. Therefore, it is essential to utilize interconnects as 

short as possible to tap the high frequency capability of the CNTFETs and 

GNRFETs. State of the art CNTFETs and GNRFETs have been shown to reach 

operating frequencies up to 80 GHz and 100 GHz experimentally [10, 11]. 
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45 nm node, A=10.0 fm2, Hsub= 500 nm

90 nm node, A=48.4 fm2, Hsub= 500 nm

45 nm node, A=10.0 fm2, Hsub= 100 nm

90 nm node, A=48.4 fm2, Hsub= 100 nm

 
Figure 5.20:  Cutoff frequency for 50 nm length CNTFET with interconnect 

length from 0.01 μm to 100 μm with source drain contact area for  45 nm and 90 nm 

process nodes. Contact width is 100 nm for the 45 nm process and 120 nm for the 90 

nm process nodes. CNTFET length remains the same. 
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Figure 5.21:  Cutoff frequency for a 20 nm length GNRFET with interconnect 

length from 0.01 μm to 100 μm with source drain contact area for  45 nm and 90 nm 

process nodes. Contact width is 100 nm for the 45 nm process and 120 nm for the 90 

nm process nodes. GNRFET length remains the same. 
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Figure 5.22 to Figure 5.26 shows the schematic of NOT, NAND2, NAND3, NOR2 

and NOR3 gates and their corresponding input and output waveform.  

   

 
(a) 

 

 
(b) 

 

 
(c) 
 

Figure 5.22: (a)  Schematic of NOT gate with parasitic capacitance. Input and 

output waveform for  (b) CNTFET and (c) GNRFET 
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(a) 
 

 
(b) 

 
(c) 

 

Figure 5.23: (a)  Schematic of 2-input NAND gate with parasitic capacitance. In-

put and output waveform for  (b) CNTFET and (c) GNRFET 
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(a) 

 
(b) 

 
(c) 

Figure 5.24: (a)  Schematic of 3-input NAND gate with parasitic capacitance. In-

put and output waveform for  (b) CNTFET and (c) GNRFET 
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(a)                                      

 

 
(b) 

 
(c) 

Figure 5.25: (a)  Schematic of 2-input NOR gate with parasitic capacitance. Input 

and output waveform for  (b) CNTFET and (c) GNRFET 
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(a) 

 
(b) 

 
(c) 

Figure 5.26: (a)  Schematic of 3-input NOR gate with parasitic capacitance. Input 

and output waveform for  (b) CNTFET and (c) GNRFET 
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Table 5.10 lists the expression for the load and output capacitance for the logic gates 

and ring-oscillator in Figures 6.22 to 6.26.  As each of the logic gates shown are 

standalone single gate, the single gate load capacitance, CL’  does not have the Cgs 

and CG components. The cascaded inverter in a ring configuration however has both 

Cgs and CG components from subsequent gates. It is assumed that all ring-oscillators 

have the same load capacitance.  

 
Table 5.10:  Load and output capacitance for logic gates NOT, NAND2, 

NOR2, NAND3, NOR3 and ring oscillator 

 

Gate Logic Capacitance 
NOT CL’ = Cgd1+ Cgd2 + Cdb1 + Cdb2 + Cw  
NAND2   C1 = Cdb1 + Csb2 + Cgd1 + Cgs2  

CL’ = Cdb2 + Cdb3 + Cdb4 + Cgd2 + Cgd3 +Cgd4 +  CW NOR2 

NAND3 C1 = Cdb1 + Csb2 + Cgd1 + Cgs2  
C2 = Cdb2 + Csb3 + Cgd2 + Cgs3  
CL’ = Cdb3 + Cdb4 + Cdb5 + Cdb6 + Cgd3 + Cgd4 +Cgd5 +Cgd6 + CW NOR3 

RING 
OSCILLATOR 

CL1= Cint + Cext = Cgd1 + Cgd2 + Cdb1 + Cdb2 + CG3 + Cgs4 + CG4 + Cgs4 + Cw 
CL1= CL2 = CL3 = CL4 = CL5 = CL6 = CL7 = CL8 
CL8 = CL9 = CL10 = CL11 = CL13 = CL14 = CL15 
 

 

The propagation delay for the logic gates are shown in Table 5.11 for CNTFET and 

Table 5.12 for GNRFET. 

 

Table 5.11:  CNTFET logic circuit delay computation for single logic gate 
 

CNTFET 
circuits 

With 45 nm Process Design Guidelines  With 90 nm Process Design Guidelines 
Delay without inter-

connects 
Delay with 5 μm  

interconnect 
Delay without inter-

connects 
Delay with 5 μm   

interconnect 

Propagation delay, 
tp (ps) 

Propagation delay, 
tp (ps) 

Propagation delay, 
tp (ps) 

Propagation delay, 
tp (ps) 

INVERTER 0.14 9.277 0.19 11.07 
NAND2   0.39 12.97 0.52 15.17 
NAND3 0.61 16.87 0.81 19.84 
NOR2 0.47 12.98 0.63 15.18 
NOR3 0.50 16.48 0.68 19.57 
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Table 5.12:  GNRFET logic circuit delay computation for a single logic gate 
 

GNRFET 
circuits 

With 45 nm Process Design Guidelines  With 90 nm Process Design Guidelines 
Delay without inter-

connects 
Delay with 5 μm 

interconnect 
Delay without inter-

connects 
Delay with 5 μm 

interconnect 

Propagation delay, 
tp (ps) 

Propagation delay, 
tp (ps) 

Propagation delay, 
tp (ps) 

Propagation delay, 
tp (ps) 

INVERTER 0.14 22.23 0.26 25.99 
NAND2   0.40 30.19 0.71 35.99 
NAND3 0.63 39.41 1.11 45.65 
NOR2 0.48 30.48 0.86 36.13 
NOR3 0.52 38.72 0.95 45.15 
     

 
Figure 5.27  shows the schematic of a 15 stage ring-oscillator while Table 5.12 lists 

the loop delay and propagation delay per gate for CNTFET, GNRFET and Si 

MOSFET in a 45 nm and 90 nm process. The frequency of oscillation depends on 

the delay of each inverter also known as the gate delay and the wire or interconnect 

delay between each gate. Propagation delay increases with output load capacitance 

and the interconnect capacitance. 

= =
1 1

2osc
osc p

f
T Nt

                                          (5.9) 

 
 

Figure 5.27: Schematic of ring-oscillator of 15 cascaded inverters with parasitic ca-

pacitance. 
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From the ring-oscillator circuit, the propagation delay per gate for the CNTFET 

circuit based on the 45 nm process guidelines is 12.04 ps. This is an increase of 29 % 

on the delay of a single inverter, largely due to the contribution of Cgs and CG.  The 

input and output waveforms of the carbon-based ring-oscillator are shown in Figure 

5.28. 

 

Table 5.13:  Delay and frequency computation for CNTFET and GNRFET 

against Si MOSFET 45 nm and 90 nm ring-oscillator circuit  
 

Ring-
oscillator of 
NOT gates 

 

With 45 nm Process Design Guidelines  With 90 nm Process Design Guidelines 

Loop delay 
(ps) 

Oscillation 
frequency, fosc 

(GHz) 

Propagation 
delay 

per gate (ps) 

Loop delay 
(ps) 

Oscillation 
frequency, fosc 

(GHz) 

Propagation 
delay 

per gate (ps) 
       

CNTFET 
circuits 
 

180.58 2.76 12.04 212.12 2.36 14.14 

MOSFET 
Circuits 
 

240.9 2.08 16.06 69.09 7.23 46.06 
       

GNRFET 
circuit 
 

411.18 1.21 27.41 490.25 1.02 32.63 

MOSFET 
circuits 691.05 0.72 46.07 1845 0.27 123 
       

 

      

      
(a)                                               (b) 

Figure 5.28: Input and output waveform for (a) CNTFET and (b) GNRFET ring-

oscillator with contact and interconnect geometries extracted from 45 nm and 90 nm 

process nodes 
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5.5 Conclusion 
 
The CNTFET and the GNRFET have been benchmarked against Si MOSFETs for 

the 45 nm and 90 nm process nodes. For a fair assessment, the CNTFET is evaluat-

ed against a high current MOSFET (≈ 50 µA) and GNRFET with a low current 

MOSFET (≈ 25 µA). The schematic and layout MOSFET logic circuit is generated 

using the Cadence IC design suite while the CNTFET and the GNRFET circuit 

simulation is carried out in HSPICE. The cutoff frequency for the carbon-based de-

vices are analyzed for two substrate insulator thicknesses, 100 nm and 500 nm with 

copper interconnect length varying from 0.01 µm to 100 µm. Devices with thicker 

substrate insulator and smaller source drain contact area  give the highest frequency. 

In addition to that, logic gates NOT, NAND2, NAND3, NOR2 and NOR3 gates and 

their corresponding input and output waveform are given.  It is found that NAND3 

or NOR3 have the largest propagation delay since each has multiple fan-in and fan-

out.  The interconnect length of cascading logic gates has a profound effect on the 

signal propagation delay. In the digital logic simulation, we use an average length of 

5 μm per fanout.  The results indicate that inverters placed in a ring-oscillator con-

figuration have a major increase of delay compared to single gate mainly due to to-

tal gate  parasitic capacitance from each cascading gate, other than the interconnect 

capacitance.  The key limiting factor for high-speed carbon nanotube and graphene 

based chips is the interconnect itself. The performance enhancement gained through 

carbon-based material is negligible if the interconnect capacitance is not reduced 

significantly with transistor features size. Bundled metallic MWCNTs are seen as a 

potential candidate to replace copper interconnects as future IC interconnects once 

the challenges of integrating CNT interconnects onto existing manufacturing pro-

cesses are met.  
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Chapter 6 

Conclusions and Future Work 

6.1 Summary 
 
We have established that CNTs and GNRs are capable of providing similar drain 

currents as Si MOSFET with better control of short channel effects (SCE). To 

ensure a fair comparison, both CNT and GNR were assumed to have the same  

bandgap and use the minimum contact size that is permitted by the 45 nm and 90 

nm CMOS design layout rules. It is found that these carbon-transistors have 

reduced drain-induced-barrier-lowering (DIBL), better subthreshold swing (SS) and 

higher conductivity than a Si MOSFET. The carrier density is at least 75×  times 

that of the Si MOSFET for the CNTFET and 43× for the GNRFET.  Unlike the 

MOSFET, both nanostructures are able to provide almost perfectly symmetric I-V 

characteristic for n and p-type devices [1]. The top gated structure with a high-κ 

gate dielectric has a good gate control over the channel that can effectively suppress 

DIBL and hysteresis while maintaining high transconductance [2].  High quality 

graphene and carbon nanotube can have mobilities approaching 100,000 cm2 V−1 s−1 

and 200,000 cm2 V−1 s−1 respectively in the absence of charged impurities at room 

temperature. Under practical operating conditions, mobility from 10,000 cm2 V−1 s−1   

are routinely observed  for exfoliated graphene on silicon wafers [3]  and for SWCNT 

both of which are an order of magnitude higher than for a Si MOSFET [4, 5].  
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High drain current can be obtained when the Fermi level of the channel is 

shifted upward. When a high gate bias is applied, carriers populate not one but two 

subbands thus increasing the current drive strength by a considerable amount [4]. 

Based on simulation results, multi-band transport provides a 9% increase of the 

total current.  The comprehensive carbon-based models have been verified with 

experimental data and other existing compact models. The CNTFET models 

developed in this research accurately predict the drain current of measured sub-100 

nm channel CNT transistors.  It is assumed that armchair GNRs can be either 

metallic or semiconducting depending on their width. However, there has also been a 

computational study that found all armchair GNRs are semiconducting [5] .   

The maximum drain current for a monolayer GNRFET was found to be at           

19 μA which is consistent with the work of Ouyang et al. [6] who  projected Ion  ≈ 24 

μA with phonon scattering included. The CNTFET model also gives good agreement 

with the Stanford [7] and Arizona model  [8, 9]. It is demonstrated that a single 

CNT can provide current up to 40 μA by improving the contact between the 

channel and metal. A contact that has low Schottky barrier and high Ohmic 

properties provides low resistance to the carriers. This so called transparent contact 

can be attributed to the graphitic carbonization on the metal-channel interface when 

the nanotube is annealed at high temperatures [10] . 

A major improvement to the model is the substitution of the Newton-Raphson 

iteration with a non-linear polynomial approximation.  By having the shorter and 

simpler expression, the simulation time is made much faster and efficient without 

needing any numerical iteration. Hence, computing cost is effectively reduced. Apart 

from that, the compact model itself is now portable and can be transferred between 

multiple EDA software tools such as PSPICE and HSPICE without much 

modification.  

The low dimensional carbon devices outperform silicon MOSFET in term of 

power-delay-product (PDP) and energy-delay-product (EDP) by several orders of 

magnitude. For the same amount of drain current, the channel area consumed by 

CNTFET and GNRFET is relatively smaller than for Si MOSFET. A 20 nm 

GNRFET uses only 64 % of the Si MOSFET channel size in a 45 nm process. 
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Moreover,  11% of the channel size can be reduced by adopting 50 nm SW-CNTFET 

for a 45 nm MOSFET. This allows the fabrication of high density ICs made of 

nanotubes and nanoribbons on chip. It is forecast that the cutoff  frequency limit of 

CNTFETs and GNRFETs can exceed 200 GHz twice the frequency recorded so far 

[11, 12]. Here, it is shown that with practical interconnect limitations, cut off 

frequencies are limited to ≈12.49 GHz  for the CNTFET and ≈5.43 GHz for 

GNRFET.  A key advantage of carbon-based logic gates over the Si MOSFET 

counterparts is their low energy consumption per logic transition [13]. It is shown 

through simulation that   the CNTFET and GNRFET logic gates can have wiring 

lengths up to 5 μm before their performance becomes no better than a Si MOSFET. 

 

6.2 Future Work 
 
Having developed the compact model for a single channel CNTFET and a 

monolayer GNRFET, the next goal is  to use multi-channel CNT [14] and bi-layer 

GNR  [6] in nanoelectronic circuits. This can provide tremendous improvement on 

the transconductance and ON-current. The ideal drain current for a metallic single 

channel CNT with ballistic transport is 100 μA per tube and a monolayer metallic 

GNR can offer 50 μA.  Practically, the measured current found in most 

semiconducting single channel CNT is 25-35 μA [15-17]. This value drops to 5-8 μA 

for  monolayer GNR [18, 19]. However, it is shown in this investigation that with 

good contact interface and high quality short channels, drain current can be 

increased to 40-50 μA for CNT and 20-24 μA for GNR [6].  Using parallel multi-

channel CNT and bi-layer GNR, it should be able to drive digital circuits that 

operate at high switching rate due to the increased output current. In addition, 

research future on these lines will open a new paradigm for applications that require 

large current such as RF power transistors and light-emitting diodes  [20]. 
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Figure 6.1:  Structure of a multi-channel CNT (adapted from [21]) 

 

Other interesting future work would be to study the screening capacitance 

between nanotubes in multi-channel CNTs.  They are known to downgrade the ON 

current if the inter-CNT pitch is spaced less than 20 nm apart. They also affect the 

gate to channel capacitance that determine the instrinsic cutoff frequency. For array 

nanotubes which have roughly 2.5 nm inter-CNT-pitch, current is decreased by at 

least 50% [16].  It has been demonstrated that in a multi-channel local bottom gate 

(LBG) design, each nanotube carries the same amount of current. The study reveals 

that ON-current has a linear dependence on the number of semiconducting CNTs 

[22].  With nanotubes in an array, the width of CNTFETs can now be scaled similar 

to Si MOSFETs to have equal high-to-low propagation delay tPHL and low-to-high 

propagation delay tPLH in logic gates. 
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In the present work, it is assumed that both the n-type and p-type CNTFETs 

and GNRFETs have symmetrical I-V characteristic. Therefore, another possible 

direction for future work is to adopt non-symmetrical I-V models. This result shall 

provide valuable insight on the voltage gain and propagation delay that affect the 

EDP and PDP.  
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Appendix A 

Research Methodology 

A.1 Introduction 
 
This appendix discusses the methodology adopted to develop CNTFET and 

GNRFET macromodels in comparison with standard CMOS digital logic gates 

extracted from 45 nm and 90 nm process nodes. The robust and comprehensive 

device, circuit and layout-based models are simulated in MATLAB, Synopsys 

HSPICE, Orcad PSPICE and Cadence custom IC tools.  The physical phenomena of 

these nanotransistors vary according to the confinement of the carriers. To under-

stand the device physics behind the carbon nanostructures, qualitative and 

quantitative assessment is carried out on existing CNTFET models with observation 

on the energy band profile, density of states and charge density in quasi-one 

dimensional system. One of the key challenges of this research is to implement these 

analytical and semi-empirical models across the EDA platform particularly from 

MATLAB to HSPICE and PSPICE. Once the cross-platform transfer is done, the 

performance limit for the CNTFETs, GNRFETs and CMOS are assessed for a 

variety of circuit blocks including NAND, NOR gates and a ring-oscillator. There 

will also be comparison and evaluation against experimental and simulated data 

taken from nanotube, nanoribbon and nanoscale MOSFETs. 
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A.2 Electrical Modeling 
 
The core element of modeling is the formulation of current-carrier transport based 

on the layout of CNTFET, GNRFET and MOSFET nanostructures and perform-

ance metric evaluation of the FET logic gates. First, physics based models are 

explicitly written and simulated in MATLAB [1]. Next, the Cadence Virtuoso Suite 

is used  for CMOS logic gates design and benchmarking while carbon based 

integrated circuits are simulated in the Synopsys HSPICE simulator [2].  Before that 

can be done, MATLAB scripts are simplified and converted into SPICE syntax to be 

implemented as nanotube and nanoribbon HSPICE macro models [3, 4].  

Carrier statistics governing the device operation in Q2D’s MOSFET and Q1D’s 

nanoribbon and nanotube can be represented using the Fermi-Dirac distribution. A 

wide range of current and voltage curves can be generated once the carrier density is 

obtained. In addition, the effects of intrinsic and extrinsic capacitances are also 

considered in the model framework.  

Figure A.1 shows the convergence of ECAD and TCAD in integrated circuit de-

sign flow. In TCAD process simulation, a two or three dimensional program is used 

to simulate the fabrication process steps such as oxidation, diffusion, etching and 

deposition. Subsequently, device simulation is performed to give the electrical 

properties of the customized layout based on the material and external field inputs 

[5]. Both CAD tools have distinct front end approaches where ECAD is pre-

dominantly circuit-based while TCAD is process-based.  However, both of them 

have identical back end designs. In the final stages, device simulation of the custom 

layout design is carried out with physical verification such as design rules check 

(DRC), layout versus schematic (LVS) and parasitic extraction (RCX). 
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Figure A.1: ECAD and TCAD flow chart (adapted from [6])
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A.2.1   MATLAB 
 
Current transport modeling in the CNT and GNR is based on the ballistic model 

reported by Natori [7]. First, existing formalisms are inspected and developed to 

include non-idealities such as scattering, quantum resistance and parasitic 

capacitance [8]. Secondly, parameter extraction from experimental devices is carried 

out to ensure that the device model is able to give accurate and reliable device 

characteristics between modeled and measured data [9]. When preliminary electrical 

technological parameters are verified, device analysis in MATLAB and circuit 

simulation in HSPICE is performed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A.2: MATLAB Simulation Process 
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A.2.2   HSPICE 
 

The HSPICE simulation process is shown in Figure A.3.  To run the software, model 

description of a CNTFET or a GNRFET is prepared and saved as *.sp file. It 

contains the title, initial condition of the system, model libraries, input stimuli (eg: 

DC voltage and current source or piece-wise linear source), circuit description 

analysis commands (such as DC, transient or AC analysis) and output description as 

listed in Table 3.1.  HSPICE can be run on UNIX, Linux and Windows platforms. 

 

Table 3.1:   Input netlist file sections (adapted from  [10]) 
 
Sections Examples  Description
Title .TITLE The first line is the input netlist file title
Comment * or $ Comments to describe the circuit 
Set-up .OPTIONS Sets conditions for simulation 

.IC or .NODESET Initial values in circuit and subcircuit 

.PARAM Set parameter values in the netlist 

.GLOBAL Set node name globally in netlist 
Sources Sources (I or V) and digital inputs Sets input stimuli
Netlist Circuit elements Circuit for simulation 

.SUBKCT, .ENDS Subcircuit definitions 
Analysis 

 

.DC, .TRAN, .AC, etc. Statements to perform analyses 

.SAVE and .LOAD Save and load operating point info 

.DATA Create table for data-driven analysis 

.TEMP Set analysis temperature 
Output .PRINT, .PLOT, .GRAPH, .PROBE Statements to output variables 

.MEASURE Statement to evaluate and report user-defined 
functions of a circuit 

Library, Model 
and File Inclu-
sion 

.INCLUDE General include files
.MODEL Element model descriptions 
.LIB Library
< .PROTECT> Turns off output printback 
<.UNPROTECT> Restores output printback 

Alter blocks .ALTER Sequence for in-line case analysis 
.DELETE LIB Removes previous library selection 

End of netlist .END Terminates any ALTERs and the simulation
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HSPICE is used to perform single and multipoint point analysis sweeps. These 

analyses produce a number of output files which can be viewed, analyzed and 

printed in AvanWaves or CosmosScope, products from Synopsys.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3: HSPICE Simulation Process (adapted from [11])
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A.2.3   PSPICE 
 

The CNTFET and GNRFET models have also been implemented within PSPICE 

using an Analog Behavioral Modeling (ABM) method. The carbon-based device 

model is broken down into short mathematical equations that are represented 

by ABM parts extracted from a library.  Types of ABM components are 

mathematical functions such as adder (SUM), multiplier (MULT), power (PWR) 

and logarithm (LOG). These mathematical functions are lumped together using 

expression functions using ABM1 (1 input, V output) and ABM1/I (1 input, I 

output).   

In order to run the simulation in PSPICE, the Newton-Raphson method for 

calculating the self-consistent voltage, Vsc of the channel is substituted with a 

polynomial approximation. As a result, no iterations for convergence are needed and 

this improves the execution speed tremendously.  Figure A.4 shows a selection of the 

ABM expression block functions which are used to model the I-V characteristics of 

the CNT and GNR transistors. 

 

 
 

Figure A.4: ABM modeling in PSPICE
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A.2.4   CADENCE 
 

The device performance of the HSPICE CNT and GNR circuit models are compared 

against MOSFET designs that are developed using a Cadence predictive 45 nm tech-

nology model and a TSMC 90 nm foundry technology model [12]. Two different 

platforms are used to run Cadence.  The TSMC 90 nm design kit is run on Virtuoso 

custom IC 5.1.41, an older platform which uses the original Cadence database 

(CDB) that is written in C.  On the other hand, Cadence 45nm PDK developed by 

Accelicon Technologies Inc. runs on a newer IC 6.1.3 platform.  Due to 

incompability between platforms, the EDA industry at the moment  are moving 

toward a  reformed open access (OA) database [13, 14] to replace the CDB database. 

The new database will allows EDA vendors such as Mentor Graphics, Synopsys and 

Magma Design Automation to share the kits for collaborative tool development and 

promote wide interoperability between EDA tool vendors, university research and 

development (R&D) groups and foundries. These EDA vendors are part of the 

OpenPDK Coalition [15] under Silicon Integration Initiative (Si2) [16] that are keen 

to reinvent the way ICs are designed, manufactured and marketed. The portability 

of the PDK database allows a better efficiency and cost effective technology transfer.  

In order to run Cadence, the following software shown in Table A.2 is required for a 

complete solution for front end to back end custom IC design.  

 
Table A.2:  Cadence custom IC design tools 

 
Software Release Stream Key Products 
Virtuoso Schematic Editor A schematic entry for analog, digital, RF and 

mixed-signal design  
Virtuoso Analog Design Environment Simulation, analysis, and measurement envi-

ronment  
Virtuoso Multi-Mode Simulation 
(MMSIM) 

Simulators for analog, digital, RF and mixed-
signal design (eg: Spectre) 

Virtuoso Layout Editor Accommodate custom layout of analog, digital, 
RF and mixed-signal designs at the device, cell, 
and block levels 

Assura System  and design verification suite (DRC, 
LVS and RCX) 
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The circuit and layout development of MOSFET logic gates are performed in 

Cadence IC514 for TSMC PDK and IC613 for Cadence GPDK. The PDK usually 

contains the spectre models, layout and parameterized cells, symbols, component de-

scription format (CDF) parameters and technology files such as layer definitions and 

design rules.  Detailed measures have to be taken to ensure no conflict arises 

between the old and new release software by finding a suitable version of supporting 

softwares.  

Figure A.5 depicts the process for a digital IC design carried out in this work. 

First and foremost, a schematic diagram of a circuit is created using the Cadence 

Virtuoso Schematic Editor. Next, the simulation is started by selecting the Spectre 

simulator under the Virtuoso Analog Design Environment. If there is no error, the 

circuit layout is ready to be drawn in Virtuoso Layout Editor. Following that, DRC 

is performed to make certain that the layout dimensions comply with the design 

rules of the process technology. When that is done, the layout is compared with the 

circuit schematic so that proper functionality is assured. Subsequently, the layout 

parasitics are extracted using RCX for a more accurate post-layout simulation.  All 

these verification tools run using Assura. Last but not least, the verified layout is 

converted to a foundry standard file format (eg: GDSII, CIF, etc.). 
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Figure A.5: Cadence IC Design Flow (adapted from [2]) 
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A.3 Conclusion 
 
Device modeling of CNT and GNR FETs is carried using MATLAB. Following this, 

HSPICE macromodels and PSPICE ABM models for the CNTFET and the 

GNRFET are developed for circuit simulation. A MOSFET model is generated using 

process design kits from Cadence (45 nm) and TSMC (90 nm). The performance of 

the MOSFET is used for benchmarking against carbon devices when post-layout 

simulation is performed. To have the simulation as accurate as possible, wiring 

parasitic capacitance and resistance extracted from the MOSFET layout is 

backanotated onto the schematics. Since HSPICE and PSPICE simulation are based 

on a netlist, several parasitic capacitances such as substrate capacitance Csub, source-

to-bulk capacitance Csb,  drain-to-bulk capacitance Cdb,  gate-to-source capacitance 

Cgs, drain-to-bulk capacitance Cgd , wiring capacitance, Cint are included within the 

device model. This method provides an alternative approach to post-layout 

simulation for CNT and GNRFETs. 
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B.1 Quasi-Two Dimensional Model 
 
B.1.1  Density of States for Q2D Structure 
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B.1.2  Electron Concentration for Q2D Structure 
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B.1.3  Intrinsic Velocity for Q2D Structure 
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B.2 Quasi One-Dimensional Model 
 
B.2.1  Density of States for Q1D Structure 
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B.2.2   Electron Concentration for Q1D Structure 
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B.2.3   Intrinsic Velocity for Q1D Structure 
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B.3  Summary of Relative Formulas 
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B.4  Gamma Function 
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