16 research outputs found

    DIGITAL INPAINTING ALGORITHMS AND EVALUATION

    Get PDF
    Digital inpainting is the technique of filling in the missing regions of an image or a video using information from surrounding area. This technique has found widespread use in applications such as restoration, error recovery, multimedia editing, and video privacy protection. This dissertation addresses three significant challenges associated with the existing and emerging inpainting algorithms and applications. The three key areas of impact are 1) Structure completion for image inpainting algorithms, 2) Fast and efficient object based video inpainting framework and 3) Perceptual evaluation of large area image inpainting algorithms. One of the main approach of existing image inpainting algorithms in completing the missing information is to follow a two stage process. A structure completion step, to complete the boundaries of regions in the hole area, followed by texture completion process using advanced texture synthesis methods. While the texture synthesis stage is important, it can be argued that structure completion aspect is a vital component in improving the perceptual image inpainting quality. To this end, we introduce a global structure completion algorithm for completion of missing boundaries using symmetry as the key feature. While existing methods for symmetry completion require a-priori information, our method takes a non-parametric approach by utilizing the invariant nature of curvature to complete missing boundaries. Turning our attention from image to video inpainting, we readily observe that existing video inpainting techniques have evolved as an extension of image inpainting techniques. As a result, they suffer from various shortcoming including, among others, inability to handle large missing spatio-temporal regions, significantly slow execution time making it impractical for interactive use and presence of temporal and spatial artifacts. To address these major challenges, we propose a fundamentally different method based on object based framework for improving the performance of video inpainting algorithms. We introduce a modular inpainting scheme in which we first segment the video into constituent objects by using acquired background models followed by inpainting of static background regions and dynamic foreground regions. For static background region inpainting, we use a simple background replacement and occasional image inpainting. To inpaint dynamic moving foreground regions, we introduce a novel sliding-window based dissimilarity measure in a dynamic programming framework. This technique can effectively inpaint large regions of occlusions, inpaint objects that are completely missing for several frames, change in size and pose and has minimal blurring and motion artifacts. Finally we direct our focus on experimental studies related to perceptual quality evaluation of large area image inpainting algorithms. The perceptual quality of large area inpainting technique is inherently a subjective process and yet no previous research has been carried out by taking the subjective nature of the Human Visual System (HVS). We perform subjective experiments using eye-tracking device involving 24 subjects to analyze the effect of inpainting on human gaze. We experimentally show that the presence of inpainting artifacts directly impacts the gaze of an unbiased observer and this in effect has a direct bearing on the subjective rating of the observer. Specifically, we show that the gaze energy in the hole regions of an inpainted image show marked deviations from normal behavior when the inpainting artifacts are readily apparent

    Video Manipulation Techniques for the Protection of Privacy in Remote Presence Systems

    Full text link
    Systems that give control of a mobile robot to a remote user raise privacy concerns about what the remote user can see and do through the robot. We aim to preserve some of that privacy by manipulating the video data that the remote user sees. Through two user studies, we explore the effectiveness of different video manipulation techniques at providing different types of privacy. We simultaneously examine task performance in the presence of privacy protection. In the first study, participants were asked to watch a video captured by a robot exploring an office environment and to complete a series of observational tasks under differing video manipulation conditions. Our results show that using manipulations of the video stream can lead to fewer privacy violations for different privacy types. Through a second user study, it was demonstrated that these privacy-protecting techniques were effective without diminishing the task performance of the remote user.Comment: 14 pages, 8 figure

    Image inpainting based on self-organizing maps by using multi-agent implementation

    Get PDF
    AbstractThe image inpainting is a well-known task of visual editing. However, the efficiency strongly depends on sizes and textural neighborhood of “missing” area. Various methods of image inpainting exist, among which the Kohonen Self-Organizing Map (SOM) network as a mean of unsupervised learning is widely used. The weaknesses of the Kohonen SOM network such as the necessity for tuning of algorithm parameters and the low computational speed caused the application of multi- agent system with a multi-mapping possibility and a parallel processing by the identical agents. During experiments, it was shown that the preliminary image segmentation and the creation of the SOMs for each type of homogeneous textures provide better results in comparison with the classical SOM application. Also the optimal number of inpainting agents was determined. The quality of inpainting was estimated by several metrics, and good results were obtained in complex images

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Video Inpainting by Jointly Learning Temporal Structure and Spatial Details

    Full text link
    We present a new data-driven video inpainting method for recovering missing regions of video frames. A novel deep learning architecture is proposed which contains two sub-networks: a temporal structure inference network and a spatial detail recovering network. The temporal structure inference network is built upon a 3D fully convolutional architecture: it only learns to complete a low-resolution video volume given the expensive computational cost of 3D convolution. The low resolution result provides temporal guidance to the spatial detail recovering network, which performs image-based inpainting with a 2D fully convolutional network to produce recovered video frames in their original resolution. Such two-step network design ensures both the spatial quality of each frame and the temporal coherence across frames. Our method jointly trains both sub-networks in an end-to-end manner. We provide qualitative and quantitative evaluation on three datasets, demonstrating that our method outperforms previous learning-based video inpainting methods.Comment: Accepted by AAAI 201

    Joint Visual and Wireless Tracking System

    Get PDF
    Object tracking is an important component in many applications including surveillance, manufacturing, inventory tracking, etc. The most common approach is to combine a surveillance camera with an appearance-based visual tracking algorithm. While this approach can provide high tracking accuracy, the tracker can easily diverge in environments where there are much occlusions. In recent years, wireless tracking systems based on different frequency ranges are becoming more popular. While systems using ultra-wideband frequencies suffer similar problems as visual systems, there are systems that use frequencies as low as in those in the AM band to circumvent the problems of obstacles, and exploit the near-field properties between the electric and magnetic waves to achieve tracking accuracy down to about one meter. In this dissertation, I study the combination of a visual tracker and a low-frequency wireless tracker to improve visual tracking in highly occluded area. The proposed system utilizes two homographies formed between the world coordinates with the image coordinates of the head and the foot of the target person. Using the world coordinate system, the proposed system combines a visual tracker and a wireless tracker in an Extended Kalman Filter framework for joint tracking. Extensive experiments have been conducted using both simulations and real videos to demonstrate the validity of our proposed scheme

    How Not to Be Seen -- Inpainting Dynamic Objects in Crowded Scenes

    No full text
    Removing dynamic objects from videos is an extremely challenging problem that even visual effects professionals often solve with time-consuming manual frame-by-frame editing. We propose a new approach to video completion that can deal with complex scenes containing dynamic background and non-periodical moving objects. We build upon the idea that the spatio-temporal hole left by a removed object can be filled with data available on other regions of the video where the occluded objects were visible. Video completion is performed by solving a large combinatorial problem that searches for an optimal pattern of pixel offsets from occluded to unoccluded regions. Our contribution includes an energy functional that generalizes well over different scenes with stable parameters, and that has the desirable convergence properties for a graph-cut-based optimization. We provide an interface to guide the completion process that both reduces computation time and allows for efficient correction of small errors in the result. We demonstrate that our approach can effectively complete complex, high-resolution occlusions that are greater in difficulty than what existing methods have shown

    Preservación de privacidad de personas en vídeo seguridad

    Full text link
    En este Proyecto Fin de Carrera se estudia la implementación de un módulo de preservación de privacidad para los actuales sistemas de vídeo vigilancia. El imparable despliegue de estos sistemas en muchos escenarios de nuestro día a día invita al desarrollo de técnicas que permitan ocultar los rasgos personales de los individuos involucrados en secuencias de seguimiento o tracking, siempre y cuando se pueda recuperar la secuencia original para su posible uso forense tras la correspondiente autorización judicial. En primer lugar se realiza un estudio exhaustivo del estado del arte de las técnicas existentes que permiten ocultar los rasgos personales, tanto las reversibles como las que no lo son. Además, se presenta un escenario en el cuál se puede integrar el submódulo de privacidad. Una vez detalladas todas las técnicas, se elige aquella que mejor respeta los límites de privacidad, reversibilidad y seguridad. A continuación, se programa un algoritmo que caracteriza la técnica elegida. Dicho algoritmo es evaluado con diferentes detectores de personas para estudiar su respuesta y se plantean alternativas para mejorar el funcionamiento del mismo. Una vez obtenidos los mejores resultados posibles, se integra dicho algoritmo en una aplicación que permite detectar personas tras la inclusión de la técnica seleccionada de privacidad y observar en tiempo real las características visuales del algoritmo mediante una serie de funcionalidades básicas.This Master Thesis Project consists on studying the implementation of a privacy preserving module for the existing video surveillance systems. The unstoppable growth of these systems in many scenarios of our daily life implicate the development of techniques that permit hiding personal features of those individuals involved in tracking video sequences, providing that original sequence can be restored for forensic use after corresponding judicial authorization. Firstly an exhaustive study of state of the art is performed. Existing privacy preserving techniques, those reversible and those that are not, are detailed. Furthermore, a scenario in which this privacy module can be integrated in is also presented. After this, the technique that respects privacy, reversibility and coding losses’ boundaries is selected. Later on, an algorithm that performs the selected technique is programmed. This algorithm is evaluated with several person detectors in order to study the behavior, introducing alternatives to improve its performance as well. Once best possible results are achieved, this algorithm is integrated in an application that detects persons after introducing the chosen privacy technique and shows visual real-time algorithm’s features using some basic functions
    corecore