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ABSTRACT OF THESIS

Joint Visual and Wireless Tracking System

Object tracking is an important component in many applications including surveil-
lance, manufacturing, inventory tracking, etc. The most common approach is to
combine a surveillance camera with an appearance-based visual tracking algorithm.
While this approach can provide high tracking accuracy, the tracker can easily diverge
in environments where there are much occlusions. In recent years, wireless tracking
systems based on different frequency ranges are becoming more popular. While sys-
tems using ultra-wideband frequencies suffer similar problems as visual systems, there
are systems that use frequencies as low as in those in the AM band to circumvent
the problems of obstacles, and exploit the near-field properties between the electric
and magnetic waves to achieve tracking accuracy down to about one meter. In this
dissertation, I study the combination of a visual tracker and a low-frequency wireless
tracker to improve visual tracking in highly occluded area. The proposed system
utilizes two homographies formed between the world coordinates with the image co-
ordinates of the head and the foot of the target person. Using the world coordinate
system, the proposed system combines a visual tracker and a wireless tracker in an
Extended Kalman Filter framework for joint tracking. Extensive experiments have
been conducted using both simulations and real videos to demonstrate the validity of
our proposed scheme.

KEYWORDS: Tracking, wireless, visual, kalman filter, homography
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Chapter 1

Introduction

In recent years, there has been a flurry of research and development in the use of

smart surveillance systems. The combination of inexpensive cameras, intelligent ob-

ject identification and tracking algorithms allow such systems to be used in diverse

applications from infrastructure protection to smart home environments. On a sepa-

rate front, the myriad of radio frequency identification and tracking systems have also

enjoyed an enormous growth mostly in the area of inventory tracking. The combina-

tion of these different tracking systems, can potentially increase the tracking accuracy

significantly and unlock interesting applications. In this dissertation, I investigate one

such combination by using a visual tracker with a low frequency wireless tracker to

improve visual objecting in highly occluded area. Before discussing the contributions

of this work lets first review a number of applications that can benefit from combining

visual tracking and wireless tracking.

• Smart Rooms act as invisible butlers. They have microphones, cameras, and

other sensors to interpret what people are trying to do in this room. In such

rooms to track individuals instead of just using a camera and a visual tracker

a wireless tracker can be deployed and used to track the people. Such smart

rooms can be used for crisis management and mobile command posts to deal

with emergencies.

• Wireless sensors that monitor the traffic speed and lane occupancy like the
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Digital Traffic Pulse sensor network. These sensor networks are used to identify

the speed limits of the vehicles and if such wireless sensors are used along

with the cameras and visual sensors it might be possible to identify the license

numbers too of the vehicles that crossed the speed limits.

• While video surveillance can provide the most direct visual information, it can

be obstructed by clutters and other environmental factors. A wireless tracking

system used in this proposal can solve this problem as it supports accurate

tracking through walls and other obstructions. On the other hand, tags carried

by the human subjects (which emit radio frequency signals) are prone to a host

of security attacks, especially in a hostile environment like a correctional facility.

Tags may be replaced, destroyed or even under sophisticated attacks like RF

jamming, cloning or replay attacks. By relating the tag locations to the visual

biometrics from a video surveillance system, the identity of the person with the

wireless tag can be easily validated.

• Privacy protection requires the subject whose privacy to be protected to be

tracked and identified over each frame. Along with a simple visual object

tracker, the use of a wireless tracker, with the subject wearing a wireless tag

with a specific frequency helps in identifying the subject over each frame.

1.1 Motivation

In this research work we propose a joint wireless and visual tracking scheme based

on graphical models, to track individuals in videos especially during occlusion. Track-

ing using a camera as a sensor and tracking using wireless sensors are complimentary.
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Visual tracking highly depends on the environmental conditions such as lighting, oc-

clusion, etc. Low frequency wireless tracker usually does not depend much on such

environmental conditions and can track people even through occlusion or when the

lighting is very poor. The disadvantages of using a low frequency wireless tracker

is that it is highly sensitive and noisy. It does not convey any other visual infor-

mation other than just the location of the subject being tracked. For example in

existing surveillance environments like an office, occlusion would be naturally present

when the subject being tracked is standing in a line at the counter or the teller at

the counter is sitting behind a computer or walking behind a cupboard. In such an

environment the joint visual and wireless tracker would be advantageous due to the

complimentary nature of the visual tracker and wireless tracker.

1.2 Contribution of thesis

In this thesis we present a joint visual and low frequency wireless tracker to track

subjects even when the subjects are occluded for a long duration. Such a scenario

can occur in regular office environments, airports, shopping malls or even it can be

tried to track sports players in soccer fields. We propose to use just the ground plane

homography and perform tracking in the world coordinate system. The fusion of the

visual tracker with the wireless tracker is achieved using a probabilistic framework

based on graphical models. The major contribution of this thesis is the data fusion

scheme based on graphical models. Secondly we evaluate the proposed scheme using

both simulated data and real videos to test its robustness and efficiency.
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1.3 Thesis Outline

The thesis is organized as follows: In Chapter 1 the applications of the proposed

joint visual and wireless tracking scheme are discussed and a brief motivation for

this research work is proposed. Chapter 2 analyzes the existing literature on visual

tracking, wireless tracking and data fusion schemes for tracking. In Chapter 3 we

propose the joint visual and wireless tracking system. We explain graphical models,

define the state vector and derive the equations for prediction and update for a kalman

filter. In Chapter 4 we discuss about synchronizing the wireless tracker and the visual

tracker using the network time protocol. We also discuss the background subtraction

algorithm used in the tracker, propose a method to detect occlusion in the videos,

and analyze on how the model parameters are estimated. The proposed scheme is

evaluated in Chapter 5 using simulations on synthetic data and experiments on real

videos too. The thesis is concluded in the Chapter 6 where the scope for future work

is also discussed.
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Chapter 2

Related Works

This section analyzes the existing research in visual tracking, wireless tracking and

data fusion. The first section discusses previous work in visual tracking.

2.1 Visual Tracking

In this section we discuss the existing literature on visual tracking and how they

deal with occlusion. Broida et al make use of the kalman filter to track points in

the noisy images in [1]. They propose a recursive solution to estimate the motion

parameters of an object over a sustained period of time by considering a large sequence

of frames or images. The tracking scheme is based on the extended kalman filter using

correspondences between object points in a sequence of images. The dynamics of the

system is linear while the measurement model is non linear. The scheme is efficient

with the data being considered one frame at a time and the estimates of the motion

parameters are improved and bettered upon as additional data are used. The authors

do not discuss how they deal with occlusion in this research work. Since the extended

kalman filter is used for tracking, during occlusion the absence of new measurements

would result in the prediction gradually diverging from the actual position of the

subject being tracked.

Rosales et al use extended kalman filter to estimate the 3D trajectory of an object

from 2D motion in [2]. The extended kalman filter formulation that the authors

propose is very interesting. The authors model each object as a 3D box and assume
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that the 2D bounding box in each frame is a projection of the 3D bounding box.

The tracking is performed with a state vector of the real world coordinates. Hence

the measurement model in this case is non linear. They deal with occlusion using

higher level mechanisms which provide a feedback mechanism based on the prediction

and error from the extended kalman filter. They also discuss a reasonable solution for

tracking during occlusion by suggesting a temporal analysis and trajectory prediction.

The authors suggest a scheme that maintains a map of the previously segmented and

processed frame. The authors then use the map as an approximation of the connected

elements in the current frame and compare the connectivity in the current frame and

the previous frame. Through the trajectory prediction the authors make use of the

extended kalman filter to estimate the 3D motion trajectories based on a 3D linear

trajectory model. The issue with the proposed scheme is that during occlusion the

extended kalman filter does not have any new measurements from the image and

if the duration of occlusion is large, the prediction from the extended kalman filter

gradually diverges from the actual position.

Needham and Boyle in track multiple sports players through occlusion using a

multi target tracking scheme based on particle filters. The tracker in this proposed

scheme has been developed for the sports science industry (to analyze players move-

ments within the soccer field) and also in general the interaction between the players

and teams. The authors perform tracking using the ground plane coordinates in this

scheme as in a playing field the players might occlude each other even if they are a

meter away from each other on the ground plane. The authors do mention that the

use of predicted estimates and improving them using the kalman filter helps tracking
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during occlusion but do not explain how it does [3].

One of the issues with existing visual tracking schemes alone is that when multiple

objects are being tracked using kalman filter or particle filters one needs to establish

the correspondence between the measurement for a particular object to the that of

the objects state. This issue can be resolved with the combined visual and wireless

tracking scheme as the subjects being tracked wear a RFID tag of unique frequency

and even under conditions of proximity the two subjects can be distinguished on the

basis of the RFID tag frequency. On the other hand when visual tracking alone is

used to track multiple objects, one can use techniques such as Multiple Hypothesis

Tracking or Joint Probability Data Association Filtering [4].

Sidenbladh et al provide a Bayesian formulation for tracking. The authors define

a generative model for 3D human figures. The authors model almost all the parts of

the human body as a cylinder except for the torso which is modeled as an elliptical

cross section. All the cylinders are right circular. The authors propose an approach

using particle filtering which is used to propagate the posterior distribution over time.

The authors do account for self occlusion from the limbs and body parts movements,

but not much has been discussed about occlusion between one subject and another.

Also the results provided in the article involve tracking of individual subjects in the

environment. The case of tracking multiple individuals is not being discussed by the

authors in this paper [5].

Konstantinos Moustakas et al present a framework to synthesize stereoscopic video

using as input the monochromatic image alone [6]. Extended kalman filters are used

to recover the 3D structure and motion. A new bayesian framework is also proposed
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to deal with occlusion and misclassification of pixels.

Otsuka et al model the spatial structure of the occlusion process between objects

and uncertainity based on 2D silhouette based visual angles [7] . Occlusion structure

is defined as the tangency between the objects and the edges of the visual angles.

The authors then formulate the problem of occlusion as one of recursive bayesian

estimation for the hypothesis generation of occlusion structure and estimation of the

posterior probability of the object posture and position.

While these probabilistic techniques excel in resolving multiple object matching, it

is the visual feature used which creates the most problem during occlusion. One of the

most commonly used feature for visual tracking is the silhouette of the object. The

silhouette matching trackers match either the shape or the contour of the object in the

current frame with those from previous frames. The idea behind citing these trackers

are that I believe that Shape Matching trackers and contour matching trackers should

fail under occlusion.

Huttenlocher et al propose a shape-model based tracker in [8]. The author per-

forms shape matching using edge based representation and Hausdorff distance is a

metric to compare two sets of points in terms of the least similar members. So in the

case of matching the edges the hausdorff distance is used as a measure to obtain mis-

matched edges. The author uses the edge map of the head and the torso of the body

as these are the parts that are least susceptible to changes when the subject being

tracked is walking. The authors again do not even discuss how occlusion affects their

tracking scheme. Comaniciu et al propose a new framework for tracking of non-rigid

objects in [9]. The authors define a similarity function which is spatially smooth by
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masking the target spatially using an isotropic kernel. The authors propose that after

the above step, the target localization problem now changes to identifying the basin

of attraction of this similarity function. The authors make use of a metric derived

from the Bhattacharya coefficient to measure the similarity between the target model

and the target candidates. The authors represent the target model as an ellipsoidal

region in the image. To find the location of the target corresponding to the current

frame the authors propose to minimize the derived metric from the Bhattacharya co-

efficient as a function of the locations of the target candidates. The proposed scheme

works for only partial occlusions and complete occlusions are not discussed.

Shafique et al establish a correspondence of points between successive frames in

a graph theoretic approach in [10]. The authors propose a multi frame approach to

obtain the speed and position of the object and maintain coherency of the same. The

authors define the problem of tracking as one which involves identification of track

points which corresponds to only one set of real world points. In other words the

authors define the problem with conditions which state that each real world point

has one and only one track point in the image. The authors proposed framework also

deals with the false positives and missed detections also. The framework optimizes a

gain function over multiple frames. The authors deal with the problem of occlusion

in the research work by using the greedy optimization scheme which is non iterative.

Tracking using multiple cameras to deal with occlusion has been proposed by

Javed et al [11]. The authors combine multiple cues such as object velocity, inter

camera intervals and the location of the exit and entrance in the environment are

combined within a bayesian framework. The tracking system has a prior training
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phase when the kernel density estimators are used to estimate the probability of an

object entering a certain camera at a certain time given the location, time and velocity

of its exit from the other cameras.

Maccormick et al propose an exclusion principle permitting the observation model

used to interpret the image measurements to let two objects to occupy the same point

in configuration space thereby working under occlusion too. The authors mode the

target objects by their outlines as B splines. The authors call such an outline as a con-

tour. Tracking is performed by making use of the particle filter. The authors though

do propose a probabilistic method for tracking in occluded scenarios the duration of

occlusion is not discussed again [12]. Sudderth et al make use of non parametric

belief propagation to track a three dimensional model of the human hand. The au-

thors represent the different human hand model constraints as undirected graphs and

build a tracking algorithm using Non-parametric Belief Propagation. The authors

state that the hands of a human body never form mutually occluding configurations.

The authors do not discuss about track recovery, when the tracker fails and tracks

arbitrarily and its ability to recover and track the hand model again [13].

Senior et al propose a tracking scheme making use of appearance models to track

objects through complex real world interactions. The authors make use of a two tier

architecture in which the higher lever architecture associates foreground regions in the

adjacent frames to construct the tracks. This is achieved by constructing a distance

matrix by computing the bounding box distance between the bounding boxes. The

authors then propose to use an appearance model to resolve and improve the tracks

during occlusions. The appearance model is built by associating the foreground pixels
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to it in each track [14]. Object tracking by template matching and further smoothen-

ing of the track results by making use of a kalman filter for each pixel is performed

in by Nguyen et al [15]. The authors propose that the tracker is also resistant to

changes in the lighting conditions and severe occlusions.

In the above feature based tracking techniques, the tracker depends on features

extracted from each frame like color or hue. The external environmental conditions

change with changing lighting conditions affecting the tracking.

Gabriel et al summarize the techniques and systems to deal with occlusion based

on single cameras and multiple cameras in [16]. The authors classify the techniques

as merge-split approach and straight through approach. In the merge-split approach

the authors mention that the if there are multiple blobs, the attributes of these blobs

are updated till the point of occlusion and at the point of occlusion when a combined

blob is obtained, it is considered as an entity and its attributes are updated. Once

the combined blob splits again, the problem to be solved remains that of associating

and re-identifying the attributes of each blob. Mackenna et al make use of color cues

to disambiguate occlusions and color and gradient information to cope with shadows

during background subtraction [17]. For the purposes of tracking the authors in this

paper describe regions as a set of connected components that are tracked over a set of

consecutive frames. People is described as a person comprising of one or more regions

grouped together and Groups are defined as one or more people grouped together.

Bremond et al propose a tracking scheme to track multiple non rigid objects in video

sequences [18]. The authors make use of the merge-split approach during occlusions.

When the occlusion mentioned as ambiguous correspondence is detected the authors
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call it a Compound Target. The compound target is tracked as a new temporary

target and then when more information is available the ambiguous and temporary

targets are associated. The authors state that in the straight through approach the

individual objects are tracked even through occlusion. According to the authors most

of the tracking schemes using this approach have been based on appearance features

of the object to associate each pixel with a label.

2.2 Wireless Radio Frequency Tracking

In recent years we have witnessed an explosive growth in the use of radio frequency

equipment for tracking and identification of assets. National Scientific Corporation

have developed Wi-Fi tags to enable tracking. The advantage of the Wi-Fi technolo-

gies are one does not need to deploy new sensors, but integrate it with the existing

Wi-Fi networks within the office complex. It also has a range of a few hundreds

of meters. Another manufacturer Airetrak claim to have developed an asset track-

ing system that works across standard 802.11 wireless LAN. The manufacturer also

claims that since the Wi-Fi tracking system operates at a frequency of 2.4 GHz there

is very little interference from other wireless equipment.

Ultra Wideband (UWB) technologies are being developed in NASA-Johnson Space

Center. The advantages of a UWB tracking system is that UWB has low spectral

density enabling it to be used with other communication systems. It is also resistant

to multipath interference and has a time resolution up to the picoseconds. And due

to this fine time resolution the UWB technologies can be used for precise position

tracking. To estimate the location of the radio source different approaches like angle
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of arrival, time of arrival, time difference of arrival, relative signal strength are being

used. The authors in [19] make use of a UWB tracking system with a time difference

of arrival algorithm to build a prototype of a tracking system targeted for space

applications.

Foursa et al propose a wireless infrared motion tracking system to track a stylus

and the head of a user. The authors make use of infra red monochrome cameras and

an RGB frame grabber. The authors then detect the infrared beacons on the image.

Then a 2-D transformation is performed to transform the distorted image coordinates

to the undistorted camera sensor coordinates. Since three different monochrome

cameras are made use of, by using an epipolar constraints are used to obtain the

corresponding image points and finally obtain the 3-D coordinates [20].

Most of existing wireless technologies are not capable of accurately tracking a

subject in indoor environment due to complicated signal propagation characteristics

and challenging radio frequency (RF) propagation environments. Traditional high

frequency wireless tracking technologies like ultra-high frequency (UHF), 2.4 GHz,

and ultra-wideband (UWB) systems do not work well at significant ranges in the

highly reflective indoor environments. Conversely, more accurate short-range track-

ing technologies, like infrared (IR) or ultrasonics, require an uneconomically dense

network of sensors to provide tracking in a correctional environment. In this thesis,

we use a new low-frequency (LF) tracking system.

The LF wireless tracking system we used is called QT-400 Starter Kit. It is

based on Near-Field Electromagnetic Ranging (NFER R©) developed by Q-track Inc

[21]. Each user wears an active RFID tag that broadcasts a RF signal of unique
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frequency within the AM broadcast band (530-1710 kHz) that is detected by three

antennas for triangulation. After a careful calibration to establish the correspondence

between the RF signals and the ground coordinates of many pre-selected calibration

points, the active tag can then be continuously tracked in real-time. Unlike other

RFID systems, NFER R© exploits the properties of medium and low-frequency signals

within about a half wavelength of a transmitter. The low frequencies used by NFER R©

are more penetrating and less prone to multi-path than the typically-used microwave

frequencies. The manufacturer claims to provide real-time tracking performance of

uncertainty of 60 centimeters when the antennas are 55 meters apart [22].

2.3 Data fusion for object tracking

In this section we discuss existing literature on data integration schemes used to

track assets and subjects.

Siebel et al combine a head detector, a shape tracker and a region tracker to

provide a multiple cue tracking system. The authors use a motion detector which

detects the moving objects in the background [23]. The region tracker tracks the

moving regions detected by the motion detector. The authors perform background

subtraction to detect people moving in the video. The authors achieve the same by

maintaining a background model of the scene. It splits regions if these regions contain

more than one person. The region detector checks whether a significant part of the

region covered by the region tracker was not covered by the shapes in the region.

If the region detector establishes that there are more than one subject in the given

region, then the given region is further divided in to sub regions and each individual
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sub region is further tracked. In the subsequent frames again the region detector

performs a region splitting if there are multiple persons in the video and each sub

region are individually processed by the active shape tracker and the head detector.

The authors do provide a reasonable solution to deal with occlusion by making use of

both the region tracker and the active shape tracker. The region tracker makes use of

region splitting when an occlusion is detected and a single whole region which is the

output of the motion detector is split in to multiple regions. These multiple regions

form the input to the active shape tracker and the head detector. The authors do

not discuss on the duration of the occlusion and the effect of sustained occlusion in

this paper.

Spengler et al implement two integration schemes in their research work [24]. The

authors implement a democratic integration scheme for combining multiple cues and

also a particle filter scheme. Democratic integration scheme was proposed by [25]

in which the multiple modalities used for data integration agree upon a result. This

result serves as a basis when the environment changes ensuring that the modalities

are adaptive. The democratic integration scheme provides single hypothesis tracking.

In this scheme five visual cues are used to agree upon a common position. They

propose that the democratic integration can be used for single object tracking. On

the other hand the authors test the particle filter cue integration scheme with a two

person sequence to prove that the particle filter scheme works for tracking multiple

people. They propose an effective scheme of dealing with occlusion by making use of

the particle filter, visual cue integration scheme. The authors do not discuss about the

case when perspective projection is involved. In the results provided by the authors
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the two subjects being tracked their height does not change at all. The authors do

not discuss the case of how the tracking is affected in case the subjects height keeps

changing.

Perez et al combine audio cues and visual cues to provide an effective multi modal

tracking scheme for the purposes of teleconferencing [26]. The authors also demon-

strate combining visual cue with motion for video surveillance. Particle filters are

proposed for fusing the multiple modalities as it can be used for non gaussian dis-

tributions too. The authors provide a data fusion scheme for both highly localized

environments like a teleconference setting and also a generic environmental setting

like office where video surveillance is essential. The disadvantage of the audio cue is

it usually does not give the vertical height factor for the subject being tracked as only

the two dimensional location of the person speaking can be obtained using the audio

cue. So it can be used in only specific environments for tracking.

We discuss probabilistic and graphical model based schemes for data integration

in this section. Xue et al propose a graphical model based cue integration scheme

for head tracking [27]. The authors also propose a new inference procedure based

on a non parametric belief propagation. The proposed scheme considers that an

object is represented by M modalities and corresponding to a state space. The

state spaces of all the cues are dependent on each other and are connected to be a

Gibbs Field. The authors proceed to describe the new inference procedure using non

parametric belief propagation by representing each message and belief as a weighted

sample set. Head tracking is demonstrated by selecting three cues-Color, Shape and

Intensity. The authors approximate the projection of the head in the image as an
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ellipse. The authors demonstrate head tracking under conditions of partial occlusion

using the proposed graphical model cue integration scheme. Leichter et al propose a

probabilistic framework to combine multiple tracking algorithms [28]. The framework

is built on the assumption that each tracking algorithm is conditionally independent

of the other algorithms. The advantage of the proposed framework is that there is no

necessity to switch between the different tracking algorithms explicitly. The weighting

of the cues from the individual trackers are done implicitly. Also trackers having

different state spaces can be combined using the proposed framework. The above

framework fails from occlusion even from a tree. The proposed framework fails to work

for occlusions of short durations. Wu et al integrate rough models of multiple cues

based on a probabilistic factorized graphical model [29]. The authors use importance

sampling and a sequential monte carlo algorithm to for the co-inferencing of multiple

cues. The authors do experiment cases of occlusion in this paper, but the duration of

occlusion upon which the algorithm is tested is relatively small. The authors test for

object to object occlusion where one subject’s face occludes the second subject’s face.

The duration of object to object occlusion is relatively small when both the objects

are human subjects. The authors do not explain the effect of sustained occlusion in

this paper.

Oruc et al test the combination of cues for the task of slant estimation [30].

Though this paper does not entirely relate to object tracking it tests out different

cue combination strategies. The authors test out basic cue combination like weighted

linear cue combination for combining correlated cues. The authors test out the ex-

periment of adjusting the slant of a plane on eight different observers. The two cues
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used where linear perspective cue and a texture cue. The authors notice that the ob-

servers make use of the lesser reliable cue when the cue with higher reliability becomes

noisier.

Branson et al propose a scheme that makes use of a multiple blob tracker and a

contour tracker to deal with severe occlusions [31]. The authors use the proposed

scheme to track the mice using a video of the side view of the cage. The area over

which the tracking has been done seems to be substantially small compared to tracking

for the applications proposed in this thesis. Mice on the other hand are small tracking

objects which when tracked over a video might create occlusions over small durations

only.
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Chapter 3

Model Design

In this chapter, we discuss the sensor and object models, as well as the Kalman Filter

framework used in the proposed combined tracker.

3.1 Sensor Model

There are two types of sensors used in our system: a camera and an active low-

frequency wireless tracking system. A camera captures the 3-D world by projecting

it onto a 2-D image plane. The wireless tracker provides the two dimensional coor-

dinates of the subject carrying an radio frequency transmitter. In order to develop a

system that can simultaneously make use of both sensors for tracking, the geometrical

information they provide must be combined in a uniform coordinate system. Assum-

ing a pinhole camera model, the 3D world coordinates of a point and its 2D image

coordinates are related by a projective transform:

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34




(3.1)

Ximage =
(p11Xworld + p12Yworld + p13Zworld + p14)

(p31Xworld + p32Yworld + p33Zworld + p34)
(3.2)

Yimage =
(p21Xworld + p22Yworld + p23Zworld + p24)

(p31Xworld + p32Yworld + p33Zworld + p34)
(3.3)
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The ground plane in the world coordinate system can be considered as a two

dimensional plane as the third dimension Zworld happens to be 0 for the ground plane.

If the Zworld is set as zero then the perspective projection matrix can be simplified

as follows to represent a mapping between the two dimensional ground plane and the

image plane.

H = homography =




p11 p12 p14

p21 p22 p24

p31 p32 p34




(3.4)

Ximage =
(p11Xworld + p12Yworld + p14)

(p31Xworld + p32Yworld + p34)
(3.5)

Yimage =
(p21Xworld + p22Yworld + p24)

(p31Xworld + p32Yworld + p34)
(3.6)

The use of homography simplifies the calibration process as we are concerned only

with calibration points on a plane. This process is not limited only to the ground

plane but can be applied to any plane parallel to the ground plane, using of course a

different homography. In fact, two homographies are used in our human model which

captures the characteristics of our tracking object.

The human model is assumed to be that of a planar rectangle in the 3-D world.

The height of the rectangle is assumed to remain constant but the width of the

rectangle is assumed to be changing with that of the pose and posture. In the image

plane the subject being tracked has a Top Point (denoted by TP - image coordinates

of the head) and a Bottom Point (denoted by BP - image coordinates of the foot of
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the subject being tracked). In the world coordinate system, all the TP’s of the same

subject at different time instants are coplanar to each other due to the constant height

assumption. Similarly all the BP’s are coplanar to each other as they all lie on the

ground plane. Hence the two dimensional coordinates of the subject being tracked in

plane of the head map to image coordinates of the head by a homography. Similarly

the two dimensional coordinates of the subject being tracked with respect to the

ground plane or the foot, map to the image coordinates of the foot by a homography.

3.1.1 State Vector

In this section we discuss the state vector for the joint wireless and visual tracker.

The state vector captures all the essential information of the tracked subject and is

used to combine information from various sensors at different time instances. The

internal state of the tracking is defined as follows:

st =




xf (t)
yf (t)
h(t)
w(t)
xf1(t)
yf1(t)




(3.7)

where h represents the height of the subject being tracked, w represents the width

of the person being tracked and xf and yf represents the two dimensional world

coordinates of the foot. The above state would be updated based on the sensor

measurements and the assumed dynamics of the subject.

We assume that the dynamics of the subject is linear, for example a constant

velocity or constant acceleration model. The sensor measurement model for the wire-

less tracker is also linear as the measured 2D coordinates relate to the actual ground
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plane by a similarity transform. For simplicity, we absorb this similarity transform

in our calibration of the wireless tracker and use an identity when comes to propa-

gating the information to the state vector. On the other hand the image coordinates

map to the ground plane coordinates based on the homography between the ground

plane and the image plane. This is a non linear measurement model for the image

coordinates. Thus the dynamics, the measurement on the wireless tracker, and the

visual measurement can be represented as follows:

st+1 = Ast + Gwt (3.8)

mImage
t+1 = f(st+1) + Imagemeasnoise (3.9)

mRFID
t+1 = Cst+1 + RFIDmeasnoise (3.10)

Equation 3.12 represents the dynamics in which the state vector st at time instant t

is moved to st+1 at time t + 1 according to the motion matrix A and process zero-

mean white noise wt with covariance. The motion matrix applies mainly to the foot

coordinates. It has no effect on the height as we assume that to be constant. We also

ignore the complex dynamics of the change of width due to posture and models the

variability with a high noise variance. Equation 3.9 represent the measurement of the

camera sensor, while equation 3.13 represents the measurement on the wireless tracker

where mRFID
t is the 2D world coordinate measurement from the wireless tracker and

C defined as follows:

C =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
(3.11)
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The function f in 3.9 represents the homography H. We assume that the camera

can provide us, after some low-level vision processing, the four corners of the bounding

box of the subject in the image plane. These corners are the images of the four corners

of our world human model. The world coordinates of the four corners are derived

in Equation . The non-linear function f is composed of two homographies: the first

homography maps the world coordinates of the two corners on the ground plane to

the image coordinates and the second one transform the remaining two corners.

Next, we discuss how measurements at different instances are combined and used

to predict future states. The primary tool used is a Kalman Filter and we will use a

probabilistic graphical model to represent each state and measurement [32]. A prob-

abilistic graphical model represents each random variable as a node in a graph and

conditional dependency as edges between nodes. The advantage of using a graphical

model is that the notation is easy to understand and interpret. Also the inference

procedure is well studied for almost all types of graphs regardless of their complexity.

Inference is used to find the unknown probabilities of unobserved random variables

based on the available evidence in other random variables. There are many algo-

rithms for performing inference in a graphical model. Some of these algorithms are

Elimination, Belief Propagation, Message Passing Algorithms and the Junction Tree

algorithm [32]. The inference in the Kalman filter is similar to inference in the Hid-

den markov models. The Hidden Markov models and Kalman filter are special cases

of the junction tree algorithm which is used to perform inference in graphical models.

Inference in kalman filter comprises the computation of the posterior probability of

the states given an output sequence. The output sequence is the measurement that
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is made using the wireless sensors and the image coordinates that are obtained from

the visual tracker. The posterior probability of the states in the kalman filter are

computed recursively.

Calculating the posterior probability can be a tedious procedure if arbitrary den-

sity function is allowed. In Kalman filter, all the process and measurement noise

processes are assumed to be multivariate Gaussian. Assuming that the initial state

vector is also Gaussian, linear dynamics and measurement equations will imply that

all the subsequent state vectors and measurements are Gaussian. As Gaussian distri-

bution is parametrized by mean and covariance, the recursive procedure only involves

linking the conditional means and covariances at neighboring moments in time.

Before discussing this recursive procedure, we note that our image measure proce-

dure is non-linear due to the use of homographies. Rather than abandoning the entire

framework of Kalman filter, the non-linear measurement can be approximated by a

linear version via Taylor series expansion. Such an approximation is called Extended

Kalman Filter (EKF) and its formulation will be discussed in Section 3.3.

3.2 Kalman filter with single measurement

In this section we derive the recursions for mean and covariance of the internal

state for a Kalman Filter with a single output sequence.

In Figure 3.1 the state space model or graphical model for kalman filter is shown.

The shaded nodes are known measurements while the hollow nodes are unknown

random variables. If we assume xt represents the state of the system and yt represents

the measurement of the system then the dynamics and the measurement are shown
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(a) State Space Model

Figure 3.1: Graphical Model for Kalman Filter

below:

xt+1 = Axt + Gwt (3.12)

yt+1 = Cxt+1 + vt (3.13)

where vt is a gaussian random variable with zero mean and covariance matrix R, and

G is the input matrix. We wish to estimate the state xt+1 based on the partial output

sequence y0,....yt+1. At the beginning of the time instant yt+1 is not available. Hence

the yt+1 is unshaded in Figure 3.1. That is we wish to calculate P (xt+1|y0, ...., yt, yt+1).

Let us have a notation which uses x̂t+1|t+1 to represent the mean of xt+1 conditioned on

the partial sequence y0,....yt+1. The covariance matrix of xt+1 conditioned on y0,....yt+1

is denoted Pt+1|t+1. We assume that we have already calculated P (xt|y0, ...., yt), that

is we have calculated x̂t|t and Pt|t as the mean and the covariance matrix can be used

to define a gaussian distribution. We now have a time update and a measurement

update.

Let us consider a time update step. The dynamic equation is as follows:

xt+1 = Axt + Gwt (3.14)

25



We take conditional expectation on both sides of this equation. Since wt is noise and

is independent of the conditioning variables y0,....yt, the second term vanishes and we

have the following:

x̂t+1|t = Ax̂t|t (3.15)

Similarly taking the conditional covariance on both the sides of the dynamic equa-

tion we have:

Pt+1|t = APt|tA
′ + Q (3.16)

where we have Q as the covariance of the noise in the dynamic equation. Now we

proceed further in the graphical model fragment and calculate the conditional mean

and covariance of yt+1 as well as the conditional covariance of xt+1 and yt+1.

E[yt+1|y0, ....yt] = E[Cxt+1 + vt+1|y0, ....yt] = Cx̂t+1|t (3.17)

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′|y0, ....yt] = CPt+1|tC

′ + R (3.18)

E[(yt+1 − ŷt+1|t)(xt+1 − x̂t+1|t)
′|y0, ....yt] = CPt+1|t (3.19)

Now the conditional distribution of xt+1 given yt+1 can be obtained as follows:

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′(CPt+1|tC

′ + R)−1(yt+1 − Cx̂t+1|t) (3.20)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
′(CPt+1|tC

′ + R)−1CPt+1|t (3.21)

The above recursions constitute the Kalman filter. From the above equations

Kalman gain is defined as follows:

Kt+1 = Pt+1|tC
′(CPt+1|tC

′ + R)−1 (3.22)
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Using the above notation we have:

x̂t+1|t+1 = x̂t+1|t + Kt+1(yt+1 − Cx̂t+1|t) (3.23)

3.2.1 Kalman Filter using two measurements

In this section we introduce the joint wireless and visual tracking graphical model

and derive the equations for mean and variance of the internal state of the graphical

model.

Figure 3.2: Graphical Model for Joint Wireless and Visual Tracker

Based on the joint wireless and visual tracker and graphical model in 3.2, the state

space models for the kalman filter can be represented as follows:

xt+1 = Axt + wt (3.24)

yt+1 = f(xt+1) + measnoiset+1 (3.25)

zt+1 = Cxt+1 + nt+1 (3.26)
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z represents the wireless sensor state measurement and y represents the visual mea-

surement. Before deriving the mean and the variance of the state, the measurement

for the visual tracker has to be linearized. The non linear measurement of the visual

tracker can be linearized by using the taylor’s series which can be used to represent

a function as an approximate sum of its derivatives evaluated in the neighborhood of

a real or complex number.

yt+1 ≈ f(x̂t+1) +∇f(x̂t+1)(xt+1 − x̂t+1) + measnoiset+1 (3.27)

After linearizing and then rearranging 3.27 we redefine a new measurement variable

as follows:

ỹt+1 = yt+1 − f(x̂t+1) + f · x̂t+1 (3.28)

and result in the following linearized measurement sequence:

yt+1 − f(x̂t+1) + f ′(x̂t+1)x̂t+1 = f ′(x̂t+1)(xt+1) (3.29)

yvisual = f ′(x̂t+1)(xt+1) (3.30)

D = f ′(x̂t+1) (3.31)

We assume that we already have the distribution of the state estimate x at in-

stant t conditioned on the measurements from the first instant upto t, that is we have

P (xt|y0, ...., yt, z0, ...., zt). We wish to compute P (xt+1|y0, ...., yt, z0, ...., zt) in the time

update step. This can be then updated to either P (xt+1|y0, ...., yt, z0, ...., zt, zt+1) fol-

lowed by computing P (xt+1|y0, ...., yt, yt+1, z0, ...., zt, zt+1) in the measurement update

step. We denote mean of xt conditioned on y0, ...yt, z0, ...zt as x̂t|y0...yt,z0,...zt .

The mean and covariance for the state variables for the graphical model stated
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above can be written as follows:

x̂t+1|y0...yt,z0,...zt+1 = x̂t+1|y0...yt,z0,...zt + Kz
t+1(zt+1 − Cx̂t+1|y0...yt,z0,...zt) (3.32)

Kz
t+1 = Pt+1|y0,...yt,z0,...ztC

′(CPt+1|y0,...yt,z0,...ztC
′ + R)−1 (3.33)

where R is the covariance of the noise term nt+1 in 3.26. Kt+1 is the kalman gain

in 3.32 and in 3.33. To compute the covariance Pt+1|y0,...yt,z0,...zt,zt+1

Pt+1|y0,...yt,z0,...zt,zt+1 = Pt+1|y0,...yt,z0,...zt −Kz
t+1CPt+1|y0,...yt,z0,...zt (3.34)

The next step would then be to compute x̂t+1|y0...yt,yt+1,z0,...zt+1 . This can be written

as follows:

x̂t+1|y0...yt,yt+1,z0,...zt+1 = x̂t+1|y0...yt,z0,...zt+1 + Ky
t+1(yt+1 −Dx̂t+1|y0...yt,z0,...zt+1) (3.35)

The kalman gain can be written as follows:

Ky(t+1) = Pt+1|y0,...yt,z0,...ztD
′(DPt+1|y0,...yt,z0,...ztD

′ + R)−1 (3.36)

3.2.2 Kalman Filter having irregular measurements

In the previous sections we discussed about how multiple measurements can be

fused using a graphical model. But in the proposed graphical model in the section

3.2.1 the measurements from the multiple trackers are at an equal rate and hence

the measurements are available for the joint tracker at the same time instants. The

graphical model would be different when the measurements from the multiple trackers

are available for the joint tracker at different time instants. Under such a scenario at

certain specific instants either one of the two trackers would not have any new mea-
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surements while the other tracker would have a new measurement available. This can

be dealt in a manner similar to the way in which occlusion is dealt in the joint tracker.

During occlusion in the joint tracker there might not be any new measurements from

the visual tracker.

Figure 3.3: Joint Tracker with irregular measurements

In Figure 3.3 the wireless measurements at time instants 1 and 2 are not available

as the wireless tracker has a different measurement rate when compared to the visual

tracker. Hence the prediction at time instant 2 and 3 will be weighted more by the

visual tracker and less by the wireless tracker.
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Chapter 4

Estimating Model Parameters

In this chapter we discuss about the background subtraction algorithm used to identify

the objects in motion in videos. We also discuss about the calibration procedure used

to calibrate the wireless tracker system. We further discuss about how occlusion is

detected when multiple subjects are walking in the environment before concluding the

chapter explaining on how we obtain the model parameters such as initial velocity

along both the horizontal and vertical direction, the covariances of the process noise

and the measurement noise, how the measurement noise is obtained and the initial

parameters of the combined kalman filter.

4.1 Foreground Extraction

The moving blobs and the bounding boxes around them are extracted using a

background subtraction algorithm proposed by Horpraset et al [33] and [34]. The

background subtraction algorithm needs to be trained using a static background.

The background is modeled as a 4-tuple using the expected color value, the standard

deviation of the color value, the variation of the brightness distortion and the variation

of the chromaticity distortion. During classifying phase, each pixel of the incoming

frame is classified as a foreground if the chromaticity exceeds a color threshold. On

the other hand the pixel in the incoming frame is classified as a shadow if they have

similar color chromaticity but lower brightness than those of the same pixel in the
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background image. The classification threshold is set based on confidence level so

that the static background does not get classified as foreground.

4.2 Calibration of the wireless tracker system

The wireless tracker system is calibrated manually by standing on a set of pre-

determined points on the ground plane and establishing the corresponding point on

the floor map used in the wireless tracker system. So a number of calibration points

are marked in the environment. Then to calibrate the system one needs to traverse

through all the calibration points wearing an active tag and at the same time alerting

the system to establish the correspondences between the received RF signals and the

known 2D coordinates of the calibration points.

In our system, we have chosen to use a wireless tracking system based on Near-

Field Electromagnetic Ranging (NFER R©) developed by Q-track Inc. [21]. Each user

wear an active RFID tag that broadcasts a RF signal of unique frequency within

the AM broadcast band (530-1710 kHz) that is detected by three antennas for tri-

angulation. After a careful calibration to establish the correspondence between the

RF signals and the ground coordinates of many pre-selected calibration points, the

active tag can then be continuously tracked in real-time. Unlike other RFID systems,

NFER R© exploits the properties of medium and low-frequency signals within about a

half wavelength of a transmitter. The low frequencies used by NFER R© are more pen-

etrating and less prone to multi-path than the typically-used microwave frequencies

[22].
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Figure 4.1: The QTTM -400 antenna, tag and tracking software

4.3 Synchronization of the visual tracker with the wireless tracker

To establish the correspondence between the RFID coordinates and the video

frames the corresponding time stamps (times at which these frames are captured and

the time instants at which the RFID coordinates are obtained) are also obtained.

But for these time stamps to make sense the two different computers on which the

wireless tracker and the video capturing mechanism are running are synchronized.

This is achieved by making use of Network Time Protocol (NTP) which synchronizes

multiple computers to within 10 ms, which is below the capturing period of both the

RFID and the camera systems.

4.4 Obtaining the homographies

A training sequence is captured to obtain the homography of the ground plane

with the image plane. After background subtraction, by computing the extremum of

the blobs the image coordinates of the head and foot of the subject being tracked is
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obtained as shown in Figure 4.2. At each instant we obtain the corresponding RFID

2D coordinates from the wireless tracker. The homography can be obtained by using

singular value decomposition to obtain a transformation between the ground plane

and the image plane.

Figure 4.2: Top and foot of the privacy subject

4.5 Occlusion Detection

When there are multiple dynamic objects in a video, the background subtraction

yields multiple motion blobs. During occlusion the multiple motion blobs combine

together to form a huge single blob. The instant at which this happens is considered

to be the instant when the occlusion starts. So at any time instant we can detect
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occlusion if the number of blobs are less than the number of objects as identified by the

wireless tracker. Under conditions when the background subtraction yields multiple

blobs but of the same object, that is the background subtraction does not give a

single blob for a single moving object, the blob with the largest area is considered as

the blob associated with the subject being tracked. This is necessary because if the

background subtraction yields multiple blobs for a single object and the total number

of blobs in a given frame might exceed the number of objects detected by the wireless

tracker. So if the background subtraction yields poor results the occlusion detector

might tag each and every individual frame as one in which the subject being tracked

is occluded.

4.6 Estimation of Model Parameters

The wireless sensor system is calibrated and the measurement noise is estimated

by carrying the RFID tag and standing on all the calibration points itself. The two

dimensional ground plane coordinates are obtained from the wireless tracker system

as a measurement. The corresponding point on the floor map of the wireless tracker is

known. The difference between the actual point on the floor plan and the measured

point is considered to be the measurement noise. This difference is averaged over

all the calibration points to obtain an approximate estimate of the measurement

noise from the wireless sensor. The motion model consists of the constant velocity

model. Similarly for a given ground plane coordinate we can obtain the corresponding

image plane coordinate using the ground plane homography obtained from Section

4.4. The extremum of blob discussed in Section 4.4 yields the foot coordinate of the
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subject in the image plane. By finding the difference in the image plane coordinate

obtained using the homography and the image plane coordinate obtained using the

blob extremum, the measurement noise is obtained for the visual tracker.
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Chapter 5

Evaluation of the proposed scheme

In this section the joint RFID and visual tracking scheme is evaluated by means of

simulations and real video experiments under different test cases.cases. These cases

include no occlusion, occlusion with multiple moving objects, and sustained occlusion

by a stationary object.

5.1 Simulation Results

The motivation behind performing the simulations is that we can test the extended

kalman filter for different camera centers, different focal lengths, assume different ar-

bitrary heights of the subject under tracking, etc. The performance of the joint visual

and wireless tracker under different varying conditions can be tested to ensure a ro-

bust performance. While testing the joint visual and wireless tracker with synthetic

data, one does not need to calibrate the camera as we assume a certain homography

between the ground plane and the image plane. The simulations are performed on

synthetic data that is generated using different motion models like the constant ve-

locity model and constant acceleration model. The process noise and measurement

noises of known covariances are added.The measurement noise for the RFID system

was set to .6 meters and .4 meters for the horizontal directions and the vertical di-

rections respectively. The noise in the measurement of the visual tracker has been

modeled as 1 pixel each along the rows and columns respectively. For the simula-

tions based on the constant acceleration model, the velocity for the system dynamics
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was measured from the wireless tracker. The wireless sensor maps the tracking co-

ordinates to a floor map. In the floor map the time taken to traverse between two

sets of points was used as the distance traversed over a duration of time. From this

simple experiment the velocity used for the constant acceleration model was set as 3

feet/second along the horizontal direction and 2 feet per second along the vertical di-

rection. The homography used for the camera model in our simulations are obtained

using a chequered board and the Camera Calibration toolbox.

Figure 5.1 shows tracking when there is no occlusion. In this case the dynamics

of the system are constant acceleration. It compares the individual trackers with the

joint visual and wireless tracker, and the true position of the subject being tracked.

The x axis of the plots show the time instants and the y axis show the position of

the subject being tracked in the horizontal direction and the vertical direction. From

the two plots it can be interpreted that the joint wireless and visual tracking scheme

works better than the RFID tracking scheme alone or a visual tracking scheme alone.

The wireless tracker is more sensitive to noise. On the other hand when there is no

occlusion the visual tracker seems to work as good as the joint tracker.

Figure 5.2shows the joint RFID and Visual tracking scheme along with the wireless

tracker and the visual tracking scheme alone under conditions of no occlusion. The

dynamics used for this simulation is a constant velocity model. The x axis of the

plots show the time instants and the y axis show the position of the subject being

tracked in the horizontal direction and the vertical direction. At any time instant the

difference between the position predicted by the joint visual and wireless tracker from

the actual position of the subject being tracked is less. The wireless tracker and also
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Figure 5.1: Performance of tracking schemes:no occlusion - Constant Acceleration
Model
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the visual tracker are much more noisy than the joint tracker.

The proposed joint wireless and visual tracking scheme has also been evaluated

with simulations of occlusion. We simulated occlusion between specific time intervals

during which there are no new measurements from the visual tracker. The combined

tracker works under occlusions also with the predictions being weighted by the inverse

of the covariance matrix of the noise from the wireless tracker and the visual tracker.

The occlusions were simulated for short durations of 2 - 3 time instants and also for

longer durations of 15 time instants.

In Figure Figure 5.3 the effect of the three different tracking schemes given that

the duration of occlusion is relatively small has been shown. The x axis of the plots

show the time instants and the y axis show the position of the subject being tracked

in the horizontal direction and the vertical direction. Under such conditions when

the occlusion is relatively low the combined tracker ensures that the prediction of

the location of the subject is more accurate compared to switching to the wireless

tracker during occlusion and tracking subject. This is because even though there

are no new measurements from the visual tracker, the variance in the measurements

from the visual tracker is much lower compared to the variance of the wireless sensor

measurements. When the occlusion is for a longer period as in Figure 5.4 the visual

tracker diverges gradually from the actual position. Under such a circumstance the

joint wireless and visual tracker performs better.
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Figure 5.2: Performance of tracking schemes-no occlusion-Constant Velocity Model
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Figure 5.3: Performance of tracker: when the duration of occlusion is low
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Figure 5.4: Occlusion for a longer duration
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5.2 Experimental Results from Real Videos

In this section, we focus on the algorithmic components of our system design

and measure their performance with physical data captured at a realistic indoor

office environment.We first measure the performance of the RFID system. As such,

the calibration of the RFID system is done through the interface provided by the

manufacturer – by putting the RFID tag at various calibration points of known world

coordinates established using a floor plan image. A subset of the calibration points

are also used to establish the homography between the floor plan image and the

camera plane so that the RFID coordinates after calibration can be re-projected

on the camera plane. Figure 5.5 shows a 16-meter hallway where we have put 32

calibration points. After the calibration, we measure the tracking accuracy at six

different locations within the area as shown in Table 5.1. The average error is 0.458

meters with standard deviation equal to 0.273 meters. The error is smaller at the

open area (E and F) but larger in the hallway where there are power-lines behind the

walls and computer servers inside the offices.

Figure 5.5 shows a 16-meter hallway where we have put 32 calibration points.

After the calibration, we measure the tracking accuracy at six different locations

within the area as shown in Table 5.1. The average error is 0.458 meters with

standard deviation equal to 0.273 meters. The error is smaller at the open area (E

and F) but larger in the hallway where there are power-lines behind the walls and

computer servers inside the offices.

We perform three different experiments on the real videos that we captured. In

the first experiment we estimate the homography of the floor plan with the image
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Figure 5.5: RFID Floor Plan

Table 5.1: RFID Tracking Error
Testing Points Ground-truth (meters) RFID (meters) Error (meters)

A (6.456, 2.653) (7.013, 2.840) 0.588
B (7.144, 5.150) (7.013, 4.837) 0.339
C (6.587, 6.897) (7.013, 6.710) 0.465
D (8.029, 9.550) (7.111, 9.488) 0.920
E (2.982, 11.953) (3.277, 11.891) 0.301
F (7.013, 11.797) (7.111, 11.891) 0.136

plane by using a training sequence. We compare this with a manually computed

homography. In the second experiment we use the combined wireless and visual

tracker to track a single individual walking completely in the view of the camera and

in an unoccluded scenario. This experiment is conducted to ensure that the combined

tracker works on real videos and real data captured from the wireless tracker. In

the third experiment we evaluate the combined tracker under for occlusions of short

durations and occlusions of longer durations. In the first scenario the occlusion is

generated by another individual, that is an object to object occlusion. In the second

scenario the occlusion is generated by an artificial wall and the subject being tracked

walks behind the wall. We provide the results for the individual trackers - kalman
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filter for the wireless tracker and the extended kalman filter for the visual tracker-

below.

Figure 5.6 shows the kalman filter prediction for the two dimensional coordinates

obtained from the wireless tracker. Figure 5.7 shows the results of using an extended

kalman filter over 25 frames.

In Figure 5.8 we show the effect of occlusion when occlusion lasts for a longer

duration like 30 frames in a video. This might be the case when the subject being

tracked is walking behind a wall. In a real video we simulate the occlusion between

frames 22 and 53 by not using any new measurements for the visual tracker. The

x axis of the plots show the time instants and the y axis show the position of the

subject being tracked in the horizontal direction and the vertical direction based on

the coordinate system of the floor plan. The joint tracker scheme provides better

prediction during occlusion than the measured wireless tracker position and close the

the actual position measured using the background subtraction on each frame.

In Figure 5.9 we show the effect of occlusion when occlusion lasts for a shorter

duration like 10 frames in a video. This might be the case when the subject is occluded

by another subject. The x axis of the plots show the time instants and the y axis

show the position of the subject being tracked in the horizontal direction and the

vertical direction in pixels on the image plane. For a shorter duration of occlusion

the prediction from the joint wireless and visual tracker is much more closer to the

actual position.
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Figure 5.6: Prediction for real data from wireless tracker
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Figure 5.7: Visual Tracking using Real Video
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Figure 5.8: Occlusion for longer duration-30 Frames
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Figure 5.9: Occlusion for short duration-10 Frames
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5.2.1 Background Subtraction Results

In this section we discuss the results of the background subtraction algorithm used

to obtain the measurements of the foot and the head coordinates for the extended

kalman filter.

(a) Single Person Sequence

(b) Two Person Sequence

Figure 5.10: Background Subtraction

In Figure 5.10 there are two images. One image shows the background subtraction

results for a single person where a single person is walking in the field of view of the

camera and is the subject being tracked. In this image, the smaller blob comprises

from the right hand’s wrist to the fingers while the larger blob comprises the rest
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of the subject being tracked. Since we are considering the blob with the largest

area to obtain the image coordinates of the foot of the subject, the measured image

coordinate of the foot of the subject is reasonably accurate. On the other hand the

second image shows the background subtraction results for a two person sequence

where two persons are walking in the field of view of the camera and one subject is

being tracked.

In this section the results of occlusion detection discussed in the previous chapter

are discussed. In Figure 5.11 there are four images, showing blobs before occlusion,

when the occlusion starts, during the occlusion and after occlusion. In an ideal

scenario there would be just two blobs in a two person sequence and when the two

blobs combine to form one single blob i.e during occlusion it can be used as occlusion

detector. As in Figure 5.11 the blobs when the occlusion starts and during the

occlusion combine together to form a single blob.

(a) Before Occlusion (b) When occlusion starts (c) During Occlusion

(d) After Occlusion

Figure 5.11: Occlusion Detection
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5.2.2 Tracking by the joint visual and wireless tracker

In this section the results of the joint visual and wireless tracker to track the foot

coordinates of the subject are discussed. In Figure 5.12 we show two images of the

subject being tracked with a small x marking the estimated foot coordinate of the

subject at two different time instants.

The head plane homography obtained using the scheme proposed in chapter four

was erroneous. Using the head plane homography when an RFID-tracker coordinate

was mapped back on to the image plane the error between the actual image coordinate

and the re-mapped image coordinate was found to be more than 20 pixels in some

cases. The reason for this might have been that during the training sequence the

subject being tracked was walking in a single straight line and not covering the entire

field of view of the camera. On the other hand in a wider environment with the subject

being tracked traversing throughout the environment during the training sequence

would result in a homography much more accurate.
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Figure 5.12: Tracking the foot coordinate-No Occlusion
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Chapter 6

Conclusions

In this research work we propose a joint RFID and Visual tracking system. The

proposed work is a multi sensor data fusion scheme targeted towards applications

where there are lots of occlusions. The joint wireless and visual tracking scheme is

developed using a probabilistic framework based on graphical models. The joint RFID

and visual tracking system has been evaluated in a small room where the occlusion

behind a wall has been simulated, and also occlusion by multiple persons have been

simulated. Further work in improving the proposed scheme would be to develop a

real time implementation of the joint RFID and visual tracking system, obtain a more

accurate homography for the head plane and obtain the bounding box to track the

subject. At the same time the wireless tracking system could be made more robust

with an improved calibration. One of the disadvantages of the proposed scheme is the

wireless tracking system works robustly over a relatively small area. A key challenge

would be to extend the scheme and test it over a larger area.
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