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ABSTRACT OF DISSERTATION

DIGITAL INPAINTING ALGORITHMS AND EVALUATION

Digital inpainting is the technique of filling in the missing regions of an image or a
video using information from surrounding area. This technique has found widespread
use in applications such as restoration, error recovery, multimedia editing, and video
privacy protection. This dissertation addresses three significant challenges associated
with the existing and emerging inpainting algorithms and applications. The three key
areas of impact are 1) Structure completion for image inpainting algorithms, 2) Fast
and efficient object based video inpainting framework and 3) Perceptual evaluation
of large area image inpainting algorithms.

One of the main approach of existing image inpainting algorithms in completing
the missing information is to follow a two stage process. A structure completion step,
to complete the boundaries of regions in the hole area, followed by texture completion
process using advanced texture synthesis methods. While the texture synthesis stage
is important, it can be argued that structure completion aspect is a vital compo-
nent in improving the perceptual image inpainting quality. To this end, we introduce
a global structure completion algorithm for completion of missing boundaries using
symmetry as the key feature. While existing methods for symmetry completion re-
quire a-priori information, our method takes a non-parametric approach by utilizing
the invariant nature of curvature to complete missing boundaries. Turning our atten-
tion from image to video inpainting, we readily observe that existing video inpainting
techniques have evolved as an extension of image inpainting techniques. As a result,
they suffer from various shortcoming including, among others, inability to handle
large missing spatio-temporal regions, significantly slow execution time making it im-
practical for interactive use and presence of temporal and spatial artifacts. To address
these major challenges, we propose a fundamentally different method based on object
based framework for improving the performance of video inpainting algorithms. We
introduce a modular inpainting scheme in which we first segment the video into con-
stituent objects by using acquired background models followed by inpainting of static
background regions and dynamic foreground regions. For static background region
inpainting, we use a simple background replacement and occasional image inpainting.
To inpaint dynamic moving foreground regions, we introduce a novel sliding-window
based dissimilarity measure in a dynamic programming framework. This technique



can effectively inpaint large regions of occlusions, inpaint objects that are completely
missing for several frames, change in size and pose and has minimal blurring and
motion artifacts. Finally we direct our focus on experimental studies related to per-
ceptual quality evaluation of large area image inpainting algorithms. The perceptual
quality of large area inpainting technique is inherently a subjective process and yet no
previous research has been carried out by taking the subjective nature of the Human
Visual System (HVS). We perform subjective experiments using eye-tracking device
involving 24 subjects to analyze the effect of inpainting on human gaze. We experi-
mentally show that the presence of inpainting artifacts directly impacts the gaze of
an unbiased observer and this in effect has a direct bearing on the subjective rating
of the observer. Specifically, we show that the gaze energy in the hole regions of an
inpainted image show marked deviations from normal behavior when the inpainting
artifacts are readily apparent.

KEYWORDS: Digital Inpainting, Occluded Symmetry Structure Completion, Ob-
ject Based Video Inpainting, Dynamic Programming, Eye-tracker based Perceptual
Evaluation
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Chapter 1

Introduction

Digital inpainting is the technique of filling in the missing regions of an image using

information from surrounding area. In the parlance of digital inpainting, the missing

region is often referred to as hole, and is usually provided by the user in the form

of mask or can be obtained by automatic or semi-automatic means. Some of the

earlier nomenclature referred small region filling as inpainting and large area inpaint-

ing as image or video completion. In this work however, we do not make any such

distinctions and these techniques are commonly referred as Digital Image and video

inpainting algorithms. Digital inpainting has found widespread use in many appli-

cations such as restoration of damaged old paintings and photographs, removal of

undesired objects and writings on photographs, transmission error recovery in images

and videos, computer-assisted multimedia editing and replacing large regions in an

image or video for privacy protection. The goal of the inpainting technique is to mod-

ify the damaged region in an image or video in such a way that the inpainted region

is undetectable to a neutral observer. Alternately, as described in [2], the objective of

inpainting is to reconstitute the missing or damaged portions of the work, in order to

make it more legible and restore its unity. Based on the context of operation, the goal

of the inpainting can range from making the damaged image or video appear as close

to the original to completely providing an alternate completion which is virtually

unnoticeable to human observer.
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In this dissertation, we identify and explore three main challenges that are associ-

ated with existing and emerging digital inpainting algorithms. First, to improve the

structure completion capability of image inpainting algorithm; second, to design a

fast and efficient video inpainting algorithm that can perform robustly under varying

operating conditions, and third, to analyze the perceptual quality of large area image

inpainting algorithms. We propose new techniques and algorithms to tackle these

challenges and demonstrate their effectiveness under various operating conditions.

Before embarking on a detailed description of our contributions, we first provide an

introduction to the concept of digital inpainting, discuss emerging applications where

they are useful and elaborate on the research challenges associated with our goals.

1.1 Digital Inpainting

Historically, inpainting has been manually performed by artists to restore dam-

aged paintings and photographs with small defects such as small cracks, scratches,

red-eye and dust spots. At this juncture, it is pertinent to note that inpainting is

fundamentally different from classical de-noising algorithms. In case of denoising al-

gorithms, the underlying signal is corrupted by noise and de-noising algorithms try

to recover the the original signal by modeling the noise and statistical estimation.

Typically, a noise model, such as Additive White Gaussian Noise (AWGN) or speckle

noise, and an underlying Image model such as piecewise continuity is assumed. There

are several spatial and transform domain filtering techniques that are used to remove

the noise and recover the true image. On the other hand, in inpainting, the regions of

missing information in the original signal are large and inpainting algorithm attempts

2



to re-create it using the surrounding information. Hence, denoising algorithms are

not applicable in inpainting applications. The examples representing de-noising and

inpainting are presented in Figures 1.1(a) and Figures 1.1(b) respectively.

(a) (b)

Figure 1.1: De-noising versus Inpainting: (a) Image corrupted by noise for de-noising
application. (b) Damaged input image with missing region or ”hole” for image in-
painting.

1.1.1 Digital Inpainting in Image Restoration

To illustrate the use of inpainting in restoration type applications, we present an

example original image with defects such as cracks and scratches is shown in Figure

1.2(a), and the corresponding user specified mask hole in Figure 1.2(b). Given these

inputs, an inpainting algorithm then strives to fill the hole based on the statistics of

the rest of the image. The result of applying inpainting based on our implementation

of the algorithm proposed in [3] is presented in Figure 1.2(c).

1.1.2 Digital Inpainting in Privacy Protection Application

There has been a recent surge of interest in obfuscating privacy information in

visual information system. In video surveillance front, the PrivacyCam surveillance

3



(a) (b) (c)

Figure 1.2: Example of Digital image inpainting : (a) Original Image. (b) Dam-
aged regions or “hole” in the form of mask. (c) Inpainted image based on algorithm
proposed in [3].

system developed at IBM protects privacy by revealing only the relevant information

such as object tracks or suspicious activities [4]. Such a system is limited by the types

of events it can detect and may have problems balancing privacy protection with the

particular needs of a security officer.

Alternatively, one can modify the video to obfuscate the appearance of individuals

for privacy protection. There are a large variety of such kinds of video obfuscation

techniques, ranging from the use of black boxes or large pixels (pixelation) in [5–7]

to complete object removal in [8,9]. For example, we see that the identifiable private

information such as license plates of vehicles, human faces etc, are blurred in visual

maps provided by publicly available search engines. New techniques have also been

proposed recently to replace a particular face with generic face [10] or a body with

a stick figure [11]. The use of black boxes or pixelation has been shown to be inad-

equate in fully protecting a person’s identity [10]. Face or body replacement require

precise position and pose tracking which are beyond the reach of current surveillance

technologies. On the other hand, complete removal of private objects by image and

video inpainting techniques provide a good solution for full privacy protection while

4



preserving a natural-looking video amenable to further vision processing. The tech-

nical challenges that are involved in recreating occluded objects and motion after the

removal of individuals offer significant research potential for inpainting applications.

Let us describe a typical scene from an indoor video surveillance environment

capable of privacy protection. To preserve the privacy of authorized individuals, we

would like to remove those authorized people from the video information and record

the movements of the unauthorized visitors. Readily we observe that, there are two

distinct scenarios 1) Instances where there are no overlaps between the two parties -

non-occluding case and 2) Instances when there are overlaps among the two parties,

or occluding scenarios. In indoor video surveillance conditions, it is reasonable to

assume that the background models are available and hence background replacement

can be used efficiently as an inpainting method to protect the privacy in non-occluding

conditions. Figure 1.3(a) presents a sample original frame in which the person of

interest, whose privacy we need to protect, is shown carrying an object. We extract

moving foreground objects, by comparing each frame with the existing background

model and pixels that are substantially different from the background are classified as

foreground. These foreground objects are created based on a connected component

grouping, expanded to form bounding boxes and finally tracked based on the overlap

of objects from frame to frame as displayed in Figure 1.3(b). Figure 1.3(c) shows

the inpainted frame by background replacement using an adaptive background model

based on Kalman filter [12] and replacing it over the extracted foreground. We also

apply a de-blocking filter to smooth the transition between fill-in and rest of the image

to make it look more natural.

5



(a) (b) (c)

Figure 1.3: Video inpainting by simple background replacement: (a) Original video
frame. (b) Selected foreground object to be erased. (c) Result of our proposed algo-
rithm.

The more challenging situation occurs in handling the occluding conditions and

this is where video inpainting truly offers a powerful alternative. By using the existing

spatio-temporal data present in the unoccluded regions, video inpainting attempts to

reconstruct the missing foreground regions thereby recovering the occluded informa-

tion. The advantage of using in video inpainting here is that the processed videos

maintain their homogeneity. As a result, these videos can be used for further pro-

cessing by other computer vision algorithms along the pipeline.

From the two examples cited above, it is fairly clear that as the application arena

expands from restoration type changes to multimedia object editing in which users

typically need to remove an entire object, inpainting algorithms face a formidable

challenge of filling in a significant portion of an image. In particular, we can observe

that there are two related but fundamentally challenging operations in inpainting; 1.

Object removal and 2. Object creation. In the former, we are trying to remove an

entire object and hence the hole region can be filled by models of background or by

texture replication methods. In the latter, however, we are dealing with inpainting

partially available objects and it presents an entirely different set of difficulties which

6



require a more precise structure and region filling capabilities to arrive at a percep-

tually good completion. Hence traditional approaches based on simple de-noising or

interpolation, in which small-size holes are assumed fail to apply and large region

inpainting in images and videos potentially offer a larger impact.

1.2 Our Contributions

While significant advancements have been made in improving the capability of

digital inpainting algorithms, they still face many challenges to be used under different

circumstances in various applications. In this section, we identify three main issues

that face existing inpainting algorithms, discuss our motivation to address them and

present a concise overview of our approach.

1.2.1 Structure Completion for Image Inpainting Algorithms

Currently existing image inpainting techniques perform reasonably well in tasks

wherein the region to be inpainted is textureless and small as shown in Figure 1.2.

When the area to be inpainted is relatively large and requires completion of areas

spanning boundary regions, they do not perform well. This is due to the fact that

existing inpainting applications endeavor to fill the hole by a smoothing process which

tends to blur the regions and do not handle the boundary regions explicitly. To

illustrate this point, we present an example which shows the difficulties faced by the

state of the art algorithm such as in [13], on an image rich in features. In Figure

1.4(a) and Figure 1.4(b) we have an unmodified original image along with an user

introduced synthetic hole. We have the result of applying algorithm in [13] in 1.4(c).

The result does not appear to be satisfactory as we can observe that the technique

7



is hampered by its inability to inpaint large regions and recreate curved boundary

structures. An intuitive way to complete the missing regions is to segment the image

into different regions, complete the boundaries of the respective regions and fill in

the individual regions with appropriate texture information. While it may be fairly

easy for humans to mentally imagine the “fill-in” component inside the hole, it is still

a formidable challenge for computer vision algorithm to automatically estimate the

missing regions.

(a) (b) (c)

Figure 1.4: Challenges in large area inpainting (a) Original Image. (b) Image with a
hole. (c) Inpainted Image by using algorithm in [13].

From this example, it can be clearly understood that completing the boundaries of

the respective regions inside the hole, also referred to as structure completion, plays

a vital role in providing a perceptually consistent inpainting. Hence to produce a

more effective boundary completion, we will have to take into account other impor-

tant global structural cues that may be present in the image. It is conceivable that

using mid-level image cues such as depth, repeating object patterns, symmetries and

t-junctions can improve the global completion capability which would subsequently

enhance the image inpainting quality. In Chapter 3, we introduce a contour comple-

tion algorithm for filling the missing boundaries of a symmetric object under severe

occlusions [14]. This non-parametric algorithm is capable of completing the bound-

8



aries of rotationally symmetric objects without any prior information on the order of

symmetry by utilizing the invariant nature of curvature. This technique can be used

in the structure completion stage of global image inpainting algorithm.

1.2.2 Fast and Efficient Object Based Video Inpainting

Earlier video inpainting techniques evolved as an extension of the image inpaint-

ing algorithms and were originally used to fix small scratches or blotches in vintage

videos [15]. While being useful, they are severely limited by the size of the hole they

were able to handle and by the inordinate amount of time for processing. Due to

the computationally intensive nature of inpainting process, it is clear that for more

advanced and interactive applications such as privacy protection, they are practically

unsuitable. Some video inpainting methods are capable of inpainting simple peri-

odic repetition motions such as human walking and running, however, there are are

no video inpainting techniques that can inpaint human motion under changing pose

conditions. Another important challenge in video inpainting is to make it suitable to

work under different constraints so that it can be useful in many practical conditions.

Even advanced video inpainting techniques such as [16], are adapted to extend the

exemplar based techniques used in image inpainting for video data. We believe that

video offers a great amount of useful information which can be exploited to make

the inpainting faster and more perceptually coherent. While existing methods of-

fer limited advantages, use of templates of human motion by continuously observing

the patterns of human activity could provide more potential both in terms of speed

and efficiency. They also offer promise to handle large occlusions including instances
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where the entire objects are missing for several time instances. In chapter 4, we

propose a fundamentally different object based framework by combining templates of

human motion for video inpainting [17, 18]. Our system utilizes simple background

replacement and occasional image inpainting for static background inpainting. We

introduce a novel sliding-window based dissimilarity measure in a dynamic program-

ming framework to inpaint moving objects. This computationally efficient technique

can effectively handle large regions of occlusions, inpaint objects that are completely

missing for several frames, operate under change of pose and size of humans, inpaint

videos captured in fixed as well as moving camera conditions and has minimal blurring

and motion artifacts.

1.2.3 Subjective Evaluation of Large Area Image Inpainting Techniques

Evaluating the quality of an inpainting technique is a challenging task as it is fun-

damentally different from the general notion of the image quality. An image/video

which is free of visual artifacts could still end up being classified as unsatisfactory

inpainting implementation. For example, in synthetic images, completion of the geo-

metric attributes of the image to present a visually plausible image could be considered

to be more satisfactory than the appropriate correct texture replication. Similarly for

natural images, continuation of texture inside natural edge boundaries might indicate

a better inpainting algorithm. Thus we are facing a scenario in which the texture,

structure, motion (for video), size of the hole and other geometric attributes of the

underlying signal play a crucial role in the determining the effectiveness of an in-

painting algorithm. The presence of such diverse attributes makes the evaluation of
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inpainting techniques harder.

In Section 2.3 we will review a number of techniques that analyzed the image

inpainting quality. Among the methods discussed, the work by Hays et.al [1] and

Ardis et.al [19] is of particular relevance to our study. While they attempt to rank

the quality of inpainted images with motivation to determine which algorithm is bet-

ter, they do not provide useful information on the underlying reason behind those

human subjectivity. Extensive studies in vision science have shown that interesting

objects are visually salient and these regions provide surprises which attract visual

attention [20, 21]. In the context of image inpainting, we can extrapolate that tech-

niques that cannot fill the hole in a consistent manner will introduce artifacts on the

inpainted image. We hypothesize that these artifacts could capture the attention of

HVS and cause a change from its normal behavior. This deviation from normalcy can

be quantified by measuring the changes in gaze pattern using an eye-tracker and can

be related to the perceptual quality of inpainting. Even though attention processes

are partly driven by higher level cognitive processes, low and mid level visual process

plays an important role in determining the perceptual quality of image inpainting. In

Chapter 5, we design and conduct extensive subjective experiments and measure the

changes from normal behavior in gaze pattern of HVS using an eye-tracker [22]. By

analyzing those gaze pattern we establish a strong connection between gaze pattern

and inpainted image quality. We believe that this relation, combined with a compu-

tational model in measuring visual saliency by using low and mid-level vision features

in inpainted regions, will be useful for predicting inpainted image quality.
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1.3 Organization

This dissertation is organized as follows: Chapter 2 provides a detailed review

of existing approaches in inpainting and also discuss relevant work on evaluating the

perceptual quality of image inpainting algorithms. In Chapter 3, we introduce a novel

contour completion algorithm for completing rotationally symmetric objects under

severe occlusion. We explain our motivation and our approach in using the invariant

nature of the curvature under similarity transform to estimate the fundamental angle

of rotation and the centroid, two quantities that characterize the nature of rotationally

symmetric objects. We introduce a cost function and a candidate selection strategy

to identify appropriate choices for completing the missing regions of the occluded

object. We demonstrate the usefulness of this symmetric shape completion algorithm

in structure completion stage of global image inpainting algorithm with practical

examples.

Chapter 4 discusses our proposed fast and efficient object based video inpainting

algorithm. We explain the design of this modular approach which offers a unified

framework to address inpainting under both static and limited moving camera con-

ditions. Our key contribution is a computationally-efficient object-based inpainting

algorithm capable of inpainting partially- and completely-occluded objects and pro-

viding global motion consistency by using sliding-window registration and dynamic

programming. We demonstrate the effectiveness of our algorithm by inpainting dif-

ferent human subjects of varying pose, size and motion in video sequences captured

through both static and moving cameras.

Chapter 5 is devoted to explaining our human subjective experiments and analysis
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of perceptual quality of image inpainting algorithm. Using extensive eye-tracking

experiments, we show that there is a strong correlation between inpainting quality and

visual attention. We also introduce a novel ranking mechanism to rate the subjective

quality of inpainted images in those experiments. By comparing human attention

in the form of gaze, within and outside the hole regions of inpainted images, we

show that discernible artifacts due to inpainting attract an unusual amount of visual

attention and corroborate well with subjective rankings.

Chapter 6 summarizes the results in this dissertation along with suggestions for

improvements for future work.
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Chapter 2

Literature Review

In this section we provide a detailed review on the different categories of image in-

painting techniques and explain their approach. We then discuss the various algo-

rithms proposed for video inpainting applications. This is followed by a discussion on

relevant work on evaluating the perceptual quality of image inpainting algorithms.

2.1 Digital Image Inpainting

Presently there are different approaches to digital image inpainting and can be

broadly classified into several different categories as listed below

1. Texture synthesis based inpainting

2. Partial Differential Equation (PDE) based inpainting

3. Exemplar and search based inpainting

4. Hybrid inpainting

5. Semi-automatic and Fast Digital Inpainting.

2.1.1 Texture synthesis based inpainting

One of the earliest modes of image inpainting was to use general texture synthesis

algorithms to complete the missing regions. The texture synthesis algorithms synthe-

size new image pixels from an initial seed and strive to preserve the local structures
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of the image. Earlier inpainting techniques utilized these methods to fill the holes by

sampling and copying pixels from neighboring areas [23–28]. For example, in [23],

Markov Random Field (MRF) is used to model the local distribution of a pixel and

new texture is synthesized by querying existing texture and finding all similar neigh-

borhoods. Their differences lay mainly in how continuity is maintained between the

inpainted hole and the existing pixels. These synthesis based techniques perform well

only for a select set of images where completing the hole region with homogenous

texture information would result in a natural completion.

Later this effort was extended to a fast synthesizing algorithm [24] by stitching

together small patches of existing images referred to as image quilting. Heeger and

Bergen developed a parametric texture synthesis algorithm which can synthesize a

matching texture, given a target texture [26]. This was done by matching first order

statistics of a linear filter bank which roughly match to the texture discrimination ca-

pabilities of Human Visual System (HVS). Igehy et.al included a composition step to

the above method to generate synthetic and real textures [28]. A multi-resolution tex-

ture synthesis method which can generate texture under varying brightness conditions

was introduced for inpainting by Yamauchi et.al [29]. Recently, a fast multi-resolution

based image completion based on texture analysis and synthesis was introduced by

Fang et.al [30]. In their method, the input image was analyzed by a patch based

method using Principal Component Analysis (PCA) and a Vector Quantization (VQ)

based technique was used to speedup the matching process of the texture inside the

hole region. Various texture synthesis methods discussed here differentiate among

themselves in their ability to create textures with different statistical characteristics
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and to generate textures under gradient, color or intensity variations. There are in-

numerable texture synthesis methods other than the aforementioned, but we shall

restrict ourselves to illustrate those texture synthesis techniques specifically used for

inpainting. While the texture synthesis based inpainting perform well in approximat-

ing textures, they have difficulty in handling natural images as they are composed

of structures in the form of edges and have complex interactions between structure

and texture boundaries. In some cases, they also require the user to specify what

texture to replace and the place to be replaced. Hence while appreciating the use

of texture synthesis techniques in inpainting, it is prudent to understand that these

methods address only a small subset of inpainting issues and are not suitable for a

wide variety of applications.

2.1.2 PDE based inpainting

A Partial Differential Equation (PDE) based iterative algorithm proposed by

Bertalmio et.al [3] paved the way for modern digital image inpainting. The re-

sult of applying this algorithm to example images is shown in Figure 1.2. Borrowing

heavily from the idea of manual inpainting, this iterative process propagates linear

structures (edges) of the surrounding area also called Isophotes, into the hole region

denoted by Ω, using a diffusion process given by.

In+1(i, j) = In(i, j) +4t · In
t (i, j),∀(i, j)εΩ (2.1)

where n is the iteration time, (i, j) are pixel co-ordinates, 4t is the rate of the change

of inpainting, In
t (i, j) is the update factor on the image In(i, j).

The update factor in the above equation, is a smoothed image obtained by apply-
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ing a Laplacian operation in the direction perpendicular to the gradient in an iterative

fashion. The PDE form of this process is expressed a

It = ∇(4I).∇⊥I (2.2)

where ∇⊥I is the isophote direction and ∇(4I) is the Laplacian smoothness op-

eration on the gradient. One of the main drawbacks of this technique is that it

underperforms in the replication of large textured regions due to blurring artifact of

the diffusion process and the lack of explicit treatment of the pixels on edges. In-

spired by this work, Chan and Shen proposed the Total Variational (TV) inpainting

model which uses Euler-Lagrange equation and anisotropic diffusion based on the

strength of the isophotes [31]. Let D be the inpainting region and E be the adjoining

region around the hole, the variational inpainting model finds a function u on the ex-

tended inpainting domain adjoining the hole boundary E ∪D, such that it minimizes

a regularity functional R(u) under the denoising constraint on E defined below:

R(u) =

∫

E∪D

r(|∇u|)dxdy (2.3)

where r is an appropriate real function which is nonnegative for nonnegative inputs.

This technique performs reasonably well for small regions and noise removal applica-

tions but it neither connects broken edges nor creates texture patterns. The TV model

was extended to Curvature Driven Diffusion model (CDD) in [32] which included the

curvature information of the isophotes to handle the curved structures in a better

manner. Tschumperle et.al [33] introduced another PDE based technique referred to

as vector valued regularization under anisotropic diffusion framework. These algo-

rithms were focused on maintaining the structure of the inpainting area and hence
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could not perform as well in texture filling due to blurring artifacts.

2.1.3 Exemplar and search based Inpainting

The exemplar based approaches constitute an important class of inpainting al-

gorithms and have proved to be very effective. An algorithm for handling large fill

areas which combines the use of texture synthesis and Isophote driven Inpainting by a

priority based mechanism in a unified framework was proposed by Criminisi et.al [13].

In this algorithm the region filling order is determined by a priority based mechanism

and is presented in Figure 2.1. Points which lie on the path of edges have a higher

priority and hence are filled earlier than other pixels. Figure 2.1(b) shows a point P

with high priority lying on the contour of the hole boundary.

Figure 2.1: Exemplar based inpainting: Adopted from [13] a) Original image with
target, its contour and source region. b) The filled patch marked by highest priority
pixel. c) Most likely candidates for filling the patch. d) Pixel with highest priority is
filled with the matching patch.

The neighborhood or filled patch surrounding the highest priority pixel is then

filled by finding the best matching patch in the known regions as explained in Fig-

ures 2.1(c) and (d). The patch size can be varied depending on the underlying char-

acteristics of the image. This exemplar-based removal technique performs well for

a wide range of images with good texture and structure replication but has some

18



difficulty in handling curved structures. A major drawback of this exemplar method

is the bias caused by selection of few incorrect patches in the priority based filling

mechanism. These incorrect patches have a tendency to hijack the entire inpainting

process by building upon the initial incorrect completions and have a spiralling effect

that undermines the stability of the inpainting process.

Drori et.al [34] present an algorithm which iteratively approximates the unknown

regions and composites adaptive image fragments into the image. The visible parts

of the image serve as a training set to infer the known parts and it performs image

completion in a multi-resolution fashion by searching and filling patches at different

resolutions and orientation. The computation time to fill the hole is quadratically

related to the number of pixels and hence this method suffers from inordinate amount

of delay as we increase the size of the hole region. By combining the texture synthesis

based technique in [30] along with a directional measure, Fang et.al proposed an ex-

emplar based method in [35]. The main advantage of this method is faster completion

and use of multi-resolution based method to help in more natural texture synthesis.

While all exemplar based inpainting algorithms inherently use search, we explicitly

denote techniques which search for matching textures and structures from images

other than the given source as search based image completion. Until recently, image

inpainting techniques operated under the assumption that the information necessary

to complete the hole is to be fetched from the regions outside the hole region of

the same image. While this approach has some merits, Hays et.al [1] argue that

by using millions of images as the database, we are likely to have a more natural

and semantically rich completion than that can be obtained from using just a single
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image. This work has opened a new set ideas for image inpainting and produced

promising image completion results over a wide variety of images. In this method,

Gist, an image descriptor which characterizes the image using information in multiple

frequency bands and orientation, is computed for every image in a database of over

millions [36]. The nearest semantic match for the image is obtained by searching

through the entire database.

Figure 2.2: Search based inpainting: Adopted from [1] a) Original image b) Image
with a hole area marked by the user c) Results for the nearest semantic match using
Gist of the image d) Completed image using Poisson blending

Once the match is obtained, the region inside the matching image is seamlessly

blended into the source image using a poisson blending process [37]. The result

of applying this algorithm on a sample image with a large fill area is presented in

Figure 2.2.

2.1.4 Hybrid digital inpainting

The hybrid approaches combine both texture synthesis and PDE based inpainting

for completing the holes. The main idea behind these approaches is to decompose the

image into separate structure and texture regions. The corresponding decomposed

regions are filled by edge propagating algorithms and texture synthesis techniques
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respectively [38–40]. These algorithms are computationally intensive unless the fill

region is small.

One important direction we believe is more natural to the inpainting process is

by structure completion through segmentation. An example of such an approach can

be found in [41]. It uses a two-step approach: the first stage is structure completion

followed by texture synthesis. In the structure completion stage, a segmentation,

using the algorithm of [42], is performed based on the insufficient geometry, color and

texture information on the input and the partitioning boundaries are then extrapo-

lated to generate a complete segmentation for the input using tensor voting [43]. The

second step consists of synthesizing texture and color information in each segment,

again using tensor voting.

2.1.5 Semi-automatic and fast digital Inpainting

Semi-automatic image inpainting with user assistance, in the form of guide lines

to help in structure completion has found favor with researchers. The method by Jian

et.al termed as inpainting with Structure propagation follows a two step process [44].

In the first step a user manually specifies important missing information in the hole

by sketching object boundaries from the known to the unknown region and then a

patch based texture synthesis is used to generate the texture. The missing image

patches are synthesized along the user specified curves by formulating the problem as

a global optimization problem under various structural and consistency constraints.

Simple dynamic programming can be used to derive the optimal answer if only a

single curve is present. For multiple objects, the optimization is great deal more
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difficult and the proposers approximated the answer by using belief propagation.

Depending on the size of the inpainting area, all the methods discussed above take

minutes to hours to complete and hence making it unacceptable for interactive user

applications. To speed up the conventional image inpainting algorithms, a new class

of fast inpainting techniques are being developed. Oliviera et.al proposed a fast digital

Inpainting technique based on an isotropic diffusion model which performs inpainting

by repeatedly convolving the inpainting region with a diffusion kernel [45]. A new

method which treats the missing regions as level sets and uses Fast Marching Method

(FMM) to propagate image information has been proposed by Telea [46]. These fast

techniques are not suitable in filling large hole regions as they lack explicit methods to

inpaint edge regions. As a result, they introduce blur artifacts in these areas making

the inpainting unsatisfactory.

2.2 Digital Video Inpainting

Video inpainting started off as a natural extension of image inpainting algorithms

and it has garnered a great deal of attention due to its potential applications in

video error concealment in video transmission [47], multimedia editing and visualiza-

tion [16], video stabilization [48] and new applications such as video modification for

privacy protection [8, 9, 18]. A straightforward extension of image inpainting algo-

rithms to video inpainting is to treat the underlying video data as a set of distinct

images and apply image inpainting algorithms to them individually. This mode of

operation does not take full advantage of the high temporal correlation that exists

in video sequences and hence the quality of video inpainting across the frames are
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usually unsatisfactory. For example, one of the earliest efforts in extending the Par-

tial Differential Equation (PDE) based image inpainting [3] to video was performed

by Bertalmio et.al [15]. The focus of this method is to fill in the hole spatially by

extending the edges and filling the hole with smoothed color information by a diffu-

sion process using Navier-Stokes equation. It does not take into effect the temporal

information available in the video and treats the video as individual images. Due to

extensive smoothing, it does not reproduce the texture information and suffers from

severe blurring artifacts. Consequently this method is effective only in restoring small

scratches or spots occurring in archival footage. Cheung et.al introduced a space-

time patch model based on probabilistic learning with applications to inpainting [49].

These condensed models called epitomes are learned by compiling large number of

space-time patches drawn from input videos. Inpainting is treated as a reconstruction

problem and the epitomes in this case are learned from the observed pixels. Inferring

the missing pixels from the condensed epitomes leads to severe over-smoothing of the

reconstructed pixels

A priority based exemplar approach proposed for image inpainting by Criminisi

et.al in [13] was modified by Patwardhan et al. to video inpainting in [16,50]. This

method is capable of inpainting videos under a set of constrained camera motion.

Initially, the input video is separated into background layer and foreground object

layer utilizing the optical flow. Hole regions identified in the foreground layer are

first inpainted by a priority-based exemplar process before proceeding to complete

the damaged regions in the background layer. In this patch based exemplar method,

damaged patches around the boundary of the hole are filled by a priority based
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mechanism. The appropriate candidates for filling the damaged areas are selected by

minimizing a 5-dimensional distance metric based based on the the pixel color values

and the optical flow vectors. While being effective in completing regions with sparsely

distributed structural cues, this method, like its image inpainting counterpart, is

susceptible to providing unstable inpainting due to few incorrect patches as a result

of spurious local variations. This tendency to rapidly build upon few incorrect regions,

especially, when completing regions with high structural variations makes the process

unstable. More importantly, this technique cannot handle the case when a significant

portion of the object is missing, and it has difficulty in inpainting curved structures.

A video completion scheme based on motion layer estimation followed by mo-

tion compensation and texture completion has been proposed [51]. After removing

a particular motion layer, motion compensation is used to complete moving objects

and non-parametric texture synthesis is used to complete the static background re-

gions.The inpainted layers are then warped into every video frame to complete the

holes. Video completion by motion field transfer – transfer of spatio-temporal patches

of motion field instead of direct color sampling has been introduced recently [52].

This technique is extremely sensitive to noise as they involve local motion estimates

by a derivative-based process. It has difficulty inpainting large motion as their motion

estimation techniques focus solely on measuring small local movement. In addition,

as the scheme transfers only motion information, it suffers from blurring artifact due

to the use of a re-sampling process to estimate color information. A video comple-

tion algorithm for perspective camera under constrained motion has been proposed

recently [53]. The foreground and background layers are separated and objects in
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foreground volume are rectified to compensate for perspective projection. The pix-

els in the foreground are completed by modeling it as a graph labeling problem as

described in [44] and a dynamic programming is used to solve it.

Deviating from the patch-based methods discussed above, Jiaya et.al introduced

an object-based inpainting system which utilizes a user-assisted segmentation to in-

paint holes in foreground regions that exhibit cyclic motions [54]. To complete the

missing foreground regions they explicitly estimate the periodicity of the moving fore-

ground object and align them with the partially damaged pixels in the hole boundary

to complete missing regions. Temporal consistency is achieved by a movel (moving

pixel) wrapping and regularization process using tensor voting. A similar technique

that utilizes mean shift tracking to limit the search space and nonparametric texture

synthesis coupled with graph cuts has been proposed [55]. This method currently

does not have a mechanism to handle moving cameras and also reports artifacts at

the boundaries of the hole region.

2.3 Perceptual Evaluation of Image Inpainting Quality

While most of the research in digital inpainting has been focused on introduc-

ing new algorithms for specific applications, there exists relatively little research in

evaluating what constitutes a perceptually good inpainting. A majority of the im-

age inpainting techniques discussed in Section 2.1 have compared the performance of

their algorithm with existing methods by highlighting their efficacy in terms of their

capability to handle large fill areas, ability to inpaint curved structures and regions

with high edge (structural) content, effectiveness of their texture replication capacity
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and the time taken for completion, in a non-descriptive manner with a limited set of

images that appeared in initial work [3]. In these techniques, the objective of inpaint-

ing was to make the damaged image appear as close to the original image. Hence,

most of them utilized the image information surrounding the hole regions from the

same image to fill in the holes. In such restoration type applications, this form of

comparison though limited in scope was reasonable. Also to make the inpainting

appear imperceptible to the human observers, they also converted the RGB images

into CIE LAB color space to exploit some aspects of perceptual uniformity [3,13]. In

spite of the inherently subjective nature of the inpainting process, these methods mea-

sured their inpainting quality by using simple objective metrics such as Peak Signal

to Noise Ratio (PSNR) and Mean Squared Error (MSE) of the inpainted images to

the original image or by just visually comparing them [33]. Oliviera et.al [45] evaluate

their performance by computing the MSE of the reconstructed region in RGB space

with the original image. It has been widely reported that these objective metrics like

MSE and Peak Signal to Noise Ratio (PSNR) do not perform a well in characterizing

perceptual image quality [56].

One of the earlier work in analyzing the error in image inpainting with the shape of

the domain of inpainting was performed by Chan. et.al [57]. In this important work,

they show that the quality of digital image inpainting depends more on the shape

of the image inpainting domain than the size or total area of the inpainting domain.

In effect, they show that inpainting techniques that use PDE based inpainting tech-

niques are effective in inpainting small or narrow smooth regions as they are based

on smoothing. While this work raised an important issue on impact of the shape of
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the inpainting domain on the inpainting quality, it does not address the issue of what

constitutes a perceptually good inpainting technique. For example, from the figure in

2.3, humans can readily observe that the first figure in the bottom row has a better

perceptual quality than the second. This inference on inpainting quality is made by

the HVS based on a combination of multiple hierarchical process based on low, mid

and higher level vision and cognition process. It would be great advantage if we could

identify those features that impact the inpainting so that we may be able to develop

an objective model to estimate the perceptual quality.

Figure 2.3: Inpainting quality based on domain shape: Adopted from [57] Top Row)
Same images with different inpainting domains Bottom Row) Corresponding inpainted
images where the first one has a better quality than the second
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As mentioned previously, the domain of image inpainting has expanded to include

advanced editing of multimedia objects which require larger regions to be inpainted.

To tackle these challenges, alternate paradigms of image inpainting algorithms have

been proposed in which millions of images from a source database, as opposed to a

single image, are used to find appropriate image information to complete the miss-

ing information [1]. This recent approach has already shown considerable promise

by its ability to address difficult inpainting conditions via a more semantic comple-

tion. Subsequently, the objective of the new approach has expanded from making the

inpainted image to look as close as original to making the inpainted modifications

difficult to discern by human observers. This implicit difference brings in significant

change in inpainting capabilities and demands more advanced techniques to evaluate

their perceptual efficiency by taking into account the subjective nature of HVS. In

their work, Hays et.al conduct a human subjective experiment to rate the quality of

inpainting and based on that rating they conclude that their method is perceptually

more efficient when compared to exemplar based technique introduced by Crimin-

isi et.al [13]. To quantitatively evaluate the performance of inpainting quality, they

conducted an experiment in which 20 naive observers were instructed to identify

fake images distributed among unmodified real images, images inpainted by both [1]

and [13] by presenting them in a random order. In that experiment, after ten seconds

of visual examination, 34% of the images modified by their algorithm, 69% of images

modified by Criminisi et al. and 3% of real photographs respectively were marked as

fake by the participants. Under unlimited time constraints they also obtained similar

performance. Based on that, they conclude that the performance of their inpainting
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algorithm is better when compared with method in [13]. While this experiment pro-

vides interesting outcome, the scope is limited to evaluating which algorithm is better

and does not provide useful information on the underlying reason behind the choice

of the testers.

Very recently, Ardis et.al [19] analyze the visual salience map generated by a

computational vision model [58] and relate it to the perceptual quality of image in-

painting. In analyzing smaller inpainted regions, they show that the visual salience

maps can be used to relate the perceptual quality to the human subjective prefer-

ence. Further experiments are needed to confirm the findings of this study as it was

conducted with a limited set of 4 images and a total of 5 human subjects. Moreover,

detailed studies are required to understand the capability of these generalized human

computational visual models to estimate the quality as related to inpainting.
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Chapter 3

Symmetry Completion and Global Image Inpainting

Symmetry is one of the most important pervasive cues that can be observed in most

of natural as well as man made environments. Almost all of the objects created by

human beings exhibit some form of symmetry, few examples include periodic texture

patterns on a carpet and modern architectural buildings. Even naturally occurring

phenomenon such as the gait of the human beings and the appearance of human face

possess an inherent symmetry and has been utilized as a biometric in human identifi-

cation, classification and face recognition applications. Thus the concept of symmetry

due to its widespread prevalence and its invariant nature has been extensively stud-

ied and thoroughly analyzed. Completion of the missing structure by utilizing the

mid-level image attributes to obtain a global image inpainting was identified as one of

the major research goals in Section 1.2.1. Building on that idea, we propose a novel

structure completion algorithm to complete the missing boundaries of rotationally

symmetric object under severe occlusion by utilizing the inherent symmetry. The

intuitive idea is to use the existing contour, under a carefully estimated similarity

transform, to fill the missing portion of a symmetric object under occlusion. This

algorithm exploits the invariant nature of the curvature under similarity transform

and the periodicity of the curvature of symmetric object contour. To arrive at the

appropriate transform, we first estimate the fundamental period in the curvature.

We use the fundamental period and the harmonic components to estimate the funda-
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mental angle of rotation and the centroid of the unoccluded shape, which establishes

different modes of symmetry. By following each mode of symmetry we compute the

corresponding transform and select the ones that best complete the missing portion

of the contour. We begin by introducing mathematical aspects of symmetry, define

the problem setting and elaborate the challenges posed by occluded symmetry and

the approach taken to solve the problem in Section 3.1. Following this, in Section 3.2,

we discuss the computational details and the formulations involved in the estimation

of the fundamental angle of rotation and centroid of occluded symmetrical objects.

Section 3.3 describes a cost function which is used to select an appropriate candi-

date from among several options. In the final section, with suitable examples, we

demonstrate that this technique can serve as an effective global structure completion

strategy in the context of image inpainting.

3.1 Introduction to symmetry

Due to its widespread prevalence, the concept of symmetry has attracted consid-

erable attention and much research efforts have been devoted to analyze and quantify

the properties of symmetric structures [59]. For example, many diverse applications

such as object identification and recognition in machine vision [60], detection, clas-

sification and recognition of human beings in video surveillance applications [61],

segmentation in images [62,63], and digital inpainting have utilized various computa-

tional aspects of symmetry. Despite the diverse nature of the many applications listed

above, the use of computational aspects of symmetry remain as the common thread

linking those diverse applications. In the next section, we provide an introductory

31



mathematical background on symmetry pertinent to this study. Detailed treatment

on the formal aspects of symmetry based on group theory, various aspects of symme-

try groups, different symmetries and different types of symmetries groups on a plane

and their properties can be found in [64–69].

3.1.1 Mathematical Introduction to Symmetry

Let us denote R2 to be the two dimensional real Euclidean space and associate with

each point in the space an ordered pair {(xi, yi)} of real numbers specifying its position

in the coordinate axes. An object or an element E in this space is represented by a set

of ordered pairs {(x1, y1), (x1, y1), . . . (xn, yn)} denoting the coordinates of the object

in the space. A transformation or homomorphism φ is a one-to-one correspondence

function that maps every point on the space into another point. An object is said

to possess symmetry if it remains invariant to certain class of transformations. A

symmetry group is a collection of transformations defined on the set G, that satisfy the

following properties of the abstract group under the composition of transformations.

They are,

1. Closure: If φ, ϕ ∈ G, then the product φϕ is also in group G.

2. Associativity: The identity (φϕ)ω = φ(ϕω) is satisfied for all elements of G.

3. Identity: There exists an element represented as I such that Iφ = φI for all

φ ∈ G.

4. Inverse: There exists an element ψ = φ−1 for every element in G such that

φφ−1 = φ−1φ = I.
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In planar Euclidean geometry, the fundamental transformations that preserve

symmetry are the distance preserving transforms called as isometries or congruence

transformation which form a group. A pattern P ∈ R2 can be transformed into a reg-

ular periodic structure having symmetry by using only four basic planar isometries.

These four fundamental isometries that characterize the entire symmetry groups in

the planar Euclidean space are translation, rotation, reflection and glide reflection.

For a given pattern P , we represent the set S(P ) to denote the set of symmetries

possessed by P and they constitute an algebraic group G. The number of symmetries

in S(P ) is defined as the order of the group. Two dimensional symmetric groups

are classified into three different categories known as point, line and plane groups.

The pattern or the motif belonging to a particular group exhibits symmetry around

a point, line or a plane respectively. Under the point groups, one major type of

symmetry group is the Rotational symmetry.

Rotational Symmetry: We define the Rotational symmetry of order n by Cn

with n ≥ 2 if it is invariant to rotation of 2π
n

radians about a fixed point on a plane.

A rotationally symmetric object of order 8 denoted by C8 is shown in Figure 3.1.

Figure 3.1: An object with C8 symmetry and its centroid

The rotational symmetry can be completely characterized two quantities namely
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1. Fundamental angle of Rotation: The angle by which, when the object

undergoes rotation about its centroid, its shape remains unchanged.

2. Centroid: The center of mass of the object.

3.1.2 Challenges in Occluded Symmetry: Problem Definition and Ap-

proach

Consider the partially occluded equilateral hexagon. An intuitive way to complete

the missing region is to rotate and translate the original contour around the centroid

of the unoccluded shape so as to match the missing portion and form a symmetric

hexagon. There are two things that need to be done before we can do this process.

One is to estimate the centroid of the object and the other is to estimate the angle by

which we rotate the object. Estimating both these attributes is non-trivial because

of the fact that under severe occlusions, the centroid of the occluded object can be

far away from that of the unoccluded object [70] as shown in Figure 3.2 and we do

not know the a priori fundamental angle of rotation.

Figure 3.2: Error in centroid estimation: Centroid of occluded hexagon denoted in
green is very far away from the original unoccluded hexagon in Red.

To define our problem in a concise manner, we aim to complete the missing regions

of a rotationally symmetric object under severe occlusions. At this juncture, we can
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readily observe that one of the important applications of contour completion is in

structure completion aspect of image inpainting. Using object symmetry to complete

occluded or missing object contour is a relatively unexplored area in computer vision.

In [70], Zabrodsky et al. describe various symmetry structures and define a continuous

symmetry measure referred to as “symmetry distance” for evaluating different types

of symmetry. They use this distance measure to reconstruct the symmetric shape

similar to the original occluded contour. Nonetheless, their approach requires an a-

priori determined order of rotational symmetry for completing the missing structure.

We, on the other hand, follow a different path and exploit the invariant nature of the

curvature to complete the missing structure. The intuition behind our approach in

solving this problem can be explained by first observing the following facts,

1. It can be observed from Figure 3.3 that the curvature of the rotationally sym-

metric object is periodic in nature and that the curvature is invariant to rota-

tions.

2. Rotation of the object by the fundamental angle of rotation θ about the centroid

is equivalent to translation of the curvature by its period T.

Taking note of these facts, we follow a two stage approach to solve the problem. In

the first stage we compute the curvature and estimate the period of the curvature. The

estimated period of the curvature helps us to establish correspondence between similar

points on the contour. In the next stage, by using the correspondence established,

we estimate the fundamental angle of rotation and centroid. These two attributes

completely characterize the rotationally symmetric object and helps us to complete

the missing regions of the occluded object.
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Figure 3.3: Invariant nature of curvature of rotationally symmetric object: (a) An
occluded rotationally symmetric object (b) Periodic nature of curvature of the object.

3.2 Methodology

In the following sections, we describe the mathematical aspects of curvature com-

putation and the estimation of its periodicity. By utilizing the invariant nature of the

curvature we establish correspondence between points in the contour. We explicitly

use these correspondences to formulate a system of equations to estimate both the

fundamental angle of ration and the centroid of the unoccluded shape.

3.2.1 Curvature Computation and Periodicity Estimation

We treat the input curve as an open contour which is represented as a sequence of

n points (x1, y1), (x2, y2), . . . , (xn, yn) following a particular orientation. The x and y

coordinates of the pixels are parameterized by the curve arc-length parameter u, and

u is normalized to take values from the interval [0, 1]. The functions x(u) and y(u)

are then resampled to N equidistant points using a cubic spline interpolation. We use

N = 256 which is found to be reasonable for typical image processing applications.

The resampled function x(t) and y(t) is low-pass filtered using a normative Gaussian
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filter to obtain a smoothed contour. We then compute the curvature of the contour

as follows:

κ(t) =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
(3.1)

where the dots indicate differentiation with respect to t and the discrete parametriza-

tion of the contour is {(x(t), y(t))} where t = 0, 1, . . . , N−1. The computed curvature

curve is shown in Figure 3.4(b). We also compute the normal vector n(t) at each point

on the curve as follows:

n(t) =
e(t)

||e(t)|| where e(t) = (ẍ, ÿ)− (ẍẋ + ÿẏ)

(ẋ2 + ẏ2)
(ẋ, ẏ) (3.2)

The normal vectors will later be used to compute the fundamental angle of rotation

– the smallest angle of rotation of the unoccluded object about its centroid so that

it returns to its original position. Using the arc-length parametrization, it can be

easily shown that a rotation about the centroid of the unoccluded object manifests as a

translation of the curvature curve [71]. Since the contour realigns itself after rotating

an integral number of the fundamental angle, the curvature curve of a rotationally

symmetric contour must be periodic. We also note that, the periodicity of the cur-

vature is more apparent in the autocorrelation as observed in Figure 3.4(c). The

distance between the peaks in the autocorrelation function of curvature correspond

to the translations needed by the existing contour points to maintain the curve struc-

ture. Estimating this periodicity provides us with correspondence between among

the existing contour points.

To estimate the periodicity of the autocorrelation function of the curvature, we

assume that the visible contour contain at least two periods, otherwise the period
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cannot be estimated. To robustly estimate this period T of the curvature curve, we

employ a sliding-window based technique. First, we select a N/2-point search segment

from the curvature curve at a random starting point t = q to t = N/2+q−1. Second,

among all the N/2-point segments from the curvature curve, we identify the segment

τ̂ points away from the search segment that maximizes the autocorrelation:

τ̂ = max
τ∈S

N/2+q−1∑
t=q

κ(t)κ(t + τ) (3.3)

where S = {−q, . . . , q − 1, q + 1, . . . , N/2 − q}. τ̂ must be in the form of kT where

k is a positive integer. As neighboring structures tend to be more correlated than

their distant counterparts, k is typically 1. To ensure a robust estimate, we randomly

select multiple search segments and estimate T based on the smallest computed τ̂ . We

then identify all pairs of curvature points that are an integral number of T from each

other. Let the number of correspondence be M . Each correspondence (x(ti), y(ti)) ↔

(x(ti + kiT ), y(ti + kiT )) for i = 0, 1, . . . , M − 1 is parameterized by the index ti of

the first point and the number of period ki the second point from the first.

3.2.2 Estimation of Fundamental Angle of Rotation

After the correspondences are established, we can estimate the fundamental angle

of rotation θ, which is needed to perform the rotation for the Euclidean transform. It

is calculated by computing the angle between the normal vectors of the corresponding

points in the original contour. We compute the angle between the normal vectors of

all the corresponding points and take the average value as the estimate:

θ =
1

M

M−1∑
i=0

1

ki

cos−1

(
n(ti) · n(ti + kiT )

|n(ti)||n(ti + kiT )|
)

(3.4)
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The above process is explained in Figure 3.4(d) where we show normal vectors

of the two corresponding points n(a) and n(b) separated by the fundamental period.

Due to the constraint of the rotational symmetry imposed by the symmetry group,

the smallest angle of rotation θ must be of the form

θ =
360

n
,∈ 2, 3...K (3.5)

We use this constraint to further refine our estimation of the angle of rotation.

(a)

0 100 200 300
0

0.1

0.2

(b)

(c)

n(b)

n(a)

(d)

Figure 3.4: Occluded symmetric object, curvature and surface normals: (a) Symmet-
ric hexagon with occlusion; (b) Curvature of the contour of the occluded hexagon;
(c) Hexagon with the estimated centroid; (d) Normal vectors of corresponding points
nx(a) and nx(b) on the contour.
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3.2.3 Robust Centroid Estimation

We now have the fundamental rotation angle θ, and a set of point correspon-

dences (x(ti), y(ti)) ↔ (x(ti + kiT ), y(ti + kiT )) for i = 0, 1, . . . , M − 1. For each

correspondence, there exists a rotation transformation matrix Mki
such that

Mki




x(ti)
y(ti)

1


 =

(
x(ti + kiT )
y(ti + kiT )

)
(3.6)

Mki
is given by

Mki
=

(
cos(kiθ) sin(kiθ) T ki

x

− sin(kiθ) cos(kiθ) T ki
y

)
(3.7)

where T ki
x and T ki

y are translations in x and y directions.

We also note that the centroid (Cx, Cy) is the only point inside the contour which

does not rotate or translate under different angles of rotation. In other words, it is

the pivot around which the rotation and translation of the existing contour structure

takes place and it in itself remains fixed. Since the centroid of the unoccluded shape

is the center of rotation, it is a fixed point of Mki
for any integer ki. If the coordinates

of the centroid is (Cx, Cy), we must have

Mki




Cx

Cy

1


 =

(
Cx

Cy

)
(3.8)

Combining equations (3.7) and (3.8), we can eliminate the translation parameters

and rewrite Equation (3.6) as follows:

(
(1− cos(kiθ)) − sin(kiθ)

(cos(kiθ)) 1− sin(kiθ)

)(
Cx

Cy

)
=

(
x(ti + kiT )− x(ti) cos(kiθ)− y(ti) sin(kiθ)
y(ti + kiT ) + x(ti) sin(kiθ)− y(ti) cos(kiθ)

)
(3.9)

As we have estimated θ in the previous section, we can formulate a system of equations
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based on (3.9) for all M correspondences established, (Xi → X
′
i , Yi → Y

′
, k), where

i = 1...M , we have




(1− cos(k1θ)) − sin(k1θ)
(1 + sin(k1θ)) − cos(k1θ)
(1− cos(k2θ)) − sin(k2θ)
(1 + sin(k2θ)) − cos(k2θ)
(1− cos(kMθ)) − sin(k3θ)
(1 + sin(kMθ)) − cos(k3θ)




(
Cx

Cy

)
=




X
′
1 −X1 cos(k1θ)− Y1 sin(k1θ)

Y
′
1 + X1 sin(k1θ)− Y1 cos(k1θ)

X
′
2 −X2 cos(k2θ)− Y2 sin(k1θ)

Y
′
2 + X2 sin(k2θ)− Y2 cos(k1θ)

X
′
M −XM cos(k2θ)− YM sin(k1θ)

X
′
M + XM sin(k2θ)− YM cos(k1θ)




(3.10)

Solving this system of equations by taking pseudo inverse, provides us with a least

squares estimate on the centroid of the partially visible contour. We then proceed to

rotate the existing contour structure using the fundamental and integer multiples of

the rotation angle to complete the missing regions of the symmetric structure.

3.3 Cost Function and Candidate Selection

The final stage of this algorithm involves selecting a suitable candidate from

the set of rotations about the centroid to extrapolate the missing contour. Let

{(x̃(t), ỹ(t)), t = 0, 1, . . . , N−1} be a rotated contour. One end of the rotated contour

will align with the original one, while the other end will extrapolate into the missing

region and possibly connect back to the opposite end of the original contour. Assume

the indices of the extrapolated portion, in reverse order, are N − 1, N − 2, . . . and

so forth. We use the following cost function to measure how well the extrapolated

contour aligns with the unmatched end of the original contour:

C({x̃, ỹ}) = min
0≤k≤N−1

1

k + 1
·

k∑
t=0

[x̃(N−1−t)−x(k−t)]2+[ỹ(N−1−t)−y(k−t)]2 (3.11)

Intuitively, this cost function measures the distance between the extrapolated re-
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Original Contour

Extended Contour

Figure 3.5: Illustration of cost function: The two figures show the alignment of two
candidate contours with the original one.

gion of the transformed contour with the opposite end of the original contour segment.

The search process is illustrated in the Figure 3.5.

In the case of the occluded hexagon, the cost function is computed for all valid

candidates, and the suitable candidate is chosen to be the one with the minimal cost.

Figure 3.6 (a)-(c) shows the completion of the occluded hexagon using the first three

harmonics. The associated cost for them are 6823.1, 1606.3 and 50.78. Thus, the

third harmonic provides the best transformed contour for the completion and the

associated cost function is shown in Figure3.6d . If the missing region is too large,

it is straightforward to repeat the above process to complete the entire region in a

piecemeal fashion.

We illustrate the robustness of our algorithm by showing another example for

occluded object contour completion shown in Figure 3.7(a). We can find that the

final completion of the occluded contour is arrived by using the second harmonic and

the minimum cost as explained previously.
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Figure 3.6: Appropriate candidate selection using cost function: (a) Completion (red)
due to rotating the contour by one fundamental period (first harmonic); (b) Com-
pletion due to the second harmonic; (c) Completion due to the third harmonic that
results in the lowest cost.(d) Cost function corresponding to the third harmonic.

3.4 Application to Global Image Inpainting

Earlier we described how missing contour completion could be an effective tool in

performing structural completion task of image inpainting. Here we present a couple

of real world examples which illustrate how occluded symmetry completion algorithm

proposed in this section can be effectively utilized in structure completion aspect.

Figure 3.8(a) shows an image with a hole. Firstly, we segment the image, extract the

outer contour and we compute the curvature which is shown in Figure 3.8(b). We

then proceed to estimate the period of the curvature and estimate the centroid shown

in Figure 3.8(c). Finally we select a suitable candidate from a finite set of available

candidates by minimizing the cost function defined in Equation 4.9. The final result
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Figure 3.7: Occluded symmetric shape completion: (a) Symmetric object under occlu-
sion; (b) Curvature of the contour of the object; (c) Autocorrelation of the Curvature
of the object; (d) Symmetric object with estimated center; (e) Completed symmetry
corresponding to minimal cost using 2nd harmonic.

of the occlusion completion is shown in Figure 3.8(d). It is clear that the structure of

the occluded region is reconstructed in a perceptually consistent manner. Following

the same vein, we present another example in which the occlusion is more than 40%

of the entire structure.
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Figure 3.8: Structure completion and global image inpainting: (a) An image with
the hole; (b) Curvature of the contour of the segmented object; (c) Contour with
estimated center; (d) Structure completion result corresponding to first period and
minimal cost

From these examples we can see that once the underlying structure is completed,

we can then utilize effective texture synthesis techniques to fill in the texture details

inside the closed boundary to complete the inpainting process.

3.5 Summary

In this chapter we have proposed a shape completion algorithm for rotationally

symmetrical objects under the presence of severe occlusions. This algorithm does

not make any assumption about the nature of the circular symmetries to perform
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Figure 3.9: Structure completion and global image inpainting: (a) An image with the
hole; (b) Completion using First harmonic; (c) Completion by second harmonic; (d)
Final completion due to third harmonic and corresponding to minimal cost

the completion and can potentially be extended to handle various symmetries. The

usefulness of this contour completion algorithm is demonstrated in a global inpainting

technique by using it for structure completion process. This technique can also be

used to complete periodic structures of arbitrary lengths by repeatedly extending the

matching segments obtained from the correlation process until it satisfies a minimum

cost criterion.
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Chapter 4

Efficient Object Based Video Inpainting

We presented an overview of existing video inpainting techniques in Section 2.2 and

in section 1.2.2 we identified the key challenges in video inpainting area which would

expand the usefulness of these algorithms in practical applications. In this chapter, we

describe our proposed fast and efficient object based video inpainting technique which

addresses those issues. Our modular approach utilizes a two stage process in which the

input video is segmented into constituent object followed by inpainting of identified

regions. The static regions to be inpainted are completed by a combination of adaptive

background replacement and image inpainting technique. Our key contribution is

the introduction of a computationally efficient object based inpainting method for

inpainting moving foreground regions. By grouping consecutive object templates in

a sliding window fashion and by defining a novel dissimilarity metric, we propose to

solve the video inpainting as a minimization problem under a dynamic programming

framework. This technique can effectively inpaint large regions of occlusions, inpaint

objects that are completely missing for several frames, change in size and pose and has

minimal blurring and motion artifacts. Furthermore, our object-based approach is

significantly faster than the patch-based scheme and takes minutes, rather than hours

as required by many existing schemes, to obtain comparable inpainting results. Our

proposed scheme also offers a unified framework to address video inpainting under

both static and limited moving camera conditions.
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The rest of this chapter is organized as follows: In the opening Section 4.1 we

briefly present our modular approach and summarize the key contributions of our

approach. We present an overview of our system in Section 4.2, and discuss the

technical details in segmenting the video into constituent objects Section 4.3. After

segmentation, we briefly explain static background inpainting in Section 4.4 followed

by a detailed discussion of our moving foreground inpainting framework in Section

4.5. We demonstrate the results of our method under different operating conditions

in Section 4.6 and analyze the impact of segmentation on the inpainting process in

Section 4.7, present a complexity analysis with existing techniques in Section 4.8 and

summarize our contribution in Section 4.9.

4.1 Approach and Key Contributions

A visible trend emerging from recent works is the use of a two-stage process: seg-

mentation of the video into different regions followed by separate completion of the

respective regions.Existing algorithms differ by the method they use to complete hole

regions in the moving foreground. It is often the most challenging and time consum-

ing step due to the extensive search involved. Algorithms following this approach

often have better performances because of two main reasons: First, segmenting into

different layers not only provides better matching results, but also significantly re-

duces the search space for finding appropriate matches used for inpainting. Second,

the background completion process can be made much faster by using an adaptive

background replacement scheme or an efficient image inpainting technique.

While following this major trend of modular approach, our proposed technique
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differs from existing techniques by inpainting the entire objects instead of small spatio-

temporal patches using available templates. The use of the entire object rather than

individual patches provides a significant computational reduction which leads to a

close-to-real-time implementation. The alignment and motion continuity are accom-

plished by using a sliding-window similarity metric in a dynamic programming setting.

A preliminary version of our work has appeared in [18]. This earlier version lacked

the ability to handle partial occlusions occurring when a moving object enters and

exits a hole region. Partial occlusions were treated as complete occlusions by dis-

carding the available information. As a result the earlier scheme had difficulties in

establishing smooth transitions at the boundaries. We improve our previous approach

by grouping consecutive, possibly incomplete object into a single entity under a slid-

ing window mechanism. The process of grouping consecutive templates allows us to

implicitly lock onto the global movement of the constituent objects and allows us to

handle cases where the entire object is completely occluded. Succinctly put, our key

contribution is a computationally-efficient object-based inpainting algorithm capable

of inpainting partially- and completely-occluded objects and providing global motion

consistency by using sliding-window registration and dynamic programming. We will

demonstrate the effectiveness of our algorithm by inpainting different human subjects

of varying pose, size and motion in video sequences captured through both static and

moving cameras.
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4.2 Overview of the Inpainting System

We first provide an overview of the entire system and describe the motivations

behind the design. We begin by specifying the assumptions under which our system

operates and note that these assumptions are in line with those made by the existing

state-of-the-art systems. We assume that the scene consists of stationary background

and moving foreground regions.The foreground object may change in pose signifi-

cantly but it still retains the repetitive motion pattern. To inpaint the foreground

objects that are occluded in the absence of model based or learning based methods,

digital inpainting techniques require that the necessary information to fill in the hole

be available in the video. For our focus on inpainting human motion in a short time

window, this assumption is usually satisfied due to the fact that common human

movements like walking or running are repetitive. This also ensures that the neces-

sary information to fill in the hole is available in the video.We also limit that any

camera movement present to be parallel to the image projection plane.

Figure 4.1 shows the schematic diagram of our proposed system. The input video

is first fed into a background subtraction module. The output of this stage is a set

of moving foreground blobs. In case of moving cameras, the camera motion is first

estimated by a block matching scheme. The camera motion is then compensated

by warping back all the video frames into the same coordinate system and estimate

a background panorama. We then perform moving object segmentation that serves

two purposes - it segments foreground blobs into constituent objects and links objects

from frame to frame. The segmented objects, or object templates, are stored in a

database. Target objects specified by external means are removed from each image
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forming the hole region to be inpainted.

Figure 4.1: Schematic diagram of the proposed object removal and inpainting system.

The static portion of the hole can be filled by an adaptively updated background

image if background information is available. Otherwise, image inpainting is per-

formed based on the surrounding image statistics. The occluded moving foreground

objects are inpainted by a two-stage process using the stored object templates. We

first classify the frames in the hole as either partially-occluded or completely-occluded

as shown in Figure 4.2. This is accomplished by comparing the size of the templates

in the hole with the median size of templates in the database. The reason of handling

these two cases separately is that the availability of partially-occluded objects allow

direct spatial registration with the stored templates, while completely-occluded ob-
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jects must rely on registration done before entering and after exiting the hole. The

partial objects are first completed with the appropriate object templates selected by

minimizing a window-based dissimilarity measure. Between a window of partially-

occluded objects and a window of object templates from the database, we define the

dissimilarity measure as the Sum of the Squared Differences (SSD) in their overlap-

ping region plus a penalty based on the area of the non-overlapping region. The

partially-occluded frame is then inpainted by alpha-matting with the object template

that minimizes the window-based dissimilarity measure. Once the partially-occluded

objects are inpainted, we are left with completely-occluded ones. They are inpainted

by a Dynamic Programming based dissimilarity minimization process, but the match-

ing cost is given by the dissimilarity between the available candidates in the database

and the previously completed objects before and after the hole. The completed fore-

ground and background regions are fused together using simple alpha matting. We

now proceed to now describe each component in detailed manner.

Figure 4.2: Classification of the input frames into partially and completely occluded
frames.
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4.3 Foreground Extraction and Object Segmentation

To extract the foreground moving blobs and the shadows, we employ a background

subtraction algorithm proposed in [72] which needs to be trained by a sequence with

just a static background. In the training phase, each pixel in the background is

modeled by a 4-tuple (Ei, σi, ai, bi),where Ei is the expected color value, σi is the

standard deviation of color value, ai is the variation of the brightness distortion, and

bi is the variation of the chromaticity distortion. In the classification phase, every

pixel in the incoming frame is classified either as a foreground pixel if the chromaticity

exceeds a color threshold, or as a shadow pixel if they have similar chromaticity but

lower brightness than those of the same pixel in the background image. The threshold

values for the classification are computed in the training phase by setting the detection

rate at 99.9%. Shadow separation is important as objects extracted in this step may

be used for object interpolation in other locations where the old shadow is unlikely

to be correct. We also apply a two-threshold hysteresis to prevent over-segmentation

of foreground blobs.

In case of moving cameras, we extract the moving object in each frame by com-

paring it with the following frame using a block matching technique. Each frame

is partitioned into non-overlapping blocks and the motion vector is estimated by

searching in the neighborhood. Assuming that the camera moves parallel to the im-

age projection plane, the median shift of all the blocks gives us a reliable estimate of

the camera motion. The estimated camera motion is used to align all the available

frames and the median value of each pixel position over time is chosen to create a

background panorama. All the frames are then registered within this panorama by
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using the estimated motion vectors. We then segment the moving foreground from

the background by modeling the distribution of the background pixels as a Gaussian

Mixture and identifying the foreground pixels as those that significantly deviates from

the background model.

The background subtraction process has a direct bearing on the quality of the

captured object templates which are later used to perform foreground inpainting.

The classification threshold is conservatively chosen based on confidence level so that

static background is rarely mistaken as moving objects. Such an approach is usually

adequate for indoor environment. There are other more sophisticated background

subtraction schemes such as [73] that can handle outdoor dynamic background.

The main focus of our work, however, is to demonstrate the robust and efficient

performance of our inpainting algorithm to complete missing foreground regions when

compared with the existing techniques. As such, we have not incorporated the most

advanced background subtraction scheme in our experiments.

Following this step, it is imperative to segment foreground blobs into constituent

objects during occlusion. Due to the large variation of object pose and movement,

moving object segmentation is a very challenging problem. However, we would like

to emphasize that the performance of our inpainting algorithm does not depend

heavily on this process. By checking the variation in the object bounding boxes,

we can usually detect whether the resulting segmentation is reasonable. If we cannot

accurately segment the objects during occlusion, we can consider them as complete

occlusions and proceed to inpaint them using our complete object inpainting process.

Furthermore, in creating the hole for inpainting, we use a more relaxed classification
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threshold in our background subtraction to remove all traces of the foreground objects.

By using our background replacement scheme, we can recreate the background texture

that is erroneously removed by the background subtraction process.

As such, we have implemented a relatively simple tracking-based segmentation

algorithm that is computationally very efficient. The object with ID i observed at time

t, denoted as Oi
t, is represented by a normalized spatial color histogram hi

t(p, c) at each

pixel position p and color c. This histogram is adaptively updated throughout the

lifetime of this object. Different quantities can be computed based on this histogram.

For example, we can define the bounding region Bi
t to include all pixel location p

with hi
t(p) =

∑
c hi

t(p, c) > τ for some small τ > 0. We can also define the location

of the object centroid ci
t =

∑
p p · hi

t(p). To track an object, we adaptively maintain

its velocity vector vi
t using the following recursive update:

vi
t = αvi

t−1 + (1− α)(ci
t − ci

t−1) (4.1)

where α > 0 is an empirical parameter that dictates the rate of adaptation.

With the velocity vector, we predict the spatial color histogram at time t + 1 as

h̃i
t+1(p, c) = hi

t(p− vi
t, c). To determine the object label of foreground pixel It+1(p),

we adopt the following decision rule:

It+1(p) = c ∈ Oi
t+1 if

h̃i
t+1(p, c)

h̃j
t+1(p, c)

>
f j

t

f i
t

∀j (4.2)

f i
t is the “depth score” for object Oi

t. For all our test sequences, we take advantage

of the simple scene geometry by assuming that object Oi
t is closer to the camera than

object Oj
t if the baseline of the bounding region Bi

t is lower than that of Bj
t . The depth

scores essentially act as priors for different objects in our moving object segmentation
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algorithm. The idea is to give bias towards objects that are closer to the camera

as indicated by the baseline of their corresponding bounding boxes. The true prior

would base on the part of the object (more likely to observe the occluded objects

through the legs than the body of the occluding objects) and the amount of overlap

between the occluding and occluded objects. As it is beyond the scope of this paper

to precisely model all the different aspects of occlusion, we adopt the heuristic of

assigning one as the depth score to the object farthest away from the camera, and

doubling the object depth score as we move closer to the camera. After segmentation,

the spatial color histogram of the foreground object is updated as follows:

hi
t+1(p, c) =

{
αhi

t(p− vi
t, c) + (1− α) It+1(p) = c ∈ Oi

t+1

αhi
t(p− vi

t, c) otherwise
(4.3)

For all occluded objects, we ignore any partial observation and use the update

rule hi
t+1(p, c) = ht

t(p− v, c).

4.4 Static Background Inpainting

To perform background replacement, we cannot directly use the background image

from Section 4.3, which represents the long-term average of the time-varying back-

ground. Instead, we need to use background pixels that are most compatible with

the current frame to fill the hole. As a result, we maintain a separate, fast-adaptive

background image based on Kalman filter [12] and use it for background replacement.

We further apply an edge-sensitive filter similar to the de-blocking filter used in H.263

to smooth the boundaries of the region [74]. In our implementation, we use a 5 × 5

filter with its strength determined by the dynamic range of the original pixels under
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the filter mask.

Occlusions cause by stationary objects cannot be completed by adaptive back-

ground replacement scheme as they lack background information in the occluding

regions. For completing these regions, we use the exemplar-based image inpainting

algorithm [13]. This patch based method first computes a priority for each pixel in the

damaged region by assuming a patch size, which is set to 9 × 9 in our implementation.

The priority is determined by two factors, extent of the support of undamaged pixels

and edge strength. Consequently narrow or edge regions are assigned with higher

priority and are completed before attempting to fill smooth and homogenous regions.

This method is capable of filling large areas by first propagating linear structure and

then synthesizing the image textures. It performs well for a wide range of images

with good texture and structure replication but has difficulties in handling curved

structures.

4.5 Dynamic Object Inpainting

In this section, we describe the sliding-window based technique for foreground

object inpainting. Stationary or moving target objects that occlude the object of

interest in the foreground are removed from the video. Removal of these target

objects creates a hole which could contain partially or completely-occluded object

of interest. We first identify the partially-occluded frames and inpaint them before

proceeding to the completely-occluded ones. The partially-occluded frames are not

used to inpaint the completely-occluded ones. They are only used in the registration

process and at the final stage as the alpha matting to composite with the inpainted
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objects to synthesize natural object movements.

To simplify the explanation of the process, we assume that there is only one moving

object that needs to be inpainted. If there are multiple objects, one can apply the

same technique to each object in the order of their depth. For our test sequences,

this order is computed based on the baselines of the objects. We denote the object

template in the database as Oti where ti indicates the time of the frame when the

template is captured, and i indicates the time of the frame inside the hole where this

template is a candidate for inpainting. We use Õi to denote the actual object inside

or near the boundary of the hole at frame index i.

4.5.1 Sliding Window Based Dissimilarity Measure

The basic idea is to use a combined set of successive object templates extracted at

other time instances as candidates for interpolation. In our previous work, we used

individual object candidates in a sliding-window framework to complete the hole [18].

This process is further improved by grouping successive object templates and treating

them as a single entity under a sliding-window mechanism. Let w be the number

of consecutive templates in a group. Our algorithm works for any odd numbered

group size w. We first define an appropriate distance measure which computes the

dissimilarity in shape, color, texture between the available candidates in the database

and the partial or completely-occluded foreground objects present in the hole.

Let Oti be an object template in the database and Õi be the same foreground

object near the boundary of or inside the hole. All object templates are modeled as

functions that map the 2D coordinates p to its gray-scale pixel value in the range
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of [0,255]. A dissimilarity measure d(Õi, Oti) must take into account of the proper

alignment and the difference in shapes. Let M̃i and Mti be the binary masks that

define the shape of Õi and Oti respectively. We define the distance d(Õi, Oti) as

follows:

d(Õi, Oti) , min
m

EO(Õi, Oti ;m) + EN(Õi, Oti ;m) (4.4)

where the score EO(Õi, Oti ;m) between the overlapping areas and the score EN(Õi, Oti ;m)

between the non-overlapping areas are defined as follows:

EO(Õi, Oti ;m) ,
∑

p∈M̃i

[
Õi(p)−Oti(p + m)

]2

M̃i(p)Mti(p + m) (4.5)

and

EN(Õi, Oti ;m) , 2552
∑

p∈M̃i

M̃i(p) [1−Mti(p + m)] (4.6)

EO(Õi, Oti ;m) measures the SSD between the overlapping region of Õi and the

candidate template Oti shifted by vector m. The penalizing score EN(Õi, Oti ;m)

counts the number of pixels, weighted by 2552, within the object Õi not covered

by Oti shifted by vector m. This score acts as a balancing factor in helping to

choose a candidate which not only has good similarity in overlapping areas but also

is structurally similar to the partial template in the hole. For example, a candidate

template similar in color and texture as well as structure (by the way of alignment

with the partial template in the hole) would be chosen over a template which is similar

in color and texture but does not align properly with the original partial template
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in the hole. The distance d(Õi, Oti) is the minimum combined score over all possible

alignment vectors. We denote the optimal alignment vector as m∗.

If partial templates are available in a window of consecutive frames, we can in-

crease the robustness of the matching by simultaneously matching the entire window.

Let Gti be a group of w consecutive object templates Oti , . . ., Oti+w−1 of the same

foreground object from the candidate database. Let G̃i be a group of partial objects

Õi, . . ., Õi+w−1 of the same object in the hole. We now define a window-based distance

dw(G̃i, Gti) as follows:

dw(G̃i, Gti) , min
m

w−1∑

f=0

EO(Õi+f , Oti+f ;m) + EN(Õi+f , Oti+f ;m) (4.7)

Note that a single alignment vector m∗ is used to minimize the distance between

all the objects in the window. As such, m∗ is robust enough to be directly used in the

registration and inpainting of partial objects in the hole. As for complete occlusion,

no partial templates are available to anchor the entire window and we have to resort

to a dynamic programming framework to derive the proper registration throughout

the entire duration of the hole. This process is explained in the following section.

4.5.2 Dynamic Programming Based Optimization

Let h be the number of frames we need to interpolate and w be the size of the

object template window. We define our time index i ranged from i = 0, corresponding

to the time instance w − 1 frame before the hole, to i = h + 2w − 3 or w − 1 frames

after the hole. Thus,the hole ranges from frame i = w − 1 to i = h + w − 2.

Partial templates are usually available at the beginning and towards the end of

60



the hole region. If there are more than w consecutive partial templates, they can be

directly used to identify the proper object templates in the database for inpainting.

For example, assume that we have half a window of partial objects present starting

from the first frame (frame index w) of the hole. As the partial object Õw is in the

middle of the window G̃0,Õw can be inpainted by the middle frame of the template

window Gt∗0 that minimizes the window distance with G̃0 as defined by Equation

(4.7). Specifically, Gt∗0 is defined as

Gt∗0 = arg min
t0

dw(G̃0, Gt0) (4.8)

On the other hand, if there are completely-occluded objects in the hole, we cannot

directly compute the window based dissimilarity measure. This is due to the lack of

partial objects over the span of the window length. Furthermore, in this condition,

the registration must be done using the available object templates before and after

the hole. Figure 4.3 shows an example of such a sequence in which h = 3 and w = 3.

To define the matching cost function for the completely-occluded objects, we consider

all possible w-frame windows of object candidates in our database such that when we

slide them across the hole, the total distances between overlapping object templates

from successive windows are minimized. This total distance is recursively computed

as shown in the following equation:

Cti ,
w−1∑
j=0

d(Õi+j, Oti+j) · 1Õi+j
+

min
ti−1

(
Cti−1

+ 1{i>0} ·
w−2∑
j=0

d(Oti+j, Oti−1+j−1)

)
(4.9)
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Figure 4.3: Illustration of object interpolation under complete occlusion: the top row
shows the original sequence with completely occluded templates in the hole. The
subsequent rows show the best 3-frame sliding windows of object templates that
minimize the recursive cost function defined in (4.9). Different color lines indicate
different components in (4.9).
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for i = 0 to i = h + 2w − 3, spanning the entire duration of the hole. We set the

boundary condition Ct−1 = 0. The first term of Equation (4.9) is the cost between

the candidate templates Oti+j and the partial objects Õi+j near the boundary of the

hole, provided that they are present and hence the use of an indicator function 1Õi+j
.

These distance measurements are indicated by the red and blue arrows in Figure 4.3.

The second term in (4.9) represents the cumulative cost across the complete occlusion

where we maintain the motion continuity by computing the overlap between successive

candidate windows. These measurements are indicated by the green arrows in Figure

4.3. By using a dynamic program to minimize the ending cost function Cth+2w−3
,

we obtain a series optimal template windows Gt∗i = {Ot∗i , . . . , Ot∗i +w−1} for i = 0 to

i = h + 2w − 3. To inpaint frame i which is in the middle of the window Gt∗
i−(w−1)/2

,

the middle object template Ot∗
i−(w−1)/2

+(w−1)/2 is used.

In the final step, we need to put the optimal object candidate at the correct

location within each interpolated frame to achieve smooth object movement. To

accomplish that, we utilize the alignment vectors from the object distances defined

in (4.4) and (4.7). When partially-occluded objects are present in the entire window,

solving the minimization in (4.8) provides the optimal template window Gt∗i with

corresponding alignment vector mt∗i . As we use the frame in the middle of the window

for inpainting, we denote the centroid of that object template as ct∗i . The centroid of

the inpainted object ĉi is simply:

ĉi = ct∗i + mt∗i (4.10)

For the duration of the hole where complete occlusion occurs, we do not have a
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direct measurement of the actual alignment vector for each optimal inpainting tem-

plate. The alignment vector mt∗i is measured with respect to the optimal inpainting

template of the previous frame rather than the actual object in the scene. As such,

to compute ĉi, we need to sum all the alignment vectors starting from the first frame

when complete occlusion occurs:

ĉi = ct∗i +
i∑

j=w−1

mt∗j (4.11)

As error can accumulate throughout the hole, we need to introduce an adjustment

vector d to each frame and then compute the actual centroid location ̂̂ci by adding

this adjustment vector:

d =
1

h
(ch+w−1 − ĉh+w−1) and ̂̂ci = ĉi + d (4.12)

4.6 Experimental Results and Discussion

The algorithm presented in the previous sections are tested on six video se-

quences and the results of results of our algorithm are presented in this section.

Some of the tested video sequences are form previously existing methods. To com-

pare the effectiveness of our algorithm and to do it in an equal footing, we our we

apply our technique on the data provided by [16, 75] in Section 7.3 and 7.5. The

performance of our algorithm is compared with the existing methods in terms of

the inpainting quality and complexity. Each of the sequences presented here high-

lights the flexibility of our technique in addressing challenging scenarios including in-

painting of partial or completely occluded objects, inpainting under moving camera,

and inpainting of moving objects with complex motion, changing pose and perspec-
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tive. Table 4.1 summarizes the details of the video sequences used in this section.

Our results and the original video sequences are available in our project website at

http://vis.uky.edu/mialab/Video Inpainting.html.

Table 4.1: Video sequences and their attributes (POF=partially occluded frames,
FO=fully occluded frames)

Fig Name Resolution length POF FOF
4.4 Three Person 320 × 240 75 15 0
4.5 One Board 320 × 240 100 14 14
4.6 Moving Camera 320 × 240 40 9 0
4.7 Spinning Person 320 × 240 140 23 0
4.9 Perspective change 320 × 240 64 12 0
4.10 Jumping Girl 300 × 100 240 25 21

4.6.1 Inpainting Under Multiple Occlusions Using Tracking

We first show our results on a sequence which has multiple occlusions. The “three

person” sequence listed in Table 4.1 is a typical indoor surveillance sequence captured

by a stationary camera. As shown in Figure 4.4, the object to be inpainted is being

occluded by two other moving foreground objects at different time instances. Also

notice that the object to be inpainted is occluded by a stationary object at the

start of the sequence. As a result, there are incomplete templates of the object

of interest in the database. We do not assume any a priori information about the

presence of incomplete templates due to this occlusion. As discussed in Section 4.3,

we first extract the moving foreground regions by background subtraction and employ

tracking and object segmentation to identify individual objects. In Figure 4.4, the

first column shows four frames from the input sequence and the second column shows

the results of object segmentation. The cyan and yellow colored regions represent the

hole region. As the object of interest is only partially occluded, we use the partial
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object templates for registration and inpainting as described in Section 4.5. The

window size used in the dissimilarity measurement is set to five. The last column in

Figure 4.4 shows the inpainted results. As we can observe, the system is able to fill

the holes in a seamless manner without using a priori knowledge about the incomplete

templates.

4.6.2 Inpainting Under Complete Occlusions

In this section we highlight the efficacy of our inpainting algorithm in handling

complete occlusion over a number of frames. The top row of Figure 4.5 shows four

input frames from the “One Board” sequence in which the moving foreground is

occluded by a stationary board in the front. This sequence presents an extremely

challenging task as it suffers near complete occlusion for 14 frames when the person is

walking behind the board. Our system first identifies the hole subsequence that con-

tains partial templates and employs the partially-occluded object inpainting scheme.

The system then proceeds to complete the remainder of the holes using fully-occluded

object inpainting. The window size is again set at five. The inpainted video frames

are shown in the second row of Figure 4.5. The static regions in the background

are inpainted by an image inpainting scheme [13]. On close inspection, we can ob-

serve some artifacts on the ground below the inpainted person. This is caused by

transferring part of the moving shadows due to imprecise segmentation.

4.6.3 Inpainting Under Moving Camera Conditions

Figure 4.6 shows the video sequence “Moving Camera” taken from a moving cam-

era originally used in [16]. The goal is to remove the foreground person and inpaint
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Figure 4.4: Inpainting under multiple occlusions using tracking : a) The first col-
umn shows the original input sequence along with the frame number. b) The second
column shows results of the tracking and foreground segmentation stage in which
objects are classified and segmented. c)The third column shows the inpainted result
in which the moving foreground target objects are eliminated and the object of in-
terest located at the back is inpainted. Also notice that the stationary object which
is occluded by moving foreground in frame 62 and 64 has been inpainted back by
adaptive background substitution.
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Figure 4.5: Inpainting under complete occlusions: a) First row shows the unmodified
input sequence with a stationary occlusion. Note the heavy occlusion and also the fact
that very little foreground information is available in third frame. b) The second row
shows the inpainted sequence. Notice that the completely occluded object has been
effectively inpainted with smooth transitions in the entry and exit. The stationary
background is inpainted using the image inpainting the technique in [13].

the background person during the brief occlusion. We use this sequence to demon-

strate the capability of our system in addressing inpainting under restricted camera

motion. We use the ground truth of the mask of the target object to be removed,

which lies in front of the object of interest, which were provided by the authors of [16].

It should be noted that our appearance based segmentation technique would not yield

better results in this case as the interfering objects share similar appearances. The

hole region extends over nine frames and has near complete occlusions when the ob-

jects cross each other. We employ our moving camera foreground extraction scheme

explained in Section 4.3 to extract the moving foreground regions. The occluded

regions are inpainted using our dynamic object inpainting scheme. The background

regions are inpainted using a background replacement scheme based on the estimated
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background panorama. A closeup look at the inpainted frames using our method and

that of [16] are shown in the second and third columns of Figure 4.6 respectively.

Our approach clearly provides better spatial details due to the use of actual texture

rather than texture synthesis. A potential shortcoming of our object-based approach

over patch-based approaches is that it might occasionally select a template with a

wrong pose due to the similarity of the visible regions of the partial template and the

lack of depth information. An example can be found in the top image of Figure 4.6b

which shows the wrong leg moving forward as it becomes apparent in the subsequent

images.

4.6.4 Inpainting Under Change in Pose

In previous sections, we compared our inpainting scheme with other methods by

using video sequences that can operated by all the techniques. Here we illustrate the

versatility of our scheme by inpainting a foreground object that undergoes a significant

change in pose in the hole region. To the best of our knowledge, currently existing

techniques are not capable of processing video sequences containing complex motion

such as change in pose. The work by Shiratori et.al address a very restricted case

of completing complex motion, for instance, by recreating small transient movements

over a period of two or three frames [52]. While doing so, they do suffer from severe

blurring artifacts while our scheme provides a much clearer rendering of the missing

motion through the use of compatible object templates as explained below.

The “Spinning Person” sequence shows a person spinning from the right of the

scene to the left. The first row of Figure 4.7 shows the closeup view of the partially
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Figure 4.6: Inpainting under moving camera conditions: a) First column shows the
magnified version of the input sequence with the hole. b) The second column shows a
close-up look of the final inpainting results using our algorithm. c) The third column
shows the final inpainting result using the algorithm in. [16].
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occluded foreground object inside a synthetic hole. Figure 4.7b shows the results of

our inpainting algorithm. It is clear that the change of pose of the head relative to

the body inside the hole has been been inpainted realistically. By using the partial

templates inside the hole region in a sliding window based measure, we are able to

lock onto the global change in pose occurring at a different time instance to inpaint

the hole in a holistic manner. Note that the assumption of repetitive movement is

not strictly observed as the pose of the spinning person varies greatly throughout the

sequence. Existing video inpainting sequences including patch based methods may

encounter difficulty in inpainting such a sequence because of the greedy approach

they pursue in filling the patches. The idea of combining sets of consecutive object

templates for dynamic object inpainting gives us a significant advantage over existing

techniques.

Figure 4.7: Inpainting of foreground object with changing pose: a) The first row
shows the magnified version of the input sequence with the hole. b) The second row
shows a close-up look of the final inpainting results using our algorithm.
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4.6.5 Inpainting Under Perspective Change

The motivation behind this section is to illustrate that our video inpainting scheme

can be extended to moving objects under perspective changes. Here we consider a case

in which the person is walking at a constant velocity but the trajectory of the motion

is not parallel to the camera plane. Due to this condition, the foreground object un-

dergoes a perspective change. Figure 4.8a shows a montage of the foreground objects

increasing in size as it moves closer towards the camera. We perform a normalization

procedure to rectify the foreground templates so that the motion trajectory is parallel

to the camera plane. Two points, at the top of the head and at the bottom of the

feet, are extracted from the foreground object at different time instances. We obtain

a series of vertical lines by connecting the head and feet points at different frames,

and two horizontal lines by connecting all the head points as well as all the feet points.

The vertical vanishing point is then computed as the intersection of all the vertical

lines while the horizontal vanishing point is formed by intersecting the two horizontal

lines. A metric rectification is then performed with the help of these vanishing points

and the resulting rectified foreground volume is shown in Figure 4.8b [76].

Figure 4.8: Rectification of foreground objects: a) Foreground object under perspec-
tive change; b) Foreground object normalized by metric rectification.
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We then apply our inpainting algorithm on the rectified foreground volume. Figure

4.9a and 4.9b show the damaged and the inpainted foreground volume. The blocking

artifact is more pronounced in this case due to the brightness variations of the objects

templates in the database and the blurring effect is a main consequence of the scaling

involved during the interpolation of candidates in the metric rectification process.

Figure 4.9: Inpainting foreground object under perspective change: a) A closeup
of the foreground objects with the hole; b) Inpainted foreground objects using our
algorithm.

4.6.6 Inpainting Under Prolonged Partial and Complete Occlusions

This “Jumping Girl” sequence used in [75] shows the moving object of interest

exhibiting a repetitive jumping motion throughout the video. The object of interest

is occluded by a stationary object which is cropped out using a user-supplied mask.

Close-ups of the object of interest near the hole are shown in the first column of Figure
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4.10. Using background subtraction algorithm, our system first extracts the moving

foreground objects. Then, the frames with partial occlusion are identified and filled

using the partial template inpainting. The remaining frames of the hole are filled by

fully-occluded object inpainting scheme. Since we lack a background model in the

hole regions, the background image is filled using an image inpainting scheme. The

second column in Figure 4.10 shows our inpainting results. The corresponding results

from [16] and [75] are shown in the third and fourth column of Figure 4.10 respectively.

The results from [16] are noisy and of poor resolution – this could be the limitation of

their method in dealing with near complete occlusions as there is very little structural

information present to do a reasonable inpainting. The foreground inpainting results

from [75] are similar to ours but their results suffers from oversmoothing in the

background regions.

4.7 Impact of Segmentation on Video Inpainting Quality

Our system while being modular and intuitive can be construed to be heavily

dependent upon the performance of the background subtraction and moving object

segmentation algorithms. While there is some merit in this argument, it is equally

important to carefully analyze the impact of these processes on our inpainting al-

gorithm. The discussion presented in this section will help understand the aspects

of segmentation process that has an impact on the proper working of the inpainting

process.

There are two steps of segmentation that can affect the performance of our in-

painting algorithm. They are:
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Figure 4.10: Inpainting under prolonged partial and complete occlusions: a) First
column shows a magnified view of the input sequences adjoining the hole boundaries
along with the corresponding frame number. b) Second column shows the inpainted
result using our algorithm. Notice the visually consistent foreground inpainting and
no blurring of the background. c) Third column shows the result of inpainting us-
ing the algorithm by Patwardhan et al. [16]. The inpainted foreground inpainting
appears coarse and is not consistent throughout. d) Fourth column shows the result
of inpainting using the algorithm by Wexler et al. [75]. The background appears to
suffer from oversmoothing.
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1. Background subtraction on the given input video to separate the foreground and

background layers to collect object templates in the database for inpainting.

2. Moving object segmentation of occluding foreground objects into respective

constituent objects.

The first segmentation process has a direct bearing on the quality of the templates

in the database, which are later used to perform foreground inpainting. To that ef-

fect, we have employed statistical color based background subtraction method based

on [72] for stationary cameras and moving foreground extraction method for moving

cameras. The classification threshold is conservatively chosen based on confidence

level so that static background is rarely mistaken as moving objects. Such an ap-

proach is usually adequate for indoor surveillance environment. There are other more

sophisticated background subtraction schemes such as [73] that can handle outdoor

dynamic background. The main focus of our work, however, is to demonstrate the

robust and efficient performance of our inpainting algorithm to complete missing fore-

ground regions when compared with the existing techniques. As such, we have not

incorporated the most advanced background subtraction scheme in our experiments.

The second segmentation process aims at separating two or more foreground ob-

jects during occlusion. Due to the large variation of object pose and movement,

moving object segmentation is technically more difficult than background subtrac-

tion. However, we would like to emphasize that the performance of our inpainting

algorithm does not depend heavily on this process. By checking the variation in

the object bounding boxes, we can usually detect whether the resulting segmenta-

tion is reasonable. If we cannot accurately segment the objects during occlusion,
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we can consider them as complete occlusions and proceed to inpaint them using our

complete-occlusion based foreground inpainting process. Furthermore, in creating the

hole for inpainting, we use a more relaxed classification threshold in our background

subtraction to remove all traces of the foreground objects. By using our background

replacement scheme, we can recreate the background texture that is erroneously re-

moved by the background subtraction process.

4.8 Complexity Analysis

In this section, we analyze the asymptotic complexity of our algorithm and com-

pare it with those of the methods described in [16, 75]. Let H be the number of

frames in the hole, and within each frame, the hole area can be separated into Nf

foreground pixels and Nb background pixels. Assume that the information needed to

inpaint this hole can be found in a spatio-temporal volume of K frames, and each

frame contains roughly N ≈ Nf + Nb useful pixels. We further assume that all the

foreground pixels belong to the same object. Denote the window size and the search

size of the alignment vectors in our algorithm as W and S respectively. Ignoring all

the preprocessing tasks and focusing solely on the inpainting process, the following

table compares the asymptotic complexities of three different variants of our scheme

and those in [16,75]:

The first row of Table 4.2 shows the complexity of the partially-occluded object

inpainting as described in Section 4.5. The complexity of the dissimilarity measure-

ment in Equation (4.7) is O(NfWS). The dynamic programming is linear in terms of

the number of frames H in the hole and thus the overall complexity for inpainting the
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Table 4.2: Asymptotic Complexities of Three Schemes (PO=Partially-Occluded,
FO=Fully-Occluded)

Schemes Complexity

PO objects O(NfHKWS + NbH)
FO objects with insufficient templates O(NfHK2WS + NbH)
FO objects with sufficient templates O(NfKWS + NbH)
Algorithm in [16] O(N2

f HK + NbH)

Algorithm in [75] O((Nf + Nb)
2HK)

foreground is O(NfHKWS). The complexity of background inpainting, regardless

of whether background replacement or image inpainting is used, is simply O(NbH).

The second row shows the complexity of the fully-occluded object inpainting based

on Equation (4.9). Since there is no existing object template to compare with, this

scheme requires each template to be compared with all other possible templates in

order to deduce the optimal motion continuity. This results in a quadratic increase

from K to K2, where K denotes the number of available templates. We notice that

when the number of consecutive candidates available in the database is significantly

greater than the number of the completely occluded templates in the hole, our al-

gorithm always uses consecutive object templates to fill the hole. In other words,

it is possible to have a significant speedup by heuristically testing only the strings

of consecutive object templates slightly longer than the hole, and choosing the one

that minimizes the dissimilarity at the boundaries. This scheme does not depend

on the length of the hole and results in the complexity depicted in the third row

of Table 4.2. The exemplar-based scheme in [16] is similar to ours in terms of the

separation of foreground and background inpainting. However, their scheme requires

an extra factor of Nf as it needs to search the entire available foreground for filling

each patch. The space-time completion scheme in [75] does not separate foreground
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and background and as a result, has the highest computational complexity.

Our algorithm was implemented using MATLAB version 7.0 on a Xeon 2.1Ghz

machine with 4 Gigabyte of memory. The actual running time to perform the inpaint-

ing for the sequences used in this work are given in Table 4.3. Optimizing the code

and porting it to C or C++ should significantly improve the performance. In addi-

tion, we do not exploit the preliminary alignment results from the tracking module

and end up using a search size S close to the size of the entire foreground object. The

comparison with the available templates can easily be parallelized which can further

improve the performance.

Table 4.3: Actual Execution Time for the video sequences
Name Inpainting W = 3 Inpainting W = 5 Pre-Process

Three Person 7.4 mins 10.2 mins 30 secs
One Board 3.5 mins 8.3 mins 40 secs

Moving Camera 2.6 mins 4.8 mins 3 mins
Spinning Person 12.6 mins 18.2 mins 35 secs

Perspective 3.6 mins 7.1 mins 35 secs
Jumping Girl 6.4 mins 11.4 mins 30 secs

4.9 Summary and Conclusions

The elaborate experiments, results and discussion presented in the sections above

demonstrate the versatility of our proposed system in addressing a variety of video

sequences in our daily lives. It is also worthwhile to point out that most state-of-the-

art inpainting schemes are tested on simple walking and jumping sequences [16,54,75].

We have presented a complete framework for an efficient video inpainting algo-

rithm capable of addressing inpainting under stationary camera and moving cameras.

The stationary background region is filled by a combination of adaptive background

79



replacement and image inpainting technique. Unlike other patch-based inpainting

schemes, we inpaint the foreground object as a whole by formulating the problem

as energy minimization. A new window-based dissimilarity measure is introduced

to provide improved motion continuity within and at the boundaries of the hole.

The final optimal candidates are selected by solving the minimization problem with

dynamic programming. Our system offers several advantages over existing state-of-

the-art methods in the following aspects:

1. Ability to handle large holes including cases where the occluded object is com-

pletely missing for several frames

2. Robust candidate selection from a set object templates provides significant

speed up over existing patch-based schemes.

3. Object alignment process by the window-based scheme generates natural object

movements inside the hole and provide smooth transitions at hole boundaries

without resorting to any a prior motion model.

4. Instead of explicit use of motion information in the form of optic flow, we in-

troduce a novel similarity measure which provides better spatial and temporal

continuity in inpainting by grouping of successive templates in a dynamic pro-

gramming framework.

5. The proposed scheme also provides a unified framework to address videos from

both static and moving cameras and to handle moving objects with varying

pose and changing perspective.
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Chapter 5

Perceptual Evaluation of Image Inpainting

The objective of the image inpainting algorithm is to perform a perceptually seamless

inpainting, making it difficult for the HVS to detect that the image has been modified.

Hence, evaluating the perceptual quality of the inpainting algorithm we must rely on

the features of HVS. Through a combination of detailed eye-tracking experiment and

a novel subjective ranking mechanism we establish a direct relation between the per-

ceptual quality of image inpainting and human attention. By comparing the gaze

density within and outside the hole regions of the inpainted images, we show that

HVS is attracted to the discernible artifacts introduced by the inpainting process.

Defining a normalized gaze density measure using the unmodified original images as

the reference, we show that the change in gaze distribution of unbiased observers is

related to its perceptual quality. The subjective rating of images obtained from our

experiment establishes a clear order of preference among different inpainted images

and corroborates the results of the eye-tracking experiment. The strong coherence

exhibited by the subjective ratings and the normalized gaze density give further cre-

dence to the mutual relation between the gaze and the perceptual image inpainting

quality.

The rest of the chapter is organized as follows: in Section 5.2, we explain the ex-

perimental conditions, the stimuli followed by the setup of eye-tracker. In Section 5.3,

we present the analysis of results of the gaze data along with the discussion of subjec-
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tive ranking of inpainted images. We indeed show that low level artifacts created by

imperfect inpainting process do impact the perceptual inpainting quality, even though

this perceptual process is partly governed by higher level cognitive process. We obtain

independent results that corroborate the findings of a previous study in analyzing the

image inpainting quality and the viewing time in Section 5.5. Finally in Section 5.6

we provide the conclusions of this study and point future research directions.

5.1 Overview and Motivation

In our work we study the reason behind perceptual quality of image inpainting by

a combination of eye-tracking experiments and a novel subjective ranking mechanism.

An inpainting technique that cannot fill the hole in a natural way will introduce ar-

tifacts on the inpainted image. Extensive studies in cognitive visual attention have

shown that interesting objects are visually salient and these regions provide surprise

which attract human visual attention [20, 21]. Even though perceptual processes are

partly driven by higher level cognitive process, low level vision plays an important

role. In the context of image inpainting, the artifacts introduced could capture the

attention which may cause a change in normal behavior of the HVS. This deviation

from normalcy, can be quantified by measuring the changes in gaze pattern using

an eye-tracker and can potentially relate to subjective inpainting quality. However,

when the regions to be inpainted are ”interesting” areas of image, comparing it with

original gaze might not be appropriate. In such case, if the inpainting algorithm were

to leave an artifact it could potentially attract attention of HVS and the resulting

gaze pattern would be similar to gaze obtained for unmodified image. Hence evaluat-
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ing true perceptual inpainting quality should be carried out through a No-reference

method.

5.2 Experimental Conditions, Stimuli and Eye-Tracker Setup

The data set used in this experiment, approved by non-medical IRB review, con-

sisted of 45 unmodified images that were acquired from the data set made freely

available in [1]. Along with the 45 unmodified images, two more versions for each im-

age, one inpainted using [1] and the other using [13] were also used. Totally there was

three distinct sets - Set A, B and C - each consisting of 45 images, equally distributed

among the three versions of the images was created. A total of 24 nave observers,

divided into 3 groups of 8 people, with normal or corrected vision participated in this

study. Each subject from a group was required to view a total 45 images from one of

Set A, B or C. It was ensured that there were no overlap among the three sets so that

all the 45 images observed by each individual observer were distinct from each other.

The subject had no a priori knowledge on the type of the image displayed (original,

inpainted by algorithm [1] or [13]) and the ratio of unmodified versus inpainted im-

ages was unknown to them. The experiment was conducted under ambient lighting

conditions and the images were displayed on a 19 inch, gamma corrected display with

the monitor resolution set to 1280X960 pixels. The viewing distance was maintained

at 65 cm’s and each image was displayed in a random order for a duration of 6 seconds

followed by a two second interval in which a blank screen was displayed. Studies have

shown that while viewing a visual stimuli, the first 2-3 seconds of visual attention is

driven mostly by low level vision processes and the six second viewing period in our
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experiment would be sufficient to evaluate the quality task [77].

The head position of each subject was stabilized using a chin rest to reduce the

error in eye-tracking. Before the commencement of the actual experiment a calibration

process is performed which enables the eye tracker to lock onto the position of the

eye [78]. In the calibration process, a linear transformation that maps the direction

of the eye gaze to the position of the gaze on computer monitor is estimated using a

3x3 calibration grid. During the course of the experiment, calibration patterns were

displayed at random intervals for each observer to estimate calibration error and this

data was used to offset for errors during the data analysis process. The gaze of the

observers, in the form of the fixation position of the eye and the time during the

viewing task, was recorded using the Seeing Machines faceLAB eye tracker. The

fixation data in our experiment is indicative of the greater interest of the HVS in the

particular area of the displayed image [79]. A gaze distribution image, as defined in

Eqn(5.1) where δ is kronecker delta function and N is the number of samples, was

obtained for every image viewed by the user by sampling the gaze data at 60 samples

per second.

Gazeimg
user(x, y) =

N∑
i=1

δ(x− xi, y − yi) (5.1)

Each subject was advised to view the image freely and was instructed to use

a mouse click event, as a binary indicator, if they think that the image displayed

has been modified in any manner. Since there are eight subjects in a group, each

image from Set A, B, or C can receive a maximal score of 8, reflecting the perceived

image quality. An image with the score 0 corresponds to highest perceived quality,
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meaning that all eight observers concurring that the image was unmodified. Similarly

an image with a subjective rating of 8 implies that all the observers deemed that

the image was modified and a score of 4 corresponds to a 50% decision threshold.

To summarize succinctly, for every image in Set A, B and C, we obtain the gaze

distribution from eight subjects and a subjective rating in the range zero to eight,

reflecting the perceived image inpainting quality of the image.

5.3 Gaze Data Analysis

We compute the average gaze distribution for every image from the gaze data

obtained from eye-tracking experiments involving 8 subjects. Figure 5.1 shows two

example inpainted images with their average gaze distribution superimposed on them.

As expected, we can observe that the attention of the HVS is attracted to regions

where inpainting artifacts are discernible indicating that the image has been subjected

to some modification.

From the gaze distribution obtained from every subject for ever image, we compute

the gaze density of any given image. Let Ω be the area denoted by the hole region and

Ω be the region outside the hole of an inpainted image. By comparing the gaze density

within and outside the hole region of images inpainted by both the techniques we can

quantitatively analyze the perceptual image inpainting quality. The gaze density of

an image, inside and outside the hole region is given in (5.2) as

GDin =
8∑

user=1

∑
Ω

gaze(Ω)

GDout =
8∑

user=1

∑

Ω

gaze(Ω) (5.2)
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(a) (b)

(c) (d)

Figure 5.1: Inpainted Images with gaze distribution superimposed: a) Image in-
painted by technique in [1] b)Same image inpainted by [13] c) Average gaze distri-
bution superimposed d) Corresponding avg. gaze distribution superimposed. Note
the concentration of gaze distribution on the right side of image where the artifact in
hole region is quite apparent.
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Figure 5.2 presents the gaze density inside the and outside the hole region of inpainted

images of both methods. From the results presented, we can see that the gaze density

inside the hole region for images modified by algorithm in [13] is consistently greater

than for images modified by [1]. To compare it on an equal footing with reference
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Figure 5.2: Gaze density inside and outside hole regions of inpainted images.

to the unmodified image, we compute the normalized gaze density, defined in (5.3),

by calculating the ratio of gaze density of unmodified image (corresponding to the

hole region Ω) to the gaze density in the hole regions of the images inpainted by [1]

and [13]. Evaluating the gaze of the inpainted images to unmodified images through

KL divergence would not be suitable in this task because, as mentioned previously, if

there were inpainting artifacts appearing in perceptually interesting regions of image,
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gaze of both inpainted and unmodified image would indicate a coherence which is

misleading.

GDin =
GDinp

in

GDunmod
in

(5.3)

This normalized ratio for both the versions of the inpainted image inside the hole

region is shown in Figure 5.3. This ratio gives us more insight relating attention of

HVS and the perceptual quality of inpainting. It can be inferred from Fig 5.3, that the

attention inside the hole region of images inpainted using [13] is consistently greater

than images inpainted by algorithm in [1]. Furthermore, we can also observe that

this ratio between unmodified image and images modified by [1] is closer to unity.

This implies us that the gaze of the HVS when viewing images modified by [1] does

not significantly deviate from normal viewing behavior when compared with images

modified with [13]. This ratio can serve as a subjective discrimination measure and

can be useful to predict the perceptual quality of image inpainting.

5.4 Subjective Rating and its Relation to Gaze

Based on the mouse click event, the subjective rating ranging between [0-8] re-

ceived by each image is indicative of the true perceptual image inpainting quality.

The ratings received by all three types of images, are presented in Figure 5.4. We can

see that the lowest ratings were received by unmodified images followed by images

modified by algorithm proposed [1] and [13] respectively. The median and mean

rating of the images in the three different categories (real unmodified, inpainted by

algorithm proposed in [1] and [13]) are [1, 3, 6] and [1.2, 3.11, 5.67] respectively.

The subjective rating thus obtained clearly establishes an order of preference and is
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Figure 5.3: Gaze density ratio between original unmodified image and inpainted
images in the hole region.

along the expected lines. It should be noted that some real unmodified images that

received higher rating could possibly be due to unusual image content which may

have convinced the observer to conclude that it may have been modified or even in

some cases due to finger error. This behavior of observers confusing themselves has

also been noted in [1].

Table 5.1 is the contingency table of comparing the normalized gaze density ratios

GDin and comparing the subjective ranking between [1] and [13] among all the 45

images tested. Out of the total of 45 images used in the experiment, 39 images

modified by method in [13] received an equal or higher rating when compared with

images modified by [1]. Among the other 6 images, which were perceived to be better

inpainted, 75% (4 out of 6) of the images had the gaze density ratio lesser than
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Figure 5.4: Subjective rating for real and inpainted images (lower rating indicate
better perceptual quality).

that of images inpainted using [1]. The strong correlation between the subjective

rankings and the gaze density data confirms the relation between the perceived image

inpainting quality and the attention of the HVS.

Table 5.1: Contingency table showing the number of images in each category using the
combination of the normalized gaze density ratios and subjective rankings. Numbers
in the diagonal cells indicate agreements between the two measures.

Ranking
GDin

[1] ≥ [13] [1] < [13]
[1] ≥ [13] 35 4
[1] < [13] 2 4

While it is cumbersome to measure eye gaze density, the significance of our results

is that, with a computational visual saliency model to predict gaze patterns, our study

can be used to provide a direct objective measurement of inpainting quality.
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5.5 Inpainting Quality vs Viewing Time

In [1], the quality of the inpainted images were adjudged through subjective ex-

periments in which 20 observers were instructed to identify fake images among a

collection of inpainted and unmodified images. The results of those experiments

which mark the proportion of images identified as fake versus the viewing time in the

experiment is shown in Figure 5.5.

Figure 5.5: Percent image identified as fake vs Viewing Time in [1]

After 10 seconds of examination, participants have marked 34% of the images

modified by their inpainting as Fake. For images modified by Criminisi et al. and

unmodified images they are 69% and 3% respectively. They claim that unbiased

observers are likely to make a decision regarding the authenticity of the images within

10 seconds and it is unlikely that they will find anything wrong with the image after

that. Also, they note that under unlimited viewing time the participants classified
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their results as real 37% of the time compared with 10% for Criminisi et al. and

interestingly the participants identified real images as such only 87% of the time.

This is because participants scrutinized the images so carefully that they frequently

convinced themselves that the real images were fake.

In our experiments with eye-tracking, corroborating the study of [1], we also arrive

at a similar conclusion under our experimental settings. Here, each subject was

instructed to view 45 images, equally distributed among the three sets as described

in Section 5.2. The results of our experiment are presented in Figure 5.6. We observe

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100
Image classification in Subjective experiment

P
e
rc

e
n

ta
g

e
 i
m

a
g

e
 m

a
rk

e
d

 a
s
 f

a
k
e

Viewing time in seconds

 

 

Unmodified Images
Inpainted by Hays et.al
Inpainted by Criminisi et.al

Figure 5.6: Percent image identified as Fake vs Viewing Time based on our experi-
ments

that 71%, 39% and 12% images modified by Criminisi et.al, Hays et.al and unmodified

images were classified as fake by a total of 24 observers. These numbers also relate well
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with the median and mean rating of the images obtained through mouse click event

in the three different categories (real unmodified, inpainted by algorithm proposed

in [1] and [13]) are [1, 3, 6] and [1.2, 3.11, 5.67] respectively. The higher percentage

of real unmodified images being classified as fake when compared with [1] could be

due to user error in the experiment because of limited time duration and also due to

the unusual visual content.

5.6 Summary and Conclusions

In this work we analyzed the impact of perceptual image inpainting quality on the

lower level vision process of HVS by using gaze information and a subjective evalu-

ation score. By analyzing the gaze density inside and outside the hole region of the

inpainted images and comparing it with the similar regions of the unmodified images,

we observe that the image inpainting artifact do have an impact on the perceptual

inpainting quality. From the analysis of the gaze patterns we can establish that when

the artifacts are discernible, the distribution of gaze for the unmodified image is dif-

ferent from the inpainted image. It should also be mentioned that when the hole

regions happen to be in the interesting regions of the image, where there is a natural

attention process, the impact will be even more pronounced and further analysis is

required to separately study those effects. This study provides valuable contextual

information of gaze in inpainting setting which could be compared with available

human visual salience models. This can potentially lead to evaluation of perceptual

image inpainting quality through objective measures, reflecting the subjectivity of

human observers.
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Chapter 6

Conclusion and Future Work

This dissertation addressed three significant challenges associated with the existing

and emerging inpainting algorithms and applications. They are 1) Structure comple-

tion for image inpainting algorithms, 2) Fast and efficient object based video inpaint-

ing framework and 3) Perceptual evaluation of large area image inpainting algorithms.

Our main contribution to structure completion aspect in image inpainting was the

introduction of a boundary completion algorithm for rotationally symmetric objects

under severe occlusions. We utilize the invariant nature of the curvature under simi-

larity transform to estimate two quantities that characterize the nature of rotational

symmetry, the fundamental angle of rotation and centroid of the occluded object. By

using these estimated quantities and using a cost function, we arrive at an appropriate

completion result. This algorithm does not make any assumption about the nature of

the circular symmetries to perform the completion and can potentially be extended

to handle various symmetries. The usefulness of this contour completion algorithm

for structure completion in global image inpainting application was demonstrated.

We introduced a fast and computationally efficient object based video inpainting

technique that differs from existing techniques by inpainting the entire objects instead

of small spatio-temporal patches using available templates. The static regions to be

inpainted are completed by a combination of adaptive background replacement and

image inpainting technique. Our key contribution is the introduction of a compu-

94



tationally efficient object based inpainting method for inpainting moving foreground

regions. By grouping consecutive object templates in a sliding window fashion and by

defining a novel dissimilarity metric, we formulate the video inpainting process as a

energy minimization problem under a dynamic programming framework. The process

of grouping consecutive templates implicitly locks onto the global movement of the

constituent objects and allows us to handle cases where the entire object is completely

occluded. This technique can efficiently inpaint large regions of occlusions, inpaint

objects that are completely missing for several frames, change in size and pose and has

minimal blurring and motion artifacts. Furthermore, our object-based approach is

significantly faster than the patch-based scheme and takes minutes, rather than hours

as required by many existing schemes, to obtain comparable inpainting results. Our

proposed scheme also offers a unified framework to address video inpainting under

both stationary and limited moving camera conditions.

The perceptual quality of large area inpainting technique is inherently a subjective

process and yet no previous research has been carried out by taking the subjective

nature of the Human Visual System (HVS). We perform subjective experiments using

eye-tracking device involving 24 subjects to analyze the effect of inpainting on hu-

man gaze. We experimentally show that the presence of inpainting artifacts directly

impacts the gaze of an unbiased observer and this in effect has a direct bearing on

the subjective rating of the observer. Specifically, we show that the gaze energy in

the hole regions of an inpainted image show marked deviations from normal behavior

when the inpainting artifacts are readily apparent. The subjective rating of images

obtained from our experiment establishes a clear order of preference among different
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inpainted images and corroborates the results of the eye-tracking experiment. The

strong coherence exhibited by the subjective ratings and the normalized gaze density

give further credence to the mutual relation between the gaze and the perceptual

image inpainting quality.

While we have described our efforts in tackling these three major challenges in

this dissertation, nonetheless, there are many exciting challenges that lay ahead in

making inpainting practical and robust in day to day applications. We highlight few

possible research directions and identify challenges which merit further investigation

to extend the state of art. In real images, symmetrical objects may not appear to be

symmetric due to the projection from three-dimensional world to the two-dimensional

image plane. We can extend our framework by modeling the projection and estimat-

ing the appropriate transform that would result in a proper completion by optimizing

the cost function over the space of all projective transforms. In case of video inpaint-

ing, while we have made some progress in reducing the complexity, it nevertheless

remains a very challenging task. For instance, our scheme entirely ignores the pres-

ence of shadows which results in unnatural appearance of objects. When the object

to be inpainted exhibit complex, non-repetitive motion, the inpainting becomes sig-

nificantly more challenging without assuming any a prior model. The variability in

illumination conditions and arbitrary camera motion can also complicate the inpaint-

ing performance. Also our inpainting technique is not extremely amenable to inpaint

small hole regions. By using a multi-resolution based analysis and combining it with

a patch based process to handle such cases we can further improve the efficiency and

applicability of video inpainting algorithms. Perceptual evaluation of image inpaint-
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ing is a formidable challenge due to effects of high level cognitive process involved.

The findings of our perceptual evaluation of inpainting techniques yielded valuable

information related to the quality of the inpainting. Combining this information

with low level and mid level image features we are currently involved in introducing

a objective computational model for automatically predicting the perceptual image

inpainting quality.
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