71 research outputs found

    A MATLAB GEODETIC SOFTWARE FOR PROCESSING AIRBORNE LIDAR BATHYMETRY DATA

    Get PDF
    The ability to build three-dimensional models through technologies based on satellite navigation systems GNSS and the continuous development of new sensors, as Airborne Laser Scanning Hydrography (ALH), data acquisition methods and 3D multi-resolution representations, have contributed significantly to the digital 3D documentation, mapping, preservation and representation of landscapes and heritage as well as to the growth of research in this fields. However, GNSS systems led to the use of the ellipsoidal height; to transform this height in orthometric is necessary to know a geoid undulation model. The latest and most accurate global geoid undulation model, available worldwide, is EGM2008 which has been publicly released by the U.S. National Geospatial-Intelligence Agency (NGA) EGM Development Team. Therefore, given the availability and accuracy of this geoid model, we can use it in geomatics applications that require the conversion of heights. Using this model, to correct the elevation of a point does not coincide with any node must interpolate elevation information of adjacent nodes. The purpose of this paper is produce a MatlabÂź geodetic software for processing airborne LIDAR bathymetry data. In particular we want to focus on the point clouds in ASPRS LAS format and convert the ellipsoidal height in orthometric. The algorithm, valid on the whole globe and operative for all UTM zones, allows the conversion of ellipsoidal heights using the EGM2008 model. Of this model we analyse the slopes which occur, in some critical areas, between the nodes of the undulations grid; we will focus our attention on the marine areas verifying the impact that the slopes have in the calculation of the orthometric height and, consequently, in the accuracy of the in the 3-D point clouds. This experiment will be carried out by analysing a LAS APRS file containing topographic and bathymetric data collected with LIDAR systems along the coasts of Oregon and Washington (USA)

    A MATLAB GEODETIC SOFTWARE FOR PROCESSING AIRBORNE LIDAR BATHYMETRY DATA

    Get PDF

    A procedure for developing an acceptance test for airborne bathymetric lidar data application to NOAA charts in shallow waters

    Get PDF
    National Oceanic and Atmospheric Administration (NOAA) hydrographic data is typically acquired using sonar systems, with a small percent acquired via airborne lidar bathymetry for near‐shore areas. This study investigated an integrated approach for meeting NOAA’s hydrographic survey requirements for near‐shore areas of NOAA charts, using the existing topographic‐bathymetric lidar data from USACE’s National Coastal Mapping Program (NCMP). Because these existing NCMP bathymetric lidar datasets were not collected to NOAA hydrographic surveying standards, it is unclear if, and under what circumstances, they might aid in meeting certain hydrographic surveying requirements. The NCMP’s bathymetric lidar data are evaluated through a comparison to NOAA’s Office of Coast Survey hydrographic data derived from acoustic surveys. As a result, it is possible to assess if NCMP’s bathymetry can be used to fill in the data gap shoreward of the navigable area limit line (0 to 4 meters) and if there is potential for applying NCMP’s bathymetry lidar data to near‐shore areas deeper than 10 meters. Based on the study results, recommendations will be provided to NOAA for the site conditions where this data will provide the most benefit. Additionally, this analysis may allow the development of future operating procedures and workflows using other topographic‐ bathymetric lidar datasets to help update near‐shore areas of the NOAA charts

    An experimental Indian gravimetric geoid model using Curtin University’s approach

    Get PDF
    Over the past decade, numerous advantages of a gravimetric geoid model and its possible suitability for the Indian national vertical datum have been discussed and advocated by the Indian scientific community and national geodetic agencies. However, despite several regional efforts, a state-of-the-art gravimetric geoid model for the whole of India remains elusive due to a multitude of reasons. India encompasses one of the most diverse topographies on the planet, which includes the Gangetic plains, the Himalayas, the Thar desert, and a long peninsular coastline, among other topographic features. In the present study, we have developed the first national geoid and quasigeoid models for India using Curtin University’s approach. Terrain corrections were found to reach an extreme of 187 mGal, Faye gravity anomalies 617 mGal, and the geoid-quasigeoid separation 4.002 m. We have computed both geoid and quasigeoid models to analyse their representativeness of the Indian normal-orthometric heights from the 119 GNSS-levelling points that are available to us. A geoid model for India has been computed with an overall standard deviation of ±0.396 m but varying from ±0.03 m to ±0.158 m in four test regions with GNSS-levelling data. The greatest challenge in developing a precise gravimetric geoid for the whole of India is data availability and its preparation. More densely surveyed precise gravity data and a larger number of GNSS/levelling data are required to further improve the models and their testing

    Impact of Geomatic Techniques on Topo-Bathymetric Surveys for Coastal Analysis

    Get PDF
    Sandy coasts represent vital areas whose preservation and maintenance also involve economic and tourist interests. Besides, these dynamic environments undergo the erosion process at different levels depending on their specific characteristics. For this reason, defence interventions are commonly realized by combining engineering solutions and management policies to evaluate their effects over time. Monitoring activities represent the fundamental instrument to obtain a deep knowledge of the investigated phenomenon. Thanks to technological development, several possibilities both in terms of geomatic surveying techniques and processing tools are available, allowing to reach high performances and accuracy. Nevertheless, when the littoral definition includes both emerged and submerged beaches, several issues have to be considered. Therefore, the geomatic surveys and all the following steps need to be calibrated according to the individual application, with the reference system, accuracy and spatial resolution as primary aspects. This study provides the evaluation of the available geomatic techniques, processing approaches, and derived products, aiming at optimising the entire workflow of coastal monitoring by adopting an accuracy-efficiency trade-off. The presented analyses highlight the balance point when the increase in performance becomes an additional value for the obtained products ensuring proper data management. This perspective can represent a helpful instrument to properly plan the monitoring activities according to the specific purposes of the analysis. Finally, the primary uses of the acquired and processed data in monitoring contexts are presented, also considering possible applications for numerical modelling as supporting tools. Moreover, the theme of coastal monitoring has been addressed throughout this thesis by considering a practical point of view, linking to the activities performed by Arpae (Regional agency for prevention, environment and energy of Emilia-Romagna). Indeed, the Adriatic coast of Emilia-Romagna, where sandy beaches particularly exposed to erosion are present, has been chosen as a case study for all the analyses and considerations

    Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    Get PDF

    Terrain Referenced Navigation Using SIFT Features in LiDAR Range-Based Data

    Get PDF
    The use of GNSS in aiding navigation has become widespread in aircraft. The long term accuracy of INS are enhanced by frequent updates of the highly precise position estimations GNSS provide. Unfortunately, operational environments exist where constant signal or the requisite number of satellites are unavailable, significantly degraded, or intentionally denied. This thesis describes a novel algorithm that uses scanning LiDAR range data, computer vision features, and a reference database to generate aircraft position estimations to update drifting INS estimates. The algorithm uses a single calibrated scanning LiDAR to sample the range and angle to the ground as an aircraft flies, forming a point cloud. The point cloud is orthorectified into a coordinate system common to a previously recorded reference of the flyover region. The point cloud is then interpolated into a Digital Elevation Model (DEM) of the ground. Range-based SIFT features are then extracted from both the airborne and reference DEMs. Features common to both the collected and reference range images are selected using a SIFT descriptor search. Geometrically inconsistent features are filtered out using RANSAC outlier removal, and surviving features are projected back to their source coordinates in the original point cloud. The point cloud features are used to calculate a least squares correspondence transform that aligns the collected features to the reference features. Applying the correspondence that best aligns the ground features is then applied to the nominal aircraft position, creating a new position estimate. The algorithm was tested on legacy flight data and typically produces position estimates within 10 meters of truth using threshold conditions

    Development of a precise gravimetric geoid model for Argentina

    Get PDF
    The main aims of physical geodesy are to study the shape of the Earth, its gravity field and the geoid which is an equipotential surface closest to the mean sea level. Precise geoid determination has been an important research topic in geodesy and geophysics in the past two decades. Scientists and government agencies all around the world have made great efforts on the development of high-accuracy geoid models. These geoid models are developed not only for scientific applications, but also for other purposes such as serving for a reference surface for mapping, sea level monitoring and natural resources exploitation and management. A geoid model is required to define a national height or vertical datum. Precise geoid models have experienced an unprecedented demand due to the rapid development of GPS/GNSS technologies. Geoid models allow transforming ellipsoidal heights, which are relatively easily determined from GPS/GNSS observations, into physical heights, which are associated to the Earth’s gravity field, without the need for expensive and time-consuming spirit-levelling. Physical heights are used for mapping, engineering and civil engineering infrastructure since they indicate the flow direction of fluids, due to the fact that fluids are attracted by the gravity of the Earth rather than geometric height differences. Moreover, vertical datums have been historically based on a local mean sea level surface determined by averaging tide gauge readings over a certain period of time. However, due to the sea surface topography effect, which is mainly caused by the sea dynamics and other meteorological processes, observations from different tide gauges do not commonly coincide. Therefore, when vertical datums are separated by oceans or other bodies of water, direct methods such as spirit levelling and gravity measurements are not applicable. In this case, geoid models can be used for unifying two or more vertical datums together. This research aims to develop a new and optimal precise geoid for Argentina using all available measurements from the most state of the art technologies and the latest global geopotential models (GGMs), along with detailed digital terrain models (DTMs). The remove-compute-restore technique and the combination of an optimal GGM with 658,111 land and marine gravity observations were used for the new model determination. Several GGMs (e.g. EGM2008, GOCO05S and EIGEN-6C4) were evaluated to investigate the best GGM that fits Argentinian regional gravity field. Terrain corrections were calculated using a combination of the SRTM_v4.1 and SRTM30_Plus v10 DTMs for all gravity observations. For the regions that lacked gravity observations, the DTU13 world gravity model was utilised for filling-in the gravity voids. The residual gravity anomalies were gridded by the Kriging method and the resultant grid was applied in the Stokes’ integral using the spherical multi-band FFT approach and the deterministic kernel modification proposed by Wong and Gore in 1969. The accuracy of the new geoid was assessed by comparing its geoidal undulations over 1,904 benchmarks, which have both orthometric and ellipsoidal heights. Results showed that an accuracy of better than 10 centimetres has been achieved

    Oceanographic Considerations for the Management and Protection of Surfing Breaks

    Get PDF
    Although the physical characteristics of surfing breaks are well described in the literature, there is little specific research on surfing and coastal management. Such research is required because coastal engineering has had significant impacts to surfing breaks, both positive and negative. Strategic planning and environmental impact assessment methods, a central tenet of integrated coastal zone management (ICZM), are recommended by this thesis to maximise surfing amenities. The research reported here identifies key oceanographic considerations required for ICZM around surfing breaks including: surfing wave parameters; surfing break components; relationship between surfer skill, surfing manoeuvre type and wave parameters; wind effects on waves; currents; geomorphic surfing break categorisation; beach-state and morphology; and offshore wave transformations. Key coastal activities that can have impacts to surfing breaks are identified. Environmental data types to consider during coastal studies around surfing breaks are presented and geographic information systems (GIS) are used to manage and interpret such information. To monitor surfing breaks, a shallow water multibeam echo sounding system was utilised and a RTK GPS water level correction and hydrographic GIS methodology developed. Including surfing in coastal management requires coastal engineering solutions that incorporate surfing. As an example, the efficacy of the artificial surfing reef (ASR) at Mount Maunganui, New Zealand, was evaluated. GIS, multibeam echo soundings, oceanographic measurements, photography, and wave modelling were all applied to monitor sea floor morphology around the reef. Results showed that the beach-state has more cellular circulation since the reef was installed, and a groin effect on the offshore bar was caused by the structure within the monitoring period, trapping sediment updrift and eroding sediment downdrift. No identifiable shoreline salient was observed. Landward of the reef, a scour hole ~3 times the surface area of the reef has formed. The current literature on ASRs has primarily focused on reef shape and its role in creating surfing waves. However, this study suggests that impacts to the offshore bar, beach-state, scour hole and surf zone hydrodynamics should all be included in future surfing reef designs. More real world reef studies, including ongoing monitoring of existing surfing reefs are required to validate theoretical concepts in the published literature

    GNSS and InSAR based water vapor tomography: A Compressive Sensing solution

    Get PDF
    UnvollstĂ€ndig oder ungenau erstellte Modelle atmosphĂ€rischer Effekte schrĂ€nken die QualitĂ€t geodĂ€tischer Weltraumverfahren wie GNSS (Globale Satelliten-Navigationssysteme) und InSAR (Interferometrisches Radar mit synthetischer Apertur) ein. Gleichzeitig enthalten ZustandsgrĂ¶ĂŸen der ErdatmosphĂ€re, allen voran die dreidimensionale (3D) Wasserdampf-Verteilung, wertvolle Informationen fĂŒr Klimaforschung und Wettervorhersage, welche aus GNSS- oder InSAR-Beobachtungen abgeleitet werden können. Es gibt etliche Verfahren zur 3DWasserdampf-Rekonstruktion aus GNSS-basierten feuchten Laufzeitverzögerungen. Aufgrund der meist spĂ€rlich verteilten GNSS-Stationen und durch die begrenzte Anzahl sichtbarer GNSS-Satelliten, treten in tomographischen Anwendungen in der Regel jedoch schlecht gestellte Probleme auf, die z.B. ĂŒber geometrische Zusatzbedingungen regularisiert werden, welche oft glĂ€ttend auf die Wasserdampf-SchĂ€tzungen wirken. Diese Arbeit entwickelt und analysiert daher einen Ansatz, der auf einer Compressive Sensing (CS) Lösung des tomographischen Modells beruht. Dieser Ansatz nutzt die SpĂ€rlichkeit der Wasserdampf-Verteilung in einem geeigneten Transformationsbereich zur Regularisierung des schlecht gestellten tomographischen Problems und kommt somit ohne glĂ€ttende geometrische Zusatzbedingungen aus. Eine weitere Motivation fĂŒr die Nutzung einer spĂ€rlichen Compressive Sensing Lösung besteht darin, dass die Anzahl an zu bestimmenden von Null verschiedenen Koeffizienten bei gleichbleibender Anzahl an Beobachtungen in Compressive Sensing geringer sein kann als die Anzahl an zu schĂ€tzenden Parametern in ĂŒblichen Kleinste Quadrate (LSQ) AnsĂ€tzen. Zur Erhöhung der rĂ€umlichen Auflösung der Beobachtungen fĂŒhrt diese Arbeit zudem sowohl feuchte Laufzeitverzögerungen aus GNSS als auch aus InSAR in das tomographische Gleichungssystem ein. Die Neuheiten des vorgestellten Ansatzes sind 1) die Nutzung von sowohl GNSS als auch absoluten InSAR Laufzeitverzögerungen fĂŒr die tomographische Wasserdampf-Rekonstruktion und 2) die Lösung des tomographischen Systems mittels Compressive Sensing. Zudem wird 3) die QualitĂ€t der CS-Rekonstruktion mit der QualitĂ€t ĂŒblicher LSQ-SchĂ€tzungen verglichen. Die tomographische Rekonstruktion der durch feuchte RefraktivitĂ€ten beschriebenen atmosphĂ€rischen Wasserdampf-Verteilung beruht auf der einen Seite auf realen feuchten Laufzeitverzögerungen aus GNSS und InSAR und auf der anderen Seite auf drei verschiedenen synthetischen DatensĂ€tzen feuchter Laufzeitverzögerungen, die aus Wasserdampf-Simulationen des Weather Research and Forecasting (WRF) Modells abgeleitet wurden. Die Validierung der geschĂ€tzten Wasserdampf-Verteilung stĂŒtzt sich somit zum einen auf Radiosonden Profile und zum anderen auf einen Vergleich der geschĂ€tzten RefraktivitĂ€ten mit den WRF RefraktivitĂ€ten, die zugleich als Eingangsdaten zur Generierung der synthetischen Laufzeitverzögerungen genutzt werden. Der reale bzw. der erste synthetische Datensatz vergleicht die RekonstruktionsqualitĂ€t des entwickelten CS-Ansatzes mit ĂŒblichen Kleinste Quadrate Wasserdampf-SchĂ€tzungen und untersucht, inwieweit die Nutzung von InSAR Laufzeitverzögerungen bzw. von synthetischen InSAR Laufzeitverzögerungen die Genauigkeit und die PrĂ€zision der Wasserdampf-Rekonstruktion erhöht. Der zweite synthetische Datensatz wurde dafĂŒr ausgelegt, den allgemeinen Einfluss der Beobachtungsgeometrie auf die RefraktivitĂ€tsschĂ€tzungen zu analysieren. Der dritte synthetische Datensatz untersucht insbesondere die Empfindlichkeit der tomographischen Rekonstruktion gegenĂŒber variierenden GNSS-Stationszahlen, unterschiedlichen Voxel-Diskretisierungen und verschiedenen Orbit-Konstellationen. Im realen Datensatz verhalten sich die Kleinste Quadrate SchĂ€tzung und der Compressive Sensing Ansatz sowohl fĂŒr die reine GNSS-Lösung als auch fĂŒr die kombinierte GNSS- und InSAR-Lösung konsistent. Die synthetischen DatensĂ€tze zeigen, dass Compressive Sensing in geeigneten Szenarien sehr genaue und prĂ€zise Ergebnisse liefern kann. Die QualitĂ€t der Wasserdampf-SchĂ€tzungen hĂ€ngt in erster Linie ab i) von der Genauigkeit des funktionalen Modells, das die feuchten Laufzeitverzögerungen, die zu schĂ€tzenden RefraktivitĂ€ten und die von den Strahlen in den Voxeln zurĂŒckgelegten Distanzen in Beziehung zueinander setzt, ii) von der Anzahl verfĂŒgbarer GNSS Stationen, iii) von der Voxel-Diskretisierung, und iv) von der Vielseitigkeit der in das tomographische System eingebauten Strahlrichtungen. Die mittels des realen Datensatzes bzw. mittels der synthetischen DatensĂ€tze untersuchten Regionen sind etwa 120 × 120 km2 bzw. 100 × 100 km2 groß. Im realen Datensatz stehen acht GNSS-Stationen zur VerfĂŒgung und es werden feuchte Laufzeitverzögerungen von GPS InSAR genutzt. In den synthetischen DatensĂ€tzen werden unterschiedliche Stationsanzahlen definiert und vielseitige Strahlrichtungen getestet
    • 

    corecore