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Abstract

The use of GNSS in aiding navigation has become widespread in aircraft. The long

term accuracy of INS are enhanced by frequent updates of the highly precise position

estimations GNSS provide. Unfortunately, operational environments exist where constant

signal or the requisite number of satellites are unavailable, significantly degraded, or

intentionally denied. This thesis describes a novel algorithm that uses scanning LiDAR

range data, computer vision features, and a reference database to generate aircraft position

estimations to update drifting INS estimates. The algorithm uses a single calibrated

scanning LiDAR to sample the range and angle to the ground as an aircraft flies, forming

a point cloud. The point cloud is orthorectifed into a coordinate system common to a

previously recorded reference of the flyover region. The point cloud is then interpolated

into a Digital Elevation Model (DEM) of the ground. Range-based SIFT features are

then extracted from both the airborne and reference DEMs. Features common to both

the collected and reference range images are selected using a SIFT descriptor search.

Geometrically inconsistent features are filtered out using RANSAC outlier removal, and

surviving features are projected back to their source coordinates in the original point cloud.

The point cloud features are used to calculate a least squares correspondence transform

that aligns the collected features to the reference features. Applying the correspondence

that best aligns the ground features is then applied to the nominal aircraft position, creating

a new position estimate. The algorithm was tested on legacy flight data and typically

produces position estimates within 10 meters of truth using threshold conditions.
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TERRAIN REFERENCED NAVIGATION USING SIFT FEATURES

IN LIDAR RANGE-BASED DATA

I. Introduction

Global Navigation Satellite Systems (GNSS) have found uses in a variety of

applications over the last decade. Predominately used for providing high precision location

and timing information, GNSS capable devices are now used nearly universally in aircraft,

ground vehicles, smart phones, and are critical even in farming, banking and power

transmission [106]. In aircraft navigation, GNSS allows precise flight schedules and

coordination, weather and collision avoidance, and safe flying and landings in inclement

weather. For trajectory estimation, frequent high precision GNSS updates can be used

to correct small cumulative errors from the Inertial Navigation System (INS) sensor

measurements.

Modern navigation is possible because of the widespread use of INS onboard aircraft.

The INS contains accelerometers and gyroscopes, sensors which measure specific force

and angular rotation rate respectively. Processing INS sensor data creates an estimate of the

aircraft trajectory, defined as the aircrafts position and orientation history. The trajectory

provided by the INS in this way is one type of dead reckoning. The INS provides this

estimate by relying only on its own past trajectory history and internal sensors, and because

of this it is popular for safety, security and military concerns.

While dead reckoning navigation information is very useful, it is not always used as

a singular trajectory source. Small measurement errors resulting from drift, thermal noise,

and even manufacturing defects will produce small errors in the INS estimation [110]. Over

time INS errors grow at a rate dependant on the quality of the device unless the INS data is
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compared with another trajectory information source to create an error estimation. Modern

GNSS commonly fulfills this role with high precision. Despite widespread use, GNSS does

have some operational limits [45] and can be degraded by poor satellite geometry or local

geography. Examples of degraded or blocked GNSS signal environments include dense

foliage, indoors, under water, underground, under a bridge, canyons (near to a mountain, in

low lands, or in an actual canyon), and urban canyons (between buildings in a city). More

concerning are environments where GNSS is blocked or degraded by human activities.

A region can be accidentally jammed by local broadcasts, deliberately jammed, or even

spoofed [125]. These cases are of more relevant concern for aircraft, where strong geometry

and signal strength would normally be expected and are then suddenly lost or become

unreliable.

1.1 Benefits of LiDAR

In GNSS degraded scenarios or to simply reduce reliance on GNSS, a reliable

trajectory estimation must be provided to the INS to prevent error growth. The use of

Light Detection And Ranging (LiDAR) data is attractive because of its growing popularity

in mapping, potentially high precision, and availability of data products. The proposed

method focuses on the uses of range information provided from Airborne Laser Scanning

(ALS) sensors and is inspired by approaches dealing with LiDAR mapping and feature-

based object recognition.

1.2 Research Objectives

Determining an aircraft position in a GNSS denied environment by utilizing ALS is

partitioned into 3 primary research objectives:

1. Develop an algorithm for using airborne LiDAR range information for positioning.

2. Test the developed algorithm using real flight and reference data.

3. Identify key algorithm performance parameters.
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1.3 Assumptions

To implement the position estimation method proposed in this thesis, several

assumptions are made. The aircraft is assumed to be equipped with a single scanning

LiDAR facing nadir and its scanning sweep is coincident with the aircraft wings. The

aircraft is also assumed to be equiped with an INS with possible drift errors in its position

estimate information, any errors in the attitude information are considered negligible. It

is assumed that each LiDAR range sample is able to be time tagged with the position and

attitude of the aircraft at that time. It is also assumed that a reference database is available

to access previously acquired LiDAR point clouds of the intended flyover region.

1.4 Thesis Overview

This thesis details a Terrain Referenced Navigation (TRN) method based on range

data collected from scanning LiDAR sensors and processed using Scale Invariant Feature

Transform (SIFT) features. The details of the proposed method is presented in the

proceeding chapters. Chapter 2 presents background information related to the proposed

method in several parts; the mathematical notation used, reference coordinate systems,

coordinate system transforms, computer vision algorithms such as SIFT feature extraction,

traits of LiDAR sensors, topographic registration using ALS, the field of TRN, and

concludes with a description of the most current LiDAR-based TRN approaches. Chapter

3 details each step of algorithm for LiDAR range-based TRN developed in this thesis.

Chapter 4 tests the developed algorithm using real flight and reference data under 2 different

initial condition cases, and further explores the sensitivity of the algorithm’s performance

to changes in 3 threshold conditions on estimated position accuracy and availability. This

thesis concludes with a summary of the test results and a short description of possible

algorithm improvements and future follow-on work. An appendix is also provided showing

each of the 66 image matches used in the algorithm tests.
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II. Background

This chapter covers the various components of navigation theory, features, LiDAR

sensors, and remote sensing of topography, necessary to understand the applications of

TRN. The chapter concludes with a brief discussion of related works in the field of TRN

and several papers of special interest to this research effort.

2.1 Mathematic Notation

This section reviews basic mathematical notation commonly utilized in navigation

involving coordinate frames and coordinate frame transforms [11, 110, 124].

2.1.1 Basic Notation.

The following basic notation will be held throughout the dissertation:

• Scalars: Scalars will be represented in italics; (e.g. x or X).

• Vectors: Vectors will be noted by lower case letters in bold. The scalar elements of

a vector will be noted at first use and arranged in brackets. E.g, p is a three element

vector containing component scalars X, Y , and Z, shown as

p =


X

Y

Z

 . (2.1)

• Matrices: Matrices will be noted by upper case letters in bold. The scalar elements

of a matrix will be denoted with a double subscript indicating row and column

number respectively and arranged in brackets. E.g, P is a 2x3 element matrix

consisting of Ai j elements, shown as

P =

 A11 A12 A13

A21 A22 A23

 . (2.2)
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• Transpose: The transpose of a vector or matrix will be identified by a superscript T .

E.g, if

p =


X

Y

Z

 , then pT =

[
X Y Z

]
. (2.3)

• Estimated: An variable resulting from an estimation of random variables will be

noted with a hat. E.g, p̂.

• Sets: A matrix made of multiple instances of vector data will be represented with a

bar. E.g, a set of N coordinates

p =

 X1 X2 ... XN

Y1 Y2 ... YN

 . (2.4)

• Reference Frames: Variables will frequently be expressed in their current reference

frame, noted as a superscript. Scalar components of a vector expressed in a reference

frame will share a similar subscript. E.g. pa is a vector represented in the a frame,

shown as

pa =


Xp

Yp

Zp

 . (2.5)

• Direction Cosine Matrices: A Direction Cosine Matrix (DCM) is a matrix operator

C representing a transformation from the subscript’s frame into the superscript’s

frame, given that the two frames are right handed and orthogonal. The DCM Ca
b

would be a rotation from the b frame into the a frame. DCM are discussed in more

detail in the following section.

2.1.2 Direction Cosine Matrices and Euler Angles.

Coordinate transformations between reference frames in this research are performed

with a compact notation called a DCM. A DCM is a 3x3 matrix where the scalar component
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elements represent the cosine of the angle between the axis in one frame projected into

another, written as:

Ca
b =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (2.6)

The DCM Ca
b can be used to transform a coordinate vector p from frame b into frame a

with the following notation:

pa = Ca
bpb. (2.7)

DCM have the following useful properties:

Det(Ca
b) ≡ ‖Ca

b‖2 = 1

Cb
a = (Ca

b)−1 = (Ca
b)T

Cc
a = Cc

bCb
a

(2.8)

if the two reference frames are both orthogonal and right-handed [110].

A coordinate transform using a DCM can also be represented as a series of single axis

rotations performed in order. The components of these rotations are referred to as Euler

angles. As an example, if a reference frame b can be related to a new frame a by a rotation

ψ about the z axis, followed by a rotation θ about the y axis, and concluded with a final

rotation φ about the x axis, then the resulting DCM would be written as:

Ca
b = CxCyCz (2.9)
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where each rotation can be expressed in matrix form as:

rotation ψ about the z-axis, Cz =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.10)

rotation θ about the y-axis, Cy =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.11)

rotation φ about the x-axis, Cx =


1 0 0

0 cos φ sin φ

0 − sin φ cos φ

 (2.12)

and will hold to the properties listed in Equation (2.8) [110].

2.1.3 Reference Frame Coordinate Systems.

When discussing location and navigation, it is important to be very clear in how a

location is defined. There are many ways to describe a location mathematically, so a brief

description of the standard coordinate reference frames used in this research are detailed

in this section. All of these reference frames have orthogonal and right-handed axis sets

in <3 space. Additional reference frames and further details than those presented can be

found in [11, 71, 110].

2.1.3.1 Earth Centered Earth Fixed Frame.

The Earth Centered Earth Fixed (ECEF) reference frame has its origin at the defined

center of the Earth. A position coordinate in ECEF or e-frame, will be expressed as

pe =

[
Xp Yp Zp

]
(2.13)

and is shown in Figure 2.1.

The X axis lies on the intersection of the Greenwich meridian plane and the Earth

equatorial plane. The Y axis lies on the equatorial plane at 90 degrees east of the Greenwich
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Figure 2.1: The Earth Centered Earth Fixed Reference Frame

meridian. These planes are fixed to the Earth’s sphere as it rotates around the Z axis that

runs through the north polar axis. In this system, a coordinate point is measured in meters

from the center of the Earth, and being a true cartesian coordinate system, offers some

simplification in navigation computations. This system is also called a geocentric system,

in that its origin is coincident with the calculated center of the earth.
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2.1.3.2 Local Navigation Frame.

The local navigation reference frame has its origin at a predefined location, typically

a surface point on Earth. The navigation frame is a geographic system and is best used

for navigation in a small area of interest similar to a local map. Definition of the origin

has some impact on the accuracy of the navigation frame over long distances. A general

approach is to choose an origin with some use with the application, for example the take

off point on a runway may be a good choice for a short local area flight as the airport is

a well known location and appears on a variety of maps. Using a static origin does lend

itself to growing errors as the distance grows large. As a purely cartesian frame, the local

navigation frame does not account for the curvature of the earth, and a strait and level flight

would see the distance to the ground change even as altitude remains steady. To remedy

this, the position in a local navigation frame could be calculated with its origin centered on

the current aircraft position. This creates a navigation frame position that remains current

with the curvature of the earth, but must be calculated at each needed time. Some formal

local navigation systems have origins (examples in Section 2.2.3) specified to meet certain

regional accuracy requirements.

There are many variations on what local navigation frame coordinates are defined as,

but most can be reduced into two common systems. First is the North East Down (NED)

system, representing the three axis with an origin at the predefined point. NED is more

commonly used in airborne oriented navigation, with the definition of down being the

distance to the origins altitude in the direction of the local gravity vector. The second, East

North Up (ENU), system is more common to terrestrial navigation, though both systems

can be used interchangeably. ENU shares the definitions of the north and east axis, although

they are swapped to maintain a right-handed axis set. The up direction refers to elevation

above the origins’ altitude in the direction against the local gravity vector. Both systems

are shown in Figure 2.2. In this research, a position in any local navigation frame will be a
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vector given in the specific navigation frame system, with origin p0 shown as

pNED
0 =

[
0 0 0

]T

(2.14)

pNED =

[
XNED YNED ZNED

]T

(2.15)

and

pENU
0 =

[
0 0 0

]T

(2.16)

pENU =

[
XENU YENU ZENU

]T

(2.17)

respectively. Transforming between a given NED into a ENU frame, or ENU into NED,

can be defined by a single DCM

CENU
NED = CNED

ENU =


0 1 0

1 0 0

0 0 −1

 (2.18)

where

pENU = CENU
NEDpNED (2.19)

pNED = CNED
ENUpENU . (2.20)
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Figure 2.2: Top down view of local navigation frame with origin. Note that the rotation

between NED and ENU causes NED north to align with the X axis, while in ENU north

aligns with the Y axis.

2.1.3.3 Body Frame.

The body reference frame represents location related to the structure of the navigating

vehicle. The origin of the body frame is often shown as the approximate center of mass

of the vehicle, but more accurately it is collocated with the origin of the INS. The axis of

the body frame are arranged with X in the heading direction, Y is out the right side, and

Z points out the bottom of the vehicle. The body reference frame is rigidly attached to the

structure of the vehicle, and is useful in defining locations of sensors and equipment that

are also attached to the vehicle. With respect to other reference frames, the body frame

origin makes a useful single point representation of the vehicle. An example of the body

frame as attached to an aircraft is given in Figure 2.3. A position coordinate in the body
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Figure 2.3: Top and side views of the body frame as attached to an aircraft.

frame will be a vector pb with scalar components given as

pb =


Xp

Yp

Zp

 . (2.21)

2.1.3.4 Sensor Frame.

The sensor reference frame refers to a device that collects data needed for use in other

frames. Sensors are assumed rigidly attached to a location in the body frame, but their

collected data must be further processed from the sensors point of view. For example a

flash LiDAR or camera attached to the belly of an aircraft would record images of the

ground, and to define what the sensor sees, a reference frame specific to the device is

rigidly attached. Hardware features or limitations (e.g, focal length, aperture, wavelength,

etc...) environmental conditions, and noise and error sources native to the sensor are all

represented in the sensor frame. The sensor frame origin of many imaging devices is

located at the lens focal point [124], and with respect to scanning LiDAR the reflection

point on the scanning mirror [93]. This research predominately uses a scanning LiDAR for

the sensor as shown in Figure 2.4, and the physical device is basically an electronics box
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with a glass pane covering the source, rotating mirrors and detector. The Z axis will be

through the center of the aperture, the X axis aligns with the scanning plane created by the

mirrors, and the Y axis completes the orthogonal right-handed frame. A range sample from

a scanning LiDAR will be a vector ps with origin scalar components given in cartesian

coordinates as

ps =


Xp

Yp

Zp

 (2.22)

or in polar coordinates as

ps =

 R

θ

 (2.23)

where Rs is the distance, or the slant range, to the ground point from the LiDAR, and θ is

the scan, look, or fire angle of the LiDAR [93].
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Figure 2.4: Example of a scanning LiDAR electronics box with the attached sensor frame

axis [84].

2.2 Transformations Between Coordinate Frames

Translating vector position information from one coordinate frame to another to

resolve navigation problems requires coordinate transformations. Many of these transforms

are in common use with standard definitions and will be defined in this section. Transforms

involving local navigation frames and sensor frames tend to be more application specific,

they will be introduced in this section but defined as used later in Section 2.5. This
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section will cover basic terminology and usage of the various types of transforms utilized

in this research. Much greater detail on these topics can be found in the following texts

[26, 71, 110].

2.2.1 Datums.

A datum is a reference of Earth, useful for calculating positions. Use of datums

is critical to understanding how to calculate positions or even to understand GNSS

coordinates. The following sections explain the two datum types and how to determine

a 3D surface position utilizing them.

2.2.1.1 Ellipsoid Earth Models.

While geocentric ECEF coordinates are useful to describe a point on or inside the earth

they can be cumbersome for human understanding of points directly on Earth’s surface.

Since Earth is somewhat elliptical in shape, and rather lumpy at that, there are several

systems available to better account for Earths actual shape. These elliptical estimates are

referred to as geodetic systems and are described by the use of a datum, each resulting

in a ECEF reference system with a origin point differing from the geocentric definition in

Section 2.1.3.1.

The definition of the ECEF is measured in cartesian coordinates but geodetic systems

are in datum specific elliptical coordinates, specifically Latitude Longitude and Height

(LLh). A position coordinate in a frame expressed in a geodetic reference system will

be a vector given in the datum’s frame with scalar components given as

pdatum =


ϕ

λ

h

 (2.24)

to represent a position in Latitude and Longitude in radians and the height in meters above

the ellipsoid respectively. An example of geodetic coordinates is shown in Figure 2.5.
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Figure 2.5: Geocentric and geodetic representation of the same point on Earth’s surface

[71]

There are many datums available to chose from [69], some are defined to best describe

the mean sea level over the entire earth, others are used to improve accuracy over the global

datums in smaller regions or even individual countries. Of particular interest to this research

are the World Geodetic System of 1984 (WGS84), NAD83, and International Terrestrial

Reference System (ITRS) datums. WGS84 and ITRS are both global datums that define
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a world wide sea level ellipsoid, but where developed by National Geospatial-Intelligence

Agency (NGA)1 and International Earth Rotation Service (IERS)2 respectively, differing

slightly in exact definition [99]. WGS84 is of special interest as it is most commonly used

to express Global Positioning System (GPS) coordinates. NAD83 is an example of a datum

that defines a global ellipsoid that is only accurate over a specific region, in this case the

datum is best over the North American Continent. Datums can be completely described

by the semi-major axis a of the ellipsoid in meters, the unitless ellipsoid rate of flattening

f , and derived ellipsoid eccentricity e [99]. The three datums of interest are defined in

Table 2.1.

Table 2.1: Ellipsodial Datum Definitions [71, 99]

Datum a f e

NAD83 6378137.0 1
298.257222101 0.0818191910428

WGS84 6378137.0 1
298.257223563 0.0818191908426

ITRS 6378136.49 1
298.25645 0.0818192967682

Conversions from a geodetic coordinate system to ECEF is fairly strait forward

following

pe =


Xp

Yp

Zp

 =


(Rn + h) cosϕ cos λ

(Rn + h) cosϕ sin λ(
Rn(1 − e2) + h

)
sin λ

 (2.25)

where

Rn =
a(

1 − e2 sin2 ϕ
)2 (2.26)

1National Imagery and Mapping Agency (NIMA) was incorporated into the NGA in 2003
2IERS was renamed into the International Earth Rotation and Reference Systems Service, keeping the

old acronym, in 2003
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Figure 2.6: Difference between datum provided ellipsoid height h and the orthometric geoid

height H [79].

is the normal radius [71]. Converting from ECEF to geodetic requires a more complicated

approximate but closed form method performed iteratively and will not be derived here.

For details of that transform consult [71].

2.2.1.2 Geoid Earth Models.

Another type of Earth model is called the geoid. The geoid model captures the general

lumpy shape of the Earth using local gravity measurements. In this way the geoid model

creates a Mean Sea Level (MSL) surface over the Earth, as if the average sea level flowed

up and into the land [71, 110]. Ellipsoid models are generally a best fit to geoid MSL

over the ellipsoid’s designed region of interest. The relationship of the ellipsoid and geoid

models to the earths surface (topography) is shown in Figure 2.6.

When using an ellipsoid datum, the height value h represents the distance from the

ellipsoid to the surface point. But the distance above MSL is what is actually desired, and

that is provided by finding the distance from the geoid to the surface point, the orthometric

height H. This is accomplished by using the geoid model of the region, defining the

difference between geoid and a particular datum ellipsoid heights N for point defined by

the ellipsoid latitude and longitude [76]. The orthometric height is found simply by adding
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Figure 2.7: The difference in height between the the NAD83 datum ellipsoid and the United

States geoid for 2012 [107].

the ellipsoid height to the signed geoid/ellipsoid separation

H = h + N. (2.27)

A current map of the geoid/ellipsoid separation distances from the NAD83 ellipsoid is seen

in Figure 2.7.

2.2.1.3 Datum Differences.

The differences between the datums of interest in Table 2.1 in terms of exact latitude

and longitude coordinates can in general be considered small (under a meter in most

cases) for applications outside of high precision needs. While tectonic motions cause

point drift conditions in the accuracy between datums over time, the tectonic velocities

over the passage of time can be accounted for through the Helmert transformation [16, 99–

101] (available as free software [98, 108]) and other more complex but direct transforms
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Figure 2.8: Tectonic drift rates (horizontal velocities) for the United States relative to

NAD83 in 2011 [108].

[50, 96]. Tectonic velocities vary regionally, but for use in this research over the midwest

United States, this rate is in mm per year [98, 100] shown in Figure 2.8. More currently, the

organizations that define WGS84(G1674) and ITRS(2008) (NGA and IERS respectively)

coordinate their efforts when the datums are updated, this has resulted in the two datums

aligned to each other at better than 1cm [69, 116] and through ITRS, transformations

between WGS84 and NAD83 are identical with an uncertainty of 2 meters [69, 98].

2.2.2 Moving Between Frames.

With movement between ECEF and datums defined, transformations between the

various coordinate frames defined in Section 2.1.3 can be performed to move coordinates

between frames.
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2.2.2.1 Geodetic to Navigation Frame.

Movement between ECEF and geodetic coordinates was defined in Section 2.2.1.1.

Movement from ENU to a geodetic datum frame is a standard transformation requiring a

−90 degree rotation λ about the x axis (latitude) followed by the same rotation ϕ about

the z axis (longitude) of the selected origin point for the ENU frame [71, 124]. Using

Equation (2.12) and Equation (2.10) the DCM is constructed

CENU
e =


− sinϕ − cosϕ 0

− cosϕ − sinϕ 0

0 0 1




1 0 0

0 sin λ − cos λ

0 cos λ sin λ

 (2.28)

CENU
e =


− sinϕ − sin λ cosϕ cos λ cosϕ

cosϕ − sin λ sinϕ cos λ sinϕ

0 cos λ sin λ

 (2.29)

and the DCM to move from NED to that datum’s frame can be created from Equation (2.29)

combining Equation (2.18) and Equation (2.8). Both the DCM for moving from the

datum’s frame to ENU or NED frames are formed by taking the inverse or transpose of

Equation (2.29) using Equation (2.8).

2.2.2.2 Navigation to Body Frame.

To track a vehicle as it moves through a navigation frame space, changes in the attitude

of its body frame axis with respect to the static navigation frame axis must be followed.

Attitude changes are represented as the Roll Pitch Yaw (RPY) rotations around the the
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body frame axis:

roll rotation φ about the X-axis, Cr =


1 0 0

0 cos φ sin φ

0 − sin φ cos φ

 (2.30)

pitch rotation θ about the Y-axis, Cp =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.31)

yaw rotation ψ about the Z-axis, Cy =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.32)

These rotations as applied to the body frame are shown in Figure 2.9.

To rotate from the NED frame into the body frame uses the DCM [71]

CNED
b = CrCpCy (2.33)

CNED
b =


cos θ cosψ cos θ sinψ − sin θ

sin φ sin θ cosψ − cos φ sinψ sin φ sin θ sinψ + cos φ cosψ sin φ cos θ

cos φ sin θ cosψ + sin φ sinψ cos φ sin θ sinψ − sin φ cosψ cos φ cos θ


(2.34)

and performing the transformation on a position in the body frame

pNED = CNED
b pb. (2.35)

Similarity the DCM to move from the body frame to the ENU frame can be created from

Equation (2.34) combining Equation (2.18) and Equation (2.8). The DCM for moving

from the NED frames to the body frame is formed by taking the inverse or transpose of

Equation (2.34) using Equation (2.8), and similarly for ENU to body frame.
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Figure 2.9: Orientation changes via RPY rotation angles on a body frame.

2.2.3 Projections.

Local navigation reference frames are often application specific. A system used

by National Geodetic Survey (NGS), National Oceanic and Atmospheric Administration

(NOAA) and others with mapping interests in North America is the State Plane Coordinate
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System of 1983 (SPCS). SPCS is a map projection system based off of NAD83 [102].

SPCS divides up the United States into multiple zones per state as seen in Figure 2.10. Each

zone is mapped depending on orientation by either a Transverse Mercator Projection (TMP)

(vertical zones) or Lambert Conformal Conic Projection (LCCP) (horizontal zones). As the

curve of the earth passes through the projection plane for a particular zone it creates two

parallels where the projection will be exact (scale of the projection equals 1). Between

the parallels there will be a central meridian where the the projection scale adjustment

is greatest Figure 2.11. Zone size, parallels, scale restrictions, and navigation frame

origin are all chosen by the State to preserve a particular level of accuracy, e.g. [109].

These individual State zones are what become the local navigation frame map with a ENU

orientation system.
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Figure 2.10: Spate Plane Coordinate System Zones for the Western United States [102].
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Figure 2.11: Origin and parallels of a example SPCS zone [37], TMP (left) and LCCP

(right).
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2.3 Computer Vision

Computer vision is strongly associated with image creation and processing. Computer

vision based methods employ a wide variety of filters, operators, and morphology functions

[23, 70]. Features represent information within an image that are of interest to an

application, e.g. detection of continuous road, intersections, and stop lights autonomous

car driving using camera images. The interest points (features) for an application come in

many forms and combinations, but generally can be lumped into basic low-level features

that require no spatial data from the image, and high-level features that focus on shapes

and objects within a image [70]. The usefulness of a particular feature is application

dependant, but common properties are uniqueness or saliency, and invariance to certain

conditions (e.g. illumination levels, distortion and noise). Features extraction can be

used to extrapolate information from image data, identifying specific objects or structures

that allow classification of data into selected types. Region texture can be defined and

segmentation employed to further specify traits of a similar classification. Features and

classification data can but used distinctly or added to the original data set, creating higher

level data products like reconstructed 3D models, or extract an known object from a

cluttered background. Feature with sufficient saliency and detectably can be used to

characterize objects or locations and used to compute if and by how much two images

overlap. SIFT features used in this research and are detailed more in the next sections.

2.3.1 SIFT Features.

A widely used object detection feature in recent years is SIFT. SIFT is of particular

interest to this research for its invariance to translation, rotation, and scale changes between

images, and further for its more limited robustness to affine, noise, and illumination

conditions [55]. The feature algorithm was inspired by human eye behaviour and can

be broken up into two primary steps, keypoint detection and descriptor creation. The

SIFT algorithm is an image processing technique, computing features from an intensity
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image (0 to 1 scale pixels, usually shown in black and white), and is frequently paired with

a matching algorithm to establish a correspondence between images. There are several

direct variants of SIFT available in the literature [8, 46, 52, 54, 64], each demonstrating an

improvement of one or more facets of the original algorithm. For simplicity and proof of

concept, this research utilizes the original SIFT algorithm as described in the next sections

[55].

2.3.1.1 Keypoint Detection.

The first portion of the SIFT algorithm detects the location of the keypoints in the input

image. The keypoint is a scale-space extremum (minima and maxima) that are detected,

localized, and filtered. To detect the extremum, the input image I(x, y), where x and y are

the image pixel coordinates, is first convolved with a variable scale Gaussian G(x, y, σ),

producing the scale space image L(x, y, σ) defined as

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.36)

G(x, y, σ) =
1

2πσ2 e−
x2+y2

2σ2 . (2.37)

The doubling of σ notes the change in scale of one octave. To efficiently detect stable

keypoints, the Difference of Gaussian (DoG) D(x, y, σ) is calculated from the difference of

nearby scales within an octave, designated by a constant k

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) (2.38)

= L(x, y, kσ) − L(x, y, σ) (2.39)

and shown in Figure 2.12.

The keypoints candidates are finally detected by comparing each pixel to its 26 DoG

neighbors, 8 within its own scale and the 9 in the scale above and below it. The pixel is

only chosen as a keypoint if it is greatest or least valued of all its neighbors in the DoG

stack.
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Figure 2.12: Gaussian smoothed images L are created for each octave and scales k within

each octave, then finally subtracted to create DoG images D [55].

The keypoints at this phase are only candidates and are first localized using a 3D

quadratic interpolation and then filtered. The localization produces a sub-pixel location

for the extremum in the image at its scale, and a Taylor series expansion of D(x, y, σ)

is used to filter out unstable, low contrast candidates by setting a threshold. In addition,

DoG extremum have a strong erroneous response near edges. Edge response extremum are

detected with principle curvature computed from a 2x2 Hessian matrix. The ratio of the

largest eigenvalue to the smallest, the principle curves in the Hessian, are then compared

against a threshold and the corresponding extremum filtered. The remaining keypoints after

contrast and edge response filtering are kept and then assigned a descriptor [55].
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2.3.1.2 Descriptor Assignment.

Each keypoint is next given a descriptor representing as relevant to the keypoint local

neighborhood orientation. This is done by selecting the smoothed image L(x, y, σ) at the

scale the keypoint is in and calculating the gradient magnitude m(x, y) and orientation

ϑ(x, y) using pixel differences:

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2 (2.40)

ϑ(x, y) = arctan
(
L(x, y + 1) − L(x, y − 1)
L(x + 1, y) − L(x − 1, y)

)
. (2.41)

A 36 bin orientation histogram is constructed of the region around the keypoint, each is

weighted by its gradient magnitude and a Gaussian weighted circular window with 1.5σ

of the keypoint scale. The highest peak in the histogram is interpolated with the 3 closest

peaks to establish a keypoint orientation assignment. The descriptor is finally formed from

the orientation histogram entries. Then, to establish rotational invariance, the coordinates of

the descriptor and orientations are rotated relative to the keypoint orientation. This process

is illustrated in Figure 2.13. Best results were achieved with 4x4 arrays of histograms with

8 orientation bins each, generating 128 element feature vector descriptors for each keypoint

[55].

A descriptor assignment is paired with its keypoint and completes the formation of the

SIFT features. Each feature in an image is described by its location, scale, and descriptor.
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Figure 2.13: In this example a 2x2 descriptor is calculated from an an 8x8 sample set.

Gradient magnitude and orientations around a keypoint are calculated and weighted by a

Gaussian window (circle) on the left. They are then accumulated into histograms (right)

summarizing the contents over 4x4 subregions with the length of the arrow representing

the sum of the gradient magnitudes [55].

2.3.2 Matching.

Many applications involving features are paired with a matching algorithm for image

registration and object recognition. Image matching algorithms derive a correspondence

between two images that contain some portion of the same information. The correspon-

dence is represented by an affine transformation that registers one image or 3D data set

to another, performed as a translation, rotation, and sometimes scale, making them ap-

proximately spatially coincident [57, 70]. Equation (2.42) shows that two images (I1(a, b),

I2(x, y)), located in different but overlapping locations of the same frame, are used to find

the translation t vector and the 3x3 rotation matrix R that registers image I2(x, y) into the
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space of the I1(a, b) using correspondence algorithm Match

(R, t) = Match{I1(a, b), I2(x, y)} (2.42)

I2(a, b) = RI2(x, y) + t. (2.43)

There are many approaches to solving for the correspondence in computer vision and

other fields. The remaining sections describe a few common methods that are utilized

specifically with features. For more detail than presented here, a review of several

prominent correspondence algorithms was performed in [89].

2.3.2.1 Correlation Matching.

Image correlation or template matching [70] is a high accuracy and computation

approach where the target image Ix,y is pixel matched systematically to all locations W

in the template image Tx,y. The pixel differences when the template is at a given location

(i, j) are summed, and the minimum error e marks that location as the maximum likelihood

of the image match

min e =
∑

(x,y)∈W

(Ix+i,y+ j − Tx+i,y+ j)2 (2.44)

Template matching can find very accurate translation differences [13], but accuracy suffers

if faced with rotational, scale, and illumination changes between images. These can be

mitigated by adding search cases for rotations an scales at a higher computation cost.

More recently, first extracting features and then using normalized cross correlation can

significantly improve both robustness to image differences, and faster computation times

[47, 134].

2.3.2.2 ICP Matching.

If the data that needs matching can be represented as a point cloud, Iterative Closest

Point (ICP) can be used to find the correspondence [9, 14]. ICP finds the correspondence

translation and rotation by calculating the minimum distance between the two clouds’

nearest neighbor points and calculating the resulting Mean Least Squares (MLS) error.
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If point cloud points p are to be matched to point cloud I with points i, then the minimum

distance d between points is

d(p, I) = min
i∈I
‖i − p‖. (2.45)

Once the closest points are found for all points p, ICP uses a correspondence algorithm

(originally [35]) to solve for the translation and rotation, and then applies it to register

the point clouds. Calculating the minimum distance and correspondence transform is

performed iteratively until some threshold MLS error is reached. The algorithm assumes all

points have some match between the two clouds, and a good estimate of starting location

is required because the final correspondence will converge to a local minimum solution.

Use of ICP is popular in computer vision and has generated several variants [63, 87, 133]

improving robustness and speed of the algorithm. ICP can also benefit from using features

instead of full surface representations [94].

2.3.2.3 Outlier Rejection.

The previous matching algorithms all suffer from the presence of outliers in the data.

Large or numerous outlier points will influence the generated correspondence, resulting in

erroneous registration. This is especially true if the matching is performed using features,

where features represent the only data of importance, giving outlier features additional

weight. Constraints can be applied to the data sets to detect the presence of outliers.

An algorithm that both detect outliers and solves for correspondence is Random

Sample Consensus (RANSAC) [21]. RANSAC assumes a data set is contaminated with

outliers, selects a small sample set randomly from the data, and tests it against the

consensus set. The consensus set provides an estimation of the correspondence based off of

the previous sample sets (using [35] or something similar). The consensus is then updated,

a new sample set selected, and the process is repeated iteratively until the probability of the

consensus is below a chosen threshold. This process is robust when less than 50% of data
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are outliers as implemented in [136] and has been demonstrated effective when applied to

SIFT features [1, 10, 20, 60, 92, 111, 115].

2.3.2.4 Horn’s Correspondence Algorithm.

An algorithm developed by Horn [35] is a popular choice for calculation the

correspondence transform required to align one set of points with another. While there

have been some further work at advancing the algorithm (e.g;[36, 118]), its basic process

remain largely unchanged. A subroutine using Horn’s algorithm can often be found in

more advanced algorithms or algorithms that implement iterative solutions, and was found

present in the versions of ICP and RANSAC utilized for this research. In general, Horn’s

algorithm calculates the rotation, translation and scale that best aligns two sets of points

using least squares. The algorithm requires a minimum of three 3D points known in

both data sets, giving nine degrees of freedom, to solve for the seven unknowns of the

correspondence. In this research, the option for solving scale was disabled (always equal

to 1) to avoid distortion of the LiDAR range-based data and it’s unstudied impact on SIFT

features.

2.4 Light Detection And Ranging

The LiDAR sensor has been around since the 1960’s, but its more modern form

used in remote sensing (data collection via energy reflected from Earth) and Simultaneous

Localization and Mapping (SLAM) has been steadily advancing in capability since the

mid 1990’s [93]. With the development of scanning devices, airborne LiDAR scans of

the ground have become a major mapping tool and public LiDAR databases are currently

available for some regions (e.g; [74]). LiDAR is the primary data source utilized in this

research and details of this sensor and its data products are covered in this section.

2.4.1 The LiDAR Sensor.

LiDAR is basically an application of the widely known Radio Detection And Ranging

(RADAR). Energy is emitted from a source, reflected off a target, detected, and processed
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to derive the distance to the target. In the case of LiDAR this energy is light measured

in photons and in the more specific case of Laser Detection And Ranging (LaDAR), laser

light in particular [83]. In the literature, the terms LiDAR and LaDAR are often used

interchangeably, but using LiDAR is both more general and often used in the remote

sensing and geodesy disciplines. Therefore LiDAR will be the term used in this research

as the exact LiDAR used is application specific and not necessarily restricted to only laser

light sources, even if the sources used are lasers.

2.4.2 The Laser Range Equation.

The basic function of a LiDAR sensor is to perform a direct detection of the distance

from the LiDAR source to a target. This process can be modeled with the LiDAR range

equation [83]

PDet =
τoτaDRρt(dA)Pt

R2θR(θtR)2 (2.46)

assuming that the target and receiver are roughly parallel. Equation (2.46) models the

energy in joules collected from the LiDAR detector PDet for a single pulse. The detected

energy is a function of several factors relating to the channel the LiDAR passes through (e.g.

air or vacuum) on its way to the target, the distance and area of the target, and properties

of the physical device itself. τo is the transmission properties of the receiver optics as a

percentage. The losses due to transmission through an atmosphere are accounted for with

a percentage τa. The diameter of the receiver aperture is DR in meters. ρt is the general

reflectiveness of the target as a percentage. The power of the transmitter is Pt in joules.

The area of the target itself dA in meters is dependant on distance and the size of the target

compared to the beam and optics size. In this research the ground itself is the target as in

remote sensing applications, so the beam itself is always smaller than the target and can be

modeled as

dA =
πR2θ2

t

4
. (2.47)
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Figure 2.14: A signal pulse sent from a LiDAR spreads out and interacts with a target with

two distinct surfaces [83].

The true range to the target is noted as R. The spreading of the beam, beam divergence,

is given as θt in radians. The reflection angle of the target is θR, which is dependant of

what the target exactly is, but for general calculations the targets surface can be assumed

Lambertian (a diffuse target), with a value of π [83].

The beams interaction with the target is a convolution of the beam pulse wave form

and the profile of the target. Then using the amount of power of the returned light and the

known speed of light, a signal profile can be determined. If the pulse is assumed to be an

impulse, and then for a simple two surface target shown in Figure 2.14, the return signal

profile may resemble Figure 2.15.

Figure 2.14 shows two surfaces under the beam spot as it spread out from the beam

divergence θt. One surface S 2 is closer at distance R2 and parallel to the LiDAR pulse,

while the other surface S 1 is angled and slightly farther away R1. Both surfaces are detected

from a single LiDAR pulse. The pulse is only recorded within an reasonable length of time

called the gating window. Inside this window the LiDAR system will record this specific

pulse return, layering of widows allows multiple pulses to be sent and recorded. A peak

detection algorithm is used to create a threshold for peaks in a noisy background.
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Figure 2.15: The return signal profile from the example in Figure 2.14 [83].

The returned pulse recorded in the gating window is shown in Figure 2.15. The closer

surface S 2 is detected first in time, and its flat profile produces close to a impulse return

peak. The second S 1 peak is more complex; its surface is physically smaller resulting in a

smaller peak than S 2 and it is at an angle flattening the return peak energy. By using the

speed of light constant c in meters per second, the range R in meters can be derived from
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the time t in seconds it took the beam to travel to the target and back. This follows

R =
tc
2

(2.48)

c = 299792458 (2.49)

thereby giving the detected surface ranges, located at their respective power peaks. The

time between peaks can be used to measure the height difference of the target surfaces

R2 − R1. When targeting the ground, pulse returns can be significantly more complex with

many peaks from a variety of surfaces.

2.4.3 Sensor Types.

LiDAR sensors come in two types of devices, scanning and flash LiDAR [83].

Scanning LiDAR fire single beams at a typically high rate, using mirrors to move successive

beams around in a scanning pattern. The type of pattern is dependent on the particular

scanning device used, and has impacts on the resulting sample data. The three primary

types of scans are oscillating mirrors that produce a zig-zag scan pattern, two sided cam

driven or spinning polygonal mirrors that create a left-to-right sweeping pattern, and the

Palmer scanner that rotates an unlevel mirror creating a circular sweep pattern [93]. Other

forms of scanners are variations of static or sweeping LiDAR mounted on a spinning axis,

creating 360 degree sweeps around a vehicle.

The second type of device is the flash LiDAR. Flash or 3D imaging LiDAR are very

similar to the device used in a scanning LiDAR but a single larger area pulse is fired and

the signal return is processed on a detector array instead of a single detector. The results

are area range profiles similar to stereo photogrammetry, and the timing complexities

of collecting and registering scanning device data are significantly reduced compared to

scanning LiDAR. Providing uniform illumination through the single pulse on a complex

surface can be challenging [83].

38



2.4.4 Common Data Products.

LiDAR signal returns are typically not useful in their raw form. The raw signal returns

are normally collected as a coherent group and processed into one of several more universal

data products. These products are then available for further application specific use. The

most common two are referred to as point clouds and Digital Elevation Model (DEM).

Point clouds are a formalized data type, where raw data samples are collected and rendered

into a coordinate space. They are used to represent surfaces and, depending on density,

can show very high detail. Raw LiDAR range data collected over time is a point cloud

registered in the LiDAR sensor frame. Further processing can register the point cloud into

a navigation frame and be viewed like a map. There are a great many algorithms available

to work with point cloud data and some are available for use online [88]. In addition, point

clouds and images can be processed into significant points, points of interest, or features,

creating a feature point cloud. Such a reduced data set contains only the information of

interest, and can speed up further processing.

The second common data product is a DEM. DEM are generated from point cloud

data, projecting the elevation value of the 3D points into a 2D plane. Often referred to

2.5D images or range images, Digital Surface Model (DSM), and Digital Terrain Model

(DTM), a DEM allows a compression of what can be millions of individual data points

into a single image file, and also opens up further processing using well known 2D image

processing methods [23, 70]. The raw LiDAR data is scattered and somewhat random in

organization by its nature, and as a result the projection is performed by creating a raster

image. Raster images are formed when irregularly distributed data is projected into a grid,

a process called rasterization [93]. Multiple data points in a grid cell or an empty cell

are averaged, and the grid is typically sized to avoid leaving blank areas and minimize

interpolation. An example of rasterization is shown in Figure 2.16. Raster images are
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Figure 2.16: A top down view of a point cloud, the individual points show elevation values

(left). The raster image is formed (right) by populating a grid (center) with the average

elevation values. The resulting matrix of elevations forms the pixel values of the DEM

using a direct projection, other interpolation methods may also be used.

popular in that the end product is an image with each pixel representing a cell sized area of

the original point cloud sampled region.

Another popular surfacing method with Geographic Information Systems (GIS)

software users are Triangular Irregular Network (TIN). TIN are formed by making an

interpolation between the most likely nearest neighbor points using Delaunay triangulation,

over the entire point cloud [4]. Filling in the TIN generated surface becomes a full 3D

interpolation of the scanned surface as seen in Figure 2.17. Finally, the most recognisable

use of point cloud data is simple contour line generation. A 2D image or 3D surface is

generated by linking points together that share equal or near equal elevation data, creating

concentric rings and loops as elevation changes. This has some advantage in that less

interpolation is used and it is easily understood by users of topography and cartography

shown in Figure 2.18.
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Figure 2.17: A top down view of a point cloud, the individual points show elevation values

(left). The TIN surface is formed (right) by applying Delaunay triangulation (center) to the

sample points. The resulting surface is and linear interpolation of the linking heights.

Figure 2.18: A top down view of a point cloud, the individual points show elevation values

(left). The contour lines are formed (right) by linking groups of similar value (center). The

resulting rings interpolate the flow from peaks to valleys.

Point cloud points can also be encoded with data other than coordinates during the

sampling. The first detected LiDAR return only records the highest point sampled from

a pulse. In practice, LiDAR frequently penetrates vegetation so that imaging the ground

often produces multiple returns that can provide a great deal of data about ground cover, as
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seen in Figure 2.19. The last return can be filtered for a more sparse but accurate bare earth

model [93, 95]. Recording all of the returns and their number significantly enhances the

data available for analysis of the sample region, but at the expense of more data storage.

In addition to range data, recording the power level of a signal return can be recorded

and, once rasterized, creates an intensity image with similar properties to photography

[2, 113, 115]. Another much more storage intensive procedure is to simply record the

entire waveform of the returned pulse. An active area of research, full waveform LiDAR

is showing promise for advanced classification methods on vegetation, soil, and water

content. In addition to containing the return and intensity data, the full waveform data

makes more rigorous noise analysis possible [49, 66, 93, 119].
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Figure 2.19: An example of a multi-return LiDAR signal interacting with ground vegetation

[67].

43



2.4.5 Error Sources.

There are several systematic sources of error inherent to LiDAR systems [29, 93, 127].

Some are derived from the physics of the sensor, while others are inherited from supporting

systems like GNSS or the scanning device. All of these errors are represented in the

registered point cloud.

• Bore-sight Offset Bias: Bore-sight offset bias results from a small error in measuring

the true offset distance between the LiDAR sensor frame axis to the body frame axis

which is coincident with an on board Inertial Measurement Unit (IMU). This creates

small registration errors that are independent of range distance and scan angle (the

fire angle of the LiDAR), but dependent on heading direction in the navigation frame.

Bore-sight errors can be corrected with calibration methods [93].

• Bore-sight Angular Bias: Bore-sight angular bias results from a small misalignment

of the LiDAR sensor frame axis to the body frame axis which is coincident with an

on board IMU. This creates registration errors that increase with range distance and

change with heading direction in the navigation frame. It also changes with scan

angle in other than cross heading direction. Bore-sight errors can be corrected with

calibration methods [93].

• GNSS Noise: Noise in the GNSS information used in registration will impart similar

noise in the derived point cloud and will be independent of the range distance,

heading and scan angle [93].

• Angular Noise: Noise from IMU or scanning mirror angles will affect the horizontal

coordinate components more than vertical and is dependant on range distance and

scan angle[93].

• Range Noise: Range noise is primarily seen in the vertical coordinate component

and is dependant on scan angle. This noise in the detected range is derived from
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several aspects of the beam or laser used and are outlined below. Beam integral noise

sources all involve detection of unwanted photons, and therefor impact the power

distribution of the return signal [83].

– Detector Thermal Noise: The electronics in the device create extra photons

by virtue of being above 0◦ K in temperature. Measured as dark current in the

detector when no light is present, this noise is modeled as a Poisson random

variable and can be mitigated by operating the system in Geiger-mode at the

cost of slower fire rates.

– Laser Speckle Noise: Speckle noise are extra photons resulting from the beam

interaction with the reflected surface. Speckle noise is proportional to beam

power, and inversely proportional to beam coherency.

– Photon Counting Noise: Photons returning to the detector are proportional

to what is sent out and arrive at random times creating an uncertainty in the

measurement. The number of photons measured in the gating window are

modeled as a Poisson random variable.

– Detector Background Noise: Background noise are detected photons that are

not part of the beam signal. In practice this is reflected sunlight within the

detectors sensitive frequencies. Background photons are modeled as a Poisson

random variable.

Noise and bias sources are usually hidden from the user, the whole senor system

essentially a black box. Effects of a un-calibrated LiDAR are then only visible to the

end user in the resulting point cloud, and calibration methods to detect and correct for

these errors must be through various quality control methods [93]. If the raw LiDAR

measurements are available (INS data, range and scan angle) bore-sight correction is

possible [29, 97] to improve accuracy.
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2.5 Topographic LiDAR Registration

Remote sensing of the Earths surface topography using a airborne LiDAR system

creates a point cloud representing an irregular sampling of the ground. Registration of

the point cloud points to a coordinate frame utilizes the coordinate transform equations

discussed in Section 2.1.3 and Section 2.2 and is further detailed in [93]. To start with a

simple example, assume that a calibrated scanning LiDAR system is attached to a aircraft

and pointed at the ground. Also assume that the INS, GNSS and LiDAR are all aligned

and in the same reference frame. The aircraft flies over the area to be scanned, creating a

swath of sampled ground points. This simple case using an ECEF scenario is illustrated in

Figure 2.20.

For a single sample point, the LiDAR system fires a beam and records a range to a

ground point. The ECEF position vector re represents the slant range from the aircraft to

the ground point. The GNSS system records a position estimate at the time the LiDAR

beam fires, this position is the vector ae. With the position of the aircraft and distance from

aircraft to the ground point in the same frame, the resulting position ge can be found with

ge = ae + re. (2.50)

In a more realistic case, the Equation (2.50) is significantly expanded upon. First, the

range information produced from the LiDAR originates in the sensor frame of the LiDAR,

and must be transformed into a common frame before it can be combined with the INS

and GNSS sensor data. Second, the sensors generally can’t occupy the same space on the

aircraft and therefore their axes are not collocated as assumed. Removing the assumptions

that lead to Equation (2.50) results in the component vectors residing in different coordinate

frames. An usable equation can be made using coordinate transforms to move aWGS and rs

into the same frame. First the starting states of the three sensors are described, illustrated

in Figure 2.21.
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Figure 2.20: The basic case for registration of a LiDAR sample [93].

The LiDAR sensor records each range R sample with its fire angle θ at GNSS time in

the LiDAR sensor frame s. To be consistent with the other vectors used in this method, the
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Figure 2.21: The raw states of the three sensors used in topographic LiDAR scanning.

LiDAR data is converted to cartesian coordinates shown as

rs = [R, θ] where, (2.51)

[R cos(θ), 0,R sin(θ)] = [Xr,Yr,Zr] . (2.52)

The axis of the LiDAR sensor frame are as described in Section 2.1.3.4 with Xr representing

cross track scanning. The aircraft origin is represented in the body frame as described in

Section 2.1.3.3 at the location of the INS. The GNSS receiver is also located in a separate

place on the aircraft, generating timing and location in WGS84 coordinates. The axis of all

three sensors are neither collocated nor aligned. First the LiDAR sensor frame is rotated

into the body frame using a DCM. The rotation needed to align the senor with the body

frame is only a 90 degree rotation about the Zr axis, as seen in Figure 2.21, creating the
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simple DCM

Cb
s =


0 1 0

−1 0 0

0 0 1

 . (2.53)

and applying the it to the LiDAR vector gives

rb′ = Cb
sr

s. (2.54)

The origin of the LiDAR is usually centered on the reflection point of the scanning mirror

[93] and doesn’t coincide with the INS origin in the body frame. The origin can be shifted

to align with the INS origin through the use of a lever arm. A lever arm is a distance vector,

typically hand measured, from one sensor to another. Once in the body frame, the addition

of the lever arm lb
LiDAR moves the origin of the LiDAR to the origin of the INS. Including

the lever arm in Equation (2.54) gives

rb = Cb
sr

s + lb
LiDAR. (2.55)

Similarity the GNSS records the position of the aircraft in, typically, WGS84 LLh

coordinates. More specifically, the GNSS records the position of the phase center of the

receiver antenna, and will need to be shifted to collocate with the INS origin in the body

frame using another lever arm lb
GNS S . But the GNSS position data is not in the body frame

and will need to be converted further before it can be applied. The first step of this process

is to use Equation (2.25) to convert aWGS geodetic coordinates into ae ECEF coordinates.

Applying this and Equation (2.54) to Figure 2.21 gives Figure 2.22.

The second step is to convert the LiDAR data to a navigation frame. Since the end

result is registering the ground points, an ENU frame is used as described in Section 2.2.2.2.

Creating the DCM requires the RPY rotation angle information provided by the INS at the

same time as the LiDAR pulse. Following Equation (2.34) makes a body to NED frame,
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Figure 2.22: Transforming the LiDAR sensor frame data to align with the INS body frame,

the lever arm to align the GNSS data is still not in the correct frame to apply.

but combining it with Equation (2.18) provides the the desired ENU frame DCM applied

as

CENU
b = CENU

NEDCNED
b (2.56)

rENU = CENU
b rb. (2.57)

This DCM must be uniquely calculated for each LiDAR sample time to account for the

continued movements of the vehicle. Similarity, the GNSS lever arm can be rotated into

navigation frame coordinates

lENU
GNS S = CENU

b lb
GNS S . (2.58)

This new arrangement is illustrated in Figure 2.23.
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Figure 2.23: Applying the INS RPY angles to apply a body to ENU frame rotation to both

the LiDAR data and the remaining GNSS lever arm.

The third step in this process is to rotate the ENU frame coordinates into the ECEF.

This is accomplished by using a transpose of the DCM provided by Equation (2.29). An

origin point for the ENU frame must be chosen, its coordinates in LLh are utilized for the

angles required in Equation (2.29). Again, this transform is also applied to the GNSS lever

arm and the process is applied as

Ce
ENU =

(
CENU

e

)T
(2.59)

re = Ce
ENUrENU (2.60)

ae = ae′ + Ce
ENU lENU

GNS S . (2.61)
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Figure 2.24: Conversion to ECEF frame and applying the GNSS lever arm allows the vector

addition of the LiDAR and GNSS data creating the final registration of the LiDAR ground

points ge in the ECEF frame.

Finally the process of transforming sensor data into the form of Equation (2.50) is complete,

with all vectors in the same frame. Figure 2.24 shows this final step relating the process to

what is shown in Figure 2.20.

The fully expanded form of Equation (2.50) is

ge = ae′ + Ce
ENUCENU
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GNS S + Ce

ENUCENU
b

(
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sr
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LiDAR

)
(2.62)

or simplified as
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)
. (2.63)
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Repeating this process on each LiDAR point in a scanned swath creates a point cloud

registered into the ECEF frame.

2.6 Terrain Referenced Navigation

Modern navigation in general is possible through use of an INS. The INS is a dead

reckoning device that can be used to estimate current position based on past trajectory

and its internal sensors. The INS sensor suite chiefly consists accelerometers that measure

the specific force as the vehicle moves, and gyroscopes that measure angular rate as the

vehicle changes orientation. Both sensor data types are further processed into orientation

and trajectory estimates over time [11, 110]. The sensors are self contained and accept

no outside influence or data to create this estimate, measuring only the ongoing motions

of the aircraft. While position estimates from the INS are frequently sufficient, the sensor

themselves are prone to several well studied internal cumulative error sources [11, 110],

with the primary effect causing the calculated trajectory to drift over time. This drift error

can be mitigated by using higher quality INS at a cost and rigorous calibration techniques,

but can never be fully eliminated.

A secondary source of trajectory estimates may be provided to allow an estimation of

the drift errors accumulating in the INS, and regular corrections can be applied to maintain

its accuracy. There are a wide variety of senors available to generate additional trajectory

estimates, but by far the most prevalent modern sensor used is GNSS [106]. Through

the use of satellite networks with very high accuracy timing, a GNSS receiver provides a

position estimate with very high accuracies. Because of its accuracy, GNSS has become

the default external sensor for providing updates to correct drift error, although GNSS is

not as robust to interference as the INS [125]. To do this, the combination of the INS,

GNSS, or other trajectory estimation source are frequently combined by a Kalman filter.

Kalman filters and their variants [44, 59, 90, 126] efficiently combined information sources

in a recursive, statistically optimal way, improving the overall estimate. These elements

53



together create the an integrated navigation system, providing accurate and reliable long

distance navigation solutions over a variety of conditions.

2.6.1 Historical Terrain Referenced Navigation.

The use of external sensors for IMU updates extends before the application of GNSS,

and even with the advantages of using GNSS data, other position estimation methods

continue to be developed. These methods and sensors can be used to contribute to the

overall position estimate within the INS or allow more robust operation conditions for

when other sensors are unavailable or corrupted [45, 125]. This section will give an

introduction to a class of navigation solution methods referred to as terrain aided navigation

or frequently TRN. In general TRN approaches use an onboard sensor or sensor suite to

detect attributes of the ground topology and process them into a position estimate for use

in the INS. This family of methods all have the potential to be used to supplement or

substitute GNSS data when GNSS is unavailable [125].

One early TRN system was called Terrain Contour Matching (TERCOM) [22] for use

on cruise missiles, which utilized a radar altimeter and a barometric altimeter to create a

terrain contour line in the direction of flight. The radar altimeter would sample the ground

giving a measurement of the vehicle height above the ground, the barometric altimeter

would provide a height estimate of the vehicle above sea level. The difference between

the two sets of sensor data created a contour line that was an average height topographic

map of the terrain, and could be matched using mean absolute difference from an onboard

DEM of the flight path. Matching the measured contour and the onboard map successfully

generates a position estimate correction that was used to update the IMU drift errors.

Since TERCOM, several related systems have been developed. Sandia National Labs

developed Sandia Inertial Terrain Aided Navigation (SITAN) [33] used the same sensors

as TERCOM but utilized it on cruise missiles, aircraft (AFTI/SITAN), and helicopters

(HELI/SITAN), but instead of collecting a line of ground samples and batch processing
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them, the SITAN approach utilized banks of Kalman filters to improve the accuracy of

the position estimates. Terrain Profile Matching (TERPROM) [85] offers a combination

of TERCOM and SITAN and included terrain collision warning and avoidance features.

There are additional works that offer algorithmic enhancements to the original TERCOM

system (e.g. [104]) but the general approach of utilising a radar altimeter in this way has

largely remained the same and some of these systems are still used today.

2.6.2 Image-Based TRN.

A subset of TRN that expands the original concepts of the TERCOM system is called

image or vision based navigation [77]. These more modern approaches expand on the

concept of recording ground data and matching, then extend the concept to two dimensions

using optical cameras, various radars, sonar, scanning lasers, and combinations of them all

in hyper-spectral imagery. Matching takes place either with a collected image and a stored

map image, or by comparing the collected image to the previous collected image, both

use difference information to estimate a change in trajectory. Once a map is matched, the

trajectory information is estimated and error correction can be applied to the INS estimate

[124, 129, 132].

Images typically have good spatial representation of a location, but suffer from some

distortions and ambiguities native to the specific imaging sensor [18, 124]. Image data

is generally planar so multiple images, constraints, and additional sensors (e.g; stereo

cameras) are used to provide enhanced or third dimension information. Images can also

be formed from other data sources than traditional optical cameras to include radar [128]

and sonar [58, 68]. Any planar data source is easily described numerically in terms of an

image space, even point sources like LiDAR range or intensity data can be collected over

an area and converted into spatial images [28].

Image based navigation takes advantage of more possible information available to 2D

or 3D data structures as opposed to the single sample batches utilized in TERCOM-like
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systems. Howerver this increase in information comes at a cost in data management and

processing requirements. Fortunately, the use of imagery allows utilization of a wealth of

methods from the field of image processing and computer vision which will be detailed

more in Section 2.3. Problems with compression, matching, filtering, and processing have

a variety of possible approaches for numerous sensor image and image data types, although

their effectiveness on a particular application is an ongoing research area.

A related navigation method employed in robotics and autonomous vehicles is called

SLAM. Using SLAM, as a vehicle moves around in its environment it creates or updates

a local map and then uses that map to track its own movements. SLAM focus strongly

on map creation, autonomy, path planning, and optimization of movement through an

environment. SLAM methods include ways to both generate a trajectory estimate and

register environment data [19, 51, 53, 130]. In terms of sensing the nearby environment, the

mapping portion of SLAM becomes similar to a image navigation problem where sensors

are used to detect the nearby area, generate a map, and compare the map to what is already

known or mapped [91]. The trajectory of the vehicle can then be estimated based on change

of the surroundings relative to itself. Mapping sensors come in all varieties, but notably

various LiDAR have been used in robotics for some time. In indoor scenarios LiDAR

provides range data of the vehicle to the surrounding environment, creating a relatively

high accuracy picture of the vehicles immediate area, and can be collected in high detail

quickly. In airborne scenarios, automated Unmanned Ariel Vehicle (UAV) path planning

and mapping functions are predominant [12]. In all cases the general SLAM problem is part

of the growing field of computer vision, and is taking advantage of both image processing

and estimation theory methods [117] and is a good source of techniques related to image

based navigation.
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2.7 LiDAR Range-Based TRN

Of interest to this research is performing TRN using specifically the range data

component of LiDAR sensors. As described in Section 2.5, LiDAR sensors have been

popular for some time with remote sensing and mapping activities, but its use as a

navigation tool is more recent. A modern version of a TRN process can be generalized

into 6 phases as shown in Figure 2.25.

In this process, first raw sensor measurements of the environment are recorded,

usually with at least a good estimate of the current vehicle trajectory (position, attitude,

velocity, etc...). Next the raw sensor data is refined, this can be a fairly minimal process

such as coordinate transformations, or much more involved including filtering and feature

extraction but the single goal is to determine what makes this terrain unique for matching.

The third step is general matching of the new collected data, and reference data. The

matching step involves a process that makes the association that terrain in the collected

data is also in the reference. the reference is either previously collected data of the

environment (reference matching), the data from the previous successful matching attempt

(local matching), or an error corrected product from the applied correspondence transform

(reference/map update). Once the terrain data is matched, a correspondence transform can

be calculated that would align two data sets (e.g; an affine rotation and translation). The

final step is error estimation based on the amount of change required by the correspondence

transformation. The estimated error can be used to update the current trajectory information

and the process begins again.

This section continues with a brief selection of modern approaches to TRN that are

similar to the proposed research in terms of the general approach outlined in Figure 2.25.

Then this section reviews the most current efforts with respect to TRN using similar initial

criteria as the proposed research. This final section highlights the uses of range data
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Figure 2.25: A high level flow for modern TRN processes.

derived from scanning LiDAR, the extraction of features for use in matching and solving

for correspondence, in the direct application of estimating errors in airborne vehicle TRN.
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2.7.1 Current Terrain Referenced Navigation Approaches.

Each step in the process outlined in Figure 2.25 has a large number of approaches

to chose from, lending to a great deal of variety in the literature. Just focusing on TRN

applications, choice of sensor include but are not limited to cameras [5, 56, 72, 81, 124, 129,

132], sonar [58, 68], radar [128], Flash LiDAR [28, 120], and scanning LiDAR (proceeding

sections). Restricting the application space to scanning LiDAR offers two common TRN

scenarios, terrestrial and airborne navigation. Terrestrial navigation is dominated by mobile

robotics and SLAM approaches, many of which are restricted to indoor environments. As

such, these approaches tend to have distinct assumptions and requirements when compared

to similar airborne navigation approaches, notably in required data densities, effective

sensor ranges, and traveled distances. Terrestrial approaches frequently use sensors and

algorithms similar to airborne TRN, and a selected few approaches are mentioned here that

also use features and a matching process: indoor navigation [103, 135], outdoor navigation

at night [60], additional sensor data [25], and both terrestrial and airborne LiDAR data

[122, 123]. The ALS TRN approaches are covered in more detail in the next section.

2.7.2 Methods of Interest Using ALS Range Data for TRN.

The approaches to TRN in this section focus on scenarios involving aircraft,

helicopters, and planetary landers. Each of these scenarios utilize feature based or

correlation matching, and solve for correspondence utilizing range data from ALS. The

exact goals of the navigation scenario and the particular processes they use to derive the

correspondence vary significantly. The papers listed here are the closest found in the

literature to this researches proposed methodology for ALS TRN. The papers are grouped

into 5 efforts with common authors.

2.7.2.1 Hebel and Stilla.

The method proposed by Hebel and Stilla in [32], and summarized in Figure 2.26,

utilizes ALS from a helicopter platform in urban areas to reduce INS drift errors in a GPS
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dropout scenario. The helicopter builds a 3D point cloud representation of the topographic

surface, specifically targeting buildings and other man made structures,preferably with

multiple ALS passes. The method requires a functioning INS, a initial position estimate,

and an off-line computed ALS generated point cloud of the area under ideal GPS

conditions, including generated features. To generate features in newly collected point

cloud data, each scan line is processed through a 2D RANSAC process coupled with a

region growing segmentation process. This both removes outliers from the scan line data

and groups the remaining points into line segments. Line segments are then orthorectified

into the map coordinate frame, the registered segments are further grouped into planar

segments using Euclidean distances, normal direction, and group coplanarity. This

process converts the entire point cloud into a collection of segmented 3D planar features.

These features ar further refined to remove irregular features. The refinement process

calculates the centroid and normal of each plane segment and classifies them. Then ground

surface and vegetation associated plane features are removed, leaving only planar features

classified as buildings. These features are matched using RANSAC to stored, similarly

generated features, from the off-line computed point cloud to generate the translation and

rotation components of a correspondence solution. Applying the solution to the previous

INS position and attitude estimate, provides the INS error estimation, to be used to reduce

the drift errors. The effectiveness of the algorithm was tested off-line on field test data taken

at approximately 300 m above the surface elevation, and achieved sub-meter accuracies if

at least 10 corresponding planar features are used. The authors express concern over errors

increasing significantly with helicopter flying altitude.
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Figure 2.26: Flow of Hebel and Stilla urban multi-pass ALS TRN algorithm using

segmentation and classification [32].

2.7.2.2 Uijt de Haag et al..

Uijt de Haag et al. proposed two different approaches to ALS TRN. Although

the approaches in this section do not utilize features as described earlier, the algorithms

are deemed as particularly noteworthy approaches and are thus detailed here. The first

approach by Campbell et al. [13] proposes using ALS range data create a point cloud of the

topography and matches it to a stored reference point cloud to solve or position and attitude

errors. The method is summarized in Figure 2.27. The process assumes a functional GNSS
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and INS with a ALS system on an aircraft. Each range measurement in a scan line (in

this case it is a single back and forth sweep) from the LiDAR is orthorectified into the

coordinate frame of the stored reference point cloud, while a second range is calculated

using ray-tracing from position and attitude of the aircraft, the scan angle of the LiDAR,

and the stored point cloud ground points. The two range measurements are compared using

the mean squared difference, and residual error was found by using a correlation search

with respect to each translation and rotation variable (6 total). The minimum mean squared

difference of the search space produces an offset value for each variable, in total giving the

position and attitude errors estimates of the GNSS and INS systems. This system found

position errors under 2 m and attitude errors varied between 0.2 and 0.8 deg, utilizing flight

test data and a reference point cloud with 2 points per m2 point density. The authors noted

that the found accuracies were highly dependant on reference point cloud density.

In a later paper by Uijt de Haag et al. [27] the proposed ALS system is compared to

TERCOM and SITAN based systems for a position estimate update during GNSS dropouts.

This process, summarized in Figure 2.28, assumes a position and attitude estimate, an INS,

and a reference point cloud are available. The reference point cloud is preprocessed into

a gridded 2.5D height DEM at a density of 1 point per m2, using bilinear interpolation.

The ALS range samples are collected and once a large enough set is collected they are

orthorectified into the coordinate frame of the reference DEM and similarly processed

into a gridded height DEM using bilinear interpolation. An Sum of Squared Error (SSE)

surface is calculated between the reference and ALS DEMs. The position error is found by

performing a gradient search to find the minimum SSE. The method was tested during a live

flight at an approximate altitude of 300 m above the topography. The algorithm was able to

correct the INS drift during GNSS dropout for 3D position at better than 1 m accuracy with

2 m standard deviation, an order of magnitude improvement over the TERCOM system, and
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Figure 2.27: Flow of Campbell et al. ALS TRN algorithm using Ray Tracing, Correlation,

and Minimum MSE [13].

two orders improvement over the SITAN system. The authors noted the systems sensitivity

to potential noise in the INS provided attitude angles.

A third paper by Vadlamani et al. [121], demonstrates a approach that does not need

reference terrain data to calculate position estimation errors without GNSS inputs. The

system assumes an available GNSS for an initial position and long term position updates,

and an INS. Between updates, the accumulating INS drift errors can be estimated by using

2 ALS sensors, one pointing angled fore and one aft. An accumulated point cloud for

each LiDAR is collected over 1 second, orthorectified into a common coordinate frame,
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Figure 2.28: Flow of Uijt de Haag ALS et al. ALS TRN algorithm using range images,

correlation, and minimum SSE [27].

converted into 2.5D height DEMs and compared with a reference DEM. The differences in

the two DEMs is created by the INS drift errors that accumulate during the time difference

for the aft LiDAR to scan an region previously sampled by the fore LiDAR. A correlation

of the two DEMs is performed using a 4 point adaptive grid search, and the algorithm is

summarized in Figure 2.29. The minimum error variance offset of the grid search gives
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the position errors to update the current position estimate. Local matching in this way,

with no reference, can reduce but not eliminate accumulating drift errors, hence for long

periods of time, or as available, a GNSS or other reference update is needed to reset the

position estimate. This algorithm was tested on real flight data, and GNSS-less timing

was satisfactorily provided by a regular on-board clock. Position errors were kept below

5 m for up to 3 minutes using a navigation grade INS. Further analysis added nominal

attitude errors into recorded flight data, contributing less than an additional 0.5 m over the

same time frame. The authors noted that flat or periodic terrain didn’t provide enough

observable differences to generate unique position fixes.
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Figure 2.29: Flow of Vadlamani et al. ALS TRN algorithm using two LiDARs, range

images, correlation, minimum error variance [121].

2.7.2.3 Johnson et al..

Two TRN approaches are described in works by Andrew Johnson et al. in efforts to

detect motion and safe locations for comet or lunar landers. The first paper [40], describes a

method using previous scans of the surface as a reference to the current scan, using a ALS

system, to determine position. As described in Figure 2.30, a LiDAR scanned swath is

used to create a gridded DEM of the topology using bilinear interpolation and a averaging

method to fill in holes. The current image is rotationally and scale corrected to match

with the previous image using the on board INS sensor data. Features are generated using
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a variation of Principal Component Analysis (PCA) to determine the “textureness” of a

3D region, and outliers are filtered out using a dissimilarity measure on the same PCA

data. Matching is conducted on the features with a variation of a correlation search and

the correspondence is drawn from minimizing a of Mean Sum of Errors (MSE). This

process generates a translation and uncertainty that aligns the two DEMs and is used to

update the current position estimate. Because this method matches between the current

and previous scan, errors will still accumulate overtime and the use of a ”key” scan DEM

surface is used until the search window exceeds an overlap threshold or the scanned terrain

becomes too feature poor, where then a new “key” scan is chosen. The algorithm was tested

using terrestrial LiDAR scans of selected comet-like terrain and utilized ground markers for

calibration and true position measurements. The authors noted that the absolute errors are

dependant on the ground points’ sample density, and these errors are approximately half

the spacing between range samples.

The second paper [43], focus on a similar lunar landing methodology. This paper

assumes a reference map of lunar topology is available and proceeds to explore both

LiDAR and camera sensors for best utility for position and velocity estimation. Matching

were also explored to include pattern recognition (one of which included SIFT features),

correlation, and structure from motion algorithms. Correlation methods were chosen

for computation efficiencies, and LiDAR (both Flash and scanning types) preferred over

cameras due to the capability to work without sunlight. A computer simulator was

developed to simulate scanning LiDAR data and lunar terrain, although the particulars

of the simulation better support the application behavior of a Flash LiDAR, and the same

simulator is further refined in a later paper [42] using just flash LiDAR. The algorithm

varies somewhat from [40], using Harris corner features derived from planar patches within

the prepared, gridded DEMs. The feature detection method [41] utilizes some additional

photogrammetry methods to give the correlation a better chance at success. A validation
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Figure 2.30: Flow of Johnsons et al. year 2000 ALS TRN algorithm using range images,

“Textureness” features, correlation, and minimum MSE [40].

check on the matches generated by the correlation to remove weak or erroneous resulting

correspondences is used instead of dissimilarity measure outlier removal. These changes

are reflected in Figure 2.31. Monte Carlo tests using the simulator found that with scale

matched data, ground point density and scanned area size had a strong impact on accuracy

of the resulting position estimates.
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Figure 2.31: Flow of Johnson et al. year 2008 ALS TRN algorithm using range images,

Harris features, correlation, and minimum MSE [43].

2.7.2.4 Lafontaine et al..

Partially inspired by Johnson et al. papers, Hamel et al. [31] proposes a planetary

lander (Mars) utilizing some similar methods. This approach creates a DEM from LiDAR

data, extracts features, matches them and computes a correspondence solution for position

estimation. In this work, features are a combination of altitude extremum and slope.
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Multiple matching algorithms were tested, including a 2D cross-correlation of features

or phase, a 1D feature profile correlation of the feature surface, and a star tracker inspired

method, then comparing them to a similar reference feature map. The star tracker method

involves refining the features into the most unique of common feature groupings, creating

“stars” out of the pool of extracted features (these are point features, not to be confused

with actual stars). A stored matrix of “stars”, their locations and distances from each other

is used as the reference and matching is performed using a constellation search within a

tolerance (another type of correlation) to establish correspondence. Using this distance

matrix, the minimum mean sum of errors is computed for all detected stars compared to

the reference stars finding the position . The weighted mean sum of errors is used as an

outlier removal step. The star tracker method performed better than the correlation methods

in both speed and accuracy, and is shown in Figure 2.32. Of note is that the star tracker

method by using features instead of the total DEM, is able to avoid matching scales in the

DEM creation process as done in the Section 2.7.2.3 methods, instead scale is calculated

during the correspondence process. Lafontaine is involved with two other papers that detail

methods for safe planetary landings using scanning LiDAR. Both contain some crossover

with methods shown in [31], but [48] is much more focused on mapping the topography

and detecting safe landing sites, and [6] essentially an in-flight LiDAR calibration method.
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Figure 2.32: Flow of Hamel et al. ALS TRN algorithm using “Star” features, constellation

matching, and minimum MSE [31].

2.7.2.5 Toth, Grejner-Brzezinska, et al..

Charles Toth, Dorota Grejner-Brzezinska, et al. have a collection of works studying

the characteristics and applications of LiDAR senors and their data products, including

LiDAR based TRN. The first paper of note by Toth et al. [114] uses narrow sub-strips of

LiDAR collected point clouds to match with ICP, estimating the position error correction
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to the INS. The premise is that over short enough time intervals, deformations in the

point cloud samples resulting from INS drift errors are minimal, and can be corrected

with frequent, small ICP matchings. The algorithm was tested with a simulated urban

environment, with a few samples per m2 density, and many building-like surfaces achieving

sub-meter 3D position accuracies.

An additional paper [112], highlighted that the ICP approach has some difficulty

reliably producing a good match under these conditions, and to address the issue a

segmentation and filtering method for “breaklines” should be applied before matching.

Breaklines are caused by groupings of ground samples that mostly vary in only the vertical

component. Breaklines frequently appear in LiDAR scans of buildings, where the rooftops

and one or two walls are typically clearly defined and the remaining walls occluded. If

the reference data set is scanned from a different direction as the collected set, previously

occluded walls could be sampled at different sample densities and distributions depending

on the particulars of the flight, creating a different set of breaklines. These differences

caused ICP to produce erroneous matches on the small sub-strips, and detecting and

filtering out breaklines until just roof tops remain considerably improved performance.

Both methods are similar and the breaklines method is summarized in Figure 2.33. It is

noted that larger sub-strips improve accuracy at the cost of additional data collection and

computation time.

A third paper by Grejner-Brzezinska et al. [24] simulates a comparison of a method

very similar to [112] with hyper-spectral optical imagery and ALS. The optical imagery

was matched using SIFT and was able to gain meter level position accuracies in simulation

compared to the LiDAR sub-meter accuracies. It is noted that the LiDAR data was

composed of one second point cloud collections, translating into roughly 70 by 200 m

sub-strips at a density of 4 points per m2. The paper [111] by Toth et al. continues

this comparison by using the method outlined in [112] and [24] for scanning LiDAR
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Figure 2.33: Flow of Toth et al. ALS TRN algorithm using Breaklines, and ICP [112].

data matched with ICP. The comparison methods include optical camera images matched

using SIFT with an RANSAC outlier removal step, and Flash LiDAR data using a novel

eigenvector based segmentation and feature extraction method, RANSAC outlier removal

and a correspondence step using [35]. Each data type was matched with a reference of

the same data type, and tested in simulation for accuracy. All three methods were found

to be viable for TRN, with sub-meter accuracies in the scanning and flash LiDAR based

approaches.
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A second data type comparison paper by Toth et al. [115] which performed SIFT

feature extraction followed by RANSAC outlier removal and matching on different data

types, though actual TRN was not performed. The number of correct matches and the

2D position error distribution of the matched features was used as the quality metric on 4

data types under simulated error conditions. The comparisons included matching between

optical camera images, camera and satellite images, between LiDAR based DEMs, and

between LiDAR based intensity images. Optical camera images performed the best with

numerous SIFT features generated and the most matches after RANSAC, although the error

distributions were notably skewed in one direction, speculated to be from differences in

resolution and flight direction. Camera matched with satellite images also produced many

SIFT features, but considerably fewer good matches, though it was enough for accuracies

similar to the camera only matches. The LiDAR height DEM matching produced notably

fewer features and only a about a dozen matches, resulting in higher uncertainty than

the other methods. The LiDAR intensity image matching performed almost as well as

the optical camera matching, so in terms of using SIFT features intensity images were

preferred.

Another paper by Oh et al. [73] proposes a different approach based on the algorithm

outlined in [112]. LiDAR intensity and DEM images matched to reference models could

be used to derive 3D position errors. This approach uses breaklines as a feature extraction

tool, creating a breakline image similar to image edge detection filters. This feature image

is then matched using a novel correlation variant called relative edge cross correlation

(RECC), followed by a matching success metric (the concentration value) to filter out high

uncertainty matches. The algorithm is outlined in Figure 2.34. This method is focused on

providing a TRN update under the normally difficult condition of nearly flat terrain. If the

terrain being scanned has a strong features in the intensity image (its reflective properties

of the LiDAR beam) or if the terrain has good height contrast, the better position estimate
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Figure 2.34: Flow of Oh et al. ALS TRN algorithm using Breakline images, RECC, and a

concentration value filter[73].

between the two matches is chosen to update the INS. This method is noted as not effective

on terrain that cannot meet either of these scenarios like deserts and grasslands. The

resulting accuracies were generally under a meter, and the algorithm was tested on real

LiDAR strips collected within minutes of each other at an average of 1.8 samples per m2.
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III. TRN Using ALS Range-Based SIFT Features

In this chapter the proposed approach to ALS TRN using range-based SIFT features

is described. Each major component of the full algorithm is described in the following

sections.

3.1 Proposed Algorithm

The proposed method uses SIFT features to match ALS collected point cloud range

data to an off-line prepared reference point cloud. The algorithm finishes by establishing

a correspondence transform that aligns the set of ground features extracted from both the

collected and reference point clouds. Applying the calculated correspondence transform to

the nominal aircraft position and attitude provides an new estimate of the true position and

attitude. The algorithm to perform this operation is broken down into several steps:

• Input requirements

• Point cloud collection and ortho-rectification

• DEM creation

• Feature extraction

• Feature matching

• Outlier removal

• Point cloud feature selection

• Iterative correspondence calculation

• Position and attitude estimation

The flow of the proposed algorithm is summarized in Figure 3.1.
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Figure 3.1: Proposed SIFT range-based ALS TRN algorithm flow chart.

3.1.1 Algorithm Inputs.

This method has input requirements similar to the methods described in Section 2.7.2.

An ALS is mounted to an aircraft to record range data from the aircraft to the ground.

An INS is assumed to be available to provide a nominal position and attitude estimate of

the aircraft for each LiDAR range sample. GNSS position information is optional in this

setup, assumed to be degraded or unavailable, though the receiver itself may be present.

GNSS timing information or at least a reasonably accurate timing system is required to
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synchronized the INS and the ALS measurements. The reference point cloud information

is assumed to be available and prepared for the flyover region ahead of time. These inputs

are listed in Table 3.1.

Table 3.1: Algorithm required inputs.

Source: Provides: Defined:

LiDAR Sample Positions Equation (2.52)

INS Position Attitude Equation (2.24)

Clock Timing

Reference SIFT Features Feature Positions Section 2.3.1

The reference point cloud represents a large region where the aircraft is expected to

fly in. The region’s area potentially leads to very large amounts of representative LiDAR

data. Reducing the reference region into just the elements required to perform the proposed

algorithm by performing the necessary processing steps off-line before flight helps alleviate

some of the processing needs. In the proposed algorithm, the reference region is further

subdivided into small sections, and the most relevant section is chosen to be compared to

the collected LiDAR point cloud. The relevant reference section is chosen to contain the

nominal INS position estimate and is expected to contain more than 50% of the collected

point cloud area.

3.1.2 Collection and Orthorectification.

As the aircraft flies the scanning LiDAR sweeps the ground collecting range

information time synchronized to the INS position and attitude information. Once enough

ground area has been sampled by the LiDAR to make a useful match, the individual sample

points are collected into a point cloud located with respect to the LiDAR sensor. To make

the collected point cloud into a regional surface sampling of the local topography, the point
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cloud is transformed (ortho-rectified) into the same coordinate frame as the reference point

cloud. The processes of point cloud ortho-rectification are detailed in Section 2.5. This

process results in a collected point cloud with each point coordinate ortho-rectified into

the same coordinate frame as the reference point cloud. The collected point cloud can be

represented as a set of position vectors

apc =


x1 y1 z1

...
...

...

xn yn zn

 (3.1)

were n is the number of coordinate points in the point cloud. Note that the coordinates of

the points in the ortho-rectified point cloud will be affected by INS errors.

3.1.3 DEM Creation.

The original SIFT algorithm was designed to extract features from photographic

intensity (2D, black and white, binary scale) images but is not inherently able to process 3D

LiDAR data. To utilize SIFT, the scattered points that comprise a LiDAR point cloud must

be converted into a 2D image representation and converted into an intensity image format

that SIFT will understand. This creates several additional steps in the process related to

applying SIFT, and this methodology is far from optimized.

The collected point cloud heights are projected into the (x, y) plane forming a 2.5D

height image (a DEM). The formation of a DEM is performed using a rasterization process

as mentioned in Section 2.4.4 and illustrated in Figure 3.2. To prepare the DEM for use

with the version of SIFT used in this research, the height values must be converted into

an 8-bit gray scale. The conversion is performed by the re-scaling and quantization of the

height values in the DEM to the gray scale shown in Figure 3.3. The gray scale assignment

is performed as each new point cloud processed, with the minimum and maximum heights

present representing 0 and 1 respectively. The heights between the maximum and minimum

values are scaled linearly, although this may cause some interpolation of the original
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Figure 3.2: Depiction of the rasterization of the point cloud into a 2.5D height image or

DEM.

heights. The 8-bit gray scale assignment creates 256 levels of intensity values for the range

of heights present in a given DEM.

An example of a scaled range image is shown in Figure 3.5, using this process on a

region illustrated in Figure 3.4. Figure 3.6 is shown to illustrate how different a range image

of a region is from a similar representation using LiDAR intensity data. At the end of this

step, the original LiDAR ortho-rectified point cloud is represented as a scaled range image.

The DEM of the collected point cloud is a matrix representation of point cloud elevation
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Figure 3.3: The coloring (intensity) of the resulting image is determined by the range of

elevations present in the point cloud before converting into gray scale.

values, arranged in the (x, y) plane

ADEM(xi, y j) =


z1,n · · · zn,n

...
. . .

...

z1,1 · · · zn,1

 (3.2)

where each

zx,y = [0 to 255]

where each elevation value z is placed at its (x, y) coordinate for all n coordinates in apc and

empty raster cells are filled by linear interpolation of the neighboring cells. Each z elevation

value is then interpolated into a 256 level gray scale. This process is also performed off-line

on the reference point cloud sections, creating BDEM.
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Figure 3.4: Photograph a region to be flown over and scanned with a LiDAR [74].
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Figure 3.5: A scaled LiDAR range image using the process described in Section 3.1.3 on

the region in Figure 3.4. This represents the changes in elevation of the represented terrain.
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Figure 3.6: A LiDAR intensity image of the region in Figure 3.4. Not to be confused with a

range image, intensity images are a 256 grayscale of the LiDAR reflection energy intensity.
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3.1.4 SIFT Feature Extraction.

The SIFT algorithm as described in Section 2.3.1 is then performed on the scaled range

image. SIFT creates features from the image data. Each SIFT feature is represented by its

location in the image, scale, orientation, and 128-byte descriptor. SIFT features have the

added benefit of being invariant to changes in scale and orientation, and partially invariant

to some other distortions of the image. The invariance is especially useful in the case

here where the SIFT features in the collected image will be compared to features created

from an image derived from the reference point cloud. The reference point cloud was likely

collected using a different LiDAR sensor, under different conditions, altitude, and direction,

any of which may impact the resolution (scale) and orientation of the generated range

image. SIFT features are locations selected as unique, in a way that should be invariant

to these differences, allowing a match to be made. Figure 3.7 shows the SIFT features

detected in the range image (Figure 3.5), with each feature shown with a representative

scale and orientation. This step concludes with two sets of SIFT features, one set from

the collected range image ADEM, and a set created off-line from the reference point cloud

section derived range image BDEM. The set of SIFT features detected in the collected image

is given by

aS IFT =


(x, y)1 σ1 ϑ1 Descriptor1

...
...

...
...

(x, y)n σn ϑn Descriptorn

 (3.3)

were (x, y) represents the keypoint location, σ is the scale, ϑ is orientation, Descriptor is

the 128 element descriptor, and n is the number of SIFT features detected in the scaled

DEM. Similarity,

bS IFT =


(x, y)1 σ1 ϑ1 Descriptor1

...
...

...
...

(x, y)n σn ϑn Descriptorn

 (3.4)

for the reference range image SIFT features.
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Figure 3.7: The LiDAR range image from Figure 3.5 with a sample of the SIFT features

present (1000 shown of the 6500 features detected).

3.1.5 Feature Matching.

The SIFT features from the collected and the reference range images are compared

using their SIFT 128 byte descriptors. An efficient nearest neighbor descriptor search
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algorithm [65] is used find matching descriptors, which would imply that the same keypoint

is in both images. An example of the results of this process is illustrated in Figure 3.8 with

a collected DEM that is partly overlapped with a reference DEM. Note that there are

considerably fewer features found to match between the collected and the reference range

images. Only 92 of the 1058 features available in the collected DEM were found matching

in the Figure 3.8 example. Also note that some features are matched to wildly incorrect

locations. Each SIFT feature is not infinitely unique and therefore SIFT is not immune to

creating poor keypoint associations. This step results in a subset of SIFT features that are

identified as present in both the collected and reference range images. The set of collected

data SIFT features a∗si f t are descriptor matched to the reference data features b
∗

si f t and are

a subset of the total detected SIFT features such that

a∗S IFT ⊆ aS IFT (3.5)

b
∗

S IFT ⊆ bS IFT (3.6)

where each feature in one set is matched to a feature in the other such that

a∗S IFT (Descriptor) ≈ b
∗

S IFT (Descriptor). (3.7)
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Figure 3.8: The smaller range image on the left was produced from a collected point cloud,

while the right image was chosen from the reference point clouds. The lines connecting

each image show the association that the descriptor search made between matching SIFT

features.

3.1.6 Outlier Removal.

To remove poorly matched SIFT feature pairs, RANSAC as described in Section 2.3.2.3

is performed. RANSAC randomly selects a small group of features and uses a solver like

[35] to determine a correspondence transform, creating a consensus set. The algorithm

performs this iteratively, identifying features that do not strongly agree with the current

consensus transform and then removing them from the consensus set, until a threshold is

met. The end result is a subset of feature pairs that consistently share a similar transform.

The features not in this final consensus set do not positively contribute to the consensus

solution and are ignored as set outliers. An example of this is shown in Figure 3.9, which

shows matches after RANSAC has been applied. In this case, when compared to Fig-

ure 3.8, all the erroneous matches appear to have been removed. The features that survive
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RANSAC are a subset of the matches made by the descriptor search. In this example the

92 matched features have been reduced to 36 consistent matches by RANSAC outlier re-

moval. At the end of this step, the previously matched collected image SIFT features and

the reference SIFT features have been reduced to a subset of matched features with very

similar correspondence transforms. Similar to the previous step, applying RANSAC to the

SIFT feature pairs gives

aRANS AC ⊆ a∗S IFT (3.8)

bRANS AC ⊆ b
∗

S IFT (3.9)

and each matched feature pair has a similar corresopondence transform such that

aRANS AC � bRANS AC (3.10)

to within the RANSAC threshold.

Figure 3.9: Shown is the result of applying RANSAC to the matches shown in Figure 3.8.
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3.1.7 Point Cloud Feature Selection.

If this was a purely image based approach (such as with a camera) the algorithm

would conclude here for the error estimation process. But in the LiDAR-based approach,

the images used in SIFT matching were derived directly from collected 3D data, and

in this proposed approach the SIFT features can be used to select directly detected 3D

features from the original point cloud. From the SIFT keypoint location information of the

remaining descriptor matched and RANSAC constrained features, the coordinates of the

original point cloud samples that the features were derived from can be recovered. This

process is illustrated in Figure 3.10.

Figure 3.10: The projection of range features back to the original LiDAR point coordinates.

If multiple points are within a raster cell containing the feature, the highest point is chosen.

Due to the rasterization process used to create the range images, some interpolation

exists between the point cloud and the DEM. Another source of interpolation error is that
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SIFT can place features between pixel centers. Both of these interpolations imply that the

accuracy of the true feature locations is dependent on the density of the point cloud. The

interpolations also create cases where the direct projection of a point cloud feature from

its raster cell can result in multiple LiDAR points contributing to the same SIFT feature.

In these cases, the LiDAR point coordinate with the largest height is selected, as first

return LiDAR was used in the collected data set and to alleviate difficulties with breaklines

similar to [112]. This step results in a set of 3D ortho-rectified LiDAR points from both

the collected a∗pc and reference LiDAR b
∗

pc point clouds. Each LiDAR point pair has

been associated with each other by the SIFT algorithm, and have similar correspondence

transforms determined by the RANSAC algorithm. This gives a set of point cloud features

a∗pc =


x1 y1 z1

...
...

...

xn yn zn

 (3.11)

where there is one point cloud coordinate for each of the n features, and similarly for b
∗

pc.

Furthermore,

a∗pc ⊆ apc (3.12)

b
∗

pc ⊆ bpc (3.13)

and each point cloud feature in a∗pc has a similar correspondence transform to its match in

b
∗

pc such that

a∗pc � b
∗

pc (3.14)

within the RANSAC threshold.

3.1.8 Iterative Correspondence Calculation.

With these two feature point clouds, the correspondence transform that aligns the

collected point cloud to the the reference point cloud can be calculated. Horn’s algorithm
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[35] is used to calculate the final correspondence translation and rotation that aligns the

the collected point cloud to the reference. The inputs to the correspondence algorithm

are the point cloud features associated with the SIFT features remaining after RANSAC,

given as set a∗pc, and their matching feature points in the reference point cloud, b
∗

pc. The

correspondence rotation is a DCM CB
A, and the translation an offset vector t. Applying the

transform gives

a f it = CB
Aa∗pc + t (3.15)

where,

a f it ≈ b
∗

pc (3.16)

where a f it is the least squares fit of features a∗pc to features b
∗

pc.

While the application of RANSAC does a good job of removing poor matches before

this step, the projection of the features back into the original point cloud brings an element

of variation back into the matched pairs, and even a single outlier can be disruptive to

the final correspondence. In the cases where some outlier points were passed through

RANSAC, there may be some match pairs that are hundreds of meters off. To identify

and remove these poor quality points from the final set, the matching algorithm is applied

iteratively with three threshold conditions.

First the 3D error magnitude is calculated for each feature input into the correspon-

dence algorithm. The error of each feature is ε is determined by

ε = a f it − b
∗

pc (3.17)

and each feature 3D error magnitude is

ε =

√
(ε2

x + ε2
y + ε2

z ). (3.18)
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Next the magnitude errors ε of each feature pairing are sorted largest to smallest. This

allows use of filter conditions on the largest error features. If the largest feature error is

above a threshold set at α, then the presence of an outlier is assumed to be distorting the

correspondence, the largest magnitude error feature is removed and the correspondence is

recalculated. If the ratio of the largest magnitude error divided by the second largest is

above a threshold set at β, then the largest error is assumed to have a significantly different

correspondence then the other matched features, the largest error feature is removed and

the correspondence is recalculated. Finally if after any iteration of the matching algorithm,

the total number of features falls below a threshold set at γ, then this entire set of features

is rejected completely. Once the correspondence has been calculated with the final set of

features that meet all the condition thresholds, the final rotation and translation are output

that best maps features a∗pc onto b
∗

pc. This step concludes with a correspondence transform

rotation DCM, translation, the set of collected point cloud features with the transform

applied a f it, and the set of remaining reference features b
∗

pc.

3.1.9 Position and Estimation Calculation.

The previous steps determined feature points common to both the collected LiDAR

and the reference LiDAR point clouds and solved for a transform to align the collected

points with the reference. The final goal is to estimate the position of the aircraft using

this information. Given that the features are derived from the LiDAR sensor and nominal

aircraft position, it is assumed that applying the correspondence transform to the aircraft

position will also align it with the true position. If the ground features are accurate enough,

determined by the thresholds in Section 3.1.8, an accurate aircraft position estimation is

possible, and the uncertainty can be further studied under these conditions. The algorithm

concludes with the ground correspondence applied to the nominal aircraft position, giving

an updated aircraft position estimation.
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IV. Results

This chapter describes the experiments performed on collected flight data to test

the performance of the algorithm proposed in Chapter 3. The first section covers the

experiments data sets in two parts; the collected point cloud, and the reference point cloud.

Particulars of the region covered by the data sets are also mentioned. The first section also

mentions how collected data was used to calibrate the LiDAR sensor parameters. The last

section details the overall results of applying the proposed algorithm to the collected data.

The results are broken up into two parts; the main cases with different initial conditions,

and a sensitivity analysis of the various thresholds used to ensure good results.

4.1 Experiment Details

This section details aspects of the experimental data. The data is covered in two

sections, the All-Source Positioning and Navigation (ASPN) data set, and the Ohio

Statewide Imagery Program (OSIP) data set. Both data sets are located within the Athens

county region of southeast Ohio, USA. Athens county is generally 220 meters above

sealevel and with the exception of two small cities, the region consists mostly of forested

and agriculture use terrain.

4.1.1 ASPN Details.

The collected point cloud used in this research is from an experiment flyover

preformed by Ohio University and part of the ASPN data collection was lead by the

Autonomy and Navigation Technology (ANT) center of Air Force Institute of Technology

(AFIT). The flyover recorded data on a DC-3 [7] equipped with a variety of sensors,

including INS [34], GNSS, and scanning single return LiDAR [80]. The experiment used

a differential GNSS\INS solution to produce truth position and orientation data over the

course of the flyover, and the specific intrinsic and extrinsic calibration parameters were
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determined as part of the ASPN program. The experiment is available as a collection of

raw sensor measurements and must be processed to place them into a point cloud format.

The raw data consists of each distinct LiDAR range and fire angle measurement, the true

position and orientation of the aircraft, all coordinated with a GNSS time stamp. Some

linear interpolation is required to ensure each LiDAR sample is matched to INS and time

measurement. The ASPN point cloud is divided into smaller swaths for use in creating

the individual range images. The flyover starts near takeoff and levels out at an altitude

of approximately 720 meters. The LiDAR scans the ground with a 45 degrees view angle,

producing average swaths approximately 400 meters wide on the ground with an average

point density just under 1 point per meter square, although the exact size and density of a

swath changes depending on the altitude and velocity of the aircraft.

To test the proposed algorithm, an ASPN swaths was created every 10 seconds over

the course of the 11 minute flyover. In the tests, each swath was processed at a nominal

aircraft position provided by the GNSS truth with an added position offset. The LiDAR

points included in the swath are the 7.5 seconds of scanning time before and after the

nominal aircraft position, making each swath 15 seconds long, overlapping each other, and

containing approximately 180000 LiDAR samples. Over the course of the flyover, this

generates 66 swaths that are later processed into range images by the proposed algorithm.

While other sized swaths were explored, larger swaths up to double the size of the OSIP

regions didn’t significantly impact the overall results. Smaller swaths reduced the number

of completed position estimations at the conclusion of the algorithm.

4.1.2 OSIP Details.

Use of LiDAR data for the creation and improvement of mapping is becoming more

common. Online repositories such as the OSIP [74] contain LiDAR and corresponding

image data of the ground from aircraft flyovers. This data can be of great use to

municipalities for infrastructure modeling, zoning, and land use [39, 62, 93, 119]. OSIP is
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commissioned to collect imagery data of all of Ohio and includes LiDAR scans as precision

references to the more widespread photographic imagery. These LiDAR point clouds are

organized by county and are further broken down into roughly 1.5 square kilometer tiles

with a sample spacing of one LiDAR ground point per 2 meters square. Possibly due to

this being multiple return LiDAR, the average density appears to be higher than advertised.

The point cloud of each tile is available in a .LAS file type [15]. The LiDAR data has gone

through significant postprocessing including filtering, calibration, and strip alignment in

conjunction with the other collected imagery [82, 97]. Because of this postprocessing, the

OSIP data is considered an excellent reference set. The navigation frame that the OSIP data

is registered in is NAD83, specifically the south Ohio state plane zone 3402. This places

the OSIP point cloud coordinates in the SPCS, which is a ENU system with special origin

requirements.

It is important to note that the tile system provided by OSIP was used directly for the

reference regions matched with the ASPN range images. Each nominal aircraft position

was compared to a list of tile SPCS coordinates, and the selected OSIP region was used for

the rest of the algorithm. This places two constraints on the algorithm: the area involved

in matching the SIFT features is limited to one OSIP tile, and the possibility of the ASPN

swath landing on tile boundaries. In this algorithm, combining tiles to make larger search

areas is not further pursued. A swath crossing a tile boundary or corner happens frequently

in the ASPN flyover data, and it is flagged when less then 50% of a swath is included in the

selected tile. Of the 66 swaths collected in this experiment one third crossed tile boundaries

and were flagged in this way. Of those, one third (one ninth of the total swaths) were still

able to solve for the aircraft position. Flagged swaths or swaths that contain a water feature

are somewhat at a disadvantage, as they generally contain significantly less LiDAR data

useful in matching to the chosen reference tile.
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4.1.3 Terrain Observations.

Observation of the OSIP areas relevant to the ASPN flyover gives the following

generalization of the terrain:

Table 4.1: Terrain types present in the flyover area.

Agriculture Forest Road Water City

Number of Mixes When Observed 43 45 15 10 10

Percent of Total 65% 68% 23% 15% 15%

In Table 4.1, the frequency of occurrence is a simple count of the terrain types present

in a given flyover region and the percentage is that count out of the 66 ASPN swaths

processed over the course of the flyover. Multiple terrain types are present in most of

the regions, hence the percentages are well over 100%. Agriculture use terrain is counted

as the presence of fields, sparse and scattered structures, and manmade tree line borders.

Forested terrain is counted as areas with few if any structures and a dominance of tree

canopy. City terrain was counted primarily for the areas that flew directly over the city of

Athens itself, and are noted as a collection of densely packed structures with many small

roads. Roads were counted if the flyover region included a large, obvious road, such as a

US highway.

Water in some form was present in many of the flyover regions. Water is a special

terrain type in this experiment as both data sets did not utilize a LiDAR capable of

calculating a range measurement over water (the LiDAR beam is absorbed instead of

reflected). As there are no range measurements on water regions, it is the absence of range

measurements in the shape of rivers or lakes in low areas that define the presence of water.

Water is therefore counted as a terrain type if enough was present to cause interpolation

errors over the water area in the resulting range images, representing an area with no actual
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LiDAR points. There are certainly more areas in the flyover that contain small rivers or

shallow livestock ponds then are counted as containing water. These uncounted areas do

not produce the interpolation errors normally observed and are assumed sufficiently shallow

water to permit a detectable LiDAR range measurement, to have vegetation on the surface,

or vegetation cover over them.

Time of collection is also a factor between the two data sets. The OSIP LiDAR data

in Aspen county was collected approximately 4.5 years before the ASPN data collection

effort. This difference in time leads to some small portions of the resulting point clouds

that have significantly changed between collections. Some observed differences include

new building construction, water level and shoreline changes, and vegetation changes. The

observed differences in vegetation, specifically trees, includes some minor new growth and

cutting changes, but very a prominent change is the season. The OSIP data was recorded

in the mid to late spring months, while the ASPN data was recorded in late fall. What is

specifically being observed is the OSIP data shows full, leafy tree crowns, while the ASPN

data shows considerably fewer tree crowns, possibly because the trees are not full of leaves.

Overall, the algorithm generated the most number of features in the city type terrain.

The numerous square corners and rooftops over roads appear to generate SIFT features

easily. Large roads and agriculture use land were also consistently good at generating

numerous SIFT features, particularly the scattered buildings, but also on the forested

borders of fields, and local elevation peaks or valley bottoms. Heavily forested terrain

generated the smallest number of features, and were the most frequently unable to produce

an aircraft position solution. This was at least in part due to the significant seasonal

vegetation density differences observed. There were some forest exceptions that performed

very well. Forested images also containing valleys or peaks that were not as densely

covered in vegetation, and large clusters of trees that were significantly taller than the
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surrounding canopy both generated many SIFT features. Some additional detail about each

algorithm match in the data set are given in the appendix, Chapter A.

4.1.4 Calibration.

While comparing early results, it was observed that the collected and reference point

clouds were misaligned by up to 20 meters, even when using the truth solution for the

ortho-rectification. Some simple tests showed that this alignment error was dependant on

the aircraft heading, indicating that the LiDAR was not aligned with the body frame of the

aircraft exactly as assumed in Figure 2.21. This is consistent with a bore-site misalignment

of the LiDAR with respect to the aircraft body as defined in Section 2.4.5. There are

several methods to perform a bore-site correction given in [93], but most require multiple

overlapping swaths to utilize. In this case, the raw LiDAR measurements can be used

directly in a fashion similar to the [30] quasi-rigorous method. Roof planes on buildings

are commonly used to perform bore-site correction methods, so a correction set of 16 small

swaths was hand selected over the course of the flyover, each containing a single building

with little or no vegetation around it. This generally gives a clear roof plane well above a

flat noise free ground plane common in both point clouds. A brute force planar correlation

search was used to align the two point clouds and determine the offset found in each swath

in SPCS coordinates. Ortho-rectification from SPCS back into the body frame, allows for

a roll and pitch correction DCM to be calculated based on the average offset found in the

correction swaths. Applying the correction DCM to the LiDAR sensor measurements in

the sensor frame, effectively corrects for the bore-site misalignment. After calibration the

result is the ASPN and OSIP point clouds are on average aligned to within approximately

2 m2 (this is also the approximate density of the reference LiDAR ground points).

4.2 Experiment Results

The application of the proposed algorithm to the collected ASPN point cloud swaths

and the OSIP reference point cloud tiles functions well utilizing the GNSS to update
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the INS nominal aircraft position. To test the effectiveness of the algorithm in a more

uncertain scenario, as if the INS had no GNSS updates and has some accumulated drift

error, additional error was injected into the ASPN raw sensor measurements. This section

discusses the results of the experiments with errors added to the INS position and explores

the impact of that error on the final aircraft position errors and sensitivity to the threshold

parameters.

4.2.1 Impact of Initial Conditions.

The impact of error in the INS nominal aircraft position was tested in two initial

condition cases, one with a positive 20 meter error in LLh, and the other with a negative 20

meter error. The original truth data was then used for the calculation of the resulting error

metrics. The added errors are not cumulative over the course of the flyover, they are added

as a given swath is ortho-rectified into the SPCS so that the results of an earlier swath match

do not impact the subsequent swaths. The thresholds selected for use in this experiment

were

Maximum ground feature error magnitude, α = 4 meters

Maximum ground feature error magnitude ratio, β = 1.15 (4.1)

Minimum number of features required, γ = 8 features.

These thresholds were chosen specifically to limit the resulting aircraft position errors from

being greater than approximately 10 meters, and are explained more in Section 4.2.2.

The Root Mean Squared Error (RMSE) of the ground features for each swath is shown

over the course of the flyover in Figure 4.1 (a). Figure 4.1 shows that under both initial

conditions the total RMSE error in matching the collected swath ground features to the

reference tile ground features are about the same, around or below 2 meters. This is noted

as being similar to the ground density of the reference point cloud. In Figure 4.1 (b) is the

3D aircraft position error magnitude for each swath over the course of the flight.

100



(a) (b)

Figure 4.1: (a) RMSE of the ground features and (b) the 3D aircraft position error

magnitude of each swath over the course of the flight.

(a) (b)

Figure 4.2: The calculated 3D aircraft position error magnitude in relation to: (a) the

matched ground feature RMSE; (b) the number of features used in the calculation.

In Figure 4.2(a) the relationship between the ground feature RMSE and the resulting

aircraft position is easier to see. The ground feature RMSE needed to keep 3D aircraft
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(a) (b)

Figure 4.3: Aircraft absolute errors in ENU for: (a) the +20 meter and (b) the -20 meter

error cases

position error magnitudes below 10 meters appears to be approximately 2.5 meters or

less. Another prevalent factor on the 3D aircraft position error magnitude is the number

of ground features used to solve for the correspondence transform, shown in Figure 4.2(b).

The γ threshold used ensures that only matches that have 8 or more features available are

used to calculate the 3D aircraft position error magnitude. It is clear to see a trend that as

more features are available, the resulting 3D aircraft position error magnitude approaches

the ground feature RMSE. Unfortunately in these tests, two thirds of swaths created have

less than 20 features after the RANSAC and threshold portions of the algorithm, and so

increasing the γ threshold to be more exclusive will quickly reduce the frequency that an

aircraft position can be calculated.

The aircraft absolute errors in each ENU axis are shown in Figure 4.3. It is easy to see

that the absolute errors in the aircraft position estimation are approximately zero mean in

all three coordinate axis. There also appears to be very little difference between both initial

condition cases. The up axis in particular has noticeably less variance than the east or north
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(a) (b) (c)

Figure 4.4: Histograms of the aircraft absolute errors in the (a) easting, (b) northing, and

(c) up axis.

axis. An estimation of the aircraft position error probability distribution function can be

seen in Figure 4.4. Because the results of both the initial condition cases are quite similar,

only the +20 meter error case will be further discussed.

Figure 4.4 shows the histogram of the aircraft errors in each axis using one meter

bins. The grouping of all three histograms suggests a gaussian or similar distribution of

errors with the up axis being considerably less dispersed than the east or north axis. With

this limited data set, histogram (b) appears to suggest a slight southward bias in the north

axis. This could possibly be attributed to a slight bore-sight offset still existing after the

calibration effort, but the exact cause has not been explored.

Overall, the impact of changing the initial conditions appear minor. The RMSE of

the ground features are approximately the same for each swath. The error magnitudes

and the absolute errors of the aircraft position are similar in both cases with some small

variations. The larger variations result from how the OSIP tile is chosen for matching with

a given swath. In this data set about one third of the swaths were generated on a OSIP tile

boarder or corner, and several in the -20 meter additional error case caused a different tile

to be selected then in the +20 meter case. These instances create much different matching
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conditions between the cases, and is the reason there are 4 less successful aircraft position

estimates in the -20 meter error case. Most of the remaining swaths have small, one or

two meter, absolute error differences in one or more axis between cases. A close look at

each match shows that these swaths were matched to the same OSIP tile in both cases, but

have small differences in the number of features, and more interestingly the exact features

themselves. It appears that most of the features that survive RANSAC are common to

both cases, but will include a few new or exclude a few features between the two cases.

This appears to be related to the random selection process that RANSAC uses to form

consensus sets, and the iterations do not exhaustively use all available features, it stops

when the threshold is reached. It appears that these traits of the RANSAC algorithm are

responsible for the observed variability in the aircraft absolute errors.

4.2.2 Sensitivity to Thresholds.

The three threshold parameters in Equation (4.1) used in these tests were selected

to constrain the resulting aircraft position errors to approximately 10 meters or less.

The particular parameter values chosen for the results previously shown were selected

as the best tradeoff possible in terms of low aircraft position errors, high number of

aircraft position estimates, and a minimum of time between aircraft position estimates. To

better understand the impact the threshold parameters were having on these results, each

parameter was varied through a range of values while the remaining two were held constant

as selected in Equation (4.1).

Figure 4.5 (a) shows the impact varying parameter α. It shows that accepting a

maximum error in any individual ground feature larger than 4 meters does not generally

improve the total number of swaths that produce a position estimate. Similarly in Figure 4.5

(b), increasing parameter β, the acceptable ratio of the largest ground feature errors, above

1.15 also does not improve the total number of swaths that produce a position estimate. In
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(a) (b)

Figure 4.5: The number of swaths that resulted in a position estimation in relation to

changes in (a) threshold parameter α and (b) threshold parameter β, while the other

thresholds are held constant.

both cases, making the threshold more strict by setting the parameter values to lower than

used in the results sharply reduces the the total position estimates.

In Figure 4.6, the minimum number of feature matches required to produce an

acceptable position error estimate, γ, is varied. It is shown that as more and more features

are needed to make a acceptable match, there are fewer swaths available that can produce

enough SIFT features than that meet the RANSAC and threshold requirements. This is

similar to the trend found in Figure 4.2 (b), where the 3D aircraft position error magnitude

is shown with the number of features used in each swath. It also suggests that simply

accepting matches with fewer features will significantly increase the number of aircraft

position estimates.

Conversely, accepting matches with very few features should reduce the accuracy of

those matches. These trade offs are illustrated by varying the threshold parameters against

the aircraft position errors averaged over the entire flight. To show this, the Mean Radial
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Figure 4.6: The number of swaths that resulted in a position estimation in relation to

threshold parameter γ. Threshold α was held at 4 meters and β was held at 1.15.

Spherical Error (MRSE) metric is used

MRS E =

√∑n
i=1(x2

i + y2
i + z2

i )
n

(4.2)

where i is the aircraft position error estimate of each swath, and n is the total number

of swaths in the flyover. Figure 4.7 and Figure 4.8 show the variation of the threshold

parameters against the flight MRSE. Figure 4.7 (a) shows that other than a small but sharp

increase in the MRSE if 8 or more features are used in calculating the correspondence

transform, there is fairly minimal impact by changing parameter α. Changing parameter β,
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(a) (b)

Figure 4.7: The MRSE of all the position estimates and the largest position error magnitude

of each flyover in relation to changes in (a) threshold parameter α and (b) threshold

parameter β, while the other thresholds are held constant.

in Figure 4.7 (b), has almost no meaningful effect on overall MRSE at all. This seems to

put most of the importance in choosing parameters that generate the most total number of

position estimates as shown in Figure 4.5 and Figure 4.6.

Varying γ shows a similar trend in the MRSE as it does in the total number of position

estimates, shown in Figure 4.8. In Figure 4.8, the maximum individual 3D aircraft position

error magnitude of all the estimates are also displayed to help show the tradeoff. Here,

the trend is that the overall accuracy in terms of MRSE improves steadily as the minimum

number of features required to calculate the correspondence transform is increased, to a

minimum close to the reference point density. But, as shown in Figure 4.6, increasing the

number of features required also reduces the total number of position solutions available,

the two terms are in direct tradeoff. In addition, accepting solutions that use fewer features

not only gradually increases the MRSE, but it greatly increases the largest individual 3D

aircraft position error magnitude in that flyover case. To maximize the availability of
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Figure 4.8: The MRSE of all the position estimates and the largest position error magnitude

of each flyover in relation to threshold parameter γ. Threshold α was held at 4 meters and

threshold β was held at 1.15.

position solutions while keeping the worst position error estimates below approximately

10 meters RMSE, a γ threshold of 8 features appears to be an acceptable choice. If less

accuracy is acceptable in favor of more frequent position estimate availability, then this

threshold could be lowered.

Care must be taken choosing threshold values, for example the trends given in

Figure 4.8 by varying threshold γ are only valid when thresholds α is held constant at 4

meters, and threshold β is held constant at 1.15. It was observed that larger values of α and
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(a) (b)

Figure 4.9: Example where threshold α is held at 50 meters and threshold β is held at 2,

while threshold γ is allowed to vary against (a) the number of swaths that resulted in a

position estimation and (b) the MRSE of all the position estimates in the flyover, with the

flyover largest position error magnitude.

β would increase the occurrence matches but with much higher 3D aircraft position error

magnitudes. An example of this is shown in Figure 4.9, where threshold α is increased to

50 meters and threshold β is increased to 2, but threshold γ is varied. Figure 4.9(a) shows

that increasing the threshold values increase the number of solutions found over the course

of the flyover. But Figure 4.9(b) also shows that the overall MRSE and the maximum 3D

aircraft position error magnitudes are increased significantly. This example implies that

while increasing the thresholds will allow for additional position estimations, the quality of

those estimations may be significantly reduced. In addition, the larger maximum position

error magnitudes imply that some of the individual position solutions can be hundreds of

meters in error under these thresholds.

Availability of position estimations is also a success metric. If the thresholds are too

stringent, there could possibly be large time outages from the last position estimate, thereby
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allowing the INS to acquire too much drift error. Varying all three threshold parameters and

measuring the change in the maximum outage showed that the thresholds have little or no

impact on this success metric. As implied in Figure 4.1 (a), the largest position estimate

outage is between the 43rd and 55th swaths. That outage generates approximately a 120

second gap between the last position error estimation and the next in this flyover. The

maximum outage only increases when the threshold parameters γ becomes so large that

there are very few position error estimations at all. The region of the flyover concerned

with the maximum outage is over the city of Athens itself which would normally be a

very rich area for SIFT features. This lack of features is partially explained by being part

of a long period of time were the collected ASPN swaths were continually over corners

and edges of the selected OSIP reference tiles, and also frequently contained a large water

feature (a river). It is suspected that this particular outage, and related scenarios, would be

greatly reduced if the method for reference tile selection was not restricted to a single tile,

thereby reducing the size of the outage.

Overall this analysis of the threshold parameters gives a few impressions. First is

that the three parameters at the current settings are restrictive enough to ensure that the

errors in the aircraft position estimates are below 10 meters error magnitude for this data

set. Second is that variations in the threshold parameters apply control to two key metrics,

the desired quality of features after RANSAC, and the total number of features required

to obtain a certain level of accuracy. Depending on the requirements of an application,

the thresholds could be loosened or tightened as needed. Any outliers present in the set

of features used in the final correspondence transform have an noticeable impact on the

resulting aircraft position error, and great effort should be used to detect and remove them.

The only observed exception to this case is when there are dozens of features with only

a few minor outliers. In these cases the many outweigh the few and the resulting aircraft

position error in not significantly impacted. As for the number of features available, more
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is better in terms of minimizing errors in terms of MRSE and RMSE, minimizing time

between position estimates, and maximizing the frequency with which a position estimate

is achieved.
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V. Conclusions

This thesis presents an algorithm that is able to calculate a aircraft position with an INS

and a single scanning LiDAR sensor with no true GNSS requirement. The calculation is

performed by utilizing LiDAR ranging information in combination with range-based SIFT

features and other computer vision techniques, and a LiDAR based reference of the flyover

region. This chapter discusses the conclusions of this research and describes areas noted

for future work.

5.1 Summary of Results

The goal of this research was to demonstrate that using LiDAR range information

could be used to produce position estimates for navigation using only one LiDAR

sensor, an INS, and reference data, without the direct use of GNSS information. The

proposed algorithm was successful in producing position estimates with 3D position errors

approximately 10 meters or less. The amount of error was constrained through the use of

three threshold parameters representing the maximum error between any ground feature

and its reference match (α), the maximum ratio between the two largest matched feature

errors (β), and the minimum number of features needed to calculate a correspondence

transform (γ).

By adding both a positive and negative 20 meter error to the INS latitude, longitude,

and height measurements, the sensitivity of the algorithm to variation in the initial

conditions was tested. The results show that while changing the initial conditions does

introduce some small variation in the resulting ground feature and aircraft position errors,

the results in both cases are nearly the same. In addition, the variations observed are directly

related to the method of selecting a single reference tile and the occurrence of collected

LiDAR swaths to be located on the borders of those tiles. These tests show that the impact
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of at least 20 meter INS position errors in any or all directions has no substantial impact on

the ability of the algorithm to produce low error position estimations.

A histogram of the absolute aircraft errors in each coordinate axis was also explored.

The histograms implied that the aircraft position errors are generally zero mean, though

there is a suggestion of a small southward bias. Most of the errors found in the aircraft

position appear to be in the easting and northing directions, while the up axis has markedly

less error and less error variance. The histograms also imply that errors in each axis could

be fit to a Gaussian distribution, but further research is needed to draw stronger conclusions

of the true error distributions.

The second set of tests explored the sensitivity of the algorithm to variation of the

threshold parameters. The best selection of these thresholds for this data set were used to

constrain the results to meet error goals, but also showed that different levels of accuracy

in terms of MRSE and frequency of position estimates (availability) can be varied to suit

particular application goals. The results also showed that in this algorithm the relative

accuracy and availability are inversely related, creating an engineering tradeoff between

desires for low MRSE and high availability.

In summary, this research presents an algorithm that can perform position estimation

for use to update an INS by utilizing LiDAR range data without a GNSS receiver. The

algorithm can provide these updates as the aircraft flies over a region contained within

the reference data region. Despite the success of the algorithm in keeping position errors

below 10 meters, there are several observations made or research areas available to improve

or expand the capabilities of this algorithm. These are addressed in Section 5.2.

5.2 Future Work

Overall the algorithm performs well as a proof of concept. But a great deal of work

remains to refine the algorithm or expand its capabilities. Several observations were noted

when working with point cloud data and reading the literature, each leading to ideas that
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were not explored in this research. This section attempts to discuss the majority of these

ideas.

The first area for possible improvements is in the algorithm itself. The algorithm is

chiefly dependant on the number of SIFT ground features that survive RANSAC and the

threshold conditions. Generally, any improvement that would help to detect more range

features in both the collected and the reference range data would be beneficial, but it is

suspected that this can be approached in several ways. In order of the algorithm steps,

some suggested improvement are mentioned.

The OSIP reference data is precalculated and conditioned off-line, which improves

speed of computation, but a great deal more could have been done. By far the most

computation intensive steps in the algorithm are the creation of the range image and the

detection of the SIFT features. Ideally, the reference data can be preprocessed into only

what is required for the algorithm, specifically just a list of the SIFT features present,

the coordinates of the features, and grouped by tile. Using just the minimum reference

data required for the algorithm also has the advantage of storing only thousands of SIFT

features instead of the often millions of LiDAR data points.

There are several accepted ways to project LiDAR points into a DEM, and each has

an array of options for interpolating the space in between each LiDAR sample. The three

most common were discussed in this thesis, and a linear interpolation with rasterization was

utilized. This was convenient to use with the MATLAB software the algorithm was built

and tested in. By far the largest consumers of LiDAR data are those interested in highly

accurate mapping of the ground and those users frequently utilize GIS software with TIN

based images. Adapting this algorithm to use TIN products might allow additional sources

of reference data and processing software found in that industry. There are other proposed

DEM creation methods, and they should be further explored with the hopes of improving

calibration efforts and overall accuracy in matching.
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The process to scale the range image into intensity values that SIFT will be able

to process could be improved in several ways. The intended goal was to create range

images that would have consistent gray levels based on the relative differences in elevation.

The gray scale was achieved with the tradeoff of each swath is scaled based on the local

minimum and maximum elevations. A consequence to local scaling is that simply adding

or removing a scan line from a swath can introduce a new local maximum or minimum,

and therefore create a DEM with significantly different scaling between elevation and gray

levels. In addition two OSIP tiles were found to contain small clusters of erroneously

extreme elevation points, causing the scaled DEM to be biased to very high or very low

gray scales. Scale biased images are potentially very poor conditions for using SIFT as

the features are only somewhat resistant to what is effectively an illumination change in

the range image. Efforts to detect and eliminate extreme elevation values, or to create a

normalized elevation scale between the collected and reference elevations should improve

the ability of SIFT to generate good features.

Use of the RANSAC algorithm for outlier removal in SIFT features is well

documented in the literature. Unfortunately RANSAC is much less frequently documented

for use with true 3D data and the particular RANSAC algorithm used in this research was

originally for planar homography. Homography works well for matches contained between

two overlapping planes as is done in this research, but care must be taken to not introduce

errors by including aspects of a camera model, which homography was designed for. Also,

the most basic default settings were employed with the RANSAC algorithm, leaving room

for improved performance over the current implementation. It was also observed that the

use of RANSAC may be too early in the algorithm, requiring further outlier removal by

iteratively applying the threshold conditions when calculating the final correspondence

transform. Iteratively applying Horn’s algorithm seems a somewhat redundant use of

outlier removal steps. Instead, it would be interesting to simply take all the descriptor
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matched SIFT features and project them to their respective LiDAR ranged points, then

perform a 3D RANSAC outlier removal step. This has the potential to both improve the

number of features, reduce the number of outliers that survive RANSAC, and drop the

iterative nature of the correspondence calculation.

As mentioned in the results, there are some serious performance limitations on the

algorithm dependant on how the reference tiles are organized and selected. Changing

this portion of the algorithm to allow concatenation of OSIP tiles alone would allow

considerable improvements in the availability of the algorithm. It would also allow much

greater initial errors to be present in the INS, and the potential search areas could be larger.

It was observed that there is some dependance of the algorithm on matching small

scale SIFT features. The smaller features are in part due to the size of the collected swaths

are much smaller than the size of a given reference tile. Reference tiles are then free to

generate large scale SIFT features that simply can’t be detected in the smaller swath data.

This is perceived as a loss of possibly very useful large scale features, features created by

hills, peaks and valleys, as opposed to small buildings and individual trees. To include large

scale features, a ALS system could be set to scan much wider areas, though generally this

would be at a cost of point density. Another way to support large scale features, is to filter

LiDAR point clouds to include only the bare earth points, effectively removing vegetation

and buildings. Bare earth filtering is frequently done in mapping activities and there are

many methods available to implement bare earth point clouds in the literature.

The computer vision field has a very large selection of feature generating algorithms,

some of which may be useful when used with LiDAR range-based images. There are also

several different versions of SIFT available in the literature, and it is also possible that

SIFT could be optimized to LiDAR range images. Other more advanced algorithms that

can classify and segment point cloud data may also be useful in creating unique features

for matching. A particularity interesting area for future research related to these concepts
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are geomorphic features. Usually for use with bare ground data, geomorphic features are

fully 3D and not attributed to planar images or intensity values like SIFT features. Instead,

geomorphic features are derived from 3D point clouds and their relation to neighboring

points in the point cloud. Some geomorphic features that were present in the data used

in this research were water networks, ridge networks, and channel heads. Ridge networks

represent the local elevation peaks, hill tops, or ridge lines. Water networks are the opposite

of ridge networks, representing the lowest elevation areas and valleys, but also the routes

that water would take coming down from the ridges [3, 17, 61, 78, 86]. Channel heads

are noted as the transition locations where a hill slope ends and a valley runoff begins

[105]. One geomorphic approach uses a novel classification algorithm detects land types

as Geomorphons [38]. Geomorphons can determine as many as 498 geometrically common

landforms through the use of a scale and rotation invariant feature [75]. All geomorphic

features have the potential to detect unique locations in LiDAR point clouds directly

without the need to produce images.

There are some curious observations involving traits of SIFT features and how the

algorithm processes images with respect to LiDAR range data. SIFT is scale invariant

and this property is derived from the DoG process and the blurring effect it creates as

it progresses though each octave on an image. By it’s nature, ALS data is made up of

scattered points and must be interpolated into an image for use with SIFT. Interpolation

in this way is a form of image blurring. Also, Horn’s correspondence algorithm is able to

solve for the translation, rotation, and scale that least squares fits two data sets. Applying

scale changes was not pursued in this research because it was unknown what exactly that

would change with respect to LiDAR ranged, and orthorectified ground features. Scale

changes on the other hand do create a better fitting correspondence transform, and when

scales where calculated, they were always 1 or very close it (e.g; 0.99998). Exploring these

properties could potentially have impacts on the accuracy of SIFT features located in range
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images and the source point cloud points, but appear to be unexplored in the literature. If

further work on this topic permits, this would be an excellent area to begin optimizing a

SIFT algorithm to ALS range-based data.

Finally, the characterization of aircraft error distributions need to be more fully

explored. In this research a direct derivation of the relationship between the nominal

aircraft position uncertainty, the ground feature points uncertainty, the uncertainty of

the correspondence transform, and how that transform impacts the uncertainty of the a

new aircraft position estimate is not performed. Having an error distribution properly

characterized for this process would be invaluable for use with Kalman filter based

navigation system. Although the histograms in this research suggest Gaussian distribution

behavior, much more testing under other conditions should be performed to make this more

certain. There are also suggestions in the literature [131] that the common practice of using

RMSE to measure performance in algorithms processing LiDAR point cloud data may not

be well characterized by the normal distribution at all.
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Appendix: A

One of the benefits of working with SIFT features is that what creates good features

can often be seen by human eyes and features common to both data sets can be quickly

judged the same way. The difficult part of working with features is automating their use

and setting useful conditions. As such it seems valuable to show the data set created by the

ASPN flyover, and the features that matched with selected OSIP tile. This gives insight into

how the SIFT algorithm with RANSAC was performing, the features impact on accuracy,

what constituted a good image and what kind of terrain, and also illustrates just how

powerful a constraint the single OSIP tile selection was on position estimate availability.

In this chapter the 66 swaths that are matched to reference tiles and the SIFT features

that survived RANSAC and the thresholds are shown here. In each image, the collected

ASPN swath scaled range image is shown on the left, the selected OSIP reference tile on

the right. The yellow lines connecting the two represent the location of the SIFT features

common to both images as determined by the descriptor match, filtered by RANSAC and

the threshold conditions. Scattered lines indicate that a poor consistency in the resulting

correspondence transform, meaning that outliers are still present, or there were too few

features for RANSAC to build a good consensus. If after RANSAC the number of features

is below the threshold of 8, the algorithm stops, rejects that swath, and starts processing

the next one. Both well matched tiles and matching failure tiles are shown. The tiles are

arranged in the order collected from the flight data, and follow the numbered x axis in

Figure 4.1 and Figure 4.3. Each of these figures represents the +20 meters error case. In

the following figures, a “weak outlier” is defined as a feature match that survived RANSAC

and meets the threshold constraints, but is in error near the threshold of 4 meters. These are

generally only present on large sets of matched features, and their impact on the resulting

correspondence and aircraft position error is noticeable, but small.
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Figure A.1: This swath is a mix of forest and farmland, but too few features are found to

make a match. This tile is shortly after takeoff and at a much lower altitude then the rest.

Figure A.2: This swath is a mix of forest and farmland and matches 9 features with an 3D

aircraft position magnitude error of 2.77 meters.
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Figure A.3: This swath failed because of too few features in farmland, although 3 appear

to be correct. Less than 50% of the swath is present in the tile.

Figure A.4: This swath matched 11 features with a 3D aircraft position magnitude error of

3.76 meters with exclusively the road terrain.
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Figure A.5: While a road is present, this swath matched 26 features on farmland for an 3D

aircraft position magnitude error of 3.44 meters. Close inspection shows two matches are

weak outliers.

Figure A.6: This swath matched 13 features on farmland for an 3D aircraft position

magnitude error of 5.44 meters. Close inspection shows two matches are weak outliers.
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Figure A.7: This swath failed because of too few features in forest. Less than 50% of the

swath is present in the tile.

Figure A.8: This swath failed because of too few features in forest and farmland, although

3 appear to be correct in the farmland.
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Figure A.9: This swath failed because of too few features in forest and farmland, although

all 7 appear to be correct.

Figure A.10: This swath failed because of too few features in farmland, although only one

is an outlier. Less than 50% of the swath is present in the tile. The tile is unusually dark

and close inspection reveals a small cluster of abnormally high elevation pixels present.
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Figure A.11: This swath failed because of too few features in farmland, although 2 appear

correct. Less than 50% of the swath is present in the tile. The tile is unusually dark and

close inspection reveals a small cluster of abnormally high elevation pixels present.

Figure A.12: This swath failed because of too few features in forest. Less than 50% of the

swath is present in the tile.
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Figure A.13: This swath matched 12 features on farmland for an 3D aircraft position

magnitude error of 2.11 meters. The river present appears shallow enough to generate

LiDAR signal returns.

Figure A.14: This swath matched 15 features on farmland for an 3D aircraft position

magnitude error of 2.70 meters.
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Figure A.15: This swath matched 29 features on farmland for an 3D aircraft position

magnitude error of 1.63 meters.

Figure A.16: This swath matched 10 features on farmland for an 3D aircraft position

magnitude error of 6.31 meters. Less than 50% of the swath is present in the tile. Close

inspection shows 2 matches is are weak outlier.
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Figure A.17: This swath failed because of too few features in forest and farmland, although

1 appears to be correct.

Figure A.18: This swath failed because of too few features in forest, none are correct.
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Figure A.19: This swath matched 10 features on forest and farmland for an 3D aircraft

position magnitude error of 3.06 meters.

Figure A.20: This swath matched 13 features on forest and farmland for an 3D aircraft

position magnitude error of 1.22 meters.

129



Figure A.21: This swath matched 38 features on forest and farmland for an 3D aircraft

position magnitude error of 2.23 meters. Close inspection shows 2 matches are weak

outliers.

Figure A.22: This swath matched 11 features on farmland for an 3D aircraft position

magnitude error of 1.33 meters.
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Figure A.23: This swath matched 16 features on farmland for an 3D aircraft position

magnitude error of 4.07 meters. Less than 50% of the swath is present in the tile. Close

inspection shows 2 matches are weak outliers.

Figure A.24: This swath matched 29 features on farmland for an 3D aircraft position

magnitude error of 1.83 meters. Less than 50% of the swath is present in the tile. Close

inspection shows 3 matches are weak outliers.
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Figure A.25: This swath matched 36 features on farmland for an 3D aircraft position

magnitude error of 1.46 meters. Less than 50% of the swath is present in the tile. Close

inspection shows 4 matches are weak outliers.

Figure A.26: This swath matched 37 features on farmland for an 3D aircraft position

magnitude error of 4.22 meters. Close inspection shows 3 matches are weak outliers.
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Figure A.27: This swath failed because of too few features in farmland, although all 6

appear correct Less than 50% of the swath is present in the tile.

Figure A.28: This swath matched 17 features on farmland for an 3D aircraft position

magnitude error of 2.61 meters. Close inspection shows 2 matches are weak outliers.
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Figure A.29: This swath matched 9 features in farmland for an 3D aircraft position

magnitude error of 9.94 meters. Less than 50% of the swath is present in the tile. Close

inspection shows 2 matches are weak outliers.

Figure A.30: This swath matched 14 features in farmland for an 3D aircraft position

magnitude error of 1.73 meters. The tile is unusually bright and close inspection reveals a

small cluster of abnormally low elevation pixels present.
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Figure A.31: This swath failed because of too few features in farmland, although all 7

appear correct. The tile is unusually bright and close inspection reveals a small cluster of

abnormally low elevation pixels present.

Figure A.32: This swath failed because of too few features in farmland, although 2 appear

correct Less than 50% of the swath is present in the tile, and a deep water area.
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Figure A.33: This swath matched 19 features on forest with a water feature for an 3D

aircraft position magnitude error of 10.41 meters. Close inspection shows 2 matches are

weak outliers. The entire set of features seem to be from a group of tall trees.

Figure A.34: This swath failed because of too few features in forest and farmland, none

appear correct.
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Figure A.35: This swath failed because of too few features in forest and farmland, although

all 7 appear correct.

Figure A.36: This swath matched 39 features on forest and farmland for an 3D aircraft

position magnitude error of 1.98 meters. Close inspection shows 5 matches are weak

outliers. Most of the features seem to be from groups of tall trees.
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Figure A.37: This swath matched 39 features on forest and farmland with a road for an

3D aircraft position magnitude error of 2.29 meters. Close inspection shows 3 matches are

weak outliers. Most of the features seem to be from groups of tall trees.

Figure A.38: This swath failed because of too few features in forest, none appear correct.
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Figure A.39: This swath failed because of too few features in forest, none appear correct.

Figure A.40: This swath failed because of too few features in forest, although 6 of the 7

appear correct.
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Figure A.41: This swath matched 12 features on forest and farmland for an 3D aircraft

position magnitude error of 5.71 meters. Close inspection shows 3 matches are weak

outliers.

Figure A.42: This swath matched 13 features on forest and farmland for an 3D aircraft

position magnitude error of 3.52 meters. Close inspection shows 2 matches are weak

outliers.
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Figure A.43: This swath failed because of too few features in forest and farmland, although

2 appear correct.

Figure A.44: This swath failed because of too few features in forest, although 2 appear

correct.
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Figure A.45: This swath failed because of too few features in forest with a small road, none

appear correct.

Figure A.46: This swath failed because of too few features in forest and farmland, although

all 7 appear correct.
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Figure A.47: This swath failed because of too few features in farmland, none appear

correct. Less than 50% of the swath is present in the tile.

Figure A.48: This swath failed because of too few features in farmland, none appear

correct. Less than 50% of the swath is present in the tile.
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Figure A.49: This swath failed because of too few features in farmland, none appear

correct. Less than 50% of the swath is present in the tile.

Figure A.50: This swath failed because of too few features in forest and city, none appear

correct. Less than 50% of the swath is present in the tile.
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Figure A.51: This swath failed because of too few features in city with a river, none appear

correct. Less than 50% of the swath is present in the tile.

Figure A.52: This swath failed because of too few features in city with a river, none appear

correct.
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Figure A.53: This swath failed because of too few features in city with forest, although all

7 appear correct. Less than 50% of the swath is present in the tile.

Figure A.54: This swath matched 58 features in city with forest and a road for an 3D

aircraft position magnitude error of 2.20 meters. Close inspection shows 5 matches are

weak outliers.
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Figure A.55: This swath matched 35 features in city with forest for an 3D aircraft position

magnitude error of 1.60 meters. Close inspection shows 2 matches are weak outliers. Less

than 50% of the swath is present in the tile.

Figure A.56: This swath matched 12 features in forest for an 3D aircraft position magnitude

error of 5.05 meters. Close inspection shows 2 matches are weak outliers.
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Figure A.57: This swath matched 13 features in forest for an 3D aircraft position magnitude

error of 8.19 meters. Close inspection shows 2 matches are weak outliers. Less than 50%

of the swath is present in the tile.

Figure A.58: This swath failed because of too few features in forest, none appear correct.
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Figure A.59: This swath failed because of too few features in forest with a large deep water

area and less than 50% of the swath is present in the tile. None of the features appear

correct.

Figure A.60: This swath failed because of too few features in forest, although all 7 appear

correct.
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Figure A.61: This swath failed because of too few features in forest, although 3 appear

correct. Less than 50% of the swath is present in the tile.

Figure A.62: This swath failed because of too few features in forest, none appear correct.

Less than 50% of the swath is present in the tile.
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Figure A.63: This swath failed because of too few features in forest, although all 7 appear

correct.

Figure A.64: This swath failed because of too few features in forest, although 3 appear

correct.
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Figure A.65: This swath failed because of too few features in forest, only 1 appears correct.

Figure A.66: This swath matched 13 features in forest and farmland for an 3D aircraft

position magnitude error of 7.49 meters. Close inspection shows 2 matches are weak

outliers.
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Michael Arens. “Local Multi-Modal Image Matching Based on Self-Similarity”.
Image Processing (ICIP), 2010 17th IEEE International Conference on, 937–940.
IEEE, 2010.

153

http://www.airliners.net/aircraft-data/stats.main?id=188
http://www.airliners.net/aircraft-data/stats.main?id=188


[11] Britting, Kenneth R. Intertial Navigation System Analisys. GNSS Technology and
Applications. Artech House, 2010.

[12] Bryson, M. and S. Sukkarieh. “An Information-Theoretic Approach to Autonomous
Navigation and Guidance of an Uninhabited Aerial Vehicle in Unknown Environ-
ments”. Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Inter-
national Conference on, 3770–3775. August 2005.

[13] Campbell, Jacob, M Uijt de Haag, Frank van Graas, and Steve Young. “Light
Detection and Ranging-Based Terrain Navigation – A Concept Exploration”.
Proceedings of the 16th International Technical Meeting of the Satellite Division
of the Institute of Navigation, 461–469. ION GPS/GNSS, Portland, OR, September
2003.

[14] Chen, Yang and Gérard Medioni. “Object Modelling by Registration of Multiple
Range Images”. Image and vision computing, 10(3):145–155, 1992.

[15] Congalton, Russell G. “LAS Specification Version 1.4–R13”, July 2013. URL
http://www.asprs.org/a/society/committees/standards/LAS 1 4 r13.pdf.

[16] Craymer, M., R. Ferland, and R. Snay. “Realization and Unification of NAD83
in Canada and the U.S. via the ITRF”. Towards an Integrated Global Geodetic
Observing System (IGGOS), volume 120 of International Association of Geodesy
Symposia, 118–121. Springer Berlin Heidelberg, 2000.

[17] Detto, Matteo, Helene C Muller-Landau, Joseph Mascaro, and Gregory P Asner.
“Hydrological Networks and Associated Topographic Variation as Templates for the
Spatial Organization of Tropical Forest Vegetation”. PloS one, 8(10):e76296, 2013.

[18] Diel, D.D., P. DeBitetto, and S. Teller. “Epipolar Constraints for Vision-Aided
Inertial Navigation”. Application of Computer Vision, 2005. WACV/MOTIONS ’05
Volume 1. Seventh IEEE Workshops on, volume 2, 221–228. January 2005.

[19] El Mokni, H. and F. Govaers. “Coupled Laser Inertial Navigation System for
Pedestrian Tracking”. Positioning Navigation and Communication (WPNC), 2011
8th Workshop on, 176–179. April 2011.

[20] Eo, Yang Dam, Mu Wook Pyeon, Sun Woong Kim, Jang Ryul Kim, and Dong Yeob
Han. “Coregistration of Terrestrial Lidar Points by Adaptive Scale-Invariant Feature
Transformation with Constrained Geometry”. Automation in Construction, 25:49–
58, 2012.

[21] Fischler, Martin A and Robert C Bolles. “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Automated
Cartography”. Communications of the ACM, 24(6):381–395, 1981.

154

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf


[22] Golden, Joe P. “Terrain Contour Matching (TERCOM): A Cruise Missile Guidance
Aid”. Proc. SPIE 0238, Image Processing for Missile Guidance, volume 10.
December 1980.

[23] Gonzalez, Rafael C. and Richard E. Woods. Digital Image Processing. Prentice
Hall, second edition, 2002.

[24] Grejner-Brzezinska, Dorota, Charles Toth, Lee Young-Jin, and Jaehong Oh.
“Aerial Navigation in GPS-denied Environments using a Closed-feedback Error
Loop Between the Navigation and Imaging Sensors”. Proceedings of the 21st
International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS 2008), 2638–2644. Savannah, GA, September 2008.

[25] Grejner-Brzezinska, Dorota A, Charles K Toth, Hongxing Sun, Xiankun Wang, and
Chris Rizos. “A Robust Solution to High-Accuracy Geolocation: Quadruple Inte-
gration of GPS, IMU, Pseudolite, and Terrestrial Laser Scanning”. Instrumentation
and Measurement, IEEE Transactions on, 60(11):3694–3708, 2011.

[26] Grewal, M. S., L. R. Weill, and A. P. Andrews. Global Positioning Systems, Inertial
Navigation, and Integration, chapter Appendix C: Coordinate Transformations,
324–369. John Wiley & Sons, Inc., New York, USA, 2002.

[27] Uijt de Haag, M., A. Vadlamani, J.L. Campbell, and J. Dickman. “Application of
Laser Range Scanner Based Terrain Referenced Navigation Systems for Aircraft
Guidance”. Electronic Design, Test and Applications, 2006. DELTA 2006. Third
IEEE International Workshop on, 268–274. January 2006.

[28] Ujit de Haag, Maarten, Don Venable, and Mark Smearcheck. “Integration of an
Inertial Measurement Unit and 3D Imaging sensor for Urban and Indoor Navigation
of Unmanned Vehicles”. Proceedings of the National Technical Meeting of The
Institute of Navigation, 829–840. The Institute of Navigation, San Diego, CA,
January 2007.

[29] Habib, Ayman, K Bang, Ana Paula Kersting, and Dong-Cheon Lee. “Error Budget
of LiDAR Systems and Quality Control of the Derived Data”. Photogrammetric
Engineering and Remote Sensing, 75(9):1093–1108, 2009.

[30] Habib, Ayman, Ki In Bang, Ana Paula Kersting, and Jacky Chow. “Alternative
Methodologies for LiDAR System Calibration”. Remote Sensing, 2(3):874–907,
2010.

[31] Hamel, Jean-Francois, David Neveu, and Jean de Lafontaine. “Feature Matching
Navigation Techniques for Lidar-Based Planetary Exploration”. AIAA Guidance,
Navigation and Control Conference and Exhibit. 2006.

[32] Hebel, Marcus and Uwe Stilla. “LiDAR-Supported Navigation of UAVs Over Urban
Areas”. Surveying and Land Information Science, 70(3):139–149, 2010.

155



[33] Hollowell, J. “Heli/SITAN: A Terrain Referenced Navigation Algorithm for
Helicopters”. Position Location and Navigation Symposium, 1990. Record. The
1990’s - A Decade of Excellence in the Navigation Sciences. IEEE PLANS ’90.,
IEEE, 616–625. March 1990.

[34] Honeywell. “HG1700 Inertial Measurment Unit”, 2012. URL http://www51.
honeywell.com/aero/common/documents/myaerospacecatalog-documents/
Missiles-Munitions/HG1700 Inertial Measurement Unit.pdf.

[35] Horn, Berthold KP. “Closed-Form Solution of Absolute Orientation Using Unit
Quaternions”. JOSA A, 4(4):629–642, 1987.

[36] Horn, Berthold KP, Hugh M Hilden, and Shahriar Negahdaripour. “Closed-Form
Solution of Absolute Orientation Using Orthonormal Matrices”. JOSA A, 5(7):1127–
1135, 1988.

[37] Horton, Todd W. “Understanding Adjustments of NAD83 and State Plane
Coordinates”, February 2012. URL http://www.iplsa.org/docs/handouts/S1015B
Horton NAD83.pdf.

[38] Jasiewicz, Jarosaw and Tomasz F Stepinski. “Geomorphonsa Pattern Recognition
Approach to Classification and Mapping of Landforms”. Geomorphology, 182:147–
156, 2013.

[39] Jiaping Zhao, Suya You. “Road Network Extraction from Airbone LiDAR Data
using Scene Context”. International Workshop on Point Cloud Processing. June
2012.

[40] Johnson, A.E. and A. Miguel San Martin. “Motion Estimation from Laser Ranging
for Autonomous Comet Landing”. Robotics and Automation. Proceedings. ICRA
’00. IEEE International Conference on, volume 1, 132–138. 2000.

[41] Johnson, Andrew, Reg Willson, Yang Cheng, Jay Goguen, Chris Leger, Miguel
Sanmartin, and Larry Matthies. “Design Through Operation of an Image-Based
Velocity Estimation System for Mars Landing”. International Journal of Computer
Vision, 74(3):319–341, 2007.

[42] Johnson, Andrew E and Tonislav I Ivanov. “Analysis and Testing of a LIDAR-Based
Approach to Terrain Relative Navigation for Precise Lunar Landing”. Proc. AIAA
Guidance Navigation and Control Conference (AIAA-GNC 2011). 2011.

[43] Johnson, Andrew E and James F Montgomery. “Overview of Terrain Relative
Navigation Approaches for Precise Lunar Landing”. Aerospace Conference, 2008
IEEE, 1–10. IEEE, 2008.

[44] Kalman, Rudolph Emil. “A New Approach to Linear Filtering and Prediction
Problems”. Journal of basic Engineering, 82(1):35–45, 1960.

156

http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HG1700_Inertial_Measurement_Unit.pdf
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HG1700_Inertial_Measurement_Unit.pdf
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HG1700_Inertial_Measurement_Unit.pdf
http://www.iplsa.org/docs/handouts/S1015B_Horton_NAD83.pdf
http://www.iplsa.org/docs/handouts/S1015B_Horton_NAD83.pdf


[45] Kaplan, E. D. and C. J. Hegarty. Understanding GPS, Principles and Applications.
Artech House, second edition, 2006.

[46] Ke, Yan and Rahul Sukthankar. “PCA-SIFT: A More Distinctive Representation for
Local Image Descriptors”. Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2,
II–506. IEEE, 2004.

[47] Kim, Jungho, Ouk Choi, and In So Kweon. “Efficient Feature Tracking for Scene
Recognition Using Angular and Scale Constraints”. Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, 4086–4091. IEEE, 2008.

[48] de Lafontaine, Jean, Arkady Ulitsky, Jeffrey W Tripp, Robert Richards, Michael
Daly, and Christian Sallaberger. “LAPS: The Development of a Scanning Lidar
System with GNC for Autonomous Hazard Avoidance and Precision Landing”.
Proceedings of SPIE, volume 5418, 81–93. 2004.

[49] Laky, Sandor, Piroska Zaletnyik, C Toth, and Bence Molnar. “Sparse Representation
of Full Waveform Lidar Data”. Geoscience and Remote Sensing Symposium
(IGARSS), 2012 IEEE International, 7496–7499. IEEE, 2012.

[50] Legat, Klaus. “Approximate Direct Georeferencing in National Coordinates”. ISPRS
Journal of Photogrammetry and Remote Sensing, 60(4):239–255, 2006.

[51] Leonard, J.J. and H.F. Durrant-Whyte. “Simultaneous Map Building and Localiza-
tion for an Autonomous Mobile Robot”. Intelligent Robots and Systems ’91. ’In-
telligence for Mechanical Systems, Proceedings IROS ’91. IEEE/RSJ International
Workshop on, 1442–1447 vol.3. Nov 1991.

[52] Lingua, Andrea, Davide Marenchino, and Francesco Nex. “Performance Analysis
of the SIFT Operator for Automatic Feature Extraction and Matching in Photogram-
metric Applications”. Sensors, 9(5):3745–3766, 2009.

[53] Liu, Yufeng and S. Thrun. “Results for Outdoor-SLAM Using Sparse Extended
Information Filters”. Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE
International Conference on, volume 1, 1227–1233. September 2003.

[54] Lo, Tsz-Wai Rachel and J Paul Siebert. “Local Feature Extraction and Matching
on Range Images: 2.5D SIFT”. Computer Vision and Image Understanding,
113(12):1235–1250, 2009.

[55] Lowe, David G. “Distinctive Image Features from Scale-Invariant Keypoints”.
International Journal of Computer Vision, 60:91–110, 2004.

[56] Luke, Robert H, James M Keller, Marjorie Skubic, and Steven Senger. “Acquiring
and Maintaining Abstract Landmark Chunks for Cognitive Robot Navigation”.
Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International
Conference on, 2566–2571. IEEE, 2005.

157



[57] Ma, Yi, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation to 3-D
Vision: From Images to Geometric Models, volume 26. springer, 2004.

[58] Markiel, J. N., Dorota Grejner-Brzezinska, Charles Toth, William Woodward, and
Jim Moore. “Underwater Mapping and Navigation: Applications of 3D Feature
Extraction Algorithms to 3D Sonar Datasets”. Proceedings of the International
Technical Meeting of The Institute of Navigation, 448–458. The Institute of
Navigation, San Diego, CA, January 2010.

[59] Maybeck, Peter S. Stochastic Models, Estimation, and Control, volume 3. Academic
press, 1982.

[60] McManus, Colin, Paul Furgale, and Timothy D Barfoot. “Towards Lighting-
Invariant Visual Navigation: An Appearance-Based Approach Using Scanning
Laser-Rangefinders”. Robotics and Autonomous Systems, 61(8):836–852, 2013.

[61] Meisels, Amnon, Sonia Raizman, and Arnon Karnieli. “Skeletonizing a DEM into a
Drainage Network”. Computers & Geosciences, 21(1):187–196, 1995.

[62] Mesas-Carrascosa, Francisco Javier, Isabel Luisa Castillejo-Gonzalez,
Manuel Sanchex de La Orden, and Alfonso Garcia-Ferrer Porras. “Combin-
ing LiDAR Intesity with Aerial Camera Data to Discriminate Agricultural Land
Uses”. Computers and Electronics in Agriculture, 84:36–46, February 2012.

[63] Micheals, Ross J and Terrance E Boult. “On the Robustness of Absolute
Orientation”. Proceeding of the International Association for Science and
Technology Development (IASTED) Conference on Robotics and Automation. 2000.

[64] Morel, Jean-Michel and Guoshen Yu. “ASIFT: A New Framework for Fully Affine
Invariant Image Comparison”. SIAM Journal on Imaging Sciences, 2(2):438–469,
2009.

[65] Muja, Marius and David G. Lowe. “Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration”. International Conference on Computer Vision
Theory and Application VISSAPP’09), 331–340. INSTICC Press, 2009.

[66] Muss, J. D., N. Aguilar-Amuchastegui, D. J. Mladenoff, and G. M. Henebry.
“Analysis of Waveform Lidar Data Using Shape-Based Metrics”. Geoscience and
Remote Sensing Letters, IEEE, 10(1):106–110, January 2013.

[67] National Oceanic and Atmospheric Administration (NOAA) Costal Services Center.
“Lidar 101: An Introduction to Lidar Technology, Data, and Applications”. Revised,
Charleston, SC: NOAA Costal Services Center, November 2012.

[68] Newman, P. and H. Durrant-Whyte. “Using Sonar in Terrain-Aided Underwater
Navigation”. Robotics and Automation, 1998. Proceedings. 1998 IEEE Interna-
tional Conference on, volume 1, 440–445. May 1998.

158



[69] NIMA Technical Report TR8350.2. Department of Defense World Geodetic System
1984, Its Definition and Relationships With Local Geodetic Systems. Technical
Report 3rd ed, National Imagery and Mapping Agency, June 2004.

[70] Nixon, Mark S. and Alberto S. Aguado. Feature Extraction and Image Processing
for Computer Vision. Academic Press, Elsevier, 3rd edition, 2012.

[71] Noureldin, Aboelmagd, TashfeenB. Karamat, and Jacques Georgy. “Basic Navi-
gational Mathematics, Reference Frames and the Earths Geometry”. Fundamen-
tals of Inertial Navigation, Satellite-based Positioning and their Integration, 21–63.
Springer Berlin Heidelberg, 2013.

[72] Oh, Jaehong, Youngjin Lee, Charles K Toth, and Dorota Brzezinska. “Explotation
of LIDAR Range Measurements to Help Pushbroom Sensor Modeling for Accurate
EOP Estimation”. ASPRS Annual Conference, March 2007.

[73] Oh, Jaehong, Charles Toth, and Dorota Grejner-Brzezinska. “A Terrain Referenced
Navigation Based on LiDAR Breakline Matching”. Proceedings of the 2011
International Technical Meeting of The Institute of Navigation, 868–879. San Diego,
CA, January 2011.

[74] Ohio Office of Information Technology. “Ohio Statewide Imagery Program”,
August 2006. URL http://ogrip.oit.ohio.gov/ProjectsInitiatives/StatewideImagery.
aspx.

[75] Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. “Multiresolution Gray-Scale
and Rotation Invariant Texture Classification with Local Binary Patterns”. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 24(7):971–987, 2002.

[76] Ordnance Survey. D00659 A Guide to Coordinate Syatems in Great
Britain v2.2. Ordance Survey, Adanac Dr SOUTHAMTON UK, SO16
0AS, December 2013. URL http://www.ordnancesurvey.co.uk/docs/support/
guide-coordinate-systems-great-britain.pdf.

[77] Parsons, Timothy J. “Towards Robust Image Matching Algorithms”. 28th Annual
Technical Symposium, 436–444. International Society for Optics and Photonics,
1984.

[78] Passalacqua, Paola, Tien Do Trung, Efi Foufoula-Georgiou, Guillermo Sapiro, and
William E Dietrich. “A Geometric Framework for Channel Network Extraction
from LiDAR: Nonlinear Diffusion and Geodesic Paths”. Journal of Geophysical
Research: Earth Surface (2003–2012), 115(F1), 2010.

[79] Penn State. “Fundamental Conecpts 2: Datums and Coordinate Systems”, 2006.
URL https://courseware.e-education.psu.edu/courses/bootcamp/lo04/cg.html.

159

http://ogrip.oit.ohio.gov/ProjectsInitiatives/StatewideImagery.aspx
http://ogrip.oit.ohio.gov/ProjectsInitiatives/StatewideImagery.aspx
http://www.ordnancesurvey.co.uk/docs/support/guide-coordinate-systems-great-britain.pdf
http://www.ordnancesurvey.co.uk/docs/support/guide-coordinate-systems-great-britain.pdf
https://courseware.e-education.psu.edu/courses/bootcamp/lo04/cg.html


[80] Petrie, Gordon. “Airborne Topographic Laser Scanners”, February 2011. URL
http://www.riegl.com/fileadmin/user upload/Press/Petrie Airborne Topographic
Laser Scanners GEO 1 2011.pdf.

[81] Raquet, John F and Michael Giebner. “Navigation Using Optical Measurements of
Objects at Unknown Locations”. Proceedings of the 59th Annual Meeting of The
Institute of Navigation and CIGTF 22nd Guidance Test Symposium, 282–290. 2001.

[82] Rentsch, M and P Krzystek. “LiDAR strip adjustment using automatically recon-
structed roof shapes”. Proceedings of International Archives of the Photogrammetry,
Remote Sensing and Spatial Information, 158–164, 2009.

[83] Richmond, Richard D. and Stephen C. Cain. Direct-Detection LADAR Systems,
volume TT85 of Tutorial Texts in Optical Engineering. SPIE Press, 2010.

[84] RIEGL. “RIEGL LMA-Q680i”, May 2014. URL http://www.riegl.com/nc/products/
airborne-scanning/produktdetail/product/scanner/23/.

[85] Robins, Alan. “Recent Developments in the TERPROM Integrated Navigation
System”. Proceeding of the ION 44th Annual Meeting. 1998.
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