1,662 research outputs found

    Eye center localization and gaze gesture recognition for human-computer interaction

    Get PDF
    © 2016 Optical Society of America. This paper introduces an unsupervised modular approach for accurate and real-time eye center localization in images and videos, thus allowing a coarse-to-fine, global-to-regional scheme. The trajectories of eye centers in consecutive frames, i.e., gaze gestures, are further analyzed, recognized, and employed to boost the human-computer interaction (HCI) experience. This modular approach makes use of isophote and gradient features to estimate the eye center locations. A selective oriented gradient filter has been specifically designed to remove strong gradients from eyebrows, eye corners, and shadows, which sabotage most eye center localization methods. A real-world implementation utilizing these algorithms has been designed in the form of an interactive advertising billboard to demonstrate the effectiveness of our method for HCI. The eye center localization algorithm has been compared with 10 other algorithms on the BioID database and six other algorithms on the GI4E database. It outperforms all the other algorithms in comparison in terms of localization accuracy. Further tests on the extended Yale Face Database b and self-collected data have proved this algorithm to be robust against moderate head poses and poor illumination conditions. The interactive advertising billboard has manifested outstanding usability and effectiveness in our tests and shows great potential for benefiting a wide range of real-world HCI applications

    Virtual Audio - Three-Dimensional Audio in Virtual Environments

    Get PDF
    Three-dimensional interactive audio has a variety ofpotential uses in human-machine interfaces. After lagging seriously behind the visual components, the importance of sound is now becoming increas-ingly accepted. This paper mainly discusses background and techniques to implement three-dimensional audio in computer interfaces. A case study of a system for three-dimensional audio, implemented by the author, is described in great detail. The audio system was moreover integrated with a virtual reality system and conclusions on user tests and use of the audio system is presented along with proposals for future work at the end of the paper. The thesis begins with a definition of three-dimensional audio and a survey on the human auditory system to give the reader the needed knowledge of what three-dimensional audio is and how human auditory perception works

    FaceShop: Deep Sketch-based Face Image Editing

    Get PDF
    We present a novel system for sketch-based face image editing, enabling users to edit images intuitively by sketching a few strokes on a region of interest. Our interface features tools to express a desired image manipulation by providing both geometry and color constraints as user-drawn strokes. As an alternative to the direct user input, our proposed system naturally supports a copy-paste mode, which allows users to edit a given image region by using parts of another exemplar image without the need of hand-drawn sketching at all. The proposed interface runs in real-time and facilitates an interactive and iterative workflow to quickly express the intended edits. Our system is based on a novel sketch domain and a convolutional neural network trained end-to-end to automatically learn to render image regions corresponding to the input strokes. To achieve high quality and semantically consistent results we train our neural network on two simultaneous tasks, namely image completion and image translation. To the best of our knowledge, we are the first to combine these two tasks in a unified framework for interactive image editing. Our results show that the proposed sketch domain, network architecture, and training procedure generalize well to real user input and enable high quality synthesis results without additional post-processing.Comment: 13 pages, 20 figure

    Biological landmark Vs quasi-landmarks for 3D face recognition and gender classification

    Get PDF
    Face recognition and gender classification are vital topics in the field of computer graphic and pattern recognition. We utilized ideas from two growing ideas in computer vision, which are biological landmarks and quasi-landmarks (dense mesh) to propose a novel approach to compare their performance in face recognition and gender classification. The experimental work is conducted on FRRGv2 dataset and acquired 98% and 94% face recognition accuracies using the quasi and biological landmarks respectively. The gender classification accuracies are 92% for quasi-landmarks and 90% for biological landmarks

    A review of finger vein recognition system

    Get PDF
    Recently, the security-based system using finger vein as a biometric trait has been getting more attention from researchers all over the world, and these researchers have achieved positive progress. Many works have been done in different methods to improve the performance and accuracy of the personal identification and verification results. This paper discusses the previous methods of finger vein recognition system which include three main stages: preprocessing, feature extraction and classification. The advantages and limitations of these previous methods are reviewed at the same time we present the main problems of the finger vein recognition system to make it as a future direction in this field

    Biometrics in Cyber Security

    Get PDF
    Computers play an important role in our daily lives and its usage has grown manifolds today. With ever increasing demand of security regulations all over the world and large number of services provided using the internet in day to day life, the assurance of security associated with such services has become a crucial issue. Biometrics is a key to the future of data/cyber security. This paper presents a biometric recognition system which can be embedded in any system involving access control, e-commerce, online banking, computer login etc. to enhance the security. Fingerprint is an old and mature technology which has been used in this work as biometric trait. In this paper a fingerprint recognition system based on no minutiae features: Fuzzy features and Invariant moment features has been developed. Fingerprint images from FVC2002 are used for experimentation. The images are enhanced for improving the quality and a region of interest (ROI) is cropped around the core point. Two sets of features are extracted from ROI and support vector machine (SVM) is used for verification. An accuracy of 95 per cent is achieved with the invariant moment features using RBF kernel in SVM

    Indexing Iris Database Using Multi-Dimensional R-Trees

    Get PDF
    Iris is one of the most widely used biometric modality for recognition due to its reliability, non-invasive characteristic, speed and performance. The patterns remain stable throughout the lifetime of an individual. Attributable to these advantages, the application of iris biometric is increasingly encouraged by various commercial as well as government agencies. Indexing is done to identify and retrieve a small subset of candidate data from the database of iris data of individuals in order to determine a possible match. Since the database is extremely large, it is necessary to find fast and efficient indexing methods. In this thesis, an efficient local feature based indexing approach is proposed using clustered scale invariant feature transform (SIFT) keypoints, that achieves invariance to similarity transformations, illumination and occlusion. These cluster centers are used to construct R-trees for indexing. This thesis proposes an application of R-trees for iris database indexing. The system is tested using publicly available BATH and CASIA-IrisV4 databases

    Adaptive visual sampling

    Get PDF
    PhDVarious visual tasks may be analysed in the context of sampling from the visual field. In visual psychophysics, human visual sampling strategies have often been shown at a high-level to be driven by various information and resource related factors such as the limited capacity of the human cognitive system, the quality of information gathered, its relevance in context and the associated efficiency of recovering it. At a lower-level, we interpret many computer vision tasks to be rooted in similar notions of contextually-relevant, dynamic sampling strategies which are geared towards the filtering of pixel samples to perform reliable object association. In the context of object tracking, the reliability of such endeavours is fundamentally rooted in the continuing relevance of object models used for such filtering, a requirement complicated by realworld conditions such as dynamic lighting that inconveniently and frequently cause their rapid obsolescence. In the context of recognition, performance can be hindered by the lack of learned context-dependent strategies that satisfactorily filter out samples that are irrelevant or blunt the potency of models used for discrimination. In this thesis we interpret the problems of visual tracking and recognition in terms of dynamic spatial and featural sampling strategies and, in this vein, present three frameworks that build on previous methods to provide a more flexible and effective approach. Firstly, we propose an adaptive spatial sampling strategy framework to maintain statistical object models for real-time robust tracking under changing lighting conditions. We employ colour features in experiments to demonstrate its effectiveness. The framework consists of five parts: (a) Gaussian mixture models for semi-parametric modelling of the colour distributions of multicolour objects; (b) a constructive algorithm that uses cross-validation for automatically determining the number of components for a Gaussian mixture given a sample set of object colours; (c) a sampling strategy for performing fast tracking using colour models; (d) a Bayesian formulation enabling models of object and the environment to be employed together in filtering samples by discrimination; and (e) a selectively-adaptive mechanism to enable colour models to cope with changing conditions and permit more robust tracking. Secondly, we extend the concept to an adaptive spatial and featural sampling strategy to deal with very difficult conditions such as small target objects in cluttered environments undergoing severe lighting fluctuations and extreme occlusions. This builds on previous work on dynamic feature selection during tracking by reducing redundancy in features selected at each stage as well as more naturally balancing short-term and long-term evidence, the latter to facilitate model rigidity under sharp, temporary changes such as occlusion whilst permitting model flexibility under slower, long-term changes such as varying lighting conditions. This framework consists of two parts: (a) Attribute-based Feature Ranking (AFR) which combines two attribute measures; discriminability and independence to other features; and (b) Multiple Selectively-adaptive Feature Models (MSFM) which involves maintaining a dynamic feature reference of target object appearance. We call this framework Adaptive Multi-feature Association (AMA). Finally, we present an adaptive spatial and featural sampling strategy that extends established Local Binary Pattern (LBP) methods and overcomes many severe limitations of the traditional approach such as limited spatial support, restricted sample sets and ad hoc joint and disjoint statistical distributions that may fail to capture important structure. Our framework enables more compact, descriptive LBP type models to be constructed which may be employed in conjunction with many existing LBP techniques to improve their performance without modification. The framework consists of two parts: (a) a new LBP-type model known as Multiscale Selected Local Binary Features (MSLBF); and (b) a novel binary feature selection algorithm called Binary Histogram Intersection Minimisation (BHIM) which is shown to be more powerful than established methods used for binary feature selection such as Conditional Mutual Information Maximisation (CMIM) and AdaBoost
    corecore