21,732 research outputs found

    Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs

    Full text link
    [EN] Most sensor networks are deployed at hostile environments to sense and gather specific information. As sensor nodes have battery constraints, therefore, the research community is trying to propose energyefficient solutions for wireless sensor networks (WSNs) to prolong the lifetime of the network. In this paper, we propose an energy-efficient multi-level and distance-aware clustering (EEMDC) mechanism for WSNs. In this mechanism, the area of the network is divided into three logical layers, which depends upon the hop-count-based distance from the base station. The simulation outcomes show that EEMDC is more energy efficient than other existing conventional approaches.This work has been partially supported by the 'Ministerio de Ciencia e Innovacion', through the 'Plan Nacional de I+D+i 2008-2011' in the 'Subprograma de Proyectos de Investigacion Fundamental', project TEC2011-27516, and by the Polytechnic University of Valencia, through the PAID-15-11 multidisciplinary projectsMehmood, A.; Khan, S.; Shams, B.; Lloret, J. (2015). Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs. International Journal of Communication Systems. 28(5):972-989. https://doi.org/10.1002/dac.2720S972989285Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Bri D Garcia M Lloret J Dini P Real deployments of wireless sensor networks Third International Conference on Sensor Technologies and Applications (SENSORCOMM 2009) 2009 8 23GUI, L., VAL, T., & WEI, A. (2011). A Novel Two-Class Localization Algorithm in Wireless Sensor Networks. Network Protocols and Algorithms, 3(3). doi:10.5296/npa.v3i3.863Rajeswari, A., & P.T, K. (2011). A Novel Energy Efficient Routing Protocols for Wireless Sensor Networks Using Spatial Correlation Based Collaborative Medium Access Control Combined with Hybrid MAC. Network Protocols and Algorithms, 3(4). doi:10.5296/npa.v3i4.1296Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Liu, G., Xu, B., & Chen, H. (2011). Decentralized estimation over noisy channels in cluster-based wireless sensor networks. International Journal of Communication Systems, 25(10), 1313-1329. doi:10.1002/dac.1308Cheng, L., Chen, C., Ma, J., & Shu, L. (2011). Contention-based geographic forwarding in asynchronous duty-cycled wireless sensor networks. International Journal of Communication Systems, 25(12), 1585-1602. doi:10.1002/dac.1325Wang, X., & Qian, H. (2011). Hierarchical and low-power IPv6 address configuration for wireless sensor networks. International Journal of Communication Systems, 25(12), 1513-1529. doi:10.1002/dac.1318Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An Energy-Efficient Routing Protocol Using Movement Trends in Vehicular Ad hoc Networks. The Computer Journal, 56(8), 938-946. doi:10.1093/comjnl/bxt028Chen, J.-S., Hong, Z.-W., Wang, N.-C., & Jhuang, S.-H. (2010). Efficient Cluster Head Selection Methods for Wireless Sensor Networks. Journal of Networks, 5(8). doi:10.4304/jnw.5.8.964-970Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2011). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114-126. doi:10.1002/dac.1336Zeynali, M., Mollanejad, A., & Khanli, L. M. (2011). Novel hierarchical routing protocol in wireless sensor network. Procedia Computer Science, 3, 292-300. doi:10.1016/j.procs.2010.12.050Heinzelman W Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks 33rd Hawaii International Conference on System Sciences (HICSS) 2000 3005 3014Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers & Electrical Engineering, 38(3), 662-671. doi:10.1016/j.compeleceng.2011.11.017Gou H Yoo Y An energy balancing LEACH algorithm for wireless sensor networks Proceedings of the 7th International Conference on Information Technology: New Generations (ITNG) 2010Ding, P., Holliday, J., & Celik, A. (2005). Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks. Lecture Notes in Computer Science, 322-339. doi:10.1007/11502593_25Bandyopadhyay S Coyle E An energy-efficient hierarchical clustering algorithm for wireless sensor networks The 32nd IEEE International Conference on Computer Communication (INFOCOM 2003) 2003Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036-1048. doi:10.1016/j.adhoc.2010.11.003Zhu, Y., Wu, W., Pan, J., & Tang, Y. (2010). An energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networks. Computer Communications, 33(5), 639-647. doi:10.1016/j.comcom.2009.11.008Khamfroush H Saadat R Khademzadeh A Khamfroush K Lifetime increase for wireless sensor networks using cluster-based routing International Association of Computer Science and Information Technology-Spring Conference (IACSIT-SC 2009) 2009Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256-268. doi:10.1016/j.comcom.2012.10.006Aslam N Phillips W Robertson W Sivakumar S A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks 4th IEEE Consumer Communications and Networking Conference, (CCNC 2007) 2007 650 654Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14-15), 2842-2852. doi:10.1016/j.comcom.2007.05.034Yong, Z., & Pei, Q. (2012). A Energy-Efficient Clustering Routing Algorithm Based on Distance and Residual Energy for Wireless Sensor Networks. Procedia Engineering, 29, 1882-1888. doi:10.1016/j.proeng.2012.01.231Chuan-Chi W A minimum transmission energy consumption routing protocol for user-centric wireless networks 2011 1143 1148Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662-667. doi:10.1016/j.comcom.2008.11.025Kim KT Moon SS Tree-Based Clustering (TBC) for energy efficient wireless sensor networks IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA) 2010 680 685Yu, J., Qi, Y., Wang, G., & Gu, X. (2012). A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU - International Journal of Electronics and Communications, 66(1), 54-61. doi:10.1016/j.aeue.2011.05.002Ye M Li C Wu J EECS: an Energy Efficient Clustering Scheme in wireless sensor networks 24th IEEE International Performance on Computing, and Communications Conference 2005 535 540Gautama N Lee W Pyun J Dynamic clustering and distance aware routing protocol for wireless sensor networks PE-WASUN'09 2009Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. doi:10.1109/twc.2002.804190Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117-131. doi:10.1016/j.ins.2011.08.029Pantazis, N. A., Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). Energy efficiency in wireless sensor networks using sleep mode TDMA scheduling. Ad Hoc Networks, 7(2), 322-343. doi:10.1016/j.adhoc.2008.03.006OMNeT++ Community Documentation and Tutorials of omnet++ http://www.omnetpp.org/Castallia Documentation and Tutorials of Castalia Simulator for WSN and BAN http://castalia.research.nicta.com.au/index.php/en/Research Group on Computer Networks and Multimedia Communication UFPA - Brazil Download-Leach-v2-for-Castalia http://www.gercom.ufpa.br/index.php?option=com_filecabinet&view=files&id=1&Itemid=31&lang=p

    Pheromone-based In-Network Processing for wireless sensor network monitoring systems

    Get PDF
    Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying and information gathering in large-scale WSNs is a challenging problem. In particular, we consider the case of how to query the sensor network information with the minimum energy cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal with this problem, we propose a Pheromone-based In-Network Processing (PhINP) mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to direct queries towards nodes with relevant information and query- and response-based in-network filtering to reduce the number of active nodes. Additionally, we apply reinforcement learning to improve the performance. The main contribution of this work is the proposal of a simple and efficient mechanism for information discovery and gathering. It can reduce the messages exchanged in the network, by allowing some error, in order to maximize the network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the query dissemination cost can be reduced by approximately 60% over flooding, with an error below 1%, applying the same in-network filtering strategy.Fil: Riva, Guillermo Gaston. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    Efficient Data Gathering in Wireless Sensor Networks Based on Matrix Completion and Compressive Sensing

    Full text link
    Gathering data in an energy efficient manner in wireless sensor networks is an important design challenge. In wireless sensor networks, the readings of sensors always exhibit intra-temporal and inter-spatial correlations. Therefore, in this letter, we use low rank matrix completion theory to explore the inter-spatial correlation and use compressive sensing theory to take advantage of intra-temporal correlation. Our method, dubbed MCCS, can significantly reduce the amount of data that each sensor must send through network and to the sink, thus prolong the lifetime of the whole networks. Experiments using real datasets demonstrate the feasibility and efficacy of our MCCS method

    Efficient Compressive Sampling of Spatially Sparse Fields in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN), i.e. networks of autonomous, wireless sensing nodes spatially deployed over a geographical area, are often faced with acquisition of spatially sparse fields. In this paper, we present a novel bandwidth/energy efficient CS scheme for acquisition of spatially sparse fields in a WSN. The paper contribution is twofold. Firstly, we introduce a sparse, structured CS matrix and we analytically show that it allows accurate reconstruction of bidimensional spatially sparse signals, such as those occurring in several surveillance application. Secondly, we analytically evaluate the energy and bandwidth consumption of our CS scheme when it is applied to data acquisition in a WSN. Numerical results demonstrate that our CS scheme achieves significant energy and bandwidth savings wrt state-of-the-art approaches when employed for sensing a spatially sparse field by means of a WSN.Comment: Submitted to EURASIP Journal on Advances in Signal Processin
    corecore