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Abstract

Wireless sensor networks (WSNs), i.e., networks of autonomous, wireless sensing nodes spatially deployed over a
geographical area, are often faced with acquisition of spatially sparse fields. In this paper, we present a novel
bandwidth/energy-efficient compressive sampling (CS) scheme for the acquisition of spatially sparse fields in a WSN.
The paper contribution is twofold. Firstly, we introduce a sparse, structured CS matrix and analytically show that it
allows accurate reconstruction of bidimensional spatially sparse signals, such as those occurring in several surveillance
application. Secondly, we analytically evaluate the energy and bandwidth consumption of our CS scheme when it is
applied to data acquisition in a WSN. Numerical results demonstrate that our CS scheme achieves significant energy
and bandwidth savings with respect to state-of-the-art approaches when employed for sensing a spatially sparse field
by means of a WSN.

1 Introduction
Wireless sensor networks (WSN) consist of autonomous,
cooperative sensors spatially deployed over a geographi-
cal area, with applications ranging from surveillance [1]
and localization systems [2,3], to environmental monitor-
ing for physical field sensing and disaster prevention [4,5].
WSN nodes typically acquire the data and communicate
them to a node named fusion center (FC), which stores
the sensors’ readings or forwards them through wired
network infrastructures for further processing.
The availability of energy-efficient algorithms for data

gathering towards the FC is particularly relevant when
the monitoring network is deployed on a large geograph-
ical area (e.g., a forest), where highly efficient routing
protocols are required for a sustainable network lifetime.
Energy efficiency is also relevant in those environments
where battery recharge or substitutionmay be unworkable
(e.g., in underwater networks) [6,7]. On the other hand,
efficient exploitation of available bandwidth is an impor-
tant concern in bandwidth-limited or interference-limited
environments.
The unifying sampling and compression approach of

compressive sampling (CS) [8] is definitely well suited
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to resource-limited WSNs’ applications. CS-based tech-
niques for energy-efficientWSN data gathering have been
recently investigated, with particular reference to the
trade-off between reconstruction accuracy and data gath-
ering cost [9]. A highly efficient approach is provided by
random sensing (RS), where at each observation time,
only a randomly drawn subset of sensors acquires data
and transmits them to the FC, typically using single-hop
links. From a theoretical point of view, RS and CS share
conditions and procedures for signal reconstruction. An
energy- and bandwidth-efficient RS procedure appears
in [10].
WSN monitoring applications are often faced with

acquisition of spatially sparse signals. A typical example
is that of temperature-monitoring sensor networks for
anomalous event (e.g., fire) detection: in the early stages of
abnormal system behavior, in which the event is hopefully
detected, the field is characterized by one or more small
spots at levels largely different from the surroundings, and
it can be modeled as a spatially sparse signal. RS schemes,
such as those analyzed in [10], poorly perform in sampling
signals that are naturally sparse in the spatial domain since
the actual number of measurements required to recon-
struct the field increases and the RS bandwidth/energy
efficiency deteriorates.
This paper successfully addresses the efficient compres-

sive sampling of spatially sparse signals in a WSN. We
introduce a novel CS scheme that can be realized in a
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WSN by distributed and parallel data gathering schemes,
with restrained energy and bandwidth consumption for
inter-sensor signaling. Specifically, themain contributions
of this work are the following:

• We introduce a novel CS matrix and analytically
demonstrate that it satisfies the CS conditions for
sparse signal reconstruction.

• We analytically evaluate the performance, in terms of
energy and bandwidth efficiency, of a WSN data
gathering scheme based on the CS matrix presented
herein.

• We show that, on spatially sparse fields, our CS
scheme outperforms selected RS and CS
state-of-the-art ones in terms of both energy and
bandwidth efficiency.

The remainder of the paper is organized as follows:
Section 2 describes the WSN system model, Section 3
briefs the CS basics, and Section 4 discusses related works
on CS/RS acquisition in WSN. In Section 5 we illustrate
our original CS scheme, and in Section 6 we apply it
to a WSN and analyze the related energy consumption
and bandwidth occupancy. Section 7 presents numeri-
cal results assessing that our CS scheme outperforms
state-of-the-art approaches in terms of bandwidth/energy
efficiency. Section 8 concludes the paper.

2 Systemmodel and network scenario
Let us consider a physical field represented by a bidimen-
sional time-varying signal s (x, y; t), (x, y) ∈ R2 monitored
through a grid of N = N1 × N2 sensors deployed over
a bidimensional covered area, N1 and N2 being the num-
ber of sensors distributed in the horizontal and vertical
dimension, respectively. A selected sensor collects the
data from the others and plays the role of FC. An exam-
ple of such a WSN scenario is depicted in Figure 1: the
FC is placed at the center of the network, and each sen-
sor is placed at distance dk , k = 1, . . . ,N − 1 from
the FC.
The sensors periodically measure s (x, y; t) and trans-

mit their readings to the FC for monitoring. The sensing
period �t is selected to be almost equal to the coher-
ence time Tc of s (x, y; t)a. At time tk = t0 + k�t,
the sensor at the location (n1d, n2d) acquires the noisy
measurement:

z [n1, n2] = s (n1d, n2d; tk) (1)

where, for the sake of simplicity, we have dropped the
temporal variable and have set the horizontal and verti-
cal inter-sensor distances equal to d. Then, the sensors
implement a suitable dissemination protocol to forward
the measured value to the FC. The FC collects all the data

Figure 1 Sensor network scenario.

from the sensors so as to reconstruct a representation of
the overall field z [n1, n2].
Efficient data dissemination towards the FC is widely

debated in the literature since energy efficiency affects
the network lifetime, especially relevant in scenarios
where the deployment of sensors is difficult or expensive,
whereas bandwidth efficiency enables WSN monitoring
in bandwidth-limited media, e.g., underwater, or in geo-
graphical areas where different sensor networks coexist.
CS and RS paradigms provide a theoretical framework for
highly efficient field monitoring, provided that the mon-
itored data are sparse in a suitable domain. We briefly
recall in Sections 3 and 4 the basics of CS and the related
work on CS and RS application in WSN, respectively.

3 An introduction to compressive sampling
Let us compactly represent the bidimensional sequence
z [n1, n2] by the lexicographically ordered vector z:

z = [z [1, 1] · · · z [1,N2] z [2, 1] · · · z [N1,N2]]T .

The vector z ∈ R
N is sparse if the number of its non-

zero samples is restrained compared to its own dimension
N ; rigorously, z is said to be K-sparse if the number of
non-zero components is K , either in the spatial or in a
transformed domain (e.g., Fourier, wavelet, etc.). CS pro-
vides a framework for sensing and compression of a sparse
signal.
According to the CS paradigm, compression of sparse

signals is performed jointly with the acquisition. Specifi-
cally, z is represented byM projections defined as follows:

y = �z (2)
� being a suitablemeasurement matrix of sizeM × N .
A fundamental outcome of CS is that under suitable

conditions on the sensing matrix �, if z is K-sparse, it can
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be accurately recovered from the projections in y provided
that K < M < N . Specifically, the sensing matrix � must
satisfy the so-called restricted isometry property (RIP),
i.e., given a constant δ, for all K-sparse signals z, it must
stand:

(1 − δ)||z||22 ≤ ||�z||22 ≤ (1 + δ)||z||22.

It is proven [11] that, for values of δ small enough, sparse
signals can be perfectly recovered from compressive sens-
ing measurements. In [12], the authors show that the RIP
property is verified when the measurement energy ||�z||2
is more and more concentrated, in probability, around
the value ||z||22 as far as the number of measurements
increases.
Reconstruction can be achieved either by solving the

following optimization problem:

ẑ = argmin
t

||t||1 s.t. y = �z (3)

or by a greedy iterative pursuit of the support of z; exam-
ples of this latter approach are provided by the orthogo-
nal matching pursuit [13] and the compressive sampling
matching (CoSaMP) algorithms [14].
In (2), we recognize that randomly sampling the com-

ponents of z and collecting them in y is equivalent to
realizing CS using a particular sensing matrix; therefore,
many CS theory results apply to RS, too. Both RS and
CS techniques have been considered for application in
WSNs.

4 Related works
Efficient sensing and data gathering in WSNs by means
of CS- and RS-based techniques have aroused lively inter-
est in recent literature. In [15], a CS-based distributed
communication architecture is exploited to minimize the
latency for information retrieval under a favorable power-
distortion trade-off, whereas in [16], a CS-based sensing
and data gathering procedure is analyzed for the case
of network routing tree topologies. In [17], maximiza-
tion of large-scale WSN lifetime is pursued by means
of a fully distributed algorithm according to which each
sensor autonomously performs classical or compressive
sampling in order to reduce the number of transmitted
packets.
In [9], the authors analyze a RS and multi-hop data

gathering scheme. In this scheme, only randomly selected
nodes measure the field and transmit their readings to
the FC through specific multi-hop paths. While a sensor
reading is routed towards the FC, its value is combined

with the ones sensed by the sensors in the path, so
that each random projection provided to the FC is
built by accumulating randomly weighted sensor read-
ings along a network path. Energy efficiency is pursued
if the number of nodes contributing to each projection is
low.
In [18], a peculiar form of the CS sensing matrix is

proven to exhibit good reconstruction properties while
still being able to reduce the number of inter-sensor trans-
missions. The structure of the sensing matrix, originally
designed for WSNs with chain topology, is viable of an
extension to more complex scenarios, provided that suit-
ably tree-structured routing paths are designed from the
exterior of the network towards the FC.
Recently, in [10] a RS-based sensor network frame-

work for underwater systems has been introduced. Dif-
ferently from the works in [9,16,17], a single-hop network
is considered, where the sensors directly communicate
with the FC. Every sampling interval �t, each sen-
sor senses the field and transmits it directly to the FC
with probability p. The sensing probability p is suit-
ably chosen in order to let the FC acquire sufficiently
many data for field reconstruction. The approach in
[10] favorably merges the RS procedure with a random
access protocol, thus obtaining a significant reduction
in both the consumed energy and the occupied band-
width. The main reasons why the above discussed meth-
ods achieve significant performances in efficient use of
network resources are either in the fact that, during
a sampling interval, only a subset of the sensors mea-
sures the field by means of RS or in the fact that CS
acquisition is actually realized jointly with the routing
procedure.
Recent studies [16,18] suggest that in the case of spa-

tially sparse signals, the energy/bandwidth of RS and
CS efficiency deteriorates since reconstruction accuracy
is guaranteed only when a large number of sensors
contribute to the measurements. In [16], the authors
remark how difficult it is to design a RS matrix suited
to sparse signals and still allowing an efficient network
routing. In [18], it is pointed out that, on spatially
sparse signals, CS techniques still guarantee reconstruc-
tion accuracy but at an increased number of measure-
ments (e.g., M up to 50% of N), whereas for the same
values of M and N , RS only opportunistically achieves
reconstruction.
The problem of efficient CS data routing from spa-

tially localized signals is addressed in [19]. Therein, the
authors of [19] propose to leverage the so-called trans-
port cost, that is, the energy wasted to disseminate CS
measurement towards the FC via multi-hop paths, by
clustering the network nodes in non-overlapping sets,
each one responsible for one or more CS measurements.
In order to assure perfect reconstruction, the sensors’
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clusterization is selected depending on the sparsifying
basis under which the field is sensed. The clusteriza-
tion corresponds to a sparse structure in the sensing
matrix, and it is the starting point to allow energy savings
in the overall sensing procedure, realized by a central-
ized algorithm. The procedure is designed for spatially
localized signals, which are sparse in a spatially localized
basis (e.g., Daubechies, DCT), but it looses efficiency as
the signals become more and more sparse in the spatial
domain.
On the other hand, in several WSN applications, the

sensed field indeed contains local fluctuations and abnor-
mal readings, and it is well modeled as a spatially sparse
signal. This motivated us to concern ourselves with the
design of a sensing matrix suited to spatially sparse sig-
nals, as described in the following section.

5 CS using Radon-like random projections
In a nutshell, we aim at devising a sensing matrix that
represents a spatially sparse field z in a domain such
that dropping N −M components does not prevent sig-
nal reconstruction. Recalling that the Radon transform
has the dual properties of (1) compressing spatial domain
straight lines into transform domain pulses [20] and (2)
expanding spatial discrete pulses into as many non-zero
values as the number of considered Radon projections
[21], we recognize that the Radon transform provides a
mean for redundant representation of sparse signals built
by spatially isolated pulses. Thereby, we resort to a spa-
tially sparse signal CS scheme inspired by the Radon
projection computation.
To elaborate, let us consider the bidimensional sequence

z [n1, n2] of finite size N1 × N2, and let us present few
examples of measurements computed in analogy to the
Radon projections. First, let us consider the column-
wise accumulation of a randomly weighted version of
z [n1, n2]:

y(0)[m]=
N2−1∑
i=0

ϕ(0)
m [i] z [i,m] , m = 0, . . . ,N1 − 1 (4)

where ϕ
(0)
m [i] , i = 0, . . .N1 − 1,m = 0, . . . ,N2 − 1

are independent and identically distributed (i.i.d.) zero
mean Gaussian random variables of equal variance σ 2

ϕ ,
i.e., ϕ

(0)
m [i]∼ N (0, σ 2

ϕ ); an example of the formation of
the measurements y(0)[m] is illustrated in Figure 2. The
measurements y(0)[m] differ from a Radon projection in
that each sample is randomly weighted. Besides, they dif-
fer from classical CS measurements in that each measure
is obtained only from a subset (namely a column) of
the values in z [n1, n2] rather than from all the samples
z [n1, n2].

n1

n2 z[n1, n2]

y(0)[m]
Figure 2 Bidimensional sequence z [n1,n2]: column-wise
accumulation for computation of the measurements y(0)[m].

Definition of the row-wise random projections of
z [n1, n2] is straightforward, namely:

y(π/2)[m]=
N1−1∑
i=0

ϕ(π/2)
m [i] ·z [m, i] , m = 0, . . . ,N2 − 1.

(5)

By analogy, we can define the diagonal-wise projection
of z [n1, n2] as well:

y(π/4)[m]=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N1−1−m∑
i=0

ϕ
(π/4)
m [i] z [i + m, i] ,

m= 0, . . . , N1 − 1
N2−1−|m|∑

i=0
ϕ

(π/4)
m [i] z [i, i + m] ,

m= −N2 + 1, . . . ,−1.

(6)

Expressions (4) to (6) represent randomly weighted
accumulations of z [n1, n2] over ridge paths. Let us now
generalize the above expressions by regarding them as
obtained by column-wise accumulation of a suitably
rotated version of the sequence z [n1, n2].
Let z(ϑp) [n1, n2] be a ϑp-radiant clockwise-rotatedb ver-

sion of the image z [n1, n2]. The size of z(ϑp) [n1, n2] varies
with ϑp, and we denote as K(p), p = 0, . . .P − 1 the
number of columns of z(ϑp) [n1, n2]. We generalize def-
initions (4) to (6) by considering the collection of the
random projections of z(ϑp) [n1, n2] over a finite set of P
directions ϑp:
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y(ϑp)[m]=
∑
i

ϕ
(ϑp)
m [i] ·z(ϑp) [i,m] (7)

for m = 0, . . .K(p) − 1, p = 0, . . .P − 1. Since the
accumulation in (7) recalls the column-wise accumula-
tions employed in the computation of the discrete Radon
transform, we refer to the projections in (7) as Radon-like
random projections.
Let us now collect the P Radon-like random projections:

y(ϑp) =
[
y(ϑp)[0] · · · y(ϑp)[K(p) − 1]

]
T, p = 0, . . .P − 1

in a measurement vector y:

y =[y(ϑ0) T · · · y(ϑP−1) T ]T .

The measurements y are computed from z as

y = �Rz (8)

using the
∑

p K(p) × N1N2 random sampling matrix �R
defined as

where �
(ϑp)
R , p = 0, . . .P − 1 are the suitably defined

sparse random matrix realizing the accumulation in (5)
and (6). Specifically, the matrices �

(ϑp)
R , p = 0, . . .P − 1

are built as follows. For each and every row, a few ele-
ments, corresponding to the coefficients of x that do not
contribute to the measurement, are deterministically set
to zero. The remaining non-zero elements are drawn
from i.i.d. normal distribution. For the sake of clarity, we
report the matrices �

(0)
R and �

(π/2)
R , corresponding to

the horizontal and the vertical projection, in (10) and (9),
respectively.

Let us remark that, even though the samples contributing
to each y component are the same as those that would
have contributed to a specific Radon projection of z, due
to the random weighting, the measurement vector y is not
- and it is not even easily related to - the Radon transform
of z.
In the following, we demonstrate that the conditions

given by the CS theory for reconstructing z from y stand.
Before turning to mathematics, let us observe that if the
image z [n1, n2] is built by sparse isolated pulses, each
pattern contributes, apart from a suitable random weight-
ing, to each one of the P Radon-like random projections
y(ϑp)[m] , m = 0, . . .K(p) − 1, p = 0, . . .P − 1.
Thereby, the set of P Radon-like random projections is a
P-redundant representation of the pulse. This motivated
us to formally demonstrate that the Radon-like random
projections y(ϑp)[m] , m = 0, . . .K(p)−1, p = 0, . . .P−1
satisfy the conditions of a CS measurement set.

5.1 Restricted isometry property of the Radon-like
sampling matrix

To formally state that the above introduced simpli-
fied sampling structure is feasible for accurate field
reconstruction, we shall demonstrate that the random
measurements y evaluated as in (8) are consistent CS
measurements, i.e., they substantially preserve the infor-
mation of the sampled sequence z [n1, n2].
Formally, we need to prove that the sampling matrix �R

satisfies the condition known as restricted isometry prop-
erty. Specifically, let us denote by Ez def= ||z||2 the quadratic
norm of the vector z. If the matrix �R satisfies

(1 − δ) Ez ≤ ||�Rz||2 ≤ (1 + δ) Ez (11)

with high probability, then any sparse sequence z can be
perfectly recovered from CS measurements y = �Rz [11].
The RIP in (11) asserts that the measurement energy

Ey def= ||�Rz||2 is strongly concentrated around the value
Ez. Preliminary results on the RIP property of a Radon-like
CS matrix appear in [22]. In Appendix 1, we extend these

�
(0)
R =

⎡
⎢⎢⎢⎢⎣

ϕ
(0)
0 [0] 0 · · · 0 ϕ

(0)
0 [N1 − 1] 0 · · · 0

0 ϕ
(0)
0 [0] · · · 0 . . . . . . 0 ϕ

(0)
0 [N1 − 1] · · · 0

0
...

. . . 0 0
...

. . . 0
0 0 · · · ϕ

(0)
N2−1[0] 0 0 · · · ϕ

(0)
0 [N1 − 1]

⎤
⎥⎥⎥⎥⎦ (9)

�
(π/2)
R =

⎡
⎢⎢⎢⎣

ϕ
(π/2)
0 [0] ϕ

(π/2)
0 [1] · · · ϕ

(π/2)
0 [N2 − 1] 0 0 · · · 0

0 0 · · · 0 . . . . . . 0 0 · · · 0
0 0 . . . 0 0 0 · · · 0
0 0 · · · 0 . . . . . . ϕ

(π/2)
N1−1[0] ϕ

(π/2)
N1−1[1] · · · ϕ

(π/2)
N1−1[N2 − 1]

⎤
⎥⎥⎥⎦ (10)
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results and, following the approach in [12], we show that
the following property stands.
Property 1 Let us assume that the entries in the matrix

�R are either deterministically set to zero, or i.i.d. zero
mean Gaussian random variables with equal variance
σ 2

ϕ = 1/P. Then the following concentration inequality
stands:

Pr{|Ey − Ez| ≥ δ} ≤ ε (12)

provided that P ≥ 2K2C2
2 log(2/ε)/δ2, C2 being a suit-

able constant. From Property 1, the RIP property in (11)
immediately follows.

5.2 Further remarks
The sampling matrix �R differs from the full sampling
matrices usually adopted in CS since it is sparse. In the
following, we show how the sparsity of the Radon-like
sensing matrix �R can be leveraged on to significantly
simplify the CSmeasurement computation in aWSN so as
to reduce the consumed energy and employed bandwidth.
The definition of y(ϑp)[m] in (7) given above is consistent

and useful from an analytical point of view. When turn-
ing to the evaluation of y(ϑp)[m] in a WSN, the evaluation
of z(ϑp) [n1, n2] is not accomplished, and the measurement
computation is realized throughout the data gathering
stage.
In [23], the authors demonstrate the RIP for a different

kind of sensing matrix, that is, block diagonal matri-
ces. With respect to the approach in [23], the proof in
Appendix 1 is carried out asymptotically, that is, for M
large enough to approximate Ez as the outcome of a Gaus-
sian random variables, and it leverages the hypothesis of
a spatially sparse signal, i.e., a signal that is sparse in the
canonical basis.
Finally, the concentration inequality (12) guarantees

that the sequence z can be recovered from the measure-
ments y with high probability, as far as the number P of
considered projections increases. Since CS convergence is
assured only in probability, the CS measurement experi-
ment could be repeated. In a WSN, data are periodically
sensed and routed to the FC, and a small probability
of mis-reconstruction can be tolerated since it can be
recovered in the subsequent sampling interval. Further-
more, integration of independently drawn measurements
acquired in aWSN during different temporal intervals can
be performed at the FC. This interesting research issue is
deferred to further studies.

6 Radon-like CS in aWSN
In a WSN application scenario, the P Radon-like projec-
tions correspond to randomly weighted sums of the values
sensed by different subsets ofWSN sensors. The sums can
be evaluated using different techniques.

Following the approach in [24], the sensors within a
subset can synchronously transmit their weighted sensed
values, and the sum can be realized at the FC by on-air
analogical superimposition of received signals. This pro-
tocol requires strict control of the power received by the
FC from each sensor. Precisely, each sensor node needs
to estimate the channel seen towards the FC in order to
pre-compensate the transmitted value according to the
channel attenuation. Thereby, although feasible in princi-
ple, this approach requires a sophisticated processing and
tight power control by the sensor nodes.
According to a data gathering paradigm, the projections

are computed within the network by a subset of sensors
while they are forwarding their sensed values to the FC.
The sums in (7) can then be realized by routing and accu-
mulating values of z [n1, n2] over suitably tilted paths in
the network grid discrete support.
Here we refer to such a data gathering approach, and we

infer some consequences from the peculiar sparse struc-
ture of the matrix �R on the computation procedure.
Firstly, we observe that in every row, the non-zero coef-
ficients of the matrix �R are arranged so as to obtain
y(ϑp)[m] as the sum of the values of a column of the rotated
image z(ϑp). When collecting the measurement in a WSN,
each projection y(ϑp)[m] can then be computed by accu-
mulating measurements throughout a specific, suitably
tilted, grid path. Secondly, we observe that in every col-
umn of the matrix �R, there are only P non-zero values.
Hence, each value z[i, j] shall contribute only to P out of
M projections y(ϑp)[m]. When realizing the Radon-like CS
in the sensor network grid, each sensor shall transmit its
value P times.
Based on these premises, we recognize that the sparse

structure of the matrix �R results into two main features
of Radon-like projection computation in a WSN:

• The computation of each projection y(ϑp)[m] is
performed in a distributed way within the WSN, and
it requires signaling among grid sensors which are
adjacent along a WSN path.

• The accumulation along different paths can then be
realized in parallel, provided that the distance
between contemporaneously signaling nodes is kept
large enough.

The data gathering scheme shown in Figure 3 is a case
in point. A square network grid is employed to flood the
data towards the FC. While forwarding the data along
the linear paths (in red in Figure 3), the node partially
accumulates them and therefore cooperates to incremen-
tal computation of the Radon-like CS measurements. To
alleviate the load of the nodes in the FC nearby, the net-
work can be divided into four quadrants that sequentially
contribute to the data collection. As we will show in the
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Figure 3 Example of quadrant-based data gathering geometry
for Radon-like CS measurements computation in a WSN.

following, this quadrant-based approach may be used to
derive a specific data gathering procedure.
We now turn to quantifying the energy consump-

tion and bandwidth occupancy required for realizing the
Radon-like CS by means of a data gathering procedure
in a WSN. In Section 6.1, we evaluate the energy con-
sumption and bandwidth occupancy of the Radon-like
CS scheme in a WSN. Next, we compare these results
with selected state-of-the-art schemes, namely those of
the random sensing approaches described in Section 1,
detailed in Section 6.2.

6.1 Radon-like CS efficiency
We now evaluate the allocated bandwidth and consumed
energy for entirely collecting the measurements in a time
Tc in the WSN scenario in Section 2. The actual band-
width occupation and energy consumption depend not
only on the WSN structure but also on the adopted data
gathering procedure. Without loss of generality, we refer
to the suboptimal data gathering algorithm sketched out
in Appendix 2, here briefly summarized for the reader’s
convenience.
According to the algorithm in Appendix 2, the sen-

sors transmit their readings to the FC by data gathering
through suitable multi-hop paths. Figures 4 and 5 illus-
trate, as an example, the multi-hop paths selected for the
computation of the projections y(π/2)[m] , y(π/4)[m] within
a network quadrant.
A deterministic (collision-free) time division multiple

access (TDMA) is adopted. Signaling takes place between
adjacent nodes only. Parallel transmission of nodes suffi-
ciently apart is considered. In Appendix 2, we evaluate two
parameters that directly affect the energy and bandwidth
consumption of the data gathering algorithm, namely the
total number of single-hop transmissions (NTX) and the

Figure 4 Data gathering algorithm: spatial organization of
sensors’ transmissions for horizontal projection evaluation in
the first quadrant. Time stamps indicate when the node starts
transmitting.

total number of time slots (NTS) needed to collect all the
sensors’ readings to the FC.
The total number of node transmission, NTX, for the

algorithm under concern comes out to vary linearly with
the network size:

NTX ≈ γP · N , (13)

γP being a scalar factor depending on the adopted P pro-
jections. The guidelines for calculating γP are given in
Appendix 2 where we also evaluate the value of γP for
different sets of directions ϑp.
Based on the same data gathering algorithm, we have

evaluated the number of time slots needed to collect all

Figure 5 Data gathering algorithm: spatial organization of
sensors’ transmissions for diagonal projection evaluation in the
first quadrant. Solid arrows indicate (p1) paths, and dashed arrows
indicate (p2) paths. Time stamps indicate when the node starts
transmitting.
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the sensors’ readings to the FC. The number of time slots
turns out to vary just with the square root of the network
size, that is,

NTS ≈ δP · √
N , (14)

δP being a factor depending on the considered projec-
tion directions ϑp. Appendix 2 reports the guidelines for
the evaluation of the parameter δP for different sets of
directions ϑp.
We observe that, as a consequence of the sparsity of

the Radon-like sensing matrix, (1) the number of trans-
mission varies only linearly with the network size N , and
(2) the algorithm being parallelized, the number of time
slots varies linearly with the square root of the network
size N . With these results, we are able to evaluate the
allocated bandwidth and consumed energy for entirely
collecting the measurements in a time Tc in the WSN
scenario described in Section 2.
Projection evaluation according to the data gathering

scheme detailed in Appendix 2 accounts for a series
of transmissions among neighboring nodes. The energy
spent for a single-hop transmission is given by ESH =
Gd2SHT

(RL)
p , with dSH = d or

√
2d being the distance

for horizontally, vertically, and diagonally adjacent nodes
(a scale factor depending on the actual transmission
parameters, namely the sensitivity at the FC receiver and
the transmitter and receiver antenna gains) and T (RL)

p the
time needed for packet transmission.
Overall, we can express the total consumed energyc for

the Radon-like CS-based approach as

ERL = NTXG d2T (RL)
p . (15)

The packet duration T (RL)
p depends on the design of the

selected sensing system. If the overall sensing framework
is designed under the system constraint of having a fixed
occupied bandwidth B, the packet duration time will be
evaluated as T (RL)

p = L/BRL with BRL = B.
This approach is suited to an application scenario where

the bandwidth devoted to inter-sensor communications is
fixed in advance. Other possible system constraints con-
cern the time interval during which a whole set of mea-
surement is acquired. In this case, the time for refreshing
of the measurement is fixed to Tc. Stemming on such
a design constraint, the packet duration time needed to
assure that the measurements are collected within a max-
imum time of Tc is written as follows:

T (RL)
p ≤ Tc

NTS
. (16)

Under this setting, the minimum occupied bandwidth,
defined as the packet length in bits L over the packet

transmission time, for the Radon-like approach is evalu-
ated as

BRL = L
T (RL)
p

≥ L
Tc

δP · √
N . (17)

The relation providing the energy consumption in (15)
can then be exploited either by considering an assigned
packet time arising from a system bandwidth constraint
or by assuming a given sensing rate 1/Tc. In the latter
case, the packet duration is evaluated as in (16) so that the
consumed energy reads as follows:

ERL = γP
δP

TcG d2 · √
N . (18)

Such system design choices should be carefully taken
into consideration when comparing energy consumption
of different schemes possibly comprising different num-
bers of single-hop transmissions NTX.
When performing numerical simulations, we have con-

sidered both the two aforementioned cases, namely:

• Fixed packet duration for the different compared
schemes: this corresponds to a fixed system
bandwidth constraint (cfr. results in Figure 6).

• Fixed sensing procedure duration Tc: this
corresponds to different packet durations (cfr. results
in Figure 7).

6.2 RS efficiency
We now present a few results on the energy and band-
width consumption of the approaches proposed in [10].
Therein, a RS procedure, allowing only a randomly chosen
subset of sensors to acquire the measurement, is coupled
with both a TDMA scheme and a random access scheme.
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Figure 6 Energy consumption versus number of nodes N under
the constraint of a fixed bandwidth occupancy. That is, the energy
consumption for the different schemes is evaluated under the
assumption of a fixed packet transmission time
(T (RL)

p = T (RD)
p = T (RR)

p = 0.61).
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Herein we elaborate on these results and add a few details.
With respect to the computation in [10], where the energy
consumption for each sensor to transmit to the network
sink is approximated by a constant, here we explicitly take
into account the dependence of the energy with respect
to (w.r.t.) the spatial sensor location. Secondly, therein
an approximate relation is established between two key
system parameters, namely (1) the minimal fraction of
sensing data that must be correctly received at the sink to
allow CS reconstruction and (2) the minimal bandwidth.
Herein we extend the relation to different ranges of sens-
ing probability, better suited to RS of a spatially sparse
field.
In the RS/deterministic access (RD) scheme, the FC ran-

domly chooses a set of M sensors, M being a sufficient
number of measurements for satisfactory field recon-
structions and broadcasting the addresses of eliged nodes
through the network. The selected nodes acquire themea-
surements and transmit their readings to the FC via a
TDMA deterministic access scheme. As in this scheme
onlyM nodes need to share the TDMA frame, the packet
transmission time is T (RD)

p = Tc/M. Consequently, the
occupied bandwidth for the RD scheme is BRD = M L

Tc
.

In order to evaluate the consumed energy, let us con-
sider the set CM;N collecting all the possible configurations
of M out of N nodes. The energy consumption of a given
configuration c ∈ CM;N of M is expressed as E(c) =∑

kc G d2kcT
(RD)
p where the sum over the index kc spans the

M sensors within the combination c. Thereby, the energy
consumption of each combination depends on the dis-
tances of the M nodes from the FC. In this respect, we
evaluate the energy consumption of the RD scheme as
the average over all the possible combinations: ERD =

1
KM;N

∑
c∈CM;N

∑
kc G d2kcT

(RD)
p where KM;N = (N

M
)
is the

cardinality of CM;N . We recognize that in the overall sum
over the KM;N combinations, the energy spent by each
and every network sensor appears in

(N−1
M−1

)
terms, cor-

responding to the combinations it belongs to. Therefore,
denotingN1

def= α1
√
N ,N2

def= α2
√
N , the above sum can be

rewritten as

ERD = M
α1α2(α

2
1 + α2

2)

48
NT (RD)

p .

The energy consumption and occupied bandwidth perfor-
mance of the scheme in [10] need to be addressed in a
slightly different way w.r.t. the previous cases. CS theo-
retic results determine the number M of measurements
needed at the FC to correctly restore the sensed field;
within an observation time, this constraint corresponds
to a required percentage qs of correctly received sam-
ples at the FC. Because of possible collisions, the required
percentage qs needed at the FC does not translate straight-
forwardly into a sensing probability ps. In [10], the authors
establish a relationship among the sensing probability ps
and the probability qs of correct packet reception and
demonstrate that, given qs, a minimum bandwidth B is
required in order to assure that a feasible value of ps
exists. Thereby, if the available bandwidth is not accurately
dimensioned, small values of ps do not provide enough
measurements at the FC, whereas large values of ps cause
too many collisions.
Besides, in [10], the authors provide an expression,

standing for small values of qs, of theminimum bandwidth
as a function of the desired qs. Following the guidelines in
[10], we have extended such results to accommodate for
large values of qs, too. Specifically, we came up with the
relation Bmin

RR = L
Tc

(−2N[ ln qs]−1 + 1
)

if qs ≥ e−1.
The RS settings are therefore assigned as follows. Firstly,
the desired qs is fixed according to the reconstruction
quality constraints. Secondly, the minimum needed band-
width is evaluated. Finally, the selected bandwidth value is
employed to derive the needed sensing probability ps [10].
With these positions, the packet transmission time T (RR)

p

is determined from the employed bandwidth as T (RR)
p =

L/Bmin
RR . Besides, the energy consumption is determined by

the value of ps; the average network consumed energy is
evaluated as

ERR = ps
24

N2T (RR)
p . (19)

6.3 Further remarks
Before turning to the numerical performance evalua-
tion, a few remarks are in order. The above analysis has
pointed out that the consumed energy and allocated band-
width adopting the Radon-like CS scheme grow only
with the square root

√
N of the network size, whereas

those of selected state-of-the-art approaches vary with
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the power N . The impact of these trends on energy con-
sumption depends on all system parameters and mostly
on ps. For a spatially sparse field, where ps and con-
sequently qs tend to be high, since a large fraction of
sensors shall transmit their values using RS with ran-
dom access to allow proper reconstruction, a random
sensing scheme is prone to exhibit a large energy con-
sumption and bandwidth occupancy. The Radon-like CS
scheme then yields a reduced energy consumption for
each node, as well as a parsimonious bandwidth use for
collecting data over the entire grid. The gain is more and
more evident as the network size (i.e., the covered area)
increases.
Let us point out that, on non-spatially sparse fields, the

conditions for accurate reconstruction, e.g., the values of
ps and P, may differ, leading to different relative perfor-
mances. The investigation of this issue is left for further
studies.
The actual gain in terms of energy and bandwidth

depends on the constants γP, δP which grow with the
number of considered projections. The advantages of the
Radon-like CS scheme are expected to be evident on spa-
tially sparse signals, where low values of P (e.g., P = 3)
enable reconstruction, whereas the RS data gathering
algorithm requires a high percentage of samples to reach
the FC in order to achieve satisfying reconstruction
results [18].
As far as the medium access scheme is concerned,

the herein-devised Radon-like CS scheme is realized via
a TDMA technique, just as the RD scheme. Therefore,
it implies an effort of synchronization and scheduling.
Nonetheless, different data gathering procedures can be
envisaged realizing the Radon-like CS using a random
access criterion. This issue is left for further studies.
Finally, these results depend on the peculiar structure
of the Radon-like sensing matrix �R and, although

derived for a particular data gathering algorithm, can
be generalized to different Radon-like CS measurement
computation schemes.

7 Numerical simulations
In this section, we analyze the performance of our Radon-
like CS scheme both in terms of reconstruction accuracy
and of employed network resources. Firstly, in Section 7.1
we present a few results showing that an accurate recon-
struction of a spatially sparse signal can be achieved by
the Radon-like CS using a feasible number of Radon-
like projections. Secondly, in Section 7.2 we demonstrate
the energy and bandwidth gain achievable when adopting
the Radon-like CS scheme in a WSN. For fair compari-
son of the different sensing techniques, we consider their
performances under different system parameter settings,
respectively corresponding to the case when each of the
sensing system is operating at its minimal bandwidth and
to the case of packet duration Tp fixed for all the schemes.
A comprehensive representation of the bandwidth-energy
pairs of the different sensing systems is then shown ver-
sus the network dimensionality. Finally, we present a few
results assessing the performance of Radon-like CS sam-
pling on real-world data.

7.1 Radon-like CS reconstruction accuracy
With reference to the network model in Section 2, we
consider a WSN made up by a square grid of N =
64 × 64 = 4, 096 sensors. The sensed field z[n1, n2]
is built up by seven repetitions of an elementary 5 × 5
pattern, differently scaled by factors in the range (0.5 −
0.85]. Figure 8a describes an example of the field z[n1, n2].
This field adheres to the so-called pulse stream sig-
nal model described in [25], and Algorithm 2 presented
therein is employed for computing the reconstructed field
ẑ[n1, n2].

Figure 8 Original field z[n1,n2] (a) and reconstructed field ẑ [n1,n2] (b) after sensing. Reconstruction was performed according to the
Radon-like CS with P = 3 projections.
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We have first evaluated the reconstruction accuracy of
the Radon-like CS scheme, using different number P of
projections, under the assumption of noise-free obser-
vations. Specifically, we have tested the reconstruction
accuracy when only projections along rows and columns
of the network grid are considered (P = 2,M = 128),
when projections along the rows, columns, and the π/4-
oriented diagonal of the grid are considered (P = 3,
M = 255), and finally, also when projections along
the 3π/4-oriented diagonal are considered (P = 4,
M = 382).
Table 1 reports the mean square error (MSE) of the

reconstructed field ẑ, i.e., MSE = 1
N (z − ẑ)T(z − ẑ),

achieved after 20 iterations of the reconstruction Algo-
rithm 2 and averaged over ten runs corresponding to
different pulse locations. Results in Table 1 show the
effectiveness of the Radon-like CS scheme in sensing a
sparse field with a restrained number of measurements.
To visually assess the Radon-like CS scheme reconstruc-
tion accuracy, we show in Figure 8b the reconstructed field
ẑ[ n1, n2] obtained by measuring the field in Figure 8a with
P = 3 projections.
For the sake of comparison, we have also evaluated

the reconstruction accuracy obtained by the RS [10]
scheme under the same experimental settings. In Table 1
we recognize that, for the selected range of measure-
ments (M ≤ 382), the RS does not allow capturing the
sparse nature of the sensed field. To obtain the same
reconstruction accuracy of the Radon-like CS scheme,
namely a MSE equal to 0.0036, the RS requires to be
run with a number of measurements M � 2, 500 ≈
50%N .
Similar results have been obtained by scaling the num-

ber of network nodes to N = 80 × 80 = 6, 400 and
considering a sensed field z[n1, n2] composed by eight rep-
etitions of the elementary pulse. The MSE of the Radon-
like CS scheme, averaged over ten runs, is reported in
Table 2. Also, in this case, theMSE obtained by the Radon-
like CS scheme with P = {2, 3, 4}, corresponding to M =
{160, 319, 478} measurements, proves to exhibit satisfac-
tory reconstruction quality. For the sake of comparison,
we observe that in these experiments, M = 3, 500 were

Table 1 Reconstruction accuracy (MSE) obtained by
Radon-like CS and RS schemes (N = 64 × 64 = 4, 096) for
different numbers of measurements

Parameter

M 128 255 382

P 2 3 4

ϑp 0,π/2 ϑp = 0,π/2,π/4 ϑp = 0,π/2,±π/4

Radon-like CS – MSE 0.0056 0.0019 0.0011

RS – MSE 13.3 7.604 4.721

Table 2 Reconstruction accuracy (MSE) obtained by
Radon-like CS and RS schemes (N = 80 × 80 = 6, 400) for
different numbers of measurements

Parameter

M 160 319 478

P 2 3 4

ϑp 0,π/2 ϑp = 0,π/2,π/4 ϑp = 0,π/2,±π/4

Radon-like CS – MSE 0.0045 0.00152 0.000901

RS – MSE 8.602 6.472 4.506

needed by the RS to achieve analogous performance,
namely a MSE equal to 0.006231.
Finally, we have tested the Radon-like reconstruction

accuracy when noisy acquisition is considered so that the
CS measurements can be modeled as

y = �z + n

where the vector n gathers samples of white zero mean
Gaussian noise with variance σ 2

n . In Table 3 we report the
reconstruction accuracy obtained when acquiring with
N = 64 × 64 = 4, 096 sensors a field composed by seven
patterns via the Radon-like CS scheme for different values
of σ 2

n . Results in Table 3 show how the presence of noise in
the acquisition process does not severely affect the recon-
struction performance of the Radon-like CS approach.
To recap, the above results show that, as a rule of thumb,

Radon-like CS requiresM ≈ P
√
N measurements for rep-

resenting a spatially sparse field, whereas the RS requires
a large percentage of the measurements MRS ≈ αN to be
correctly received (e.g., P = 3 and α = 50% in the above
experiments). Overall, the Radon-like CS scheme allows
sensing and reconstructing of a spatially sparse field with
far less measurement w.r.t. state-of-the-art techniques
such as the RS presented in [10].

7.2 Radon-like CS efficiency
We now show that, besides using a restrained number
of measurements, the Radon-like CS presents significant
advantages in terms of energy and bandwidth needed to

Table 3 Reconstruction accuracy (MSE) obtained by the
Radon-like CS, noisy measurements
(N = 80 × 80 = 6, 400)
Parameter

M 128 255 382

P 2 3 4

ϑp 0,π/2 ϑp = 0,π/2,π/4 ϑp = 0,π/2,±π/4

Radon-like CS – MSE
for σ 2

n = 0.5
0.0065 0.0034 0.0033

Radon-like CS – MSE
for σ 2

n = 0.7
0.007 0.0039 0.0036
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disseminate sensor readings towards the FC. We evaluate
the performance of Radon-like CS data gathering scheme
(RL) by evaluating the consumed energy and occupied
bandwidth under the following assumptions:

(a1) The number of measurements chosen is
large enough to yield a satisfactory reconstruction
accuracy, quantified by a MSE≤ 10−3.

(a2) The coherence time of the sensed field is fixed to
Tc = 2, 500s.

(a3) The dimension of the transmitted packet is set to
L = 1 Kb.

With reference to the experimental setting described in
Section 7.1, condition (a1) implies P = 3 projections.
We start by computing the energy consumption under
the assumption that the occupied bandwidth and, conse-
quently, the packet transmission time Tp = L/B are the
same for the different schemes.
Let us remark that, under this setting corresponding

to a system design choice of having a fixed occupied
bandwidth, each scheme requires a different number of
transmissions in order to let the FC acquire the needed
measurements. Thereby, the overall process of sensing is
accomplished in different time intervals by the different
data gathering techniques. In these experiments, we have
set T (RL)

p = T (RD)
p = T (RR)

p = Tp = 0.61. Figure 6
reports the energy consumed for different numbers of
network sensors N . We recognize that employing the RL
scheme drastically reduces the energy consumed by the
data gathering algorithm.
We then proceed to compute for theminimum occupied

bandwidth required by the RL scheme to guarantee cor-
rect sensing and reconstruction of a spatially sparse field
under the constraint of a given refresh time Tc. Figure 9
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Figure 9Minimum bandwidth occupancy versus the number of
nodes N.

plots the occupied bandwidth evaluated according to (17)
versus the network size in terms of the number of sensors.
For the sake of comparison, in the same figure, we also

report the performance of RS, implemented using both a
deterministic access scheme (RD in the legend) and the
random access scheme (RR in the legend) described in
[10]. The occupied bandwidth is computed according to
the analysis in Section 6 for the RL, RD, and RR scheme,
respectively, under the same assumptions (a1) to (a3).
These settings imply ps = 0.5 for the RD scheme and
qs = 0.5 for the RR one.
The bandwidth employed for the Radon-like data gath-

ering scheme is significantly reduced w.r.t. the RS, both
using deterministic and random access. The above results,
obtained by considering different numbers of measure-
ments and equal reconstruction accuracy for the three
algorithms, are explained by the efficiency of the Radon-
like data collection algorithm, exploiting only single-hop,
parallel data transmission.
We have then pushed further the comparison to find

under which conditions the Radon-like and the RS
schemes equally perform. In doing so, we have evalu-
ated the bandwidth occupied by the RD and RR schemes
when only 10% of the sensor readings are required to
be correctly received by the FC. Figure 10 reports these
results showing that the RL scheme still favorably com-
pares with the RR scheme while requiring just slightly
higher bandwidth w.r.t. the RD scheme. Therefore, the RL
scheme overcomes the RD and RR ones unless they use
a very low percentage of the sensors’ readings for field
reconstruction.
Finally, we are interested in comparing the resource

employed by the different schemes to accomplish the
sensing process exactly at the same time. To reach this
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Figure 10Minimum bandwidth occupancy versus the number of
nodes N. Results were obtained when only 10% of the sensor
readings are required for RS schemes to achieve satisfactory
reconstructed quality.
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goal, as the number of single-hop transmissions varies
from one scheme to another, the different schemes will
have a different packet transmission time and hence will
occupy a different bandwidth. In Figure 7, we illustrate
the bandwidth-energy scatterplot of the RL, RR, and RD
schemes for different network sizes. For RD and RR, we
have considered two cases, that is, when 50% and 30% of
the sensor readings are required at the FC for satisfactory
field reconstruction.
The energy/bandwidth pairs draw different trajectories

while the number of nodes N increases. We clearly rec-
ognize a systematic energy and bandwidth saving of the
RL scheme w.r.t. the competitors. Moreover, both the con-
sumed energy and the occupied bandwidth exhibit far
smaller variations with the number of network nodes than
what happens with the RD and RR schemes, making the
RL approach fully scalable in terms of network nodes.

7.3 Radon-like CS performances on real data sets
We now apply the Radon-like CS matrix to real-world
data. Following the approach in [10], we resort to public
oceanographic databases, namely the ones in [26]. Specif-
ically, we have considered the compressive sensing acqui-
sition of the ‘Zonal Current’ data at Monterey Bay on
October 10, 2012. The Zonal Current data at the selected
day are represented in Figure 11 (left). Let us highlight
that the considered data are not spatially sparse. On the
contrary, visual inspection of Figure 11 (left) shows how
the field is represented by a pronounced pulse embed-
ded in small values. Thereby, different approaches can be
pursued. For instance, Radon-like sampling could be inte-
grated with suitable basis transform to track for signal
sparsity; this approach is left for further studies. Here we
undertake a different procedure. Although the field is not
strictly sparse as most of its values are indeed non-zero,
we observe that it is yet true that most of the informa-
tion conveyed by the field in Figure 11 (left) lies on its

peaks. For the reader’s convenience, we report in Figure 12
a histogram of the field values in Figure 11 (left), and in
Figure 13, a histogram of the thresholded field value in
Figure 11 (center) for t = 0.2. In Figure 12, we have also
indicated the thresholding value (black dashed line) and
the mean value of the sensed field (red solid line).
Stemming from this observation, we employ the Radon-

like CS scheme to acquire a thresholded version of the
original field. We acquire the (81 × 81) sensed field for
different values of the threshold t, using a Radon-like
scheme with P = 3. This scheme comprises projections
along the rows, columns, and the π/4-oriented diagonal
of the grid, thus resulting in M = 323. Then we employ
the CoSaMP algorithm as the reconstruction procedure.
The reconstructed image is finally compared to the orig-
inal, not thresholded, field so as to evaluate the MSE
with respect to the original image. In Table 4, we report
the results obtained for different values of the threshold
t, corresponding to different degrees of sparsity of the
thresholded image. We also report in Table 4 the number
of non-zero samples in the thresholded image.
The results in Table 4 confirm the effectiveness of the

Radon-like scheme in enabling reconstruction of the spa-
tially sparse nature of the sensed thresholded field, achiev-
ing MSE as low as 0.0036 for a high threshold value such
as t = 0.2. As the thresholding factor, the number of
non-zero coefficients in the thresholded image increases,
making the Radon-like approach less effective. We would
like to emphasize that application of Radon-like sensing
matrices to non-sparse data could still be possible by tak-
ing into account suitable sparsifying basis, which is left for
further studies.
In Figure 11 (right), we report the reconstructed thresh-

olded field after 15 iterations of the CoSaMP algorithm
for t = 0.2; the corresponding original thresholded
image is reported in Figure 11 (center). Visual inspec-
tion of Figure 11 (right) shows how, in spite of the

Figure 11 Compressive sensing acquisition of the Zonal Current data. Zonal Current field sensed at Monterey Bay on October 10, 2012 (left),
thresholded field sensed (t = 0.2) (center), and reconstructed thresholded field sensed obtained by running the CoSaMP algorithm over the CS
measurements obtained by the Radon-like approach for P = 3,M = 323, t = 0.2 (right).
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Figure 12 Histogram of the sensed field values. The black dashed
line represents the thresholding value, and the red solid line
represents the mean value of the sensed field.

reduced number of measurements and of the restrained
energy consumption, the Radon-like scheme is capable
of capturing the spatially sparse nature of the recon-
structed field. Finally, the approach outlined herein could
be enforced by taking into account suitable padding of
the data samples that are under the threshold, so as to
substitute the zero entries obtained by the reconstruction
algorithm with a specific non-zero value, e.g., their spatial
mean, thereby reducing the observed MSE.

7.4 Final remarks
As a final remark, we observe that energy and band-
width gain yielded by the Radon-like approach is directly
based upon the favorable matching between the Radon-
like matrix structure and the spatially sparse structure of
the sensed field. Based on these results, we envisage a
twofold extension of our work, namely:
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Figure 13 Histogram of the thresholded field values. The
threshold has been set to t = 0.2.

Table 4 Reconstruction performance in a real-data
scenario (Zonal Current at Monterey Bay [26]) for different
thresholding values

t S MSE against original MSE against
field thresholded field

0.1 826 0.003 0.0015

0.125 485 0.0031 8.20 × 10−4

0.15 386 0.0033 6.67 × 10−4

0.175 319 0.0035 5.89 × 10−4

0.2 285 0.0036 5.59 × 10−4

Results refer to Radon-like CS with P=3,M=323.

• In accounting an irregular sampling grid
• In exploiting non-straight sampling path.

These conditions may be encountered, for instance,
in vehicular networks or citizen sensing networks [27],
where the disposition of the nodes are far from being reg-
ular, and the sampling path should adapt to the routing
paths, which in turn basically depend on the street and
building disposition. To sum up, we consider this contri-
bution as an intermediate step towards finding a general
relation between the compressive sensing of a finite inno-
vation rate signal and its realization by efficient routing
algorithms in a realistic WSN scenario.

8 Conclusions
In this paper, we have addressed the efficient compressive
sampling of spatially sparse signals in sensor networks.
Specifically, we have introduced a peculiar CS sampling
scheme for spatially sparse bidimensional signals.We have
analytically demonstrated that our scheme satisfies the
theoretical conditions required for CS signal reconstruc-
tion. Then after devising a distributed data gathering
scheme for collecting of the CS measurements in a WSN,
we have characterized the scheme both in terms of con-
sumed transmission energy and occupied bandwidth. The
scheme outperforms state-of-the-art schemes for spa-
tially sparse fields, and it represents an intermediate step
towards the definition of routing procedures well suited to
the characteristics of the signal a realistic sensor network
is faced with.

Endnotes
aThe coherence time Tc is defined as the time interval

over which the process almost de-correlates in time.
bFormally, we obtain the ϑp-radiant clockwise-rotated

version of the image z [n1, n2] by regular sampling of the
rotated field

s(ϑp) (x, y; t) = s
(
x cosϑp + y sinϑp, x sinϑp − y cosϑp; t

)
.

cWe also approximate herein the inter-sensor distance
in the diagonal direction to d.
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Appendix 1 :RIP property of the Radon-like
measurements matrix
Property Let us assume that the entries in the matrix �R
are either deterministically set to zero or drawn from i.i.d.
zero mean Gaussian random variables with equal variance
σ 2

ϕ = 1/P; the following concentration inequality stands:

Pr{|Ey − Ez| ≥ δ} ≤ ε (20)

provided that P ≥ 2K2C2
2 log(2/ε)/δ2, C2 being a suitable

constant.
Demonstration The condition in (20) can be demon-

strated as follows. Let us consider the sample energy Ey
of the measurements. Ey being a sample moment, we
invoke here its asymptotical normal distributions [28].
Although this hypothesis is not necessary for the RIP to
stand, it allows us to straightforwardly evaluate the min-
imal number of projections P required for K-sparse field
reconstruction, and therefore we retain it in the following.
The Chernov bound [29] for a normal random variable

establishes that the probability that the random variable
differs from its mean is limited by a term exponen-
tially decaying with its variance. By applying the Chernov
bound to the random variate Ey, we obtain

Pr{|Ey − E
{
Ey

}| ≥ δ} ≤ 2 · exp−δ2/2σ 2
Ey .

Thereby, in order to demonstrate (12), it suffices to show
that E

{
Ey

} = Ez and Var
{
Ey

} = o(P) for the case under
concern.
By definition we have

Ey =
P−1∑
p=0

K(p)−1∑
m=0

(∑
i

ϕ
(p)
m [ i] z(ϑp)[ i,m]

)2

.

Let us denote by

y(ϑp)
m

def=
∑
i

ϕ
(p)
m [i] z(ϑp)[i,m] ,p = 0 . . .P − 1,

m = 0, . . .K(p) − 1.

We recognize that y(ϑp)
m are independent normal random

variables, with zero mean and variance equal to

Vary(ϑp)
m = σ 2

ϕ

∑
i

(
z(ϑp)[ i,m]

)2
. (21)

We then evaluate the expected value of Ey as follows:

E
{
Ey

} =
P−1∑
p=0

K(p)−1∑
m=0

Vary(ϑp)
m . (22)

Substituting (21) in (22) and recognizing that∑
m

∑
i
(
z(ϑp)[i,m]

)2 = Ez, we have

E
{
Ey

} = σ 2
ϕ · P · Ez (23)

Hence, by setting σ 2
ϕ = 1/P, we get E

{
Ey

} = Ez.

As far as the variance of Ey is concerned, we obtain

VarEy =
P−1∑
p=0

K(p)−1∑
m=0

Var(y(ϑp)
m )2

=
P−1∑
p=0

K(p)−1∑
m=0

(
E

{
(y(ϑp)

m )4
}

− E
{
(y(ϑp)

m )2
}2)

Since the variables y(ϑp)
m are zero mean normally dis-

tributed, their fourth-order moments satisfy

E
{
(y(ϑp)

m )4
}

= 3 ·
(
Vary(ϑp)

m
)2

so that we obtain

VarEy = 2
P−1∑
p=0

K(p)−1∑
m=0

(
Vary(ϑp)

m
)2

.

Observing that, for a K-sparse signal, the maximum
value of

∑
i2

(
z(ϑp)[i2,m]

)2 is achieved in case ofK aligned
pulses, we recognize that the following inequality stands:

(
Vary(ϑp)

m
)2 = σ 4

ϕ

P−1∑
p=0

K(p)−1∑
m=0

∑
i1

(
z(ϑp)[i1,m]

)2

·
∑
i2

(
z(ϑp)[i2,m]

)2

≤ σ 4
ϕ

P−1∑
p=0

K(p)−1∑
m=0

∑
i1

(
z(ϑp)[i1,m]

)2 · KC2

= σ 4
ϕP · Ez · KC2

with C2 = max(n1,n2) z [n1, n2]2.
Finally, we recognize that the variance Var

{
Ey

}
is upper

bounded by

Var
{
Ey

} ≤ 1
P

· K2C2
2 . (24)

In (24), we recognize that the variance Var
{
Ey

}
decays

as 1/P. Furthermore, by comparing (24) and (12), we rec-
ognize that the RIP is verified provided that the number
of projections P satisfies

P ≥ 2K2C2
2 log(2/ε)/δ2.

The demonstration presented herein proves that the
Radon-like CSmatrix satisfies the RIP property in the spa-
tial domain, i.e., under the assumption that the sparsifying
basis is the canonical basis. The interested reader can find
a proof of the RIP property for the Radon-like matrix in
any orthonormal non-canonical basis in [30].

Appendix 2 :WithinWSN Radon-like projections’
computation
Let us consider a regular network composed byN = N1N2
sensors as in Figure 1 where, without loss of generality, we
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assume that N1 and N2 are odd valued, i.e., N1 = 2Ñ1 + 1,
N2 = 2Ñ2+1, so as to identify a central column where the
FC is located.
We discuss a simple suboptimal procedure to collect

all the projections to the FC using a TDMA access
scheme. Let us subdivide the network into four quad-
rants, and let us consider first the horizontal projections
pH [m], obtained by accumulating randomly weighted val-
ues along the network rows. In each quadrant, the data
gathering process starts at the outer nodes. The external
node in each row measures the field, computes the prod-
uct of the reading with a randomly selected coefficient,
encodes this value in a packet of L bits, and transmits it
to the neighboring node in the horizontal direction. The
neighboring node, once the packet from the outer node
has been received, measures the field, multiplies the read-
ing by the random coefficient, and sums it to the value
received by the outer node. The overall process continues
until the nodes in the central column are reached by the
data flow and are then ready to propagate the projection
values to the FC. Once the FC has received the horizon-
tal projection values from the first quadrant, the same
operations are serially performed in the three remaining
quadrants. The projection values of each quadrant are
therefore computed by evaluating partial sums and prop-
agating them towards the nodes in the central column;
then the projection values are transmitted to the FC via a
multi-hop route along the central column.
Let us now evaluate the number of transmissions

required to compute the horizontal projections. To collect
the contributions within a network quadrant, we need the
following:

• Ñ1 transmission to reach the central column for each
of the Ñ2 + 1 rows

• ∑Ñ1
l=0 l transmissions to propagate the projection

value towards the FC along the central column

Accounting for the four quadrants, the overall num-
ber of transmissions for horizontal projection evaluation
sums up to

N (π/2)
TX = N1 − 1

2
(2N2 + N1 + 3) .

By denoting N1
def= α1

√
N , N2

def= α2
√
N , we can write

N (π/2)
TX = (α1α2 + α2

1
2

)N + (α1 − α2)
√

(N) − 1.5. (25)

Let us now evaluate the number of time slots in which
the N (π/2)

TX transmissions can be performed. Since signal-
ing occurs between adjacent nodes, the propagation of
information on the different rows can be scheduled in par-
allel flows, provided that a suitable inter-row delay of ν0
time slots is introduced to prevent interference among
neighboring nodes.

Let us sketch out a possible time scheduling for within-
quadrant transmission, corresponding to the following
gathering protocol:

• The data gathering starts at t0 = 0, on the first row of
the quadrant, i.e., the one comprising the FC. The
outermost node transmits its randomly weighted
sensed value in the first time slot. In the second time
slot, the second node forwards the sum of the
received data and its own randomly weighted sensed
value. Similarly, each node updates and sends the
received partial sum. Thereby, the FC retrieves the
accumulation after t1f = Ñ1Tp, with Tp being the
duration of a time slot.

• On the second row, the transmission begins after ν0
time slots to avoid interference with the first-row
transmission. Then Ñ1 time slots are needed for the
partial sum to reach the central column, and one
additional time slot is needed to reach the FC. The
propagation ends at t2f = (ν0 + Ñ1 + 1)Tp.

• On the ith row, the transmission begins after
(i−1) · ν0 time slots, and the propagation ends at
tif = (i · ν0 + Ñ2 + i)Tp.

• On the (Ñ2 + 1)-th row, transmission to the FC is
accomplished at tÑ2+1

f = (Ñ2ν0 + Ñ1 + Ñ2)Tp.

For the sake of clarity, we report in Figure 14 a scheme
summarizing the timing of the nodes’ transmissions when
computing the horizontal projections pH [m] within a
quadrant of the network.
The FC is then able to collect all the horizontal pro-

jections in a quadrant after Nq = Ñ2ν0 + Ñ1 + Ñ2 time
slots. If the quadrants are visited in a serial fashion, the
overall number of time slots to compute the horizontal
projections accounts for

N (π/2)
TS = 4(Ñ2ν0 + Ñ1 + Ñ2).

0 0t = 0 pTν 02 pTν

1 pN T
t

( )1 1 pN T+

( )2 1 pN N T+

2 0 pN Tν

1st row

2nd row

( )2 1N + th row

Figure 14 Data gathering algorithm: timing of the nodes’
transmissions for within quadrant evaluation of pH [m].
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Again, by denoting N1
def= α1

√
N , N2

def= α2
√
N , we have

N (π/2)
TS = 2

√
N [α2 + α1(1 + ν0)] − (4 + 2ν0). (26)

The overall protocol for evaluating pH [m] is illustrated
in Figure 4.
An important remark is in order. Despite its simplicity,

this basic result highlights one of the major advantages
of the Radon-like CS scheme. Since the Radon-like pro-
jections can be evaluated by means of information prop-
agation on linear paths in the network, the number of
single-hop transmissions vary with the product depth and
width of the network grid, that is, with the network size
N . On the other hand, since only single-hop transmis-
sions are employed, the transmission can be parallelized,
and the number of time slots required for computation of
an assigned projection set y(ϑp)[m] varies with the sum
of depth and width of the network grid, that is, with the
square root of the network size N . This intrinsic behav-
ior, which holds for different projections’ directions, is the
reason why the Radon-like CS scheme will be proven to be
both energy- and bandwidth-efficient.
With slight modifications, the above described proce-

dure can be extended to the case of differently tilted paths.
For the sake of concreteness, we develop in the following
the calculations for ϑp = 0 (vertical projections), ϑp =
±π/4 (diagonal projections), which have been considered
in the simulations described in this paper.
Vertical projections p(0)[m] can be computed using the

same protocols adopted for the horizontal projections so
that we have

N (0)
TX = N2 − 1

2
(2N1 + N2 + 3)

N (0)
TS = 4(Ñ1ν0 + Ñ2 + Ñ1)

or equivalently

N (0)
TX = (α2α1 + α2

2
2

)N + (α2 − α1)
√

(N) − 1.5 (27)

N (0)
TS = 2

√
N [α1 + α2(1 + ν0)] − (4 + 2ν0). (28)

If only horizontal and vertical projections are consid-
ered within the Radon-like CS scheme, stemming from
(25) and (27), we can evaluate the overall number of
transmissions needed to propagate data towards the FC as

N (0,π/2)
TX =

(
2α1α2 + α2

1 + α2
2

2

)
N − 3

where we recognize how the required number of trans-
missions grows linearly with the number of network nodes

N (0,π/2)
TX ≈ γ2N

γ2 =
(
2α1α2 + α2

1 + α2
2

2

)
.

Regarding the number of time slots needed to collect the
sensors’ readings, referring to (27) and (28), we have

N (0,π/2)
TS = (α1 + α2) (4 + 2ν0)

√
N − (8 + 4ν0)

where we recognize how the required number of time
slots grows with the squared root of the network size:

N (0,π/2)
TS ≈ δ2

√
N

δ2 = (α1 + α2) (4 + 2ν0) .

For the type of diagonal projections rD[m] concerned,
the procedure is similar to the previous case in the sense
that the gathering scheme is aimed at propagating the
projection values from the outer row and column of
the quadrant to the FC by first reaching the nodes in the
inner row and column. We serially perform the accumu-
lations in each quadrant, as described for the horizontal
projection, along the following paths:

(p1) All the π/4-oriented paths that originate from the
nodes lying along the outer row of the quadrant and
that reach the FC through either the central row or
the central column (solid arrows in Figure 5)

(p2) All the π/4-oriented paths that originate from the
nodes lying along the outer column of the quadrant
and that reach the FC through either the central row
or the central column (dashed arrows in Figure 5).

The paths (p1) and (p2) both exhibit a length of at most
max{Ñ1, Ñ2}. Each of the Ñ1 + Ñ2 + 1 projections are
composed by at most max{Ñ1, Ñ2} transmissions, so that
the overall number of needed transmissions sums up to

N (π/4)
TX = (N1 + N2) (max{N1,N2} − 1)

= (α1 + α2)max{α1,α2}N − (α1 + α2)
√
N .
(29)

If the quadrant is processed so that we firstly perform
the accumulations along the paths in (p1) starting at t0 =
0 and secondly perform the accumulations along the paths
in (p2), then

• The first projection value along the paths in (p1)
reaches the FC at t1f = Ñ2Tp.

• The last projection value along the paths in (p1)
reaches the FC at most at
t(Ñ1+1)
f = (Ñ1ν0 + max{Ñ1, Ñ2})Tp.
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• The first projection value along the paths in (p2)
reaches the FC at most at
tÑ1+2
f = [(

Ñ1 + 1
)
ν0 + max{Ñ1, Ñ2}

]
Tp.

• The last projection value along the paths in (p2)
reaches the FC at most at
tÑ1+Ñ2+1
f = [(

Ñ1 + Ñ2 + 1
)
ν0 + Ñ1

]
Tp.

Overall, the π/4-oriented diagonal projections in
a quadrant are performed after

[(
Ñ1 + Ñ2 + 1

)
ν0

+max{Ñ1, Ñ2}
]
time slots. Again, if the quadrants are

processed in a serial fashion, the overall number of time
slots needed to evaluate the diagonal projections sums up
to

N (π/4)
TS = 2 [(N1 + N2)ν0 + (max{N1,N2} − 1)]

= 2
√
N [(α1 + α2)ν0 + max{α1,α2}] − 2.

(30)

Figure 15 reports, for the sake of clarity, a time diagram
summarizing the timing of projection evaluation when
performing diagonal projections within a quadrant of the
network.
Then if we consider a Radon-like scheme comprising

P = 3 projections along the directions ϑ = 0,ϑ =
π/2,ϑ = π/4, the overall number of needed transmis-
sions sums up to (cfr. (25), (27), and (29))

N (0,π/2,π/4)
TX ≈ γ3N

γ3 =
(
2α1α2 + α2

1 + α2
2

2

)
+ (α1 + α2)max{α1,α2}

while the number of needed time slots is (cfr. (26), (28),
and (30))

N (0,π/2,π/4)
TS ≈ δ3

√
N

δ3 = (α1 + α2) (4 + 4ν0) + max{α1,α2}.
To recap, the Radon-like CS data gathering procedure

lets the fusion center collect all the needed measurements

0 0t = 0 pTν 1 0 pN Tν

t

( )1 2 0 pN N Tν+

1st p1) path

last p2) path

2 pN T

2 pN T

1 2m ax ( , ) pN N T

2nd p1) path

last p1) path

2 pN T

Figure 15 Data gathering algorithm: timing of the sensors’
transmissions for diagonal projections evaluation.

in a highly parallelized fashion. Far from being optimal,
the data gathering scheme introduced herein allows a sig-
nificant reduction in both the occupied bandwidth and
the consumed energy w.r.t. state-of-the-art data gather-
ing scheme such as the RS introduced in [10]. Further
developments of globally optimized Radon-like CS data
gathering algorithms are still under investigation.
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