187 research outputs found

    The QUIET Instrument

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales (~ 1 degree). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 uK sqrt(s)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 uK sqrt(s) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range l= 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument

    Optimization of robotic assembly of printed circuit board by using evolutionary algorithm

    Get PDF
    This research work describes the development and evaluation of a custom application exploring the use of Artificial Immune System algorithms (AIS) to solve a component placement sequencing problem for printed circuit board (PCB) assembly. In the assembly of PCB’s, the component placement process is often the bottleneck and the equipment to complete component placement is often the largest capital investment

    Composite right/left handed antennas for wireless lan applications

    Get PDF
    The term ‘metamaterial’ has become a buzzword in electromagnetics over the past decade. In recent years, advancement in this new scientific area has given birth to numerous discoveries and inventions based on the exotic properties exhibited by these materials. Some of the exotic properties like negative permittivity, negative permeability, and infinite propagation at a particular non-zero resonant frequency are shown by these artificial materials especially called as Composite Right Left Handed structures. Metamaterials gain these properties from their structural configuration rather than from their material constitution. The electromagnetic characteristics of metamaterials can be exploited to meet the ever increasing demand for lighter, compact, size reduced, multiband antennas. One of the most exciting applications of these CRLH transmission lines (TL) is the Zeroth Order Resonant Antennas. CRLH TL metamaterials when open or short ended produce standing waves and thus behave as resonant antennas. Miniaturization of antennas is possible through these structures as the resonant frequency is independent of the parameters of the antenna aperture. Due to their infinite wavelength propagation property; reduced size, quarter wavelength antennas can be designed

    Design strategies for high performance GNSS textile antennas

    Get PDF

    Micro/Nano Manufacturing

    Get PDF
    Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies

    Dynamically reconfigurable bio-inspired hardware

    Get PDF
    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable coprocessor architectures for cryptographic algorithms, image processing, automotive applications, and different general purpose functions. On the other hand we have bio-inspired hardware, a large research field taking inspiration from living beings in order to design hardware systems, which includes diverse topics: evolvable hardware, neural hardware, cellular automata, and fuzzy hardware, among others. Living beings are well known for their high adaptability to environmental changes, featuring very flexible adaptations at several levels. Bio-inspired hardware systems require such flexibility to be provided by the hardware platform on which the system is implemented. In general, bio-inspired hardware has been implemented on both custom and commercial hardware platforms. These custom platforms are specifically designed for supporting bio-inspired hardware systems, typically featuring special cellular architectures and enhanced reconfigurability capabilities; an example is their partial and dynamic reconfigurability. These aspects are very well appreciated for providing the performance and the high architectural flexibility required by bio-inspired systems. However, the availability and the very high costs of such custom devices make them only accessible to a very few research groups. Even though some commercial FPGAs provide enhanced reconfigurability features such as partial and dynamic reconfiguration, their utilization is still in its early stages and they are not well supported by FPGA vendors, thus making their use difficult to include in existing bio-inspired systems. In this thesis, I present a set of architectures, techniques, and methodologies for benefiting from the configurability advantages of current commercial FPGAs in the design of bio-inspired hardware systems. Among the presented architectures there are neural networks, spiking neuron models, fuzzy systems, cellular automata and random boolean networks. For these architectures, I propose several adaptation techniques for parametric and topological adaptation, such as hebbian learning, evolutionary and co-evolutionary algorithms, and particle swarm optimization. Finally, as case study I consider the implementation of bio-inspired hardware systems in two platforms: YaMoR (Yet another Modular Robot) and ROPES (Reconfigurable Object for Pervasive Systems); the development of both platforms having been co-supervised in the framework of this thesis

    Design, Development, and Testing of Research Payloads on Various Suborbital Flight-Test Platforms

    Get PDF
    With recent advances in the commercial space industry, suborbital payload launches have become more common and accessible to researchers actively seeking solutions for problems involving prolonged space travel and future missions to Moon and Mars. Suborbital payload missions compared to orbital launches are less expensive and offer faster turnaround times; however, the novelty of this domain provides unique challenges. This multidisciplinary research effort aims to tackle some of these challenges by detailing the design, development, and testing techniques followed in the successful launch and recovery of payload experiments in currently active and upcoming suborbital launch vehicles. The research methodology involves collecting payload requirements, CAD design, computational analysis, mass optimization, 3D printing, vibration, and load testing, model rocketry development, simulation, and launch operations. Structural analysis using FEA and vibration testing on a shaker table shows the compliance of the payload prototypes in the maximum predicted flight environments. Multiphase CFD analysis is used as benchmarking technique to characterize the behavior of payloads containing liquids in microgravity. Hands-on model rocketry has proven as a valuable research platform for subsequent payload deliveries

    Book of abstracts of the 2nd International Conference of TEMA: mobilizing projects

    Get PDF
    Based on its Human Capital and Capacities, the Centre for Mechanical Technology and Automation (TEMA) embraces a mission aiming to contribute to a sustainable industry, with specially focus on the surrounding SMEs, and to the wellbeing of society. Sustainable manufacturing aims to contribute to the development of a sustainable industry by developments and innovations on manufacturing engineering and technologies, to increase productivity, improve products quality and reduce waste in production processes. Technologies for the Wellbeing wishes to contribute to the wellbeing of society by the development of supportive engineering systems focusing on people and their needs and intending to improve their quality of life. TEMA intends to maximize its national and international impact in terms of scientific productivity and its transfer to society by tackling the relevant challenges of our time. TEMA is aware of the major challenges of our days, not only confined to scientific issues but also the societal ones, (a strategic pillar of the Horizon 2020 program), at the same time placing an effort to have its research disseminated, in high impact journals to the international scientific community. (...)publishe
    corecore