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Abstract 

Researcher: Vijay Vishal Duraisamy 

Title: Design, Development, and Testing of Research Payloads on Various 

Suborbital Flight-Test Platforms 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Mechanical Engineering 

Year: 2021 

With recent advances in the commercial space industry, suborbital payload launches 

have become more common and accessible to researchers actively seeking solutions for 

problems involving prolonged space travel and future missions to Moon and Mars. 

Suborbital payload missions compared to orbital launches are less expensive and offer 

faster turnaround times; however, the novelty of this domain provides unique challenges. 

This multidisciplinary research effort aims to tackle some of these challenges by detailing 

the design, development, and testing techniques followed in the successful launch and 

recovery of payload experiments in currently active and upcoming suborbital launch 

vehicles. The research methodology involves collecting payload requirements, CAD 

design, computational analysis, mass optimization, 3D printing, vibration, and load 

testing, model rocketry development, simulation, and launch operations. Structural 

analysis using FEA and vibration testing on a shaker table shows the compliance of the 

payload prototypes in the maximum predicted flight environments. Multiphase CFD 

analysis is used as benchmarking technique to characterize the behavior of payloads 

containing liquids in microgravity. Hands-on model rocketry has proven as a valuable 

research platform for subsequent payload deliveries.    
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1. Introduction 

Space research has enabled humans to reach new frontiers and look for answers to 

critical questions such as the origin of the Universe and life on Earth. These fundamental 

questions have been the basis of human evolution for millions of years, and now we have 

the unique opportunity to find the answers with advancements in technology in the last 

few decades. NASA is planning to revisit the Moon and, this time to create a habitat and 

conduct research on the lunar surface through its Artemis program [1]. The Moon 

missions are planned for the mid of 2020s, and there are also plans to go to Mars in the 

2030s. The prospect of making humans an interplanetary civilization ensures the 

prolonged survival of the human species while helping the advancement of technology 

back on Earth. Such has been the case throughout the evolution of technology since the 

dawn of the space age, where essential inventions that we use today on Earth are 

byproducts of space research conducted in the development of Saturn V, space shuttle, 

and the International Space Station (ISS). 

NASA has released taxonomies in the year 2020 [2] to highlight key research areas 

and technologies that require development to realize the goal of the Moon and Mars 

missions. One of the critical areas is the study of long-duration space travel on human 

physiology. Even though NASA has invested significant efforts in researching this area, 

more analysis is required to understand the effects of the harsh space environment for 

prolonged periods on humans [3].  The other areas highlighted in the taxonomies are new 

propulsion, landing, robotic, guidance, and navigation systems.  

Before delivering and deploying in space, any new space technology requires 

extensive planning and testing in the intended mission environment. Ground testing 
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offers a venue to test these payloads and systems; however, the space environment 

involving microgravity and other factors is difficult to simulate on the ground. ISS has 

been the most widely used test platform for new technology and experiments involving 

flight support systems. ISS is also a valuable research support platform to provide 

valuable crew time and continuous operations throughout the year. However, NASA is 

already in the process of retiring the ISS in the next few years. Even though the cost of 

launching payloads to Low Earth Orbit (LEO) has reduced in recent years [4], it is still a 

significant expense, and there are other costs involved with a launch to the ISS, 

integration, and crew time usage. Also, the development of payloads to the ISS requires 

stringent protocols to be followed and may require space-rated hardware, which is 

immensely expensive. The overall effort needed to prepare and fly payloads to orbit also 

very high.  

Recently, a new space research platform has emerged through commercial reusable 

suborbital space launch vehicles [5]. Suborbital launches offer many advantages over 

LEO missions considering their faster turnaround times, lower development timelines, 

less stringent test requirements, and significantly lower cost margins. The suborbital 

launch capability can conduct science experiments and new technology demonstration 

missions at a fraction of the cost and effort. Therefore, payloads could be validated using 

these platforms before launching on more expensive deployment missions.  

Commercial suborbital launches are recent ventures, with vehicle development started 

in the early 2000s. The first commercial spaceflight was Virgin Galactic’s SpaceShipOne 

on 21st June 2004. The first commercial payload mission was conducted in Blue Origin’s 

New Shepard vehicle on 12th December 2017. Other international ventures involve PLD 
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Space in Spain and Copenhagen Suborbitals in Denmark. According to NASA [6], 

currently, several commercial companies such as Blue Origin, Masten Space Systems, 

UP Aerospace, Virgin Galactic, and Exos Aerospace have been identified as suborbital 

flight provides some of these companies targeted space tourism while developing this 

capability and have been actively involved in getting their launch vehicles human-rated. 

Although the main goal was to tap the space tourism market, the ability to launch 

payloads on the same platform has greatly invigorated the science community. According 

to the market survey carried out by The Tauri Group [6], the second-largest source of 

demand after “Space Tourism” is “Basic and Applied Research,” accounting for about 

10% of forecasted demand. 

Suborbital spaceflight is the trajectory where the space vehicle does not complete a 

full orbit but reaches space demarcated by the Karman line (100km above Earth). The 

velocities required are about 15-20% of an orbital flight, and therefore, the suborbital 

launch vehicle development is much simpler and less expensive. Suborbital launches 

were performed by almost every space organization before testing orbital systems. 

However, the new era of commercial operators in this area has brought in reusability, 

making the launches accessible to educational institutions, researchers, and aerospace 

industries. The competition between these companies expects to grow in the coming 

decades, greatly benefiting the payload research community. The payload development 

process is much more flexible than an orbital launch. However, the small mass and 

capacity constraints and the availability of only a few minutes of microgravity time 

should be considered. A typical suborbital payload development process workflow is 
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shown in Figure 1. The processes shown will be explained in detail in this research 

through various suborbital payload research projects. 

 

Figure 1: Suborbital payload development process 

1.1. Significance of Study 

This research will provide new insights into the processes involved in developing and 

testing suborbital research payloads. The experiences gained through successful flight 

missions conducted on Blue Origin’s New Shepard vehicle and a prospective flight on 

PLD Space’s MIURA I rocket.  

The novel nature of the suborbital launch market offers challenges to new payload 

researchers both in academics and the aerospace industry. The techniques presented in 

this study will simplify the future efforts on the engineering development of payloads 

specifically focused on biological experiments and liquids.  

This research aims to support NASA’s technology roadmaps towards developing 

interplanetary missions and long-distance space travel. Finally, the progress done in 

developing payload research platforms at Embry-Riddle Aeronautical University (ERAU) 

will enable future students and researchers to gain hands-on payload launch experience. 
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NASA recommends a Technology Readiness Level (TRL) measurement system to 

develop and deliver new space hardware or technology. New technology inventors follow 

this suggested development sequence (Figure 2), and the project is assigned a TRL rating 

based on the progress. It can be noted that TRL7 requires testing of the new system in a 

space environment. Commercial suborbital reusable flights offer a unique advantage in 

cost and simplicity compared to orbital missions, enabling this TRL's achievement. The 

Suborbital Reusable Vehicle (SRV) utilization to perform a technology demonstration in 

space is discussed in this research. 

 

Figure 2: TRL measurement system [7] 

1.2. Problem Statement 

A streamlined method and approach are required for the commercial suborbital 

market’s industrial and academic science research application. Hence, a detailed design, 
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development, and testing methodology are necessary to mature novel suborbital payload 

technology. 

This study entails the development of processes to support multiple suborbital 

payload experiments. Each payload has a unique set of research hypotheses, 

requirements, and outcomes. For instance, bioscience experiments have distinctive 

requirements to ensure the survival of biological components and unique science goals. 

On the other hand, the technology demonstration experiments have a different set of 

requirements and objectives. The approach carried out in this work is modified and 

tailored to meet the demands of each suborbital payload. The science and engineering 

hypotheses of each payload experiment are explained under corresponding sections. 

The primary objective of the research is to benchmark the design and development of 

experimental payloads on multiple suborbital platforms. The space environment is very 

challenging and filled with risks for mission success. To ensure safety and reliability, 

testing and verification of space payloads per the launch provider’s requirement. The 

novelty of the commercial suborbital payload launch opportunities offers a unique 

payload development environment. In this research, this field is navigated using 

innovative design, 3D printing fabrication, FEA. CFD, vibration analysis and testing, 

optimization, model rocket payload platforms.  

Section 1 will provide a background of the suborbital launch market and the various 

platforms available to researchers. This chapter will state the preconditions and the 

essentiality of this research in supporting the opportunities available in relatively young 

commercial suborbital space. The research facilities and tools used in performing this 

effort are listed, and the list of abbreviations and nomenclature are listed. 
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Section 2 will summarize the review of relevant literature. The multidisciplinary 

effort carried out in this research involves the design, structural and fluid analysis, mass 

optimization, vibration testing, and model rocketry. Previous work completed on similar 

fields of study is gathered and reviewed. The significance and the impact of conducting 

this research on future and current payload development communities are explained. 

 The development and testing of three different payloads are elaborated in the 

following sections. Section 3 explains the engineering development process carried out 

on ERAU’s first suborbital payload termed CRExIM. The biology payload experiment 

was designed and fabricated using 3D printing technology to test the effects of 

microgravity and the space environment on T cells.  An FEA analysis was performed on 

the payload housing structure to simulate flight loads and parameters. A CFD analysis 

was performed on the cell tubes containing liquid medium to estimate the slosh forces on 

the vial walls. Payload mass is an essential constraint for small suborbital payload 

platforms. A mass optimization is performed to reduce the mass of the structure, thereby 

increasing payload capacity. CRExIM was successfully launched and recovered on Blue 

Origin’s New Shepard vehicle, and post-flight analysis of data is explained. 

Section 4 covers the engineering development of the MESSI/McXIMUS payload, 

which contained two different biological experiments. The objective of the MESSI 

mission was to study the growth rates of Spirulina algae in space which is being 

increasingly considered a food source for astronauts in the future. McXIMUS payload 

contained live zebrafish embryos and studied the effect of space stressors on muscle 

growth. The payload design and development processes were derived from the CRExIM 

mission and builds on the experiences gathered in the previous mission. The development 
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of the MESSI/McXIMUS payloads had unique challenges as the mission involving two 

in-vivo experiments, and novel payload electronics were also required. The 

conceptualization and the operation of the payload electronics architecture are detailed in 

Section 4. 

Section 5 details the vibration testing and analysis of a proposed payload stated to be 

launched with PLD Space on their upcoming space flight debut. The payload package 

consists of multiple sub-payloads with various mission requirements and objectives. An 

avionics/telemetry payload is proposed as a pathfinder mission to evaluate and record the 

flight environment inside the first launch of the MIURA 1 rocket. The goal is to utilize 

the flight opportunity and the available electronics interfaces to develop a sophisticated 

data logging payload. The electronics system development and fabrication are detailed. 

MAPMD is another sub payload and a technology demonstration mission that will fly 

along with the other sub payloads measuring and recording the effectiveness of new 

technology in mitigating liquid slosh in microgravity. A CFD analysis technique is 

benchmarked by analyzing the fluid dynamics of this payload. This analysis aims to 

characterize fluid behavior in microgravity and develop a method to support future 

payloads that primarily contain liquids. A vibration test campaign of all the flight 

hardware is performed to verify the performance and survivability of all the experiments 

involved in this suborbital mission. This acceptance test was required to clear the safety 

requirements set by PLD Space. The test setup and the results of the test and analysis are 

discussed in Section 5. 

Section 6 introduces the capabilities that were devised to support and improve 

suborbital payload research. Model rocketry was used as a tool to develop in-house 
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launch options to test and prepare future suborbital payloads. A level 1 rocket was 

fabricated and successfully flown with a payload onboard. The hands-on experience in 

fabricating model rockets enabled a better understanding of operations and preparations 

behind rocket development and launches. A level 3 rocket with higher performance 

characteristics was conceptualized and designed using CAD tools. Rocket simulations 

were performed to predict the flight profiles, and the results were applied in optimizing 

the rocket design.  

Section 7 provides a summary and recommendations for future payload researchers, 

followed by references and appendices. The objectives of this research are summarized in 

Figure 3. 

 

Figure 3: Research objectives 

1.3. Research Facilities 

Payload Applied Technology and Operations (PATO) lab shown in Figure 4 is 

currently located in the Advanced Flight Simulation Center building. The lab space 

(floorplan shown in Appendix B) was primarily used for the development of payloads 

and rocket components. The same lab was previously located on the roof in the College 
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of Aviation building, and the new lab was established with new capabilities to support 

payload and model rocketry fabrication. The lab has essential engineering tools and 

hardware along with electronics stations. A Raise3D 3D printer is available for 

prototyping and a computer software suite such as CATIA, ANSYS, Arduino IDE, and 

rocketry simulation software. 

   

Figure 4: PATO lab 

CFD analysis was performed using star-CCM+ software at the offices in the M 

building. The Vega supercomputer’s (Figure 5) high-performance computing capabilities 

were utilized to batch run simulations with multiple processors. Vega is a Cray 

supercomputer with 84 nodes and 2x18 cores for each processing node. A maximum of 

360 cores is allowed per student user. 

 

Figure 5: VEGA supercomputer 
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The electrodynamic shaker system at Micaplex Structures lab was utilized to conduct 

the vibration test campaign. The shaker table is capable of vibration testing all three axes. 

Further details on the equipment are provided in the PLD payload vibration test 

campaign. 

 

Figure 6: Electrodynamic shaker at Micaplex 

1.4. Limitations and Assumptions 

The NanoLab payloads were 3D printed using ABS, and the expected loads and 

vibrations were analyzed using Finite Element Analysis (FEA) tools. 3D printed 

structures have nonuniform internal geometries not modeled in the Finite Element Model 

(FEM) to reduce complexity. This analysis aims to increase the confidence level of the 

payload design before fabrication and to identify critical areas in the model susceptible to 

flight loads. A physical load test was performed per the payload integrator’s 

specifications and finally reviewed by the payload integrator team before the flight. 
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Random vibration analysis in ANSYS does not simulate the actual vibration 

excitation on the structure. Instead, it uses a statistical method to estimate structural 

responses using data from the modal analysis. Similarly, in the CFD analysis of cell vial 

slosh, the random vibration excitation is not applied to the tubes. A complex synthesis of 

the PSD breakpoints is required to replicate the random acceleration waveform.  

Numerous assumptions and limitations were used and encountered in the preliminary 

benchmarking CFD study of MAPMD. A zero-gap interface between the interset mesh 

and the background region is used to resolve close membrane encounters with the tank 

walls. The zero-gap interface turns OFF cells when the membrane reaches a certain 

distance from the tank boundaries. The membrane motion is a 6 DOF problem, and the 

analysis is performed with only 4 degrees of freedom. The membrane translation motion 

in the X and Y lateral direction was fixed to avoid continuous impacts between the 

membrane and tank walls. The electromagnetic forces were not modeled in the active 

cases, and the membrane was assumed to be rigidly fixed at the initial water surface. This 

assumption was used to expedite the solution process as the solver time for resolving 

impacts or contact couplings was three times the magnitude of a regular DFBI motion 

solution. 

The classical shock module of the DVC-8 controller used in the vibration test 

campaign had limitations on input shock profiles. The Shock Response Spectrum (SRS) 

specified by PLD Space could not be used in the vibration controller software. The 

software could produce shock signals only in a  time-dependent acceleration waveform 

and not as an SRS in the frequency domain. 
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Definition of Terms 

    G Acceleration due to gravity 

    U Unit 

𝑎𝑖 Volume fraction of phase 𝑖 

𝑉𝑖 Volume occupied by phase 𝑖 inside a cell 

𝑉 Total volume of the cell 

𝜌 Density 

𝜇 Dynamic viscosity 

𝐶𝑝 Specific heat 

𝑆𝑎𝑖
 Source or sink of phase 𝑖 

𝑣 Fluid velocity 

𝑆 Mass source term 

𝑝 Pressure 

𝐼 Unity tensor 

𝑇 Stress Tensor 

𝑓𝑏 Vector of body sources 

𝐸 Total energy 

𝐻 Total enthalpy 

�̇�" Heat flux vector 

𝑆𝐸 User-defined energy source term 

𝑝𝑓 Pressure acting on face f 

𝑎𝑓 Area vector of face f 
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𝑟𝑓 Distance vector from body center of mass to center of face f 

𝜏𝑓 Shear stress acting on face f 

List of Acronyms 

ABS Acrylonitrile Butadiene Styrene 

ASD Acceleration Spectral Density 

CAD Computer Aided Design 

CD & H Command Data and Handling 

CFRP Carbon Fiber Reinforced Plastic 

CFD Computational Fluid Dynamics 

CG Center of Gravity 

COTS Commercial-off-the-shelf 

CRExIM Cell Research Experiment In Microgravity 

DFBI Dynamic Fluid Body Interaction 

DOF Degree of freedom 

ERAU Embry-Riddle Aeronautical University 

ERAU Embry-Riddle Aeronautical University 

FEA Finite Element Analysis 

FEM Finite Element Model 

FFF Fused Filament Fabrication 

FRF Frequency response function 

HPC High Performance Computing 

IDE Integrated Development Environment 

IL Interleukin 
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ISS International Space Station 

LEO Low Earth Orbit 

LSIP Launch Site Integration Package 

MAPMD Magneto Active Propellant Management Device 

McXIMUS Muscle characterization eXperiment In Microgravity Universal 

Spacelab 

MDS Material Data Sheet 

MESSI Microgravity Experiment Spirulina Superfood In-vitro 

MPE Maximum Predicted Environment 

MUSC Medical University of South Carolina 

NASA National Aeronautical and Space Administration 

NFF NanoRacks Feather Frame 

PATO Payload Applied Technology Operations,  

PDP Payload Data Package 

PLA Polylactic Acid 

PMD Propellant Management Device 

PPF Payload Processing Facility 

PSD Power Spectral Density 

PSP Payload Safety Package 

PUG Payload User Guide 

RANS Reynolds-Averaged Navier-Stokes 

REM Research and Education Mission 

SFEM Suborbital Flight Experiment Monitor 
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SHM Simple Harmonic Motion 

SRV Suborbital Reusable Vehicle 

STEVE Suborbital Technology Experimental Vehicle for Exploration 

TRL Technology Readiness Level 

TVOC Total Volatile Organic Compounds 

U Unit 

USB Universal Serial Bus 

UTHSCSA University of Texas Health Science Center at San Antonio 

VOF Volume of Fluid 

WTLS West Texas Launch Site 
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2. Review of Relevant Literature 

2.1. Suborbital Reusable Vehicles 

The study performed by the Tauri Group [6] highlights the developments that 

happened during the infancy of the commercial suborbital spaceflight industry. The 

researchers identify the various contenders in the suborbital market and forecast the 

evolution of the sector. The Suborbital Reusable Vehicle (SRV) demand in eight different 

markets is characterized and estimated: commercial human spaceflight, basic and applied 

research, aerospace technology and demonstration, media and public relations, education, 

satellite deployment, remote sensing, and point to point to transportation. The targeted 

applications are being served by the launch providers successfully today. Overall, the 

literature gives a good comparison of various flight providers and applications of 

commercial suborbital flight. Today, in 2021, two space companies Blue Origin and 

Virgin Galactic, have gone through the human flight rating of their vehicles. Virgin 

Galactic successfully completed its first astronaut mission (Unity 22) while this 

dissertation was being produced, and Blue Origin’s first human flight mission was 

completed on July 20th, 2021. Different microgravity test platforms are compared, and 

their capabilities are listed in Table 1.  

Table 1: Comparison of microgravity research opportunities and their capabilities [6] 

Platform Maximum 

microgravity time 

Maximum 

Altitude (km) 

Typical payload 

mass 

Cost 

SRV 5 min 110 200 kg $500/kg 

Sounding rocket 20 min 1600 Few hundred kg $1M-$3.5M 

Drop Tower 10 s N/A Grams to 500 kg $1-$10/kg per drop 

Orbital testing  Days or Years 400 and above Thousands of kg $10k/kg and more 
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2.2. Suborbital Space Vehicles as a Platform for Microgravity Research 

Although commercial suborbital space vehicles were conceived to cater to the space 

tourism market, the other potential users of this platform are applied science and 

microgravity research. Most of the suborbital launches that have been completed in 

recent times are focused on human spaceflight. The researchers [8] provide a comparison 

between suborbital flight capabilities and other microgravity testing venues such as 

parabolic aircraft, drop towers, sounding rockets, and orbital launch vehicles.  

2.3. Payload User Guides 

Every suborbital launch vehicle provider goes through the flight hardware 

development process and performs many flight tests and simulations. The launch 

provider characterizes the flight environment of the space vehicle through these 

simulations, ground tests, and actual flight tests. The launch providers share some 

relevant results with the payload customers to aid the design and development of the 

payload experiments. All the general information of the flight vehicle and the payload 

requirements are shared in a Payload User Guide (PUG). PUG also details the 

development timeline, test requirements, launch operations, and payload review 

guidelines. The payload customer must fully understand the scope of the document and 

all the pertaining information related to their specific payload. The Maximum Predicted 

Environment (MPE) of flight, acceleration levels, vibration levels, temperatures, 

mechanical and electrical interfaces are detailed in this document. The payload customer 

must conduct the tests recommended in the PUG as per the test standards specified. The 

Blue Origin PUG [9], [10] provides information on the New Shepard space vehicle and 

pertains to standard payload locker. NanoRacks is the flight integrator offering the 
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specialized Feather Frame payload locker, and their PUG is tailored to support NanoLab 

payloads [11]. Finally, the PLD Space’s PUG [12] is used to acquire information on the 

MIURA 1 rocket, and interface details on the single payload bay compartment are used. 

2.4. NASA’s Flight Experiment Onboard Blue Origin’s New Shepard Vehicle 

NASA Johnson Space center launched a pathfinder experiment on multiple New 

Shepard flight missions. The SFEM-2 was flown onboard Blue Origin’s New Shepard 

vehicle’s single payload locker. The SFEM-2 was designed to characterize the test 

environment in suborbital vehicles. The integrated package provided acceleration data, 

cabin temperature, pressure, carbon dioxide (CO2), and sound level measurements. The 

flight data revealed microgravity levels of ±0.02 G for a duration of 2.5 minutes [13]. The 

cabin thermal control system was active in the final mission, and the temperature sensors 

recorded a significant difference in the temperature levels between previous and the last 

flights. 

 

Figure 7: NASA’s SFEM-2 payload flown onboard New Shepard's P8 flight mission [13] 

2.5. CubeSat Approach 

Initially, the CubeSat Program was conceptualized as a tool to help teach students 

about the process involved in developing, launching, and operating a spacecraft [14]. 
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CubeSat was conceptualized in 1999 by California Polytechnic State University to 

improve space access to students and university teams. The recent advances in small-

scale technologies and commercial off-the-shelf systems along with low-cost rideshare 

programs developed by NASA enabled these low-cost and rapid development platforms. 

The new program involved the development of new standards and satellite deployment 

systems. The mass and volume constraints are analogous to the suborbital payloads, and 

the technologies developed in the CubeSat architecture have been extensively employed 

in smaller suborbital payloads. The processes currently utilized by the CubeSat Program 

evolved by balancing the desires of the CubeSat developers and launch providers with 

what was realistically possible in an academic environment [14]. 

2.6. Propellant Gauging in Microgravity 

Since 2008, a multidisciplinary undergraduate team from Carthage college has 

designed and flight-tested a propellant gauging system. The proposed system has been 

tested in a parabolic flight and subsequently in a suborbital flight. The majority of a 

spacecraft’s mass is propellant, and reducing launch mass is an essential design 

specification for low-gravity fuel [15]. The payload flown on Blue Origin is documented, 

and the design considerations for liquid containment are discussed. The research 

highlights the inadequacies of parabolic flight testing in terms of microgravity duration 

and quality. The liquid propellant gauging technique uses the modal frequency of liquids 

in equilibrium, and preliminary CFD analysis shows that the liquids reach equilibrium 

most of the time in microgravity. 
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2.7. Investigation of MAPMD using Floating Membranes 

Liquid slosh is a common issue observed in applications involving liquids 

experiencing motion in microgravity. This phenomenon is an essential concern in 

spacecraft and launches vehicle design. Propellant Management Device (PMDs) are 

utilized to mitigate slosh in propellant tanks and ensure the positive flow of propellants to 

the engines. In this research, an active PMD floating membrane device is demonstrated 

on a slosh testbed. Active membranes limit the rapid motion of the fluid under the 

influence of external stimuli as they float on top of the liquid surface [16]. Ground testing 

shows better damping characteristics with the active membrane compared to free slosh 

cases.  

2.8. Vibration Testing of Small Satellites 

In a series of papers from 2014 to 2017 [17], Instar engineering has detailed and 

documented the guidelines and recommendations for vibration testing of small satellites. 

The guidelines cover the preparation of test objectives and criteria, fixture design and test 

configurations, low-level sine sweep testing, random vibration testing, and sine-burst 

testing. The primary test criteria are the comparison of the FRF responses between each 

major vibration test. Such criteria should apply only to the modes showing the highest 

response acceleration in a given test, using the accelerometer channels that show the 

highest response for those modes [17]. Small changes between pre- and post-test sine-

sweep data, such as from localized yielding in fastened joints or slight loss of fastener 

preload, are unavoidable in many structures and usually are not detrimental [17]. The 

guidelines are based on commonly used test standards utilized by the spaceflight industry 

in-flight hardware testing.  



22 

 

2.9. Model Rocket Projects 

Model rocketry is a scaled-down hands-on approach to understanding the 

development and operational difficulties encountered during a launch vehicle 

development. In 2015, students from the Catholic University of America conducted 

research [18] to develop and launch a model rocket as part of their “Aerospace Design” 

course. Flight trajectories were derived from simulations and experimental testing. 

Equations of motion and drag equation were used to estimate the launch angle to 

optimize the landing location of the rocket body. The wind velocity profile model was 

incorporated into the calculations to estimate launch angles and supplemented by wind 

speed measurements.  

2.10. Summary 

Suborbital rocket launches have been prevalent during the early 1960s and are usually 

carried out by every space organization while developing new launch systems. However, 

these launches have become more accessible to the aerospace industry and university 

students through commercial SRV launch opportunities. The current focus on utilizing 

this capability is conducting human spaceflight, microgravity research, technology 

demonstrations, and pathfinder missions. Throughout the history of payload 

development, the aim has been to miniaturize space systems to save launch mass and 

cost. This goal has been achieved with developments in technology and the utilization of 

commercial-off-the-shelf hardware that is readily available nowadays. The development 

of suborbital payloads requires the assimilation of the payload environment and the 

launch provider's compliance requirements. Previous research has proven the successful 

implementation of suborbital payloads containing liquids. A technology demonstration of 
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a new slosh mitigation device called MAPMD was performed in parabolic flights, 

increasing the TRL to 5. Ground tests and preliminary CFD models of a propellant 

gauging system were performed, showing that the short parabolic flight time was 

insufficient for the liquid to reach equilibrium. The current trend in model rocketry 

conducted by University teams focuses on improving the performance of the rockets to 

compete in rocket launch competitions. 

2.11. Research Contribution 

The commercial suborbital reusable vehicle is a niche market offering access to space 

for microgravity research and technology demonstrations. Current suborbital payloads 

launched by universities and the aerospace industry strive to utilize this opportunity; 

however, the development process and the lessons are not adequately communicated. The 

available literature focuses only on the payload experiment’s hypotheses and its 

outcomes. The development process and the procedures performed to validate the 

compliance of these payloads to launch provider’s requirements are not documented 

clearly. The research aims at bridging this gap through a streamlined approach, 

integrating all the aspects of suborbital payload design, development, and testing. 

Biomedical space research, studying the effects of long-duration exposure to the 

space environment, has been investigated since the dawn of human spaceflight (12th April 

1961) [19]. Further understanding of this field is required to support upcoming long-

duration missions to Mars and the Moon. Commercial suborbital platforms offer a unique 

opportunity to conduct such biomedical space experiments. This type of payload requires 

special considerations on harsh vibration, thermal, acceleration, and stressors related to a 

rocket launch to ensure the survival of live organisms. The flight hardware was designed 
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and developed using multidisciplinary engineering tools to carry the biomedical 

experiments in small containments called NanoLabs. These NanoLabs served as the life 

support system and provided a safe environment for these biological systems through 

launch, flight, and recovery. The payload design techniques focused on improving the 

payload volume utilization, and mass optimization tools were used to reduce the overall 

mass of the payload housing, increasing payload capacity. A single payload containing T-

cells and a dual payload containing Zebrafish and Spirulina was launched onboard Blue 

Origin’s New Shepard vehicle.  

An upcoming suborbital mission onboard PLD Space’s MIURA 1 rocket will carry 

four payloads: slosh mitigation through technology demonstration of MAPMD, In-vitro 

cancer experiment, Cerebrospinal fluid shunt experiment, and avionics/telemetry system. 

This research will contribute towards the improvement of TRL progress for a slosh 

mitigation device that has been developed at ERAU. A CFD approach and a novel 

methodology have been developed to simulate the behavior of liquids and a floating 

membrane in microgravity conditions using multiphase fluid modeling, overset mesh, and 

DFBI motion. A general vibration test methodology for ensuring the compliance of 

suborbital payloads has been developed. The test campaign helped highlight essential 

modifications that were required to payload structures. The vibration test plans will aid 

future payload researchers in conducting payload testing on the shaker table. 

The flight-proven hardware could be used as a commercial product and used as a 

COTS kit. Future payload customers could use this hardware to fly their payloads on 

commercial suborbital missions. The approach created in this paper could save time, 

money, and effort for future payload researchers and members of the aerospace industry. 
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Model rocketry has been used to develop in-house rockets to carry specially prepared 

payloads, enabling future students to get hands-on experience fabricating and launching 

payloads. This capability is used to test future suborbital payloads before the main 

launch, thereby offering opportunities to modify the design and identify issues before the 

actual flight. A payload research facility was established at ERAU to support current and 

future research on payloads. This research builds ERAU’s suborbital payload heritage 

and acts as a precursor to possible future orbital missions. 

The novelty of this research effort is a) The design, development, and the 

achievement of mission goals of sophisticated bioscience experiments with unique 

requirements involving T-cells, zebrafish, and Spirulina which is a first on suborbital 

payloads, b) Characterization of the flight environment in the first commercial missions 

of Blue Origin’s New Shepard vehicle and PLD Space’s MIURA 1 rocket, c) Creation of 

a streamlined suborbital payload development process, and a flight-proven sensor and 

NanoLab hardware kit which will save time, effort and money for future payload 

researchers and users in the aerospace industry, d) A CFD approach capturing the motion 

of a DFBI body suspended in a multiphase fluid in microgravity using overset mesh, e) 

Documentation of test procedures and test criteria for vibration testing suborbital 

payloads suitable for MIURA 1 rocket and other suborbital launch systems, and f) Usage 

of model rocketry to launch student payloads and primarily function as a payload 

research and testing platform for future suborbital payloads. 
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3. CRExIM Payload 

The Arete STEM project provided researchers at Embry-Riddle Aeronautical 

University (ERAU) with the opportunity to launch a science research experiment onboard 

Blue Origin’s New Shepard launch vehicle. Cell Research Experiment In Microgravity 

(CRExIM) payload will be flown to an expected altitude of approximately 328,000 feet 

(100 km) and experience continuous microgravity for roughly 3 to 4 minutes during its 

suborbital flight. After completing the suborbital flight, the capsule containing the 

payload flies back to the landing zone and performs a rocket-powered vertical landing. 

Parachutes and retro thrusters are used to assist reentry and reduce landing loads. The 

whole mission is expected to last for 11 minutes. Depending on the landing area location 

and environmental conditions, the payload could be recovered within a few hours of 

landing.  

Scientific Objective: Suborbital flights offer a convenient microgravity research 

platform. There is experimental evidence suggesting that microgravity alters the cellular 

processes of immune cells. Previous studies [20] investigating micro-gravity effects on 

the immune system demonstrated various alterations in Murine and human cells, such as 

apoptosis, changes in proliferation, and cytokine production. Although our understanding 

of the micro-gravity effect on the immune system is expanding, the molecular pathways 

mediating this effect have not been completely understood [21]. The scientific goal of 

this study is to investigate the effect of microgravity on Murine immune cells during the 

suborbital flight. We used three experimental conditions: 1) cells primed with the 

cytokine IL-2; 2) cells primed with the cytokine IL-12, and 3) control cells not primed 

with any cytokines. These cytokines play a critical role in cell immunity and enhance 
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immune cells' behavior in a very short period. Therefore, it is hypothesized that the 

difference in cellular processes could be evident during the short suborbital flight. 

Furthermore, the shorter duration of the flight would permit a quick assessment of 

payloads before and after the flight. The biological science experiment is developed and 

investigated by the University of Texas Health Science Center at San Antonio 

(UTHSCSA) and the Medical University of South Carolina (MUSC). The payload 

development is carried out as a collaboration between UTHSCSA, MUSC, and ERAU. 

Researchers at ERAU carried out the engineering development and payload operations, 

and the science payload involving murine T cells was processed pre and post-flight at 

UTHSCA’s medical laboratories. 

Novel payload design, computational analysis, and experimental testing is necessary 

to fulfill the mission requirements of the payload while adhering to the technical 

requirements of the flight system. Computational methods are powerful tools that can be 

used to test and develop engineering solutions that aid in achieving the design objectives 

quickly and efficiently. CAD, FEA, and CFD applications simulate the conditions 

experienced by the payload in flight and accordingly help with the payload design. 

Detailed specifications of the flight envelopes and cabin environments are available in the 

Payload User Guide (PUG) provided by the launch provider [9]. The data in the PUG is 

used to simulate the flight environment using computational simulations. 

3.1. Payload Design 

CRExIM consists of eight Eppendorf 5.0 mL tubes containing immune T cells primed 

with different cytokines in each tube suspended in a nutrient-rich medium. The weight of 

each Eppendorf tube is approximately 7.7 g. The payload also consists of an EDL-XYZ 
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data logger device that records accelerations in X, Y, and Z directions, temperature, and 

relative humidity. The data logger records vital parameters of the payload environment 

and is used to track the various phases of the mission. The role of the payload 

containment structure is to safely house and secure the Eppendorf tubes and the data 

logger while conforming to both the launch provider’s requirements and the flight 

environment. 

The first requirement of the NanoLab structure is to geometrically conform to the 

dimensions of a NanoRacks’s payload locker [11]. NanoRacks provides the lockers to 

integrate REM payloads in the Blue Origin’s New Shepard launch vehicle. This payload 

locker is capable of housing a NanoLab of a 2 Unit (2U) form factor. The NanoLab is 

designed following the above dimensions with allowable tolerances, as shown in Table 2. 

Initially, the design plan was directed towards reducing the mass of the housing structure 

to increase the available payload mass. The preliminary NanoLab design incorporated 

holes, similar to a frame-only structure. However, this design feature had to be changed 

due to constraints set by the flight provider. All the high-level payload requirements are 

derived from Table 2 based on the information in PUG [9]. 

Table 2: Payload requirements and launch profile characteristics 

Requirement Value 

Size (mm) 2U: 100 (L) x100 (W) x 200 (H) 

Mass (kg) 0.499 

Power supply (V) 5.0 (USB) 

Microgravity time (minutes) 3 - 4 

Maximum acceleration loads (G) 15 

T-cells Eppendorf tubes 6-12 

Liquid containment Two levels 
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One of the primary requirements of the flight provider is the containment of the 

contents inside the payload. In the event of a fluid leak, the containment ensures that 

other payloads in the vehicle are not affected. With this requisite, the first NanoLab 

design was developed with an encapsulated structure to provide a high level of liquid 

containment. However, the outer skin structure comes with an added mass, and the outer 

skin should be as thin as possible. The thin outer skin is reinforced with trusses that help 

strengthen the NanoLab by evenly distributing the loads on the structure. The NanoLab 

design developed in the first iteration with the above considerations is denoted as the 

Initial model. The Initial model is shown in Figure 8. A push and lock lid mechanism is 

designed for payload experiment access from the top of the NanoLab. The lid is secured 

to the housing section of the NanoLab using underwater tape to ensure liquid 

containment. 

   

a) External view    b) Internal view 

Figure 8: CAD of the payload housing structure (Initial model)  

The initial design was further revised to accommodate polycarbonate standoffs which 

are part of the payload installation into the payload lockers. The standoffs are small 

rectangular pads glued over the payload housing before integration into the launch 
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vehicle. These standoffs provide the necessary damping for the payloads in contact and 

ensure a tight fit inside the payload locker. The initial model consisted of trusses on the 

outside, which provided a minimum surface area for installing the polycarbonate 

standoffs. Therefore, the following design was developed with the skin section on the 

outside and the truss section inside the NanoLab. This design will be denoted as the 

“Updated model” henceforth. The Updated model is shown in Figure 9. 

   

a) External view       b) Internal view 

Figure 9: CAD of the payload housing structure (Updated model) 

The CAD models are developed using CATIA V5. The NanoLab designs are 

developed after performing various analyses, which will be discussed in the following 

sections. The CAD model of the holder for the EDL-XYZ device is developed following 

the instrument’s dimensions. The lid, bottom section, and the device holder are 

assembled into the final CAD model. 

3.2. FEA with Acceleration Loads 

A structural analysis is performed on the NanoLab using ANSYS “Static structural” 

module [22]. The acceleration loads (G loads) experienced by the NanoLab in flight are 

simulated on the payload structure. 
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The CAD design of the NanoLab is imported into the ANSYS “Design Modeler” and 

is converted to a Finite Element Model (FEM) by creating a mesh on the model. A “Hex 

dominant mesh” method is used to develop a structured mesh on the model. A “zero 

displacement” boundary condition is applied on all the outer faces of the NanoLab, which 

constrains the NanoLab as though it were placed inside a payload locker. Three separate 

cases are analyzed where a 15 G acceleration load is applied on the whole body in three 

different directions. 15 G load is used to simulate an off-nominal case of a single 

parachute failure landing. The load applied is approximately twice that of the maximum 

G-load experienced in a nominal mission. The results from this analysis are used to 

identify the deformations and the stresses on the NanoLab structure, which pinpoints 

weak areas that may need improvement. The mesh on the payload structure is shown in 

Figure 10, and the applied boundary conditions are shown in Figure 11. 

 

Figure 10: Structural mesh of CRExIM NanoLab 

One of the main goals of performing this analysis is to test various 3D printing 

materials before printing the actual model. The different materials analyzed in this 

research are ABS, PLA, and CFRP. These materials are commonly used in 3D printing 
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applications and are readily available for purchase. The structural analysis can be 

performed for different materials using the same analysis setup in ANSYS. The material 

properties are obtained from the Material Data Sheet (MDS) found on the databases of 

the PLA, ABS [23] and CFRP-ABS [24] filament manufacturers. The collected material 

data is entered in the Engineering Data node inside the ANSYS structural module. 

Separate simulations are performed for each material and the material data for each 

material is shown in Table 3. 

 

Figure 11: Boundary conditions 

Table 3: Material properties 

Material property ABS PLA CFRP (ABS) 

Density (g/cm3) 1.04 1.3 1.11 

Young’s Modulus (Mpa) 2137.4 3500 4018 

Poisson’s Ratio 0.35 0.36 0.35 

Tensile Yield Strength (Mpa) 34 46.8 44 

Compressive Yield Strength (Mpa) 7.6 17.9 NA 



33 

 

3.3. Random Vibration Analysis 

The vibration environment [9] specified by the flight provider is simulated on the 

payload structure using the “Random Vibration” module in ANSYS. A modal analysis is 

a prerequisite for random vibration analysis in ANSYS and is a powerful tool in 

predicting a system's natural frequencies and mode shapes. Therefore, the diagnostics in 

this section are vital in the survivability of the NanoLab in a vibration environment. 

ANSYS uses the data from the modal analysis to calculate the requested outputs in the 

random vibration analysis. Random vibration analysis is used to ensure that the stresses 

and deformations lie within permissible limits [25]. The applied random vibration profile 

is in the frequency domain. However, generating the same profile in a time domain is 

difficult which could be directly used to excite the structure. Therefore, ANSYS uses a 

statistical approach to predict how the structure would react to a random vibration 

excitation. 

 

Figure 12: Simulated random vibration profile 



34 

 

 The random vibration excitation is applied as a “PSD G Acceleration in ANSYS” in 

three separate cases (X, Y, or Z-Axis direction for each case). The simulated random 

vibration profile is shown in Figure 12. 

3.4. Mass Optimization 

The maximum allowable mass of the payload is 0.499 kg. This critical requirement 

plays a significant role in the design of the NanoLab. Since the payload mass and the data 

logger are unalterable, the only room for a design change is in the payload housing 

structure. Reducing the structure's mass by incorporating material removal and structural 

redesign is the steps to accomplish the above goal. However, constraints that control the 

optimization process need to be identified and enforced to ensure that the design changes 

do not violate the safety envelopes of the system. 

Direct optimization module in ANSYS is used to perform the mass optimization 

study in this research. Direct optimization works by comparing numerous designs that are 

governed by the geometric parameters of the structure. Direct optimization algorithm 

seeks for solution of the desired objective while enforcing the constraints specified by the 

user. In summary, this tool helps in reducing a user’s effort in running multiple 

simulations of different designs to obtain an optimal solution. 

The CAD model of the NanoLab is constructed with design parameters that control 

the dimensions of critical geometries in the model. The parameters used here are the 

width of the horizontal and the vertical truss sections, the width of the diagonal truss 

sections, and the width of the outer skin or casing. These parameters are chosen based on 

their significance as crucial structural members making up the NanoLab assembly. These 
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parameters also affect the mass and stress distribution in the design more than other 

components. 

The objective of the optimization is set to minimize the mass of the NanoLab 

structure. The same modules in ANSYS from the previous sections are used to derive 

results for the optimization. Maximum stress calculated in the G loading analysis and the 

X, Y and Z deformations calculated in the random vibration analysis is used as inputs for 

the constraints in the optimization. The parameters and constraints that are specified in 

this analysis are shown in Table 3. 

Table 4: Mass optimization variables 

Parameter name Description Parameter type Value Units 

P1 - cube: DS Beam 
Width of Horizontal 

and Vertical trusses 
Design parameter 3<P1<10 mm 

P2 - cube: DS XFrame 
Width of Diagonal 

trusses 
Design parameter 3<P2<10 mm 

P3 - cube: DS Skin Thickness of enclosure Design parameter 0.5<P3<3 mm 

P4 – Maximum Equivalent 

Stress  

Static structural 

analysis 
Constraint P4<1 MPa 

P5 – Maximum X 

deformation 

Random vibration 

analysis 
Constraint P5<0.1 mm 

P6 - Maximum Y 

deformation 

Random vibration 

analysis 
Constraint P6<0.001 mm 

P7 - Maximum Z 

deformation 

Random vibration 

analysis 
Constraint P7<0.1 mm 

P8 - Geometry Mass 
Total mass of the cube 

structure 
Objective Minimize kg 
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A total of 120 design points is generated and analyzed. Five optimal design 

candidates are selected from the optimization study. Charts displaying trade-offs of 

various parameters, parameter sensitivities, and parameter histories are post-processed. 

An overall schematic of the ANSYS setup is shown in Appendix B. 

3.5. Cell Vials Slosh Testing Using CFD 

Liquid slosh is an important phenomenon that affects any fluid in a vibration 

environment. The effects of liquid slosh forces on T cells will open new research 

pathways in future studies involving T cells in the space environment. Therefore, the 

results of this analysis could provide the groundwork for future payloads involving T 

cells. A CFD analysis is performed in STAR-CCM+ [26] to simulate the vibrations on 

the fluid inside the Eppendorf tubes to observe and track the slosh mechanics. 

The 5.0 mL Eppendorf tube is modeled in CATIA V5 after carefully measuring its 

geometric dimensions. The CAD model is imported to the STAR-CCM+ environment, 

and the model surfaces are prepared and named appropriately to describe the domain of 

the fluid analysis. It is to be noted that the volume contained inside the Eppendorf tube is 

considered to be the fluid domain (liquid column and air volume), and therefore, only the 

fluid volume is extracted from the Eppendorf tube model and used in the analysis. The 

tube surfaces are specified as wall boundaries without any mass entering or leaving the 

system in conjunction with a sealed tube system. 

A volume mesh is generated on the model using the “Part mesh” operation in STAR-

CCM+. Various meshing models were tested, and the mesh was finalized based on 

solution convergence, solution time, and wall y+ values, which will be discussed further 

in future sections. The “Trimmer” mesh model is utilized for the volume mesh and 



37 

 

“Prism layer meshing,” used to resolve the fluid-wall boundary layer. Given the small 

scale of the model, a stringent mesh control and a high-resolution mesh is required to 

obtain accurate results. Higher mesh standards require more time in generating the mesh 

and solving the model. Therefore, to reduce mesh size while retaining good quality, a 

“volumetric control” is applied to areas of interest, and a low-resolution meshing is used 

elsewhere. After running simulations to convergence, multiple mesh cases were analyzed 

and compared, and a final mesh was selected with 7.5 million cells. The final mesh is 

shown in Figure 6, along with the CAD model and the CFD domain. The tube walls are 

divided into multiple sections to apply focused mesh refinement criteria. 

Eulerian Multiphase and Volume of Fraction models simulate the liquid and the gas 

phases in this analysis. The non-homogeneous nature of the cell medium makes it 

difficult to estimate its liquid properties. Therefore, the liquid properties of water are 

utilized in the liquid phase of the analysis. The properties of air at standard atmospheric 

conditions are specified in the gas phase of this analysis. Phase interaction between air 

and water is specified in surface tension as 71.99 mN/m. The CAD model is designed in a 

specific orientation to ensure that the initial location of the two phases is distinguishable 

by the XY plane [27] at the 5.0 mL mark of the Eppendorf tube. This distinction is 

specified in the CFD environment as an initial condition by specifying the volume inside 

the tube below the XY plane as water and above the XY plane as air. 

The fluid turbulence is solved using the k-epsilon turbulence model, and the flow is 

solved using the Reynolds-Averaged Navier-Stokes model. The G values are specified in 

the gravity node to simulate 1 G and microgravity scenarios. A Simple Harmonic Motion 

(SHM) is applied to the body instead of a random vibration profile. SHM is used instead 
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of a random vibration excitation due to the complications of generating a random 

vibration excitation. An "Implicit Unsteady” time scheme is used with a time step of 

0.001 s, and each simulation is executed for a total time of 1 s. Six sub-iterations are 

solved under each step to reach convergence between time steps. The required reports, 

plots, and scenes are set up to display the liquid slosh and track the fluid force on the 

walls of the tube.  

 

Figure 13: CFD setup 

The initial conditions and the boundary conditions applied in the CFD simulation are 

listed below: 

 Eulerian Multiphase model with 2 phases: water as liquid and air as gas 
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 The surface tension of water is 0.074 N/m 

 Location of fluid phases: fluid volume above 5 mL mark (XY plane) is gas, and 

fluid volume below 5 mL mark is liquid 

 A no-slip wall boundary condition is applied to all the fluid boundaries 

 Acceleration due to gravity is applied in the negative Z-direction (1 G or 0.005 G 

depending on the simulated scenario) 

 Velocity profile of the SHM motion is applied as a translation motion to the 

whole domain 

3.6. 3D Printing 

There are multiple advantages of 3D printing a structure rather than fabricating one. 

One such advantage is that the design can be more readily customized. 3D printing 

enables the use of CAD software to have any additional pieces built directly into the 

print. This property reduces the need for assembly of parts post prototyping. Another 

significant advantage obtained from this technology is replicating the same part using 

alternate 3D printing materials. This facilitates rapid testing and comparison between 

these standard 3D printing filaments. The materials are usually light and possess 

structural characteristics that could be used beneficially in various applications. The 

payload housing NanoLab is 3D printed using the MakerBot Replicator 2X printer. 

MakerBot Replicator 2X printer uses the Fused Filament Fabrication (FFF) method, 

where a plastic 3D printer filament is heated and extruded through a nozzle, layer by 

layer, on a heated surface. The printer’s filament spools are mounted on the 3D printer 

frame through an attachment on the backside of the printer. Initially, the filament is 

manually fed into the extruder until the winding motor in the extruder takes over, and the 
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filament is automatically fed according to the print requirement. The print bed is leveled 

before the print job is initiated, and the print surface is cleaned and prepared as per the 

instructions in the user manual [28]. 

MakerBot MakerWare software is utilized to process the CAD into a recognizable 

format for the 3D printer. MakerWare has also been used to set up the specifications of 

the print job. Before importing the CAD file to the 3D printer software, it is converted to 

STL Rapid Prototyping format in CATIA V5. The 3D printer software enables 

visualization, location adjustment, and prototype orientation printed on the print bed. 

One of the main parameters in 3D printing is infill density, which defines the amount 

of material inside the print. An infill density of 100% means the printed object is 

completely solid, and any lesser value means only that a certain percentage is filled with 

material. A hexagon-shaped infill pattern was used for its higher structural strength and 

higher print speed characteristics. These honeycomb-shaped infill members provide 

beneficial structural characteristics. A high percentage of infill is not recommended as it 

increases the mass of the printed object, and it requires large amounts of printer filament. 

The FFF method prints layer upon layer, and therefore it requires a base layer to print on. 

So, in the case of overhanging or inclined geometry such as the X frames in our model, 

support structures are needed to print the layers at these locations. The MakerBot 

software can apply support structures, and bridges easily removed from the 3D printed 

NanoLabs. 
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a) MakerWare software    b) 3D printing in MakerBot Replicator 2X 

Figure 14: 3D printing the NanoLab structure 

3.7. Results 

The results of the CRExIM payload development, testing, and flight are furnished in 

the following sections. The result subsections are organized in the same sequence as the 

previous methodology section.  

3.7.1 Structural Analysis with Acceleration Loads 

The results obtained in the FEA structural analysis are shown in Figure 15. A detailed 

representation of the FEA results is shown in  

Table 5. The results are used to alter the design of the NanoLab and reinforce the 

structure on the identified critical areas of higher stress distribution. 

It is observed that the highest deformations in the NanoLab are on the device holder 

flaps and the lid lock flaps. The lid is secured to the bottom section of the NanoLab using 

a strong adhesive tape, and the experienced stresses at this location are therefore not an 

issue. However, the design of the device holder area is improved by reinforcing the 

holder flaps with additional material. 
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a) Initial model (ABS) 

 

b) Updated model (ABS) 

 

c) Updated model (PLA) 
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d) Updated model (CFRP) 

Figure 15: Equivalent stress distribution with acceleration load applied in the positive Z direction. 

 

Table 5: FEA results of the NanoLab structure 

Direction of  applied 

acceleration 

Simulated material and 

model 

Maximum 

equivalent stress 

(MPa) 

Maximum total 

deformation (e-5 

mm) 

Positive X direction 

ABS (Initial model) 0.5503 8.61 

ABS (Updated model) 0.0865 594.31 

PLA (Updated model) 0.1078 451.94 

CFRP (Updated model) 0.0923 337.42 

Positive Y direction 

ABS (Initial model) 1.1143 71.97 

ABS (Updated model) 0.1253 60.96 

PLA (Updated model) 0.1554 46.70 

CFRP (Updated model) 0.1337 34.61 

Positive Z direction 

ABS (Initial model) 2.2314 184.70 

ABS (Updated model) 0.3762 963.76 

PLA (Updated model) 0.4690 733.51 

CFRP (Updated model) 0.4015 547.18 
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3.7.2 Modal and Random Vibration Analysis 

The modal analysis results for the different materials and models used in this research 

are summarized in Table 6.  

Table 6: Modal analysis of the NanoLab structure 

Simulated material  

and model 

Mode 1 

(Hz) 

Mode 2 

(Hz) 

Mode 3 

(Hz) 

Mode 4 

(Hz) 

Mode 5 

(Hz) 

Mode 6 

(Hz) 

ABS (Initial   model) 2217.1 2234.7 2258.3 2284.5 2806.6 6518.4 

ABS (Updated model) 754.5 757.4 765.9 766.8 943.9 1897.0 

PLA (Updated model) 864.7 868.0 877.5 878.5 1082.5 2166.3 

CFRP (Updated model) 1001.2 1005.1 1016.4 1017.5 1252.7 2517.5 

 

The random vibration analysis results are shown in Figure 9 and summarized in 

Table 7.  

 

a) ABS case 
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b) PLA case 

 

c) CRPF case 

Figure 16: Equivalent stress results with random vibration spectrum applied in the Y direction 

The modal analysis is a crucial tool in payload design to compare the natural 

frequencies of the system with the vibration frequencies of the flight environment. The 

obtained results show that the natural frequencies of the payload structure do not match 

with the vibration frequencies experienced in flight. Therefore, it is concluded that the 

NanoLab is safe from damage due to resonance. Random Vibration analysis shows that 

the maximum stress is in the device holder location. It is to be noted that the random 

vibration analysis performed is a statistical approximation, and no actual excitation is 

applied. 
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Table 7: Random vibration analysis results of the NanoLab structure 

Direction 

of applied 

random 

vibration 

excitation 

Simulated material and 

model 

Maximum equivalent 

stress (MPa) 

Maximum total deformation 

X 

(e-5mm) 

Y 

(e-5mm) 

Z 

(e-5mm) 

Positive X 

direction 

ABS (Initial model) 0.5349 3.81 1.04 4.00 

ABS (Updated model) 0.2491 1823.80 492.87 347.48 

PLA (Updated model) 0.2907 1299.30 351.33 263.07 

CFRP (Updated model) 

 

0.2326 

 

905.93 

 

244.82 

 

183.33 

 

Positive Y 

direction 

ABS (Initial model) 0.0021 1.46 401 4.50 

ABS (Updated model) 0.0233 124.18 70.12 103.10 

PLA (Updated model) 0.0198 88.51 23.93 25.59 

CFRP (Updated model) 

 

0.0158 

 

61.68 

 

16.67 

 

15.67 

 

Positive Z 

direction 

ABS (Initial model) 2.1279 2.30 1.42 7.73 

ABS (Updated model) 1.1584 1203.70 46.87 3133.50 

PLA (Updated model) 1.4165 911.96 35.97 2372.90 

CFRP (Updated model) 1.1322 635.24 24.73 1653.70 

 

3.7.3 Structural Design Optimization 

One hundred design points were created and analyzed in the ANSYS Direct 

Optimization module. Out of the 100 optimization runs, 97 runs ran successfully, and 3 

runs failed due to a mesh generation failure. Design parameters were changed at each 

design point, and the values for the outputs were computed under the Static Structural and 

Random Vibration modules. 
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The tradeoff charts in Figure 10 show the feasible design space. The green-colored 

points fall within feasible design space. These design points are further compared to 

obtain the optimal design candidates. The infeasible points fall out of the design space 

and violate the constraints, and thus are disregarded. 

   

a) Input parameters   b) Output parameters 

Figure 17: Optimization parameter tradeoff charts 

 

Figure 18: Parameter sensitivities 

The parameter sensitivity chart in Figure 18 depicts the significance of each design 

parameter on the calculated outputs. This plot is used to identify the significance of each 

parameter in the design of a system, and it is observed that the width of the horizontal and 

vertical bars has the most influence on the NanoLab total mass. 
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            a) Parameter P1: Beam width                    b) Parameter P2: X Frame width 

 

             c) Parameter P3: Skin thickness       d) Constraint P4: Maximum equivalent stress 

 

   e) Constraint P5: Maximum X deformation         f) Constraint P6: Maximum Y deformation  

 

      g) Constrain P7: Maximum Z deformation                      h) Objective P8: Total mass 

Figure 19: Recorded optimization parameter histories 
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Table 8: Optimization results 

Parameter name Candidate 

point 1 

Candidate 

point 2 

Candidate 

point 3 

Candidate 

point 4 

Candidate 

point 5 

Number of optimization rank stars 1 1 2 3 2 

P1 - cube:DS Beam (mm) 3.035 3.665 3.875 4.295 3.245 

P2 - cube:DS XFrame (mm) 3.035 6.973 4.348 5.004 8.285 

P3 - cube:DS Skin (mm) 0.513 0.605 0.883 0.698 0.790 

P4 - Equivalent Stress Maximum 

(MPa) 
0.276 0.268 0.278 0.287 0.254 

P5 - Xdef Maximum 

 (e-5mm) 
1210 1200 1230 1200 1190 

P6 - Ydef Maximum  

(e-5mm) 
73.88 56.49 57.55 56.35 52.99 

P7 - Zdef Maximum  

(e-5mm) 
3110 3110 3131 3130 3076 

P8 - Geometry Mass (kg) 0.1467 0.1951 0.2023 0.2030 0.2049 

 

The parameter history charts in Figure 19 show the variation of each parameter 

throughout the optimization analysis. The change in the value of each parameter at each 

design point is governed by the optimizer algorithm and is usually directed to reach the 

optimum output as quickly as possible. Finally, five candidate points are computed as 

listed in Table 8. The candidate point with the greatest number of optimization rank stars 

is the most optimum design. Therefore, it is observed that Candidate point 4 is the most 

optimal design for this optimization study. The mass of the baseline design was 0.3277 

kg, and the mass of the optimum design candidate is 0.2030 kg. Therefore, a mass 

reduction of 38% is achieved using the optimization tools in ANSYS. 
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3.7.4 Cell Vials Slosh Analysis 

The final mesh with the required refinement of 7.5 million cells is obtained after 

reviewing the wall y+ values. A wall y+ value of 0 to 5 is highly recommended for a CFD 

simulation involving a complicated flow phenomenon. In our case, the wall y+ values 

(Figure 20) are observed to be well within the tolerable limits. 

 

Figure 20: Wall y+ values 

A scalar scene is displayed at each time step for a total simulation time of 1 s. The 

sloshing of the liquid inside the Eppendorf tube at various time intervals is shown in 

Figure 21. Irregular intervals of simulations are displayed to highlight the sloshing 

behavior. It is observed that after one cycle of oscillation, the liquid remains adhered to 

the top surface (near the cap of the tube), which is expected because of the surface 

tension of the fluid. The details of the forces on the tube walls for different scenarios are 

shown in Figure 22. 
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a) 1 G case     b)0.005 G case 

Figure 21: Scalar scenes showing the time history of liquid slosh inside 5.0 mL Eppendorf tube 

with lateral actuation and gravity acting vertical direction 
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a) Tube position history 

 

b) Fluid force with lateral actuation 

 

c) Fluid force with actuation along the gravity vector in the vertical direction 

Figure 22: Tube actuation and corresponding slosh response observed in the Eppendorf tube 

The CFD analysis of the 5.0 mL Eppendorf tube shows a ten times magnitude 

increase of wall forces compared to the 1.5 mL Eppendorf tube. It is to be noted that an 

SHM excitation is applied instead of a random vibration profile for the ease of simulation 

setup. It is impossible to synthesize and replicate a random vibration excitation in Star-

CCM+, so the launch environment is not realistically applied. 

3.7.5 Prototyping using 3D Printer and Final Assembly 

Several challenges were overcome during the 3D printing process, involving filament 

jams, extruder issues, and warping. MakerBot Replicator 2X is an experimental printer, 
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and therefore some of the aspects of printing involve trial and error. Filament jams would 

occur when filament material crosses over itself on its roll or when the nozzle was 

wrongly calibrated to be too close to the print bed. Once the issue was identified, it was 

concluded that the material had been mishandled, which allows the printer filament to 

loosen itself and then entwine itself in a new pattern. Re-calibration of the printer bed 

height also aided in solving the jamming issues. This information saved a great deal of 

material wasted simply by ensuring that the filament roll is kept tightly wound. Another 

issue was the extruder not correctly latching onto the material, resulting in no material 

being used while the extruder continues to move around. This extruder issue was caused 

due to the amount of tension required to feed the filament being inadequate. Upgraded 

extruders were purchased, which were equipped to prevent the filament tension issue. 

Warping is a significant problem since it would alter the shape of the final print and is 

caused by the uneven cooling and settling of the printed part. As a result, the bottom 

surface of the printed part detaches itself from the print bed, and thermal variations cause 

the whole part to distort. Rafts are printed on the bottom surface, which acts as a pseudo 

surface and prevents the distortion from the bottom from propagating into the central 

part. Although rafts improved the print quality, a small amount of warping still existed. 

One of the solutions was to increase the temperature of the heat bed, which allowed the 

printed part to stick to the print bed. In addition, a heat gun was used to target specific 

areas as soon as they began to warp, which also nullified the warping. 

The quality of a 3D printed part dramatically depends on the resolution offered by a 

3D printer. Initially, the payload structure was 3D printed with the geometric 

specification of the optimal candidate obtained in mass optimization. However, the 
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obtained prints were not structurally stable with those geometric specifications. Some 

support mass had to be added to take into account the resolution and 3D printing 

inconsistencies. These limits and tolerances were considered in the final 3D print of the 

NanoLab. 

 

Figure 23: 3D Printed NanoLab structures. ABS with initial design holder (left) ABS with 

improved device holder (middle) and CFRP ABS (right) 

Common 3D printing materials such as ABS, PLA, and CFRP infused ABS were 

analyzed. ABS and CFRP are used more for professional applications. PLA has storage 

issues and is prone to damages due to environmental factors as it is made up of organic 

compounds. The results from the structural analysis show that the CFRP-infused ABS 

material is more robust compared to ABS. However, the prints with CFRP failed due to 

extruder jams because of their hardness. The cost of CFRP is more than double that of the 

ABS printer material. The mass of the CFRP-printed part is approximately 25% higher 

than the part printed with ABS. Therefore, ABS plastic is chosen to be the candidate for 

the final payload structure due to its cost, availability, ease of 3D printing, and the mass 

constraint of the payload. 
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A fire-retardant foam is packed inside the NanoLab and is used to house the 

Eppendorf tubes and dampen the vibrations experienced by the payload. The payload is 

assembled and sealed with water-resistant tape. The Eppendorf tubes are enclosed in a 

vacuum-sealed plastic cove. The tube cap, plastic cover, foam, and water-resistant tape 

serve as four layers of containment for the payload. The components of the CRExIM 

NanoLab assembly are shown in Figure 24. 

 

Figure 24: CRExIM payload final assembly [29] 

3.8. Flight Operations and Post-flight Analysis 

The payload engineering development was tailored to meet the requirements of the 

flight provider (Blue Origin), flight integrator (NanoRacks), and the payload science 

team (UTHSCSA). Payload operations are an integral part of the payload development 

process, and plans and operation manuals are required to complete all the payload 

mission goals.  
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3.8.1 Deliverables and Payload Review  

In order to streamline the process of payload development, the flight providers and 

integrators set forth the submission of multiple deliverables and reviews. The definition 

of these processes was communicated to the flight customers/researchers through Payload 

User Guides (PUG). PUG is a document that contains detailed information on the flight, 

payload design, deliverables, testing requirements, timeline, and flight operations. The 

flight integrator carried out the intermediate and final certification of the payload based 

on the submitted deliverables and subsequent reviews. The deliverables and the 

corresponding timeline are shown in Table 9. 

Table 9: Payload deliverables timeline 

Deliverable Typical timeline 

(months before launch) 

Submission/Review 

Date 

Payload Data Package (PDP) 5 14th January, 2017 

PDP review 4.5 3rd February, 2017 

Payload Safety Package (PSP) 3 26th February, 2017 

PSP review 2.5 8th March, 2017 

Launch Site Integration Package (LSIP) 1 1st October, 2017 

 

Payload Data Package (PDP) is the initial proposal furnished by the payload research 

team, which details the planned experiments, expected scientific goals, preliminary 

payload design, test plans, and introduction of collaborators. PDP offers the primary 

investigators a tool to communicate their intent and the reviewers to confirm the 

compatibility of the proposed experiment with the available interfaces. The engineers 

reviewed the PDP at NanoRacks, and the first review meeting was conducted with all the 
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collaborators. The first review meeting involved the introduction of all key personnel, 

roles, and responsibilities. The review offered an opportunity for the science and 

engineering teams to understand the payload development requirements further. The 

review committee suggested that the engineering team review and update the 

containment of liquids inside the NanoLab. Based on the recommendations, the vacuum-

sealed bags and underwater tape were utilized to provide two layers of containment. 

Payload Safety Package (PSP) is a questionnaire to assess the hazards and ensure the 

safety of the payloads in the expected operational environment. The bill of materials 

(BOM) and safety data sheets of all the materials used in the payload are affixed to the 

document. Details on electrical schematics, electromagnetic sources, chemicals, and fire 

safety are specified. Mechanical safety tests are recommended, and graphic video 

evidence is sent to the review committee. The load test involves placing 15 lb weight in 

the axial direction and 10 lb weight in lateral directions for 2 minutes in each direction. 

The conducted tests on the NanoLab are shown in Figure 25. PSP review was conducted, 

and necessary modifications were recommended. The X frame truss structure outside the 

NanoLabs was moved inside to accommodate standoffs between the NanoLab and the 

payload locker walls. The PSP was approved, and the final assembly of the payload 

assembly was performed.  
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a) 10 lb X-axis lateral test 

 

c) 15 lb vertical test  

b) 10 lb Y-axis lateral test 

Figure 25: Safety load test 

Launch site integration Package (LSIP) contains the questionnaire requiring the 

researchers to furnish details on the logistics of the payload before and after the flight. 

Blue Origin’s New Shepard launches from their West Texas launch facility in Van Horn, 

Texas. The researchers are provided options to directly ship the payload components to 

the Payload Processing Facility (PPF) at the launch site. PPF is a controlled on-site 

facility for processing payloads pre and post-flight. Details of personnel visiting the site 

are provided in LSIP and any special requests for handling payloads.  

3.8.2 Pre-flight and Post-flight Operations  

Tasks and plans were devised for the different teams to assemble and configure flight 

hardware, prepare and maintain viable conditions for T-cell science experiments, and 

recover and collect data from the payload. The processing of the cells and the survival of 

the biomaterials were monitored during transportation, and the science team at 
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UTHSCSA handled post-recovery operations. Proper protocols in handling the 

biomaterials were prepared in advance and followed.  

The engineering team was responsible for assembling all the hardware components, 

developing contingency plans, and ensuring safety. CRExIM payload consisted of 

passive components, and the only operational component was the EDL-XYZ data logger 

inside the NanoLab. Operational procedures for setting up the device and collecting data 

were produced as a procedure manual followed at the PPF. The operational timeline is 

shown in Figure 26. 

 

Figure 26: CRExIM operational timeline [30] 

CRExIM was launched to suborbital space onboard the first flight of the new version 

of Blue Origin’s New Shepard 3 capsule, and the launch mission’s name was designated 

as “M7”. The intended launch date was December 11th, 2017, and the launch was 

scrubbed until the next day. The next launch opportunity was set for the next day. The 
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payload was handed off to NanoRacks at 04:45 on December 12th, 2017. The launch 

happened at 10:59, and the launch vehicle reached an apogee of 98.269 km with an 

approximate microgravity time of 4 minutes. The capsule landed under parachutes after a 

10-minute suborbital flight. The payloads were recovered and delivered to the researchers 

at 15:45 in PPF.  The post-recovery operations included downloading the flight data from 

EDL-XYZ and securing the cells for future analysis. NanoRacks also provided 

supplemental flight data from sensors on the payload locker to the researchers. 

3.8.3 Flight Data Analysis 

The first flight experience onboard Blue Origin’s New Shepard capsule offered the 

researchers many lessons and insights into a suborbital launch's operational and technical 

environment. The launch scrub and the uncertainty towards a next flight opportunity 

offered some challenges to the survivability of the cells. Biological payloads are highly 

sensitive to stresses due to the handling and transportation of specimens. The 

temperatures at the launch site were lower than anticipated during that season, and the 

remote location of the launch site proved it impossible to transport back the cells to a 

more controlled environment before the next launch opportunity.  

The cells underwent large thermal gradients on the launch scrub day. The science 

team came up with quick solutions to nourish the cells and improve their survivability. 

The engineering team employed Little Hotties 8-hour hand warmers procured locally as a 

temporary solution to keep the cells warm. The temperature of the cells was constantly 

monitored, and the warmers were used until before delivery of the payload to launch 

personnel. Blue Origin personnel wrapped the payloads in a thermal blanket to save the 

cells during transportation.  Had the launch been scrubbed one more time, the cells 
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survival rate would have dropped significantly, rendering the science mission a failure. 

These critical lessons learned at the launch facility were documented and helped the 

researchers in developing future payloads.  

The EDL-XYZ was preprogrammed at the PPF, and it collected data from 03:35 to 

13:45 on the launch date. The device was retrieved, and the data was processed using 

EDL-XYZ MaxiThermal software. The datalogger started recording data after a 5-hour 

preset start delay to save memory and recorded for about 9 hours at a sampling rate of 4s. 

The acceleration data recorded during the flight (the recording during only flight phases) 

is shown in Figure 27. The critical flight events are highlighted to show their time 

occurred during the flight. The recording axes orientations of the data recorder are shown 

in Figure 28 a). The payload was oriented inside the NanoRacks locker so that the Y-axis 

of the datalogger pointed in the thrust direction of the launch vehicle.  

 

Figure 27: Acceleration data recorded by EDL-XYZ during the suborbital flight. X-axis (dark 

blue), Y-axis (light blue) and Z-axis (purple) [31] 
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            a) Sensor Orientation       b) M7 mission altitude profile/measured acceleration  

Figure 28: Flight profile showing acceleration experienced at different altitudes [31] 

Summary of key observations from the data logger data are: 

 The total flight time was a little over 10 minutes. 

 EDL-XYZ measured 1.61 G acceleration during launch. 

 The acceleration experienced at MECO was about 1.38 G. 

 At crew capsule (CC) separation, the payloads experienced 2.3 G. 

 A continuous microgravity time of about 3.2 minutes was recorded, and the 

microgravity levels were in the range of 120 mG. 

 Brief moments of microgravity periods were experienced before CC separation 

and after 3.2 minutes. The minor changes to the levels could be attributed to RCS 

firings, as was suggested by Blue Origin. 

 The drogue chute deployment event imparted 2 G on the payloads, and the main 

parachute deployments were measured at 1.55 G. 

 3 G was experienced due to the landing impact. 

Figure 28b shows the altitude profile of the flight capsule, and the axis in the right 

highlights the acceleration experienced during flight at various altitudes while also 

comparing these parameters with the time progression of the flight. This flight data was 
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provided by Blue Origin and showed good accordance with the acceleration and altitude 

data suggested in PUG.  

 

Figure 29: Temperature and relative humidity measured inside the NanoLab [31] 

EDL-XYZ also measured temperature and relative humidity levels inside the 

NanoLab, which was an essential stressor in characterizing the behavior of T cells. On 

the day the launch was scrubbed, the ambient temperature was 4 °C, and the payloads 

were exposed to this environment inside the capsule for 6-8 hours. The average 

temperature recorded by the data logger was 14.6 °C, which is below the acceptable 

temperature levels for the cells. The thermal tape and the foam around the cell vials 

provided adequate insulation and ensured the survival of the cells.  

During the launch day (12th December 2017), the external conditions were better than 

the previous day, and the average recorded temperature was 19.94 °C, and the lowest 

being 18.66 °C. Post recovery, the cells were immediately moved to UTHSCA, and the 

science team conducted post-flight cell analysis. 
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4. MESSI McXIMUS Payload 

After completing the first suborbital payload mission: CRExIM, onboard Blue 

Origin’s New Shepard vehicle, researchers at ERAU were given a second opportunity to 

fly a NanoLab research payload. Blue Origin had flown and recovered three successful 

New Shepard missions since the M7 launch on the exact launch vehicle. The mission was 

designated NS-11 and carried 38 payload experiments, including nine experiments from 

NASA. With this opportunity and lessons learned from challenges faced in the CRExIM 

mission, researchers at ERAU planned to work on a more ambitious payload containing 

two biological science experiments. Each experiment was designated a mission name, 

and the objectives of the payload are as follows: 

 Muscle characterization eXperiment In Microgravity Universal Spacelab 

(McXIMUS) payload contained an experiment to study the effect of the space 

environment on zebrafish embryos (Figure 30a). The experiment was a research 

collaboration between UTHSCSA and ERAU. Zebrafish are chosen as study specimens 

as their genetic makeup is very similar to humans. Space travel induces many adverse 

effects on human physiology. The musculoskeletal system is altered by microgravity 

environment [32]. During space missions, astronauts are subject to many stressful 

conditions, such as cosmic radiation, microgravity, and stressors, that can have a negative 

impact on their health. This experiment aimed to evaluate the expression of stress genes 

during the suborbital flight and define which genes are altered by microgravity. Another 

severe adverse effect of space travel is abnormalities in vascularization, which could lead 

to muscle degeneration.  
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Scientific Objective 1 is to analyze stress markers in zebrafish. After the suborbital 

flight, embryos will be imaged, and gene analysis will be conducted. This objective will 

lead to the identification of the stress genes altered by the suborbital flight parameters.  

Scientific Objective 2 determines the effects of microgravity on vascular formation in 

zebrafish embryos. Zebrafish cellular development is extremely fast within the first few 

days compared to humans (9 months). Thus, a few minutes (in microgravity) is 

considered a significant amount of time of their growth process [33].  Therefore, using 

the fluorescently labeled vascular system, we expect to see changes in their vascular 

formation. 

Two 1 oz bottles containing fish water and zebrafish embryos were used for this 

experiment. In addition, several types of ground controls were studied. After the 

suborbital flight, all embryos will be brought to the UT Health Science Center for further 

analysis.      

   

                         a) Zebrafish embryo [34]                                     b) Spirulina algae [35] 

Figure 30: Bio organisms used in MESS/McXIMUS payload experiments 

Microgravity Experiment Spirulina Superfood In-vitro (MESSI) is a payload that 

project seeks to see the effects (beneficial or otherwise) of suborbital spaceflight on the 

growth of Cyanobacteria Arthrospira Platensis, otherwise known as spirulina algae 

(Figure 30b). Furthermore, this will be done with spirulina in nine different conditions: 

three different lights sources (white, red, and blue lights) and three different food sources 



66 

 

(magnesium sulfate MgSO4, potassium nitrate KNO3, and citric acid C₆H₈O₇). The reason 

spirulina is was tested is that it is an approved consumable by NASA for astronauts. Its 

health benefits include anti-inflammatory and antioxidant properties [36], increases in 

cornea and retina health, as spirulina is a source of vitamin A [37], 20%-30% higher 

muscle performance [38], controlling of allergies and allergic reactions [39], reduction of 

nasal congestion and blood pressure [40], increased activity of natural killer cells in the 

immune system [41], increased endurance [42], reduction of the size of cancer tumors 

[43], and mild antidepressant properties. It also has the ability to act as an air 

revitalization system restoring oxygen naturally [43]. 

The scientific objective of the MESSI experiment is to analyze the growth of 

spirulina in suborbital flight conditions and understand the effects of microgravity by 

measuring spirulina growth preflight and postflight. Data on various environmental 

parameters such as temperature, relative humidity, luminosity, and acceleration will be 

recorded inside the NanoLab using custom payload electronics. The spirulina flight 

samples, ground, and the mother colony at ERAU are compared. 

The NanoLab chassis will be 3D printed with ABS plastic, and the NanoLab will be 

very similar to the NanoLab used for the CRExIM payload. The internal layout will be 

modified to suit the requirements of the McXIMUS and MESSI experiments. 

4.1. Payload Requirements 

The primary engineering objective of the MESSI/McXIMUS payload is to ensure the 

survival of the biological components in the science experiments. The first task for 

developing a payload is to collect the requirements of the experiment and understand 

launch vehicle provisions and the operational environment. This includes understanding 
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the conditions that affect the biological specimens, such as temperature, microgravity, 

vibrations, radiation, etc. The payload was more ambitious than CRExIM as the current 

mission consisted of two separate experiments and the goal was to maximize the usage of 

the payload capacity to achieve as much science as possible. The strict mass and size 

constraints, as shown in Table 2, were a challenge to accommodate two experiments. 

Another design goal was to make minimal changes to the NanoLab design used in 

CRExIM, which was already and flight-proven. Design improvements and 

simplifications increase the efficiency of the 3D printing process of the NanoLabs by 

lowering print times and reducing used filaments while ensuring fewer failed prints. 

MESSI experiment consisted of live algae, which had to be contained in 1.5 mL 

centrifuge tubes. Multiple combinations of living conditions had to be tested by altering 

food sources and light levels. Therefore, the clear tubes had to be contained in different 

compartments illuminated with different color lights. Environmental parameters such as 

light levels, temperature, relative humidity, and accelerations had to be measured inside 

the payload compartments.   

McXIMUS payload consisted of about 100 zebrafish embryos in fresh water placed 

inside a breathable bottle. The bottles had to be securely contained inside the NanoLab 

and did not require any special storage considerations.  

Custom payload electronics were required to monitor the conditions inside the 

NanoLab. The electronics design required more sophistication in comparison to the 

CRExIM experiment, which used a commercial-off-the-shelf (COTS) datalogger EDL-

XYZ. The NanoRacks Feather Frame (NFF) offered the payload customers to stream 

flight information from the Blue Origin capsule to each payload through a USB interface. 
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The research team believed that this data and data from onboard sensors would be 

instrumental in correlating and validate flight data with flight events. So, the electronics 

would have to receive the flight data packets from the USB interface and log it along with 

sensor data. 

4.2. Payload Design  

The initial payload design iteration was performed with the considerations from the 

payload requirements in section 4.1. The initial CAD design was derived from the 

CRExIM NanoLab design with the same X fame truss structure. A divider was added 

inside the payload housing to make compartments for each separate experiment. The 

detailed design of the internal components was not considered in the initial model. The 

electronics and experiment components were still being determined at this point. The 

initial CAD design of MESSI/McXIMUS NanoLab is shown in   

 

Figure 31: Initial MESSI/McXIMUS NanoLab CAD model 

Several modifications were made to the initial model in several design iterations to 

improve and accommodate new payload components into the model. The necessary 
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electronics architecture was conceptualized, and the required parts were identified. The 

details on the electronics architecture, parts, and circuit diagrams are discussed in the 

future sections.  

The main NanoLab structure was slightly modified from the original design. The 

multiple X frame structures were combined into a single X frame truss running through 

the whole length of each side wall. The sharp corners in the old design were changed to 

more smooth and fileted corners. A central circular junction was created where the X 

beams would meet. The goal was to reduce the flow of flight stresses on the walls of the 

NanoLab structure. The X frames were designed with chamfers in the vertical direction to 

avoid 3D printing support structures below the overhanging flat surfaces as seen in the 

old design.  

The whole NanoLab was divided into 3 bays or compartments using dividers. The 

larger compartment will house the MESSI experiment with tube racks, sensors, and LED 

lights. The second compartment would be used to contain the McXIMUS experiment 

placed inside a foam housing. The third compartment will serve as the avionics bay with 

a microcontroller that powers and records all the sensors, a USB interface to transmit 

flight data, and battery packs to power the LED lights. The updated CAD model is shown 

in Figure 32. 
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Figure 32: MESSI/McXIMUS updated CAD model 

After clear deliberation and discussion with the science teams, the experiment 

components were determined, and the teams shared design ideas. Based on the inputs, the 

MESSI payload would contain 18-1.5 mL tubes containing spirulina. A tube rack model 

was suggested and designed. The NanoLab design this time involved modular 

components where parts of the NanoLab could be dismantled and reassembled. The 

modular design would increase the efficiency of the payload assembly process and reduce 

3D printing issues. The tube rack would require a large number of supports while 3D 

printing as there are overhangs below the tube support rack. Issues such as support 

material falling off and support not being printed were experienced in CRExIM 3D 

prints. Modular parts also have the advantage of testing sub-components and performing 

fit checks separately without having to 3D print the whole NanoLab. This technique 
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significantly improved the speed and success rate of the 3D prints. The tube racks were 

designed with 18 holes with 3 rows having 6 evenly spaced holes each. The centrifuge 

tubes had a circular bevel around their diameter near the cap. The levels were used as 

click lock mechanisms to secure the tubes inside the holes of the tube rack. The hole 

diameters were optimized and reprinted to ensure a tight fit of tubes in the holes on the 

tube rack. Three sub-compartments were made inside the tube placement area with 

dividers to create three different lighting conditions for each set of 6 tubes. LEDs and 

sensors would be mounted on the other side of each divider, as shown in Figure 33.  

 

Figure 33: MESSI/McXIMUS updated CAD model design components 

The lid of the NanoLab was redesigned and modified based on the lessons learned in 

the CRExIM mission. The push from top and click mechanism in the previous versions 

was removed. The small protrusions on the old lid served as the snap points were 

susceptible to breaking after multiple uses. The structural protrusions were also harder to 

3D print requiring support structure and resulted in print failures. Furthermore, the old 

design required multiple test prints to lock the lid to the main housing properly. The new 

design utilized a slide and rail mechanism, with a thin sliding protrusion on the lid side 

and a matching slide cutout on the main housing. One side of the cutout had stops to limit 
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the movement of the lid from sliding over the other side. The underwater tape was still 

used to secure the lid to the NanoLab housing.  

Table 10: MESSI/McXIMUS Payload mass 

Component Mass (g) 

USB Connector 16 

Humidity and Temperature Sensor 1 

Accelerometer  2.4 

Light Sensor (x3) 3 

Arduino 7.5 

Multiplexer  7.8 

Wires 24 

Housing (V4) without Lid 130 

Lid (V4) 30 

Partition (V3) 20 

Velcro 3 

Zebra Fish (Including Container) 100 

Tube Housing  12 

Test Tubes (x18) 36 

1.5 ml of water (x18) 27 

Battery Housing  12 

Battery (AA) (x2) 30 

LED Lights 1 

Total: 462.7 g 

 

Payload total mass was one of the key design considerations in the development of 

the payload. The goal was to maximize payload capacity while keeping the total payload 

mass within limits set by the flight integrator. The final mass of the components and total 
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mass of MESSI/McXIMUS payload after multiple iterations of design and 3D printing is 

shown in Table 10. 

 

Figure 34: Updated NanoLab lid design 

4.3. Payload Electronics 

Two different electronic systems were designed and developed for the 

MESSI/McXIMUS payload. The first system consisted of an Arduino-based custom data 

logger with multiple sensors and data communication with the NFF locker, and the 

second system consisted of the LED lighting system. 

4.3.1 Custom Data Logger with Flight Data Interface 

The datalogger would serve as a motherboard that powers and collects data from 

various sensors and stores the collected data in a microSD card. Arduino MKR zero was 

chosen as the microcontroller to perform the tasks mentioned above [44]. Various criteria 

were considered for the selection of Arduino MKR zero: 

 Small form factor which is more suitable for placement inside the small 

volume of the avionics bay 

 In-built MicroSD card slot which discounts the need for a separate microSD 
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card module and thereby saves space and consumes less power 

 SAMD21 microcontroller chip has a higher processing speed compared to 

other conventional Arduino boards 

 3.3V sensor logic support which allows interfacing new generation, low 

power consumption sensors 

 Simple programming options through the same Arduino IDE software 

environment [45] with plenty of online support forums 

 Serial data communication capability through a USB interface, enabling the 

collection of flight data 

 Flash memory of 256 kB offers plenty more code storage space for running 

long and complex programs 

The Arduino MKR Zero served as the brain of the data collection system and was 

powered through the 5V USB connection from the NFF USB interface. The data logger 

would turn on when the power becomes available in the flight capsule before the flight 

and a few minutes after the flight totaling 21 minutes.  

The sensors were selected to measure the temperature, light levels, and accelerations 

experienced by the payload. All the sensors were chosen from SparkFun’s “Qwiic 

connect system” line of products for their modular and easy interface capabilities. The 

sensors used I2C serial bus protocol for signal communication [46]. I2C serial bus consists 

of only four wires for power, ground, data, and clock, respectively. The bus protocol 

enables the connection of multiple sensor connections to the same bus and saves the 

number of wires/connections needed in the circuits. The details of the sensors used and 

their electronic specifications, along with the power draw, are shown in Table 11. 
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Each I2C sensor has a unique address associated with it, and the sensor is called using 

this address. However, the data logger would have multiple instances of the same sensor; 

for instance, the light and temperature sensors consisted of more than one of the same 

sensors. This was an issue to call the sensors uniquely using the I2C bus protocol. 

Therefore, an 8-channel multiplexer is utilized to split the repetitive sensors into separate 

channels. The multiplexer will automatically allocate unique addresses to each channel, 

and thereby, up to 8 sensors with the same addresses can be used. The circuit diagram of 

the custom data logger is shown in Appendix B. 

Table 11: Custom Datalogger components and power requirements 

Component Voltage (V) Current (mA) Power draw (W) 

Arduino MKR ZERO 5 600 3 

Qwiic Mux breakout 3.3 20 0.066 

4 x Temperature Sensor (TMP 102) 3.3 1e-3 3.3e-6 

Accelerometer MPU 9250 3.3 3.7 0.012 

3 x Luminosity Sensor APDS-9301 3.3 0.6 0.002 

Total: 

3.3 V sensors 

5 V Power 

Supply 

624.3 mA 

3.080 W 

1.08 Wh (21 

minutes) 

 

The NFF provided an option of transmitting flight event data to the customers 

through their serial USB interface. Payload customers can use this capability to automate 

payloads and trigger selective components inside the payload based on the current phase 

of the suborbital flight. In our case, the data logger would record the flight events along 

with the sensor's data. NanoRacks provided a software toolbox to simulate the 
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transmission of data packets through the USB ports in a local computer. This toolbox was 

utilized to program and test the Arduino for the collection of flight data.  

The Arduino programs were developed in the Arduino IDE software, which is a C++-

based programming environment. Arduino IDE provided options to use pre-built 

libraries, making the code very simple and easy for the users to carry out complex tasks. 

Each sensor had libraries available on their purchase website, and with the help of 

libraries, the sensors could be called, and data could be directly derived without 

performing complex parsing efforts. The communication and parsing of data are taken 

care of inside the pre-coded libraries. The custom data logger had to collect and store data 

from the sensors while also collecting flight data from the serial USB interface at the 

same time. Arduino compiler uses line by line compiler, and therefore to run multiple 

processes simultaneously, multithreading was used. The data collection from sensors, 

collection of data from the USB interface, and all the data storage take place 

simultaneously. The Arduino program that was used in the MESSI/McXIMUS payload is 

documented in Appendix A. 

 

Figure 35: Electronics test dry run 
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The circuits were assembled by soldering Dupont connectors to the Arduino MKR 

Zero board. The I2C master bus line was connected to the main line on the multiplexer, 

and the sensors were connected using JST connectors to the 8 channels in the 

multiplexer. The LED lighting system consisted of a set of 6 same-colored SMD LEDs 

connected in parallel. Three sets of the colored LEDs were then connected in series and 

powered by a battery pack consisting of 2xAA batteries, with each battery operating at 

1.5 V. Due to their sensitive nature, the batteries were reviewed and approved by Blue 

Origin before the flight. Power calculations showed that the lighting system could 

function for 12 hours, and multiple table tests were conducted. The circuit diagram for 

the LED lighting system is shown in Appendix B, and the electronics testing on a dry 

NanoLab is shown in Figure 36. 

4.4. Suborbital Flight Test 

   

a) Unpowered payload    b) Powered payload 

Figure 36: Fully assembled MESSI/McXIMUs payload preflight [47] 

MESII/McXIMUS payload was flown onboard the New Shepard NS-11 mission, the 

fifth flight of that capsule, and the fourth flight since the CRExIM mission. The launch 

took place on 2nd May 2019, and liftoff was at 08:35 AM. The capsule reached an altitude 

of 105.5 km and, after a flight of about 10 minutes, landed under parachutes near the 

WTLS. The fully assembled payload at the PPF is shown in Figure 36. The flight 
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included a total of 38 different payloads, out of which NASA flew 9. After the successful 

flight, the payload was recovered, and the data from the data logger was analyzed. 

 

Figure 37: MESSI/McXIMUS flight acceleration profile [47] 
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5. PLD Payloads 

The researchers at Embry-Riddle have been awarded a suborbital flight opportunity to 

fly payloads onboard PLD’s MIURA 1 sounding rocket. PLD is a European space 

company based in Spain, and the payloads are stated to be launched on the first flight of 

the MIURA 1 rocket, projected to be at the end of 2021. MIURA 1 is a single-stage 

liquid propellant-sounding rocket that can lift a nominal payload mass of 100 kg. The 

flight vehicle, flight parameters, and details on the launch vehicle are shown in Figure 38. 

  

Figure 38: PLD Space’s MIURA 1 launch vehicle and flight parameters [12] 

ERAU has secured a single payload compartment on MIURA 1 to fly its proposed 

payloads. The higher payload volume available in the single compartment has allowed 

the development of multiple experiments as sub payloads. A higher science output is 

expected in this launch through the completion of multiple objectives simultaneously. By 

flying multiple experiments, the utilization of available microgravity time is maximized.   
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5.1. PLD ERAU Payload Design 

The payload bay volume is shown in Figure 39a. The payloads will be mounted on a 

payload baseplate illustrated in Figure 39b. The actual flight hardware of the payload 

baseplate was shipped to ERAU by PLD Space to inspect the mounting of payloads and 

perform vibration acceptance tests of the payload assembly. 

       

           a) Payload compartment volume                       b) Payload Baseplate model 

Figure 39: MIURA 1 payload specifications [12] . All units are in mm 

 Multiple payload research teams have worked on developing four different sub-

payloads for the PLD launch. The four sub payloads are MAPMD, avionics/telemetry, 

shunt, and in-vitro payloads. An initial CAD model of the proposed sub payloads 

assembled on the baseplate is shown in Figure 40. The detailed description of each sub 

payload is discussed in the following sections. The sub payloads were designed to 

maximize the payload volume available in the single compartment of the MIURA 1 

rocket. MAPMD payload will be mounted using M6 mounting points, and the NanoLab 

payloads are mounted using dual lock adhesive Velcro tapes. 
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a) Isometric view    b) Top view 

Figure 40: PLD ERAU payload experiments – Initial CAD model 

The initial MAPMD payload design consisted of a suspended water tank mounted on 

four arms. This mounting scheme was initially conceptualized to utilize load sensors to 

measure liquid forces on the tank walls. Based on initial estimations, the load cells were 

removed from the payload design by the MAPMD research team. In the next design 

iteration, the Helmholtz coil assembly (shown in yellow and brown in Figure 41a) was 

used to electromagnetically control the floating membrane. The coil assembly was 

replaced with permanent magnets in subsequent designs (Figure 41b) as initial testing 

revealed the inadequacy of magnetic strength produced by the Helmholtz coil system for 

the MAPMD application.  

The power source NanoLab, which consisted of the payload electronics and power 

supply for the MAPMD payload, was not required without using the Helmholtz coil 

system and removed from the payload design. The assembly and disassembly of the 

initial MAPMD payload were challenging due to the multitude of components and 

fastening joints. Vibration testing of the MAPMD payloads (vibration test campaign 

detailed in Section 5.5) also showed concerns in the initial structure, and the assembly 



82 

 

failed the High-G load tests. A comprehensive design overhaul of the MAPMD sub 

payload was carried out to accommodate the necessary changes. The updated MAPMD 

sub payload is shown in Figure 41b.  

         

                  a) Initial MAPMD design          b) Updated MAPMD design 

Figure 41: MAPMD design modification 

In the updated MAPMD payload, the vertical support arms are removed, and the 

tanks are directly mounted to the MAPMD base plate using threaded rods. The Helmholtz 

coil system was replaced with 6 Neodymium permanent magnets. An aluminum support 

ring is added to mount the magnets using vertical spacers. The initial MAPMD design’s 

external casing was taller than 260 mm. The external casing is modified to a height of 

241.4 mm, thereby conforming to the maximum allowed height of 260 mm of the single 

compartment shown in Figure 39a. Rubber sheets are used to provide a water-tight seal 

and vibration dampening between the baseplate/external casing, top and bottom of the 

MAPMD tank. The updated CAD model of the PLD ERAU payload assembly is shown 

in Figure 42. 
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Figure 42: Updated CAD model of the PLD ERAU payload assembly 

The maximum allowed payload mass is 25 kg for a single compartment. The 

maximum allowed center of gravity region is a cylindrical section on the top center of the 

PLD baseplate with 140 mm (Diameter) and 130 mm (Height). The coordinate system of 

the MIURA 1 rocket is shown in Figure 43, and the X-axis corresponds to the thrust 

direction.  

 

Figure 43: PLD Space MIURA 1 vehicle coordinate system 
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The CAD model was created with the same coordinate convention, and all the 

components were designed with the same material properties as in the final prototype. 

The calculated mass and center of gravity parameters are shown in Table 12. Table 12 

also shows the calculated mass, size, and center of gravity compliance with PLD Space’s 

requirements.  

Maximum allowed payload physical characteristics: 

Mass: 25 kg 

Size: 590 mm (Diameter) and 260 mm (Height) 

CG: Cylindrical section above baseplate 140 mm (Diameter) and 130 mm (Height) 

Table 12: Calculated payload physical parameters for the PLD ERAU payload assembly 

Parameter Value 

Mass (kg) 9.35 

Payload assembly maximum dimensions (mm) 355.6 (Diameter) x 241.4 (Height) 

Center of Gravity (mm) 

CGX:  81.15 

CGY:    7.65 

CGZ: -10.99 

Moment of Inertia Tensor (kg.m2) [
0.2028 −0.0014 −0.0023

−0.0014 0.1273 0.0011
−0.0023 0.0011 0.1846

] 

 

5.1.1 Scope of Study 

The scope of study in this research with regards to PLD payloads will encompass the 

following topics: Development of the avionics/elementary payload structure, electronics 

design and assembly, benchmarking analysis of MAPMD performance in microgravity 

using CFD, vibration acceptance testing of all the PLD ERAU payloads on a shaker table. 

These topics will be discussed in detail in the following sections.  
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The Shunt and in-vitro sub payloads consist of biological experiments developed by 

other research teams. The shunt experiment investigates the effects of microgravity and 

space flight on the performance of a cerebrospinal fluid shunt device (technology 

demonstration). The invitro experiments study the effects of microgravity on the ability 

of certain anti-cancer drugs on cancerous tumor growth.  

5.2. Avionics Payload Development 

This suborbital mission will be the first flight of PLD Space’s MIURA 1 launch 

vehicle. Flying an avionics payload onboard the rocket aims to measure critical 

environmental parameters inside the launch vehicle throughout its flight envelope. 

Therefore, the researchers hope to characterize the flight environment, which will 

eventually serve as a pathfinder mission for future payload customers and researchers 

flying on the space vehicle. The data from the avionics package supports the research 

goals of other sub payloads in the ERAU payload package by providing additional data 

validation.  

Characterizing the environment inside a suborbital flight vehicle involves 

understanding the applications and customers that can benefit from these launches. Some 

common research areas include space biology, manufacturing, technology demonstration, 

and life support systems. Based on these applications and dominant stressors experienced 

in space travel, the following parameters were chosen to be recorded by the avionics 

package: 

 Accelerations, gyrations, magnetic headings, and quaternions 

 Temperature 

 Relative humidity 
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 Pressure 

 Radiation 

 Magnetic fields 

 Air quality 

 Infrared radiation 

Acceleration data could aid in the characterization of the microgravity levels and 

durations and vibrations experienced in the flight envelope. Temperature, humidity, 

radiation, and air quality are essential for sensitive payloads, especially microbiology 

experiments. Evaluating pressure is critical for components that are pressurized or 

contain pressure vessels. Magnetic fields can influence payload electronics and 

components with higher magnetic permeability. The payloads bay will not be 

illuminated, and therefore infrared imaging of the payload bay is prescribed. 

The avionics/telemetry payload is a new technology developed at ERAU to 

characterize the environment of the first suborbital flight of the MIURA 1 rocket. The 

electronics architecture and the NanoLab structural design are legacy systems of the 

previously flown suborbital missions and in-house model payload rocketry platforms. 

The project development of the avionics/telemetry payload has been rated using the TRL 

system, and the ultimate aim is to develop a commercial-off-the-shelf unit or a system kit 

that can aid users in evaluating flight parameters or support their flight experiments. This 

system will reduce the effort of other payload developers in developing their own 

avionics systems. Through previous experiences, design, fabrication, and breadboard 

validation in a laboratory environment, the avionics system technology has been 

improved to TRL 4. The system was flown along with the MAPMD payload on parabolic 
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flights, and through the validation of the components and breadboard in a relevant 

environment, the current rating of the technology is at TRL 5. The final prototype and all 

the payload systems will be validated in a space environment through the MIURA 1 

suborbital spaceflight, and the new product will progress to TRL 7. 

5.2.1 Payload Design  

Two avionics packages consist of two redundant sensor units, each contained in a 

separate NanoLab. Redundancy was one of the critical factors when making design 

considerations as this was the first flight for the launch vehicle, and it is useful to have 

multiple sets of data to characterize the flight. The payloads will be placed at different 

locations and orientations to capture the entire environment of the payload bay. The large 

payload capacity and higher electrical power features facilitated the inclusion of two 

avionics payloads simultaneously. These payload housings' design was derived from 

previous flight missions, and the NanoLabs are 3D printed using ABS plastic material. 

The design was slightly modified to accommodate the electronic components that were 

planned to go inside these NanoLab. The details on the electronics will be discussed in 

the next section. A sliding partition was designed to serve as the lid of the containers. The 

partitions walls house the circuit boards containing various sensors.  Slots on the payload 

structure were designed to accommodate electrical interfaces, external electrical 

components, and a port for air quality and pressure sensors to sense the payload bay 

environment. The avionics package designs are shown in Figure 44. 
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a) Horizontal Avionics Payload  b) Vertical Avionics Payload 

Figure 44: PLD ERAU Avionics payload design 

5.2.2 Payload Electronics 

The avionics payload primarily contains electronics and will measure various flight 

parameters using an array of sensors. The sensors were selected based on the parameters 

that were stated to be evaluated in the previous sections. Previous experiences with I2C 

sensors and the Arduino environment influenced the decision-making for sensors and 

microcontrollers used in the avionics package. PLD Space discusses the electrical 

interface and power capacities available in the launch vehicle in their Payload User Guide 

(PUG). The payload power supply will provide a voltage of 28 V with maximum current 

draw per connector at 10 A. These voltages are incompatible with Arduino and sensor 

voltages, and therefore a 28 V to 5 V voltage regulator is utilized to step down the 

voltage and distributes to the electronic circuits. A variance in the power levels can be 

expected as the payloads draw power from the vehicle batteries. Therefore, the voltage 

regulator is chosen to operate at a range of input voltages and provide a constant 5 V 

output to the circuits. A Command Data and Handling (CD & H) connection are also 
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available through the payload interface, stream live vehicle telemetry data over an 

Ethernet connection. 

Four different electronic circuits are conceived to carry out the data collection tasks 

inside the payload. These circuits will be designed on four different circuit boards: 

Circuit Board 1 carries most of the sensors (air quality, temperature & humidity, pressure, 

inertial measurement unit (IMU), accelerometer, and magnetometer). Circuit Board 2 

contains the radiation sensor. Circuit Board 3 contains the infrared imaging unit. Circuit 

Board 4 will contain the circuitry to collect the CD & H flight data. Running all the same 

board and controller unit tasks requires complex programming and is more susceptible to 

errors and failure risks. The researchers aim to improve data collection confidence levels 

and reduce data losses by having independent circuits spanning two redundant payload 

packages. 

Circuit Board 1 will utilize the I2C bus architecture similar to MESSI/McXIMUS 

payload. All the I2C sensors have been paired in a single circuit board, and a multiplexer 

is not required this time since each sensor is unique and has a unique address. The four-

wire bus line is passed in series through all the sensors, and the circuit diagram is shown 

in Appendix B.  

A primary power connector is attached to the payload housing, receiving a 28 V 

power supply from the launch vehicle. The power from the connector is split and 

connected to Circuit Boards 1 and 2. Each board will have its voltage regulator step down 

the operating voltage to 5 V, and redundancy reduces the risk of power failure. The 5V 

regulated power will then supply to boards 3 and 4. JST connectors are used to provide 
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connections between all the boards and the internal power supply. Arduino MKR Zero is 

used as the microcontroller in both boards 1 and 2. 

Circuit Board 2 will house the pocket Geiger radiation sensor. A separate circuit is 

used for this sensor due to the nature of the data signal from the sensor. Pocket Geiger 

does not support I2C [46], and the data is output in pulses when radioactive particles 

strike on the sensor. Therefore, a separate circuit is designed and shown in Appendix B to 

simplify and achieve uninterrupted data collection without using multi-threading 

programs. The corresponding Arduino programs (see Appendix A) and an example 

output file stored in the microSD card are shown in Appendix B. 

 

Figure 45: Assembled avionics payload NanoLabs 

Circuit Board 3 houses the infrared thermal imaging sensor. Due to the higher 

processing requirements for the infrared sensor, a Teensy 4.1 microcontroller is utilized 

to collect and process data. Circuit Board 4 will contain the CD & H data collection 

system. The detailed design and communication protocols expected from the flight 

vehicle are being updated by PLD Space to payload customers as the launch vehicle is 

still under development. This board will be designed and developed based on further 
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inputs from PLD Space’s engineers and left as future research. The support and 

interfacing hardware have already been incorporated in the design and assembled in the 

hardware. An RJ45 8-pin connector has been attached, and the wiring has been 

completed to be incorporated into future circuit designs. The list of components in each 

avionics/telemetry NanoLab is shown in Table 13. The assembled and wired NanoLabs 

are shown in Figure 45. 

Table 13: List of electronic components in each avionics/telemetry payload 

Hardware Component Description 

Circuit Board 1 

Arduino MKR Zero Microcontroller 

TSR 1-2450 Voltage regulator (6.5-36 V IN; 5 V OUT) 

Power connector (male) Vehicle/payload power supply interface 

Si7021 breakout Temperature and relative humidity sensor 

MPL3115A2 breakout Pressure sensor 

CCS811 breakout Air quality sensor (CO2 and TVOC) 

MPU 9250 breakout Inertial Measurement Unit (IMU) 

HMC5883 breakout Magnetometer 

LIS331 breakout Triple-axis accelerometer 

Circuit Board 2 

Arduino MKR Zero Microcontroller 

Pocket Geiger-Type 5 Radiation sensor 

Circuit Board 3 

Teensy 4.1 Microcontroller 

MLX90640 breakout Infrared sensor array 

Circuit Board 4 

RJ45 8-pin connector Ethernet data connection 

Datalogging system Future Work 
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5.3. MAPMD CFD Analysis 

5.3.1 Payload Background 

The behavior of liquid propellants is highly unpredictable and chaotic in the 

microgravity environment experienced by launch vehicles and spacecraft that utilize 

liquid propellants. Sloshing occurs inside the propellant tanks due to the motion of the 

vehicle and in microgravity. Sloshing is the motion of a liquid with a free surface inside a 

container. The sloshing phenomenon can damage the structural parts of the rocket tanks 

and affect the vehicle's guidance and control trajectory by imparting undesirable forces 

on the tank walls. 

         

Figure 46: Liquid slosh in a cylindrical tank [27]  

The slosh mitigation is vital in ensuring mission success in various space and 

terrestrial applications such as oil tankers and hazardous material trucks. Propellant 

Management Devices (PMD) performs the control of slosh, specifically in space 

applications. PMDs can be divided into three types: 1) Passive damping: This method 

involves structural modifications on the tank's structure employing partitions, vanes, and 

baffles or free-floating diaphragms or membranes, which break the slosh waves on the 
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free surface. These structures are bulky and are incapable of adapting to different slosh 

levels and intensities. 2) Active damping: This method involves measuring slosh wave 

frequencies and actively creating waves of opposing frequencies to cancel out the 

sloshing on the free surface.3) Hybrid damping: This method employs active and passive 

methods by using actively controlled PMDs. 

      

Figure 47: Slosh mitigation using PMD. Passive damping (left). Hybrid Damping (right) 

Magneto Active Propellant Management Device (MAPMD) experiment is the 

primary payload investigated in the proposed PLD payload package. MAPMD payload is 

a technology demonstration in a natural spaceflight environment and will experience a 

microgravity time of about 3-4 minutes on board the PLD MIURA1 rocket at the end of 

2022 or 2023. MAPMD is a slosh mitigation device that employs a hybrid slosh damping 

technique. The experiment consists of a floating membrane at the free surface of the 

sloshing fluid. A magnetic force from an electromagnet is used to control the magnetic 

membrane's orientation and motion. The membrane absorbs the kinetic energy from the 

liquid's free surface motion, thereby dissipating the slosh energy on the tanks.   

A technology demonstration of MAPMD was carried out onboard NASA’s Zero-G 

parabolic flight aircraft by ERAU in collaboration with Carthage College [15]. This flight 
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experiment served as a precursor to the suborbital test flight onboard the MIURA1 

rocket, and the parabolic flight-testing and the lessons learned were applied to the design 

and development of the suborbital flight payload. The Zero-G aircraft executes a 

sequence of maneuvers following several parabolic flight trajectories to simulate 

microgravity and offers the investigators a gateway to weightlessness. The payload flown 

consisted of two experiments: the propellant mass gauging experiment and the MAPMD 

experiment. The MAPMD experiment consists of a transparent polycarbonate cylindrical 

tank internally measuring 3 in (7.62 cm) diameter and 17.7 in (44.76 cm) length with a 

fluid volume of 2 gallons (7.57 L). The liquid propellant was simulated using water as a 

safe alternative to hazardous propellants, and multiple levels of containments were 

employed to ensure protection from leaks or tank rupture.  

The MAPMD system has been studied and developed through many years of research 

at ERAU. The previous research work to understand slosh behavior and experimental 

ground testing of the MAPMD system has improved the technology to TRL 4. The proof 

of concept testing on the parabolic flights has increased MAPMD to TRL 5 through 

component verification in a relevant environment. The goal of the MAPMD payload on 

the PLD mission is to demonstrate the technology in space and evaluate the effectiveness 

of the MAPMD system. The MAPMD development progress will be increased to TRL 6 

through a prototype demonstration in space through this suborbital flight test. 

The active slosh damping setup consists of a floating magnetic membrane made of 

Metglas and a series of permanent Neodymium magnets outside the tanks. Metglas 

2714A is a nickel-iron amorphous metal alloy with a very high magnetic permeability of 

1,000,000 m. This material was selected for its electromagnetic properties, along with its 
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high hardness and strength characteristics. Twenty-two layers of Metglas were wound 

around a 3D printed baffle made of ABS plastic [16]. Cameras were used to record the 

behavior of the liquid inside the tanks and capture the performance of MAPMD in both 

passive damping (floating membrane without magnetic field) and hybrid damping 

(floating membrane with magnetic field) scenarios. 

 

Figure 48: MAPMD Zero-G flight experiment rig [15] 

Various sensors were flown with MAPMD in the parabolic flights. The experimental 

avionics payload unit collected flight data, also a sub payload for the upcoming PLD 

mission. The parabolic flight provided an excellent opportunity to test this future payload, 

while collecting flight environment data for MAPMD using its array of sensors. The PLD 

avionics payload was modified by adding a battery pack to power the payload and a LED 

to display sensors and data collection activation. 

 

Figure 49: Modified avionics payload flown onboard parabolic Zero-G flight 
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The critical parameter that affects the fluid motion is the acceleration due to the 

motion of the flight vehicle, which was measured. The parabolic aircraft on which the 

payload was flown is shown in Figure 50, along with the corresponding Z direction. The 

flight trajectory consisted of 32 parabola maneuvers, and the acceleration profile is 

shown in Figure 51. 

 

Figure 50: Zero-G parabolic flight aircraft [48] 

 

Figure 51: Acceleration profile. Zero-G parabolic flight conducted on November 19, 2020 

The liquid slosh behavior inside tanks can be modeled using numerical analysis and 

CFD simulations. Therefore, a CFD analysis is carried out to evaluate the performance of 

MAPMD. The parabolic flight data (acceleration profile) and the geometry of the 

experimental tanks are utilized in performing the CFD analysis. The videography data of 

the liquid levels from the parabolic flights are used to validate the CFD models. The 

overall goal of the CFD analysis is to benchmark a methodology to analyze liquid 

behavior on payloads containing liquids and optimize the payload design based on the 
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results. The benchmarking could be applied to analyze trajectories on other suborbital 

flights using the data from parabolic flights and valid CFD models. These flight tests are 

costly and limited in the available microgravity time, thereby minimizing the 

opportunities to test various experiment scenarios and configurations. CFD benchmarking 

could help simulate numerous other scenarios vital in improving a new technology at 

faster turnaround times and lower costs. 

5.3.2 Fluid Domain 

Star-CCM+ is a commercial CFD program used by several users in the industry and 

academics. Star-CCM+ is utilized in performing this CFD analysis. The analysis domain 

is modeled in the CAD environment in Star-CCM+. The internal volume of the tank is 

modeled as the fluid domain. An overset region containing the floating membrane is 

modeled separately. This overset region is designed to move within the fluid domain 

using overset mesh topology, explained in later sections. The boundaries are named 

appropriately based on their function inside the domain. A surface repair tool is utilized 

to check for any gaps or problems in the model's surfaces.  

 

Figure 52: MAPMD CFD domain showing distinct background (Tank) and overset regions 
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5.3.3 Fluid Mesh 

Meshing is the process of discretizing the computational domain to solve the 

governing equations of the fluid flow using an iterative process. The properties of the 

fluid mesh are vital in the simulation's accuracy and affect the computational solving 

time. A well-defined and appropriate mesh type is necessary for the domain where 

critical flow phenomenon occurs, such as where motion is expected. Star-CCM+ offers 

various options for generating surface and volume meshes on the model. The parts-based 

meshing technique is used for flexibility and adaptability in making the fluid mesh 

independent from the physics setup, so changes and edits could be performed easily. A 

surface mesher is used to mesh the boundary surfaces, and the trimmed cell mesher is 

utilized to extrude the volume mesh from the surfaces by cutting hexahedral patterns. The 

trimmed cell mesher offers a robust and fast method for creating aligned meshes on the 

domain and better free surface resolution characteristics. 

    

Figure 53: Volume Mesh. 3D Mesh view (left). Mesh cross-section (right) 
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Prism layer mesh is created on the boundaries where a boundary layer formation is 

expected. Prism layers produce a tight structural mesh around the boundaries and ensure 

proper resolution of the boundary layer. 

  

Figure 54: Mesh Details. Prism layer cells around the flow boundaries (left). Overset mesh on the 

floating membrane (right) 

Volumetric control is utilized to refine the mesh in the areas of interest. In this 

simulation, distinct volumetric mesh regions are created on various areas in the domain. 

A more refined volume mesh is created along the walls of the tank. The gap between the 

membrane and the tank walls is small (2.54 mm), and proper refinement is required in 

this area. An essential requirement of overset meshes (explained in detail in the next 

section) is that at least 3-4 cells always exist between the boundaries of the moving 

overset region and background mesh region to ensure proper communication of 

parameters between the two regions. The combination of prism layers and volumetric 

refinements ensures that this criterion is met in all scenarios of membrane motion inside 

the tank. The other important criterion of overset mesh is that the mesh density or size in 

both regions should be of the same scale or close to the same scale to avoid overset 

interpolation losses. The second volumetric control on the inner areas of the tanks and 

overset region enforce the two meshes to be of the same density. In a scenario where the 

membrane rotates 90° with respect to the tanks and in a vertical configuration, some 

cultured cells around the membrane edges will overlap the under refined regions of the 
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tank. The overset interpolation error is expected to be small as the same mesh densities 

were used in the overset and background meshes. The interpolation errors could be 

resolved entirely by refining the mesh on the entire domain matching the cell size of the 

boundaries. However, this is not feasible as the overall cell count increases exponentially, 

and the simulation becomes highly computationally expensive to solve. The inner 

volumetric control is set to 0.04 in (1.016mm), and the outer volume is set at 0.08 in 

(2.032 mm), resulting in a mesh containing about 4.3 million cells (4.1 million cells on 

the tank background region and 0.2 million overset region). 

 

Figure 55: Free slosh comparison 

A free slosh comparison is performed with the experimental ground test analysis in 

the MAPMD development process [27]. The slosh responses show a good correlation up 

to four seconds of excitation. The actuation in the original study was stopped after this 

time, and in the simulation, a continuous actuation was applied, which could be the 

difference observed in the last few seconds. A mesh independence study of the free slosh 

condition was performed with five different mesh sizes, and better convergence was 



101 

 

observed from Mesh case 3 onwards. The same mesh size parameters were employed in 

the passive damping cases in the scaled tank. 

Table 14: Mesh independence study 

Mesh 

designation 

Base Size (mm) Total cells 

count (million) 

Processor solving 

time (hrs) 

1 5.08 0.502 3.7 

2 3.048 1.826 8.1 

3 2.54 2.932 9.9 

4 2.032 5.289 17.8 

5 0.07 7.581 19.95 

5.3.4 Overset Mesh 

 Overset meshing is a technique that involves the creation of overlapping independent 

meshes in distinct regions of the fluid domain. Overset mesh is a powerful tool when the 

analysis involves multiple bodies interacting or moving with respect to each other. The 

application of discrete meshes on independent regions offers a significant advantage by 

reducing the requirement to refine the mesh around moving bodies, thereby rendering a 

more computationally efficient solution. Furthermore, this technique avoids the mesh 

morphing process that is usually accompanied in simulations involving motion. In the 

morphing process, the overall mesh of the domain must adapt to the changes in the 

orientation of the moving object, and the mesh will become skewed; therefore, remesh is 

required if mesh quality drops below a specific value. The mesh morphing method is 

computationally expensive, and an overset mesh offers an efficient alternative where only 

the overset mesh moves with respect to the background mesh. 

In this scenario, the floating membrane moves inside the tank boundaries due to the 

liquid forces imparted by the sloshing fluid on the membrane. In overset meshes, the cells 
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are grouped into inactive, active, and acceptor cells. The flow equations are solved in the 

active region, and the flow parameters are interpolated and exchanged between the 

overset and background regions at the interpolation boundary marked by the acceptor 

cells. The overset mesh topology performs a hole cutting process, where a hole is cut in 

the background mesh to accommodate the overset region cells. This process determines 

which cells in the domain become active, inactive, or acceptor cells. A linear 

interpolation method is utilized to interpolate flow parameters between the two regions. 

The linear interpolation method offers better accuracy but is computationally more 

expensive compared to other available approaches.   

The overset region is modeled to extend outside the boundaries of the background 

region. This model maintains mesh consistency around the small gap between the 

membrane and the tank boundaries. As the membrane moves inside the tank, the 

membrane is expected to come in close proximity to the tank walls. The program is 

unable to interpret this behavior as the cells in the overset region exit out of the 

background region. A zero-gap overset interface option is available to deal with such 

scenarios where zero gaps are expected. It works by changing the cells in the zero-gap 

region to inactive cells as the two regions approach each other and the number of cells 

between the approaching boundaries reaches below a preset value. In this simulation, 3 

cell layers are set as the zero-gap criteria, equal to a gap of 0.008 in (0.2032 mm).  

The overset mesh is initialized before running the simulation to check the validity of 

the overset mesh. The interface was initialized without any interpolation errors or 

penetrations. A display scene showing overset cell status on the regions is shown in 

Figure 56 and Figure 57. 
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Figure 56: Overset cell status on the overset region 

 

Figure 57: Overset cell status on the background (Tank) region 

5.3.5 Simulation Physics, Governing Equations, and Boundary Conditions 

The Eulerian Multi-Phase model is used to resolve the multiple fluid phases. Water is 

simulated as the liquid phase, and air as an ideal gas is simulated as the gas phase. The air 

phase follows the ideal gas equation of state. The Volume of Fluid (VOF) method is 
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utilized to resolve the gas and fluid phases interface. In this method, the spatial 

distribution of each phase at a given time [49] is defined in terms of a variable called 

volume fraction 𝑎𝑖 and is given by: 

 𝑎𝑖 =
𝑉𝑖

𝑉
 (1) 

where, 𝑉𝑖 is the volume occupied by the corresponding phase inside a cell, and 𝑉 is 

the total volume of the cell. The index i refers to the phase, and the parameters are solved 

for each phase separately (in this case, air, and water). Other flow parameters are 

calculated as follows: 

 Density 𝜌 =  ∑ 𝜌𝑖𝑎𝑖
𝑖

 (2) 

 Dynamic viscosity 𝜇 =  ∑ 𝜇𝑖𝑎𝑖
𝑖

 (3) 

 Specific heat 𝐶𝑝 =  ∑
(𝐶𝑝)

𝑖
𝜌𝑖

𝜌
𝑎𝑖𝑖  (4) 

The governing equations of fluid flow for each distinct phase [50] are applied as 

follows: 

Continuity equation: 

 
𝜕

𝜕𝑡
(∫𝜌𝑑𝑉

𝑉

) + ∮𝜌𝑣
𝐴

. 𝑑𝑎 = ∫𝑆𝑑𝑉
𝑉

 (5) 

The continuity equation expresses the law of conservation of mass and the transport 

of the phases in the flow. The continuity equation has two terms on the left-hand side of 

the equation. The first term is the time rate of change of mass of the system, and the 

second term is the net rate of flow of mass through each control surface. The term on the 

right side of the equation is the net mass change from the mass sources.  
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Momentum equation: 

 

𝜕

𝜕𝑡
(∫ 𝜌𝑣𝑑𝑉

𝑉
) + ∮ 𝜌𝑣

𝐴
⊗ 𝑣. 𝑑𝑎 = −∮ 𝑝𝐼. 𝑑𝑎

𝐴
+ ∮ 𝑇. 𝑑𝑎

𝐴
+

∫ 𝜌𝑔𝑑𝑉
𝑉

+ ∫ 𝑓𝑏𝑑𝑉
𝑉

− ∑ ∫ 𝑎𝑖𝜌𝑖𝑣𝑑,𝑖 ⊗ 𝑣𝑑,𝑖. 𝑑𝑎
𝐴𝑖  

(6) 

The momentum equation consists of two terms on the left-hand side. The first term is 

total momentum inside the control volume, and the second term is the momentum flux 

over the entire boundary. The terms on the right-hand side are the pressure gradient, 

viscous stress tensor, gravity force, body forces, and surface forces.    

Energy equation: 

 

𝜕

𝜕𝑡
(∫ 𝜌𝐸𝑑𝑉

𝑉
) + ∮ [𝜌𝐻𝑣 + 𝑝 + ∑ 𝑎𝑖𝜌𝑖𝐻𝑖𝑣𝑑,𝑖𝑖 ]

𝐴
. 𝑑𝑎 = −∮ �̇�". 𝑑𝑎

𝐴
+

∮ 𝑇. 𝑣𝑑𝑎
𝐴

+ ∫ 𝑓𝑏 . 𝑣𝑑𝑉
𝑉

∫ 𝑆𝐸𝑑𝑉
𝑉

 

(7) 

where E is the total energy, H is the total enthalpy, �̇�" is the heat flux vector, T  is the 

viscous stress tensor, fb is the body force vector, and SE is the additional energy source 

term. 

The momentum and the energy equations express the laws of conservation of 

momentum and energy, respectively. The momentum equation states that the time rate of 

momentum change in each direction equals the sum of surface forces and body forces 

acting on the fluid in that direction [51]. Therefore, the flow must satisfy the above 

equation, and generally, the solution is obtained by solving the momentum and energy 

equations in tandem to estimate important flow parameters.   

All of the boundaries in the domain are modeled as the no-slip wall boundary 

condition. This boundary condition mimics the closed/contained fluid domain, as is the 

case in the MAPMD tank.  
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5.3.6 Simulation Cases 

 

Figure 58: Parabolic acceleration profiles used in CFD simulation cases 

The acceleration profile of the parabolic flights is reproduced from the experiment 

data by inputting these values in the “gravity reference values” entry fields of the physics 

continuum. The acceleration in X, Y, and Z directions are read from a table and 
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interpolated using a user-defined field function to apply the acceleration profile with 

respect to solution time.  

Acceleration profile interpolation field function: (interpolateTable(@Table("Accel_1"), 

"Time", LINEAR, "X", $Time))*9.80665 

Multiple parabolas were flown on a single flight, and the corresponding data were 

measured for each parabola. The maneuvers consisted of a continuous sequence of 

parabolas, followed by level flight and then repeated as a sequence. Four parabolas 

containing corresponding experimental results are chosen from each sequence arbitrarily 

and constituted four separate solution cases. The acceleration profiles are shown in 

Figure 58. 

5.3.7 DFBI Motion 

The motion of the floating magneto active membrane is modeled using the Dynamic 

Fluid Body Interaction (DFBI) solver in Star-CCM+. The membrane is assumed to be a 

rigid body, and the DFBI module uses the governing equations of rigid body motion to 

estimate the forces and moments on the rigid body. The fluid flow inside the domain 

exerts pressure and shear forces on the DFBI body which are resolved into direct forces 

and moments on the body. The forces and moments are then used to evaluate the new 

position of the rigid body, and thus the new orientation and motion of the DFBI body   

are estimated. The governing equations of DFBI rigid body motion [52] are shown in 

Equations 8 to 17. 

The primary source of the forces acting on the solid body from the interaction with 

the fluid flow is pressure and shear. The forces and moments acting on the DFBI body 

(floating membrane) are calculated as follows: 
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 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 𝑓𝑝 = ∑ 𝑝𝑓𝑎𝑓
𝑓

 (8) 

 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑛𝑝 = ∑ [𝑟𝑓 × (𝑝𝑓𝑎𝑓)]
𝑓

 (9) 

 𝑆ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒𝑠 𝑓𝜏 = −∑ 𝜏𝑓𝑎𝑓
𝑓

 (10) 

 𝑆ℎ𝑒𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑛𝜏 = −∑ [𝑟𝑓 × (𝜏𝑓𝑎𝑓)]
𝑓

 (11) 

 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒 𝑓𝑔 = 𝑚𝑔 (12) 

 

The total resultant force and moment on the DFBI rigid body are calculated by the 

summation of all the forces acting on the DFBI body: 

 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 𝑓 = 𝑓𝑟 (𝑓𝑝 + 𝑓𝜏 + 𝑓𝑔 + ∑𝑓𝑒𝑥𝑡) (13) 

 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 𝑛 = 𝑓𝑟 (𝑛𝑝 + 𝑛𝜏 + ∑𝑛𝑒𝑥𝑡) (14) 

where 𝑓𝑟 is the ramping factor that can be applied in the DFBI setup. The ramping 

factor is used to gradually increase the forces on the body after the DFBI body release 

time to improve the convergence of the simulation. 𝑓𝑒𝑥𝑡 and 𝑛𝑒𝑥𝑡𝑎𝑟𝑒 all the external 

forces and moments applied to the DFBI body. Star-CCM+ offers various options to 

external input forces in the form of direct normal force, dampening coefficients, joints, or 

couplings. 

In reaction to the forces and moment sources mentioned above, the rigid body 

translates and rotates about the inertial coordinate system. The translation of the body is 

given by Equation 15. 
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 𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 (15) 

where 𝑚 is the body mass, 𝑣 is the velocity of its center of mass and 𝑓 is the resultant 

force acting on the body. The rotation of the body is given by Equation 16.   

 𝑀
𝑑�⃗⃗� 

𝑑𝑡
+ �⃗⃗� × 𝑀�⃗⃗� = 𝑛 (16) 

where �⃗⃗�  is the angular velocity of the rigid body, 𝑛 is the resultant moment, and 𝑀is 

the tensor of the moment of inertia given by Equation 17. 

 𝑀 = [

𝑀𝑥𝑥 𝑀𝑥𝑦 𝑀𝑥𝑧

𝑀𝑥𝑦 𝑀𝑦𝑦 𝑀𝑦𝑧

𝑀𝑥𝑧 𝑀𝑦𝑧 𝑀𝑧𝑧

] (17) 

The DFBI setup involves the input of structural properties of the rigid body. The 

mass, moment of inertia components, and the body's center of mass are specified initially. 

The degrees of freedom for the motion are set initially, and, in this case, the vertical 

translation (along the z-axis) and lateral rotation (rotation along x and y-axis) are 

unrestricted, while the other degrees of freedom are restricted. The x and y translations 

are restricted as the gap between the tank walls, and the membranes are small in those 

directions. Rigid body penetration between the membrane and tank walls is expected if 

motion is allowed in these directions. The release time and the ramp time to freeze the 

DFBI motion solver during the initial simulation stages can be specified to prevent 

simulation instabilities and avoid divergence of the solution.   

As the membrane undergoes motion due to the forces acting on it, the membrane is 

expected to move to the extremities of the tank, and penetration between the membrane 

surface and tank wall surface is expected. This scenario is more common in the passive 

damping scenario, where the unrestricted floating membrane is expected to move freely 



110 

 

up to the tank extremities during the microgravity period. DFBI motion does not 

automatically predict and resolve the contact of the body with other boundaries. DFBI 

coupling provides an option to manage such scenarios through a method called contact 

body coupling.  

Table 15. DFBI setup parameters 

DFBI Body Property Value 

Mass 0.0667 kg 

Moment of Inertia Diagonal Components 

(Mxx, Myy, Mzz) 
(1.1918e-4, 1.19179e-4, 2.3555e-4) kg/m2 

Degrees of Freedom Z translation, X, Y and Z rotation 

Release time 0.1 s 

Ramp time 0 s 

 

The contact body coupling is utilized to resolve the impact of the DFBI body on the 

tank boundaries. This method applies an opposing force to the DFBI body, stopping the 

motion when the object reaches the boundaries. The contact coupling monitors the closest 

distance between the surfaces of the DFBI object and the surfaces of the outer 

boundaries. An effective range value of 0.2 in (5.08 mm) is used. An opposing ramp 

force is applied on the membrane as it moves closer to tank boundaries at a distance 

lesser than the effective range value. The ramp force stops the body's motion and 

rebounds it back in the direction of the approach. 

The rebound force must be entered in the contact coupling module in the form of an 

elastic coefficient ‘𝑘.’ The input elastic coefficient value must be an appropriate value 

sufficient to stop the motion of the body entirely before it hits the boundaries and also 

ensure that the repulsive force is not too large. The contact force resulting from the elastic 
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coefficient should be analogous to the reaction force experienced by an impacting body. 

The elastic coefficient is calculated as follows: 

 𝑘 =
𝑚

𝐴
∙

𝑣𝑛,𝑟𝑒𝑙
2

(𝑑0 − 𝑑𝑚𝑖𝑛)2
 (18) 

where 𝑘 is the elastic coefficient, 𝑚 is the mass of the DFBI body, 𝐴 is the area of 

contact, 𝑣𝑛,𝑟𝑒𝑙 is the normal relative impact velocity between the DFBI body and the 

contact surface, 𝑑0 is the effective range and 𝑑𝑚𝑖𝑛 is the minimum gap distance the body 

should stop.  

The objective of this simulation is to predict the motion of the membrane and to 

understand slosh behavior. The impact velocity is not constant as the membrane moves at 

different velocities and impacts the surface at unpredictable durations. It is, therefore, 

evident that the velocity of the membrane inside the tank is unknown initially. Evaluation 

of the elastic coefficient is impossible without the knowledge of the impact velocity. The 

velocity of the membrane is monitored inside the tank, and the impact velocity is 

supplied to Equation 18 when a close contact condition is expected. This process involves 

constantly monitoring the solution, stopping and applying the necessary changes to the 

contact coupling whenever necessary. This process is not feasible when running the jobs 

in a cluster.  

The contact coupling method also requires more computational resources to solve and 

is therefore not feasible throughout the solution. The average solution time per time step 

for the DFBI active simulation without contact coupling running on five nodes (36 

processors per node) is 15 s per time step. The time taken per time step with contact 

coupling enabled under the same job settings is about 35 s. This large jump in solution 
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time is shown in Figure 59. It is therefore not economical to enable the contact coupling 

model throughout the solution.  

 

Figure 59: Time taken by the Star-CCM+ solver for each time step 

A JAVA script is written to automate the switching of contact coupling when the 

impact is imminent and disable the coupling otherwise. The JAVA script accesses the 

minimum contact distance reports and the membrane velocity report from the simulation. 

The program then determines if contact is imminent and enables the contact coupling 

model with a preset effective range and a calculated elastic coefficient based on the 

current velocity of the membrane. The enabling/disabling of contact coupling is evident 

in Figure 59. This process efficiently solves the problem by saving time by not enabling 

the contact coupling throughout the run. The JAVA script utilized in the run is shown in 

Appendix A. 

5.3.8 Simulation Execution 

A time step of 0.001 s with a first-order implicit unsteady scheme is used to resolve 

the time progression of the simulation. The selected time step showed good convergence, 

and the courant number values are under the allowable limits. The time step is also 

chosen to ensure that the membrane motion does not exceed the distance of a single cell 

per time step. Based on the monitored velocity values, it is established that this condition 
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did not occur throughout the simulation. Eight inner iterations are solved for each time 

step, and it is sufficient to resolve the flow and motion within a time and showed 

converging residuals within time steps. The simulations are run for a total physical time 

averaging 40 s. Each case has different stop times as the flight parabola lengths are 

different. 

The simulations are run on the Cray supercomputer, also called Vega, at ERAU. The 

simulations are computationally expensive due to the highly complex flow phenomena in 

this problem involving multiple phases, DFBI motion, and microgravity conditions. Vega 

cluster offers 84 nodes with 36-2.3 GHz cores in each node. The parallel computing 

option partitions the volume mesh in the simulation domain and solves each partition 

simultaneously.  Therefore, it is more efficient to run complex CFD simulations on the 

supercomputer. A total of 6 nodes (36 processors in each node) is utilized in running the 

simulations for each case. The simulation file and the job run script are uploaded and 

submitted to the cluster's job queue. An example job submission script is shown in 

Appendix A. The simulations took approximately a week to solve for each case. 

5.3.9 Post Processing 

The post-processing of the simulation and the acquisition of the results is done 

through the following reports and monitors. 

Water threshold derived part: A threshold derived part isolates the cells containing 

only the water phase. This derived part is utilized to measure water only volume, mass 

and display water distribution inside the tank. 
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Water isosurface derived part: An isosurface derived part is utilized to remap the free 

surface of the water/air interface. This part is used in measuring the Courant number and 

the water surface height inside the tank. 

Plane section: Custom plane sections are created to visualize the cross-section of the 

domain. This part is utilized in viewing the details in the mesh, interface interpolation 

status, and water distribution cross-sections.  

Courant number report: Two reports measuring the average Courant number and the 

maximum Courant number on the liquid surface. These reports help in monitoring the 

accuracy of the interface resolution during the simulation and in validating the time step 

and mesh size necessary to model the multiphase flow problem 

Acceleration report: The acceleration profile applied as tabular data in the simulation 

is monitored with respect to solution time is monitored using an expression report. Three 

reports will be used to track the acceleration in each coordinate direction as the 

simulation progresses. 

Overset interpolation quality report: A new option called the overset interpolation 

quality report is automatically available when an overset interface is created. This report 

will be used to track the overset interpolation deviation between the background and 

overset region, and a value of zero deviation is ideal.   

Water volume and mass reports: The volume of water contained in the tank is 

measured using a sum report. The sum report calculates the total volume of all the cells 

containing water in the water threshold derived part. An expression report is used to 

calculate the mass of water by multiplying water volume with the density of water 

(997.561 kg/m3). The mass report is utilized to track the change in the total mass of water 
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contained within the CFD domain and evaluate the solution's continuity divergence. 

Disparities in continuity are expected when the Multiphase VOF model and overset mesh 

technique are used. 

Water surface height report: A maximum report on the water isosurface-derived part 

estimates the highest point of the water surface inside the tank. This report is used for 

validation with graphic video evidence from parabolic flights. 

Solution time reports:  Two reports are created to monitor the solution progress and 

the actual time taken to solve and render the simulation: Total Solver Elapsed Time 

report measures the total time taken to solve the simulation. Solver Elapsed Time per 

Timestep report measures the time taken by the solver in each timestep. These reports are 

beneficial for monitoring simulation progress and setting the computational resources 

required (number of cores in the cluster) for the efficient and faster running of cases. 

Force reports: Three force reports, each in corresponding coordinate directions, are 

created to measure the forces of the fluids on all the walls of the tank. The force 

measured is sourced from the pressure and shear forces of fluids impinging on the tank 

walls. 

DFBI membrane reports: Multiple reports on the DFBI body are specifically 

available when a DFBI body is used in the simulation. The Membrane translation and 

rotation reports were created to evaluate the orientation of the membrane as it moved 

inside the tank. The Membrane force reports are created to evaluate the forces on the 

membrane. Separate reports are created for different sources of force on the membrane. 

The three sources are fluid force, gravity force, and contact coupling force. 
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Contact distance report with surface data mapper: Surface data mappers are used to 

map a particular parameter on the surface of an object used in the simulation. The 

centroid of the cells in the moving membrane body is mapped for each time step. A 

custom field function then calculates the distance between the mapped centroid and the 

centroid of another surface on the tank walls. A minimum report is used to evaluate the 

minimum distance between the tank walls and the membrane surface. This report is used 

to monitor the clearance between the membranes and the tank walls. 

5.4. MAPMD CFD Results 

Six different parabolas from the parabolic test were simulated on the passive and 

active damping cases. Each parabola imparted about 20 seconds of microgravity to the 

payloads. The input parabolic acceleration profiles are shown in Figure 59. Only the 

vertical Z-axis acceleration is shown; however, all the measured accelerations in the 

corresponding axes were simultaneously applied.  

 

Figure 60: Acceleration profile for each simulation case 
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The simulation progress was monitored using the residuals and the Courant number at 

the water surface (air/water interface). Courant number is the ratio of the flow velocity to 

the size of a grid cell and measures how much information passes through a cell in a unit 

of time. Therefore, it measures the validity of the grid and the time step size set by the 

user. In general, a maximum Courant number value of less than 1.0 is preferred [53]. The 

average Courant number of the water surface for all six runs is shown in Figure 61. It is 

observed that the Corant number values are below 1 in most cases. A few spikes are 

encountered during critical flow interactions between the DFBI body and the flow. 

 

Figure 61: Average Courant number on the water surface 

The maximum water level mark is estimated inside the tank throughout the 

simulation. As the acceleration G levels decrease, the water volume starts migrating 

towards the top of the tank. The water first wets one side of the tank, and bulk motion 

happens due to surface tension and wetting between the liquid and the solid walls of the 

tank. By comparing Figure 62 and Figure 60, it can be noted that the water motion begins 

around 10 s in simulation time which corresponds to 0.2 G in acceleration level for all the 
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cases. Sloshing is observed in microgravity periods, and it is inferred that these 

disturbances could result from accelerations changes in the lateral directions. Equilibrium 

settling of the water volume is not observed during the short microgravity periods. 

 

Figure 62: Maximum water level; Passive damping cases 

 

Figure 63: Maximum water level; Active damping cases 

The active damping cases were simulated, assuming that the membrane body was 

fixed at the initial water surface. A similar trend as passive damping is observed in the 
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active damping cases for the maximum water levels. Since the motion of the membrane 

was entirely restricted, the water flowed through the gaps between the membrane and the 

tank walls. 

The force on the tank wall due to the liquid motion is estimated and shown in Figure 

64 for the passive damping parabola 1 case. These forces are due to the pressure and 

shear that the liquid imparts on the tank walls. Sloshing is observed during the 

microgravity periods. The force peaks on the graph are due to the liquid motion as the 

membrane impacts the tank boundaries. The evaluated force is an important parameter 

for estimating the slosh of the liquids inside the tank.  

 

Figure 64: Liquid forces on tank walls 

The membrane spatial parameters are estimated using the membrane rotation and 

translation monitors. The membrane translation and rotation plots are shown in Figure 65. 

It is to be noted that the membrane translation in X and Y (lateral) direction is restricted. 
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The orientation of the membrane could be compared in the upcoming suborbital flight 

using motion capture cameras and is recommended as a part of the MAPMD payload. 

   

a) Membrane rotation                                            b) Membrane translation 

Figure 65: Membrane spatial parameters 

The VOF distribution of the multiphase fluid: air and water, is recorded at every time 

step, and the images are stitched together to form a time history. The time history 

animation shows the solution's progression, membrane motion, and liquid behavior 

subjected to the parabolic flight acceleration profile.  

The water distribution and membrane orientation at different time steps are shown 

sequentially in Figure 66. The water initially settled in the bottom of the tank, and the 

membrane floats on the water surface. As the acceleration drops to around 0.2 G, the 

membrane flips, and the water mass begins traveling towards the top of the tank. The 

membrane flips and moves independently of the water location. This phenomenon was 

not observed in the actual parabolic flight. The membrane slid along the tank walls in the 

actual flight and was locked in one orientation due to friction with the tank walls. The 

translation was restricted in X and Y directions in the CFD simulation, and the real 

impact was not modeled between the tank walls and the membrane. Therefore, the 

membrane is moved freely in the vertical direction, causing it to flip multiple times. 
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Fluid-structure interaction with impact modeling is recommended to capture better and 

replicate the membrane behavior in microgravity. These models are computationally 

intensive and not conducted in this preliminary benchmarking study.  

   

   

   

   

   

Figure 66: Passive damping case visualized at various time steps  
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5.5. PLD Payloads Vibration Test Campaign 

 Payloads launched on the suborbital flight platforms experience a high-level 

acceleration and vibration environment. This high-stress environment influences the 

performance of the payload. The ability of the payload components and the structures to 

survive these forces is key to the success of a suborbital payload mission. The launch 

provider evaluates the vibration and acceleration levels experienced during the flight and 

provides feedback to each payload customer. The parameters are defined as Maximum 

Predicted Environment (MPE) in the PUG [12]. The launch provider requires each 

payload to be subjected to the MPE to test the survivability and to demonstrate the 

functioning of the experiments precisely as proposed by the payload researcher. The tests 

are conducted for the flight provider's requirement and improve the researcher's 

confidence of mission success while enabling the entire understanding of the design life 

and expected behavior of the experiments in flight. These physical experiments involving 

exact replication of the flight environment offer a unique opportunity for the engineers to 

make necessary modifications and better predict failure scenarios before the actual flight.  

5.5.1 Test Objectives 

A vibration test campaign was devised to test the PLD ERAU payloads on a vibration 

shaker table as per the requirements of the flight provider. The baseplate, where all the 

payloads will be mounted in flight, was shipped to ERAU to run these tests, and the part 

is the actual flight hardware used in the mission. SMC standard SMC-S-016 [54] was 

suggested as the test standard to be followed during this test campaign. The test standard 

specifies test methods, key test definitions, test level durations, test criteria, and common 
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practices. It encompasses various environmental parameters, but this test campaign will 

cover only modal testing, random vibration testing, and static load testing.  

Vibration acceptance tests are conducted on the flight hardware systems, and 

subsystems suggested in the test methodology on SMC standards. The MPE levels 

provided by PLD Space will be employed in the tests. This campaign aims to 

demonstrate that the flight hardware is free of workmanship defects, meets specified 

performance requirements [12], and is acceptable for delivery to the launch provider. 

5.5.2 Test Equipment 

The test campaign was conducted on the Dynamic Solutions DS-1300VH-9 

electrodynamic shaker with a GT600 M slip table at the Structures lab in Micaplex. The 

specifications of the shaker are shown in Appendix B. This shaker was selected based on 

these specifications within the test levels' margins and the test articles' mass limitations. 

The test campaign was part of the first-time operation of this shaker machine at ERAU. 

Through this test campaign and the experiences gained, it is hoped to improve the access 

and enable the operations of this new shaker for future researchers and payload tests.   

An electrodynamic shaker system primarily consists of five components: 

electrodynamic shaker, amplifier, blower, slip table, and a vibration controller. The 

electrodynamic shaker uses field coils to generate magnetic flux, and an AC field passing 

through this flux imparts electrodynamic forces on the armature where the test subject is 

attached. The amplifier is the power supply unit for the shaker, and it converts the signals 

from a vibration controller to the necessary drive voltages for the field coils. The blower 

supplies the airflow over the field coils, which prevents them from overheating during 

operation. The shaker equipment and its components are shown in Figure 67. 
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Figure 67: Electrodynamic shaker used in the vibration test campaign 

The shaker table consists of two test configurations: vertical and lateral. The original 

setup of the shaker is designed to operate in the vertical configuration. The test article is 

attached to the armature on top of the shaker, and the vibrations are applied in the vertical 

direction. For lateral testing, a slip table is used. The slip table consists of a granite slab 

that slides freely over an oil film. A hydraulic pump oil is passed through V grooves 

under the slip table by a pump operating at 1.0±0.2 MPa. At a flow rate of 2L/min. A 

reservoir with an oil capacity of 9 L supplies the pump. The shaker can be entirely tilted 

using pivots and attached to the slip table using a drive bar. 

A DVC-8 controller from Dynamic Solutions is used in this test campaign. The 

vibration controller synthesizes the user input profiles to control signals. The controller is 

connected to a computer, and users can input vibration profiles using the associated 

software provided by the controller manufacturer. The controller has a drive channel that 
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supplies control signals to the amplifier. Along with the drive channel, the controller also 

offers 8 input channels that can read acceleration data. The controller requires at least one 

control channel input to drive the shaker. The control channel works as a feedback loop 

that ensures that the controller output signals produce desired drive levels on the shaker 

conforming to the user input profile. The controller also functions as a data acquisition 

device through the other input channels. The controller processes the acceleration data 

from sensors mounted on the test article, and a Frequency Response Function (FRF) is 

generated on the computer screen. FRF shows the structural response of the test article in 

the frequency domain and is normalized by the magnitude of excitation. This feature of 

the DVC-8 controller is ideal for post-processing results as the process of synthesizing 

raw acceleration waveform data to FRF using Fast Fourier Transforms (FFTs) is 

cumbersome. The vibration controller and the associated DVC-8 control software can 

handle sine sweep, random vibration, and classical shock models. 

Piezoelectric single-axis acceleration transducers are used as measurements devices 

that provide inputs to the vibration controller. The sensors are calibrated, and the 

manufacturer supplies the measurement sensitivities. The sensitivities are entered in the 

controller software application for each channel, respectively. The matching sensitivities 

must be accurately entered to convert voltage levels measured by the sensor to 

appropriate acceleration values. The mounting scheme for the accelerometer is shown in 

Figure 68. 
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Figure 68: Acceleration sensor mounting scheme 

5.5.3 Test Fixture 

The test article mounting fixture was designed based on the baseplate design provided 

by PLD Space and the shaker schematics in the shaker manual [55]. The fixture serves as 

interfacing hardware between the shaker armature or slip table and the baseplate. The 

design criteria were to ensure a rigid and secure attachment of the baseplate to the shaker 

and symmetrically transfer the shaker motion to the baseplate. Essentially, the fixture 

should not cause any off-axis loading and avoid unexpected resonance to the test articles. 

Therefore, a low-profile design with an interfacing plate for the attachment screws and 

raised rectangular fixtures are designed as shown in Figure 69. PLD space recommended 

handling and mounting the baseplate only using the holes on the outer radius (5.5 mm 

holes at 66 places). The screw patterns on the attachment plate were designed to interface 

with the shaker armature in vertical test configuration (using 17x5/16-18 size screws in a 

circular pattern) and the slip table in the lateral test configuration (using 16x3/8-16 size 

screws in a grid pattern). The detailed mounting scheme is shown in Appendix B. PLD 

Space shipped the payload base plate to ERAU to perform fit checks and conduct the 

vibration test campaign. The original flight hardware is used in this vibration test 

campaign. 
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Figure 69: Test fixture design 

5.5.4 Test Plan and Test criteria 

A test plan was developed with reference to the standards, shaker user manual, and 

PLD Space’s payload testing requirements and review. The acceptance test plan involves 

random vibration testing, modal survey, and sine burst tests performed sequentially in 

each corresponding axis for prescribed levels and durations. The test sequence in each 

axis is listed below.  

Test 1: Crosstalk test 

Test 2: Low-level Sine sweep #1 

Test 3: Random Vibration 

Test 4: Low-level Sine sweep #2 

Test 5: Sine Burst #1 low-level acceleration 

Test 6: Low-level Sine sweep #3 

Test 7: Sine Burst #2 high-level acceleration 

Test 8: Low-level Sine sweep #4 

It is to be noted that the X-axis corresponds to the vertical direction or the launch 

vehicle thrust direction (Figure 43). Y and Z axis correspond to the lateral directions. 
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This is based on the convention used by PLD Space, and their axis system is marked on 

the attachment plate for reference and illustrated in Figure 70 and Figure 74 near the 

bottom of the attachment plate. A technical report of the test plan, procedures, and test 

criteria was furnished and submitted to PLD Space for approval [56]. The report was 

reviewed, and technical suggestions and recommendations were provided as feedback by 

PLD Space. The recommendations were incorporated into this vibration test campaign. 

The sequence of tests was chosen based on standard practices recommended in 

vibration testing of small satellites [17]. Using a low-level sine sweep technique, the 

modal survey test is performed before and after each significant test to retrieve and 

compare the structure’s FRF, which will serve as a basis for each vibration test's pass/fail 

criteria. Any changes in the FRF between the tests can indicate changes in the structure in 

local yielding or fastener failure. The variance in low-frequency modes is the primary 

concern as they indicate changes in the main payload structure. Higher frequency mode 

changes indicate issues in the fasteners or joints of the structures. PLD space 

requirements suggest that an FRF change of 5-10% in the frequency is acceptable. 

SMC standard recommends testing all electronics systems in the intended mission 

operation to test for failures. Since all the sub payloads contain electronics, all the circuits 

were assembled and operated during the testing. All the cables, connectors, and harnesses 

were replicated in the test as in the actual flight configuration. The following pass/fail 

criteria were formalized based on these recommendations: 

 The test profile and the input excitations should match the recommended MPE. 

 The difference between the FRF frequencies of the first and second significant 

modes between two subsequent FRFs shall not exceed 10%. 



129 

 

 The difference between the FRF response levels of the first and second 

significant mode between two subsequent FRFs shall not exceed 30%. 

 Payload electronics should be fully operational during the tests and function 

nominally throughout the test. 

 Visual inspections should ensure no structural damage to any of the payload 

components. 

 Fasteners, joints, and attachment points should not become loose. 

 

Figure 70: Crosstalk test setup 

Crosstalk test is a method to verify the proper leveling of text fixtures and ensure 

uniform distribution of input excitation on the test article. The crosstalk must be 

conducted when running new tests on each axis before mounting the payloads on the 

baseplate. The test involves attaching a single accelerometer pointing to the fixture in 

each native axis direction (X, Y, and Z). The control accelerometer is attached to the 

shaker armature. As per the SMC standards [54], the crosstalk levels shall not exceed the 

input levels for the respective axes. The crosstalk test setup in vertical test configuration 

is shown in Figure 70. 
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  Table 16: Low-level sine sweep test parameters 

Setup parameter Value 

Frequency range 5-2000 Hz 

Constant acceleration level 0.5 G 

Sweep type Logarithmic 

Sweep rate 1.5 octave/min 

Sweep direction Ascending 

Low-level sine sweep test is performed between each vibration test to estimate the 

natural frequencies of the structure. The result is an FRF that compares each payload’s 

structural response between each major vibration test. In a sine sweep test, the shaker 

imparts sinusoidal accelerations at gradually increasing or decreasing frequencies. The 

test is usually performed at a constant acceleration level between a range of frequencies. 

The acceleration levels are kept very low as the response acceleration of the structure at 

resonance can be significantly higher than the excitation acceleration. This test does not 

involve subjecting the test articles to MPE vibration levels and does not assess the 

structure’s survival in the flight environment. It is instead a test probing the structure’s 

FRF. Therefore, low acceleration levels are used in order not to damage any of the flight 

hardware components. The following parameters are used in the low-level sine sweep 

tests.  

The parameters shown in Table 16 are based on PLD Space’s test recommendations. 

The frequency range is the range between which the frequencies are varied. Acceleration 

level is the sinusoidal peak amplitude of the input waveform. A logarithmic sweep type 

updates the frequency values in logarithmic steps. The sweep rate is the speed at which 

the frequency is swept between the lower and upper-frequency ranges. The value of 1.5 

octave/min takes about 4 minutes and 50 seconds to sweep through the entire frequency 
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range and is sufficient to capture all modes. The frequency will be swept in only one 

direction from lowest to highest frequency. The sine sweep profile setup in sine controller 

software of the DVC-8 controller is shown in Figure 71. 

 

Figure 71: Sine sweep profile setup on the DVC-8 sine controller software 

Random vibration test is one of the primary vibration tests conducted in the test 

article. Therefore, a random vibration environment is expected during the launch and 

powered flight of the suborbital launch vehicle and is one of the primary satellites and 

payload test requirements. In a random vibration test, the test article is simultaneously 

subjected to multiple frequencies, and acceleration levels are varied at each frequency 

randomly. The name “random vibration” is hence derived from the randomness of the 

excitation parameters. The input levels are specified in terms of Acceleration Spectral 

Densities (ASD) with respect to frequencies. The parameters used for acceptance testing 

of payloads with mass less than 23 kg are given in Table 17. 
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Table 17: Random vibration profile breakpoints 

Frequency (Hz) ASD (G2/Hz) 

20 0.002 

100 0.01 

1000 0.01 

2000 0.0025 

Overall acceleration level is 3.8 GRMS 

 

The random vibration acceptance level test is conducted for a duration of 60 seconds 

on each corresponding axis. The acceptance testing involves subjecting the flight 

hardware to MPE and. A pretest of the assemblies is conducted at 3dB below the whole 

excitation level for a few seconds and ensuring all assemblies are safe before the whole 

vibration level is applied. The random vibration profile setup in random controller 

software of the DVC-8 controller is shown in Figure 72 

 

Figure 72: Random vibration profile setup on the DVC-8 sine controller software 
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Sine-burst test is performed to subject the payloads to maximum acceleration loads 

expected during flight. The maximum loads are usually experienced during launch and 

parachute deployment events flight phases. A sinusoidal acceleration is applied to test the 

article by the shaker at a constant low frequency. The acceleration levels are gradually 

increased, maintained at the expected load levels, and then decreased. A low frequency is 

selected to avoid exciting the structure at resonant frequencies. This test is also called a 

quasi-static load test, as a constant load is not applied for a continuous duration. Sine-

burst testing is an efficient method that allows complete envelope acceptance testing of 

payloads under a single test platform.  The prescribed load levels are shown in Table 18. 

Table 18: Sine-burst test specifications 

Test name Axial static load (G) Lateral Static load (G) 

Low level sine-burst (Ascent) +6.0 ±1.0 

High level sine-burst (re-entry) -15.0 ±3.0 

   

 

Figure 73: Sine burst profile setup on the DVC-8 sine controller software 
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Thirty sine-burst waveforms are applied continuously at a rate of 1 sine-burst/s. Each 

wavelet is administered for 10 ms, and the acceleration level is switched between 1 G and 

3 G for lateral tests and 6 G and 15 G for axial tests. The sine-burst test profile setup in 

classical shock controller software of DVC-8 controller for a 15 G load is shown in 

Figure 73. 

5.5.5 Test Setup Procedures 

The test setup assembly procedures shown in Appendix B are carried out to assemble 

the payloads on the shaker table. The procedures are carried out in the following order: 

1. The shaker test section is leveled by adjusting the airbags, and a height level 

indicator is used to inspect the leveling. While running tests on the slip table, 

the hydraulic pump oil is filled in the reservoir, and the pump is operated for 

at least 15 minutes before testing or reorienting the shaker.  

2. The attachment plate is fastened to the shaker armature or the slip table using 

appropriate screws. 

3. The fixtures are mounted and aligned on the attachment plate. 

4. The baseplate is placed over the fixtures, and appropriate screws are used to 

fasten the test assembly. 

5. All the sub payloads are assembled to resemble their flight configurations. 

Cable wiring and harnesses are connected and secured. 

6. MAPMD sub payload is mounted on the base plate using M5 screws, and the 

NanoLab payloads are attached to the base plate using dual lock Velcro strips. 

7. The accelerometers are attached to each sub payload using wax (Figure 74). 
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A separate accelerometer is connected to record the response from each sub payload: 

MAPMD, Shunt, and one on each avionics/telemetry payload. A control accelerometer is 

mounted on the fixture plate or slip table depending on the test configuration being 

performed. The controller uses the control accelerometer data to evaluate the necessary 

drive voltages for the shaker to match the vibration profile set by the user. The 

accelerometers are connected to channels with unique identifiers on the DVC-8 

controller. Table 19 shows the accelerometer placement locations, connected channel, 

and corresponding sensor sensitivity. 

 

Figure 74: Acceleration sensor locations on the sub payloads 

Table 19: Accelerometer placement locations  

Channel Number Location Sensitivity (mV/G) 

1 Fixture plate or slip table 98.6 

2 Shunt payload 101.6 

3 MAPMD payload 101.6 

4 Horizontal avionics/telemetry payload 9.81 

5 Vertical avionics/telemetry payload 101.4 
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Figure 75: PLD ERAU payloads mounted in the vertical configuration (old design) 

The first done is performed in the vertical/axial configuration, and the assembled 

payloads are shown in Figure 75. After the test, all the sub payloads are removed, and the 

test fixtures are dismantled. The shaker is tilted and locked in the horizontal position. The 

shaker armature is connected to the slip table using a drive bar, and the entire test 

assembly is mounted on the slip table (Figure 76) following the same steps as above.   

 

Figure 76: Lateral testing configuration on the horizontal slip table 
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5.5.6 Vibration Test Results  

 

Figure 77: Crosstalk test in vertical configuration (X-axis excitation) 

The vibration test campaign was conducted at the Micaplex Structures lab with the 

actual flight hardware on the shaker table between May and June 2021. The first test was 

the crosstalk test in the vertical test configuration with excitation along X-axis. The later 

test configurations correspond to Y and Z axes.  

A low-level sine sweep was performed to evaluate crosstalk levels. From Figure 77, it 

can be observed that an excitation response is only present along the X-axis (direction of 

excitation). The acceleration response in the Y and Z directions is well below the control 

accelerometer response, thus confirming the pass criteria for the crosstalk test. The 

fixture also undergoes resonance, and the natural frequency peaks must be ignored in this 

test as they are periods of resonance. Similar responses were observed in the lateral 

configuration crosstalk tests, and the fixture assembly passed the test criteria in all the 

instances.  

It is to be noted that there were two successive test campaigns conducted. The main 

difference between the two campaigns is the modification of the MAPMD payload 
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design. The first test campaign showed irregularities in the MAPMD structure, 

specifically after 15 G, high-level sine burst testing in a vertical configuration. The 

discrepancies can be noticed in Figure 78, and the significant difference in post sine burst 

FRF frequencies failed test criteria. The fasteners lost their tension, and the payload 

design also had to be changed to meet PLD Space’s size requirements. The modes are the 

particular frequencies at which significant acceleration peaks are observed. 

 

Figure 78: Preliminary MAPMD hardware FRF  

The modified MAPMD design discussed in Section 5.1 and shown in Figure 41 was 

fabricated, and the modified structure of the MAPMD payload is shown in Figure 79. The 

Shunt payload electronics were turned ON during final tests. All results furnished in the 

following sections are from the vibration testing of the modified payload assembly flight 

hardware. 
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Figure 79: Modified and final flight hardware version mounted on the shaker table 

The random vibration test response shown in Figure 80 does not characterize the 

structure’s test criteria but rather validates that the control (blue line) accelerometer 

response matches the input random vibration spectrum (black line). The random vibration 

method applies acceleration levels at random frequencies, and the spectrum is 

synthesized statistically. Longer duration runs produce better synthesis results. 

 

Figure 80: Random vibration test ASD response of the Lateral Y test 
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The high level 3 G sine burst test response in lateral test configuration is shown in 

Figure 81. The peak control frequencies show the levels specified as an input in the 

controller software. The same pulse waveform is repeated 30 times in each test. 

 

Figure 81: Lateral test of high-level sine burst with 3 G quasi-static load condition 

The following plots will show the low-level comparisons between each major 

vibration test: Random vibration, low-level sine-burst, and high-level sine burst. The 

sinusoidal sweep comparisons will highlight any changes in the structure between each 

test. The first two significant modes will be compared to determine the health of each sub 

payload between every test. Additional test criteria involved visual inspection, total 

electronics system runs and checks, and fastener inspections. 
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 Figure 82: FRF comparison: Vertical test configuration, MAPMD sub payload 

The vertical configuration test with vibration excitation applied in the X direction was 

conducted after the crosstalk test. The same random frequency spectrum (Table 17) is 

used in all the random vibration tests. However, the sine burst test levels are varied 

depending on test configuration. In this case, a low-level sine burst of 6G and a high-

level sine-burst of 15G was applied. A peak-to-peak difference analysis was performed in 

MATLAB to evaluate the difference in modal frequencies and acceleration response 

levels. FRF comparison (Figure 82) between each sine test for MAPMD payload shows 

the excellent correlation between the peaks' modal frequencies and acceleration levels. A 

maximum frequency difference of 2.6% is observed after the low-level sine burst test, 
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and an acceleration response difference of 4% is observed after the high-level sine burst 

test. Both the test results are well within the test pass/fail criteria. 

 

Figure 83: FRF comparison: Lateral test configuration (Y direction), MAPMD sub payload 

The lateral test configuration was set up on the slip table, and the vibration excitation 

was applied in the Y direction. Compared to a vertical configuration, the difference in 

vibration test levels is low-level, and high-level sin-burst levels were run 1 G and 3 G, 

respectively. FRF comparison for this test case shows a good correlation between the 

MAPMD payload and the structure that passed the test criteria. A maximum frequency 

difference of 1.45% and acceleration response difference of 2.5% was recorded. 
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Figure 84: FRF comparison: Lateral test configuration (Z direction), MAPMD sub payload 

The same lateral test levels were replicated in the Z direction test after removing the 

baseplate and reoriented on the slip table. The results show a good correlation between 

modal frequencies after each test. A maximum frequency difference of 2.3% and 

acceleration response difference of 3% is measured on the first two significant modes. 

MAPMD payload structure passed all the tests in each axis direction.   
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Figure 85: FRF comparison: Vertical test configuration (X direction), Shunt sub payload 

The shunt payload consisted of a 4U NanoLab which was attached to the baseplate 

using the dual lock. The FRF shows a low-level rocking mode that appears at 10 Hz 

during the initial test. The exact model did not appear after the subsequent tests. Based on 

the similar FRF trend observed in the subsequent tests, it can be considered that the first 

anomaly was an isolated event. The variation could be due to the dual lock attachment, 

which is not as tight as a fastened joint. However, the comparison of significant modes 

shows the excellent correlation of the FRF frequencies and acceleration levels. A 

maximum of 3.7% frequency difference and 1.2% acceleration difference was observed. 

The shunt payload passed the health check in all the test configurations, and all the 

payload electronics worked as designed. 
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Figure 86: FRF comparison: Vertical test configuration, Vertical avionics sub payload 

The avionics payloads included two redundant NanoLabs attached using dual lock in 

different orientations. The vertical avionics NanoLab showed a good correlation of FRF 

frequencies and acceleration levels in all the tests. A maximum of 1.1 frequency 

difference and 1.2% acceleration difference was observed in the vertical configuration 

tests. The avionics and the radiation data logger units collected data without any 

interruption throughout the tests. The shaker tests offered a unique opportunity to test the 

electronics and subject them to flight loads. The vibration tests are crucial to ensure the 

survival of electronic components, solder joints, connectors, and mounts.  
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Figure 87: FRF comparison: Vertical test configuration, Horizontal avionics sub payload 

The horizontal avionics payload did not show a good correlation between FRF after 

each test. This difference was significant in the first fundamental mode. The post random 

test comparison showed a significant deviation from the initial structure’s FRF. The 

NanoLab was visually inspected, and no anomalies were observed in the structure. The 

electronics worked without any flaws, and the data logger performed without any flaws. 

The possible causes of this discrepancy could be attributed to the dual lock attachment 

becoming loose during the tests or to a faulty accelerometer sensor. Retesting of the 

horizontal payload is recommended. PLD Space’s review and feedback on these results 

are awaited, and recommendations from PLD Space are to be considered in future retests. 
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Based on the FRF responses of each sub payload to vibration excitation in each 

corresponding direct, the test matrix results are shown in Table 20. The MAPMD and the 

vertical avionics/telemetry payload passed all the test criteria outlined in Section 5.5.4. 

The FRF response of the horizontal avionics/telemetry sub payload shows significant 

deviations between each test. The Shunt sub payload failed the vertical configuration 

tests. 

Table 20: Vibration test campaign results 

Sub Payload Vertical X-axis Lateral Y-axis Lateral Z-axis 

MAPMD Pass Pass Pass 

Vertical Avionics/Telemetry Pass Pass Pass 

Horizontal Avionics/Telemetry Fail Fail Fail 

Shunt Fail Pass Pass 

 

The discrepancies noticed in the horizontal NanoLab require retesting the sub payload 

separately in qualification test levels. Once the structure passes the qualification test, the 

payloads must be tested at acceptance test levels on the baseplate. Initially, the test 

accelerometer sensor used in previous tests has to be verified for accuracy, and if the 

sensor is not found to be ambiguous, ensuring a secure fit of the dual lock attachment is 

recommended. 
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6. Suborbital Payload Rocket Research Platforms 

The commercial suborbital launch market is a new capability being made available 

for students and the aerospace industry. Suborbital payload projects go through various 

levels of development and design review processes. The launch provider and flight 

integrators require multiple levels of testing for many scenarios that the payload will go 

through during a suborbital flight.  

Proper planning of operational procedures pre-flight and post-recovery is vital in 

achieving the mission goals of the payload experiment. Usually, these procedures cannot 

be planned without prior experiences of going through a launch process. For a payload 

customer, it will be beneficial to understand a launch vehicle development process and 

launch operations to tailor the requirements of their payloads.  

The scaled-down rocket research platforms will serve as a test facility for future 

suborbital payloads. The payloads will undergo flight loads and the different stresses that 

are expected in a launch. An in-house launch capability and experience gained in 

launching payloads will aid the researchers in better understanding the associated 

challenges with suborbital launches. The payload research team can also develop and 

practice the launch procedures before the actual suborbital flight. Although the flight 

envelopes are vastly different, the lessons learned in the smaller launches can be applied, 

and contingency scenarios can be identified and planned through these research 

platforms. The development of different rocket research platforms is discussed in the 

following sections.  
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6.1. Level 1 Rocket 

Model rockets were used as a tool in developing the payload research platform, and 

the first rocket launch mission was named Marea Roja. The National Association of 

Rocketry (NAR) classifies model rockets as Level 1, 2, or 3 based on the type of rocket 

motor used. NAR also provides licenses and guidelines for new members while also 

providing resources [57] needed for building and flying these rockets. A level 1 EZI-65 

rocket kit from Apogee Rockets was utilized in this research. The rocket kit featured a 

simple design and assembly process, and it was a popular choice for many new hobby 

rocket enthusiasts. 

6.1.1 Rocket and Payload Development 

The rocket kit consists of cardboard body tubes, a coupler tube, a motor mount tube, a 

plastic nosecone, plywood fins, a nylon cloth parachute, and all other necessary 

hardware. High power rocket motors have their own classifications similarly, and the 

compatible motors for this kit are H through J. The rocket motors also carry a delay 

charge that goes off on the top side of the rocket motor. The delay charge is used to 

deploy the parachutes stuffed inside the rocket body above the motor bay. 

The flight phases of the rocket are as follows: 

1. Motor ignition and lift-off 

2. Powered climb 

3. Engine cutoff and coasting period 

4. Apogee 

5. Depending on levels of deployment, a drogue chute or main chute is deployed 

at the apogee 
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6. Rocket descent under a parachute 

7. Touchdown 

The deployment phases can widely vary depending on flight profile requirements. A 

dual deployment method is used on high-powered rockets, where a drogue chute is 

deployed at apogee. The drogue chute slows the descent just enough so that the rocket 

does not drift too far downrange (which is a possibility under main chutes). A second 

deployment of the main chutes happens at a lower altitude. The deployment in this 

method is usually triggered by electronically controlled charges which use altimeter data 

to time the deployment. Marea Roja used a single deployment method which used a 

preset delay charge on the motor to deploy the main parachute.  

 

Figure 88: Level 1 rocket data logger 

A customized payload was designed and built for payload testing onboard the level 1 

rocket research platform. A payload bay was 3D printed and integrated into the design of 

the rocket kit. One of the body coupler tubes was replaced with this payload bay, and a 

custom data logger and a Pixhawk 2.4.8 were flown onboard. The custom data logger 

was a precursor to the payload electronics used in MESSI/McXIMUS and PLD payloads. 
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The data logger used the same electronics architecture as previous sections and was 

powered by a 3.7 V LiPo battery. The data logger (Figure 88) could autonomously 

measure acceleration, gyration, magnetic heading, temperature, relative humidity, 

pressure, and altitude in a microSD card. The Pixhawk was primarily used for its GPS 

capabilities. The payloads were placed inside foam containment before being placed 

inside the payload bay. 

The rocket assembly was carried out in the Payload lab, and the first part assembled 

was the thrust/motor section. The 54 mm motor tube was attached with centering rings 

using epoxy. The centering rings act as a guide for the motor tube inside the rocket body 

tube. The assembly had to be accurately centered on avoiding an asymmetric thrust 

condition. 

The three rocket fins were assembled symmetrically around the body and epoxied to 

the motor and body tubes. Glue fileting techniques were employed to ensure a rigid 

attachment of fins to the rocket body. The rocket assembly comprises two separate body 

tube sections designed to come apart during deployment. The top side with the nose 

assembly, and the bottom side with motor tube and parachutes. The coupler tube is 

friction fitted between the two parts and expected to slide out during deployment. 

A nylon shock cord is used to connect the nose section and the motor tube section so 

that all the rocket bodies descend together under the parachute. A 36 in (91.44 cm) 

diameter parachute is folded, and the parachute rope is tied to the eyebolt in the motor 

tube assembly. 

The design modifications to accommodate payloads required the evaluation of new 

flight parameters, which would vary from the manufacturer’s specifications. RockSim 
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software [58] is model rocket simulation software used to evaluate key flight parameters 

before the flight. The modified rocket design was modeled in the software, and each part 

used in the assembly was programmed.  

 

Figure 89: RockSim level 1 rocket simulation 

RockSim evaluated the key flight parameters such as the center of gravity, the center 

of pressure, expected flight profile, stability, and thrust data using Barrowman equations 

[59]. The expected flight profile simulated using RockSim is shown in Figure 90.  The 

simulated apogee was 2250 ft (685.8 m) using a Cessaroni I75 motor.  

  

Figure 90. Simulated flight profile and flight parameters using RockSim [31] 

Pre-flight and post-flight operational procedures were created to prepare the payload 

and the rocket at the launch site. This process helped the research team understand the 

nuances of rocket launches, and the experiences gained aided in future payloads research 

projects such as MESSI/McXIMUS and PLD ERAU payload.  
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6.1.2 Level 1 Rocket Launch and Flight Analysis 

With the help of the Northeast Florida Association of Rocketry (NEFAR), the level 1 

rocket was launched at the launch site in Bunnell, Florida. The rocket launched without 

incident. However, the descent was faster than had been anticipated, and as a result, the 

parachute suffered damage from the high-tension force that it experienced. The parachute 

deployment should have been right after apogee was reached, and the delay is assumed to 

be due to the faster descent from the higher mass. From the post-flight assessment of the 

rocket, it was determined that the use of a motor that had a longer delay in parachute 

deployment and exceeding the parachutes weight limit with the additional payload tube 

were the main factors that caused the fracturing of the parachute. The longer delay meant 

that the rocket was coming down too fast when the parachutes deployed, and the higher 

speed resulted in higher loads on the parachute chords. It was also found that the Pixhawk 

data collection device had corrupted data and could not be read. Therefore, most of the 

data were obtained from the Arduino data logger and used in the post-flight assessment. 

The various phases of the rocket flight are shown in Figure 91. 

    

 a) Rocket launch                                 b) Powered climb 
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              c) Descent under parachute                       d) Landed rocket body 

Figure 91: Marea Roja level 1 rocket flight phases [31] 

The flight profile with the maximum apogee height at 1845 ft (562.4 m) is shown 

below in Figure 92. It is observed that RockSim over-predicted the apogee altitude. This 

could be due to various factors such as wind conditions on the day of the launch, uneven 

mass distribution inside the payload (RockSim assumes uniform mass distribution), 

assembly errors, and irregularities in the motor.  

 

Figure 92: Actual flight profile of the level 1 rocket 

The acceleration data showed the critical phases of the flight, such as the launch, 

ascent, coasting, deployment, and landing. The Y-axis direction of the data logger 
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corresponds to the thrust direction of the rocket. The profile showed that the payloads 

experienced about 4 seconds of microgravity during the coasting period. A maximum of 

14 G was measured at parachute deployment, followed by 12 G due to the landing 

impact. This shows evidence that the rocket bodies came down faster than anticipated. 

The temperature and humidity sensors measured the expected profiles in a rocket launch. 

 

  

Figure 93: Level 1 rocket data logger payload data 
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Both the rocket and the data logger performed as expected. Valuable lessons were 

learned through hands-on rocket development, payload integration, and flight operation.  

6.2. Level 3 Rocket 

The objective of this research endeavor is to design and build a Level 3 Rocket that 

can serve as a research platform for launching, testing, and recovering payloads to be 

flown in commercial suborbital platforms such as Blue Origin’s New Shepard, Exos 

Aerospace’s SARGE, Interorbital Systems’ Neptune, and PLD space’s Miura 1 rockets. 

The rocket will initially be launched to measure humidity, temperature, and radiation in 

the atmosphere. However, other electronics and educational experiments will be launched 

in the future. The rocket is being constructed at the Payload Applied Technology 

Operations (PATO) laboratory using state-of-the-art materials and manufacturing 

techniques, such as 3D printing and CNC machining, with multiple levels of redundancy 

which maximizes the payload capabilities and the safety and reliability  [60] of the launch 

vehicle. 

6.2.1 Preliminary Rocket Design and Fabrication 

The Suborbital Technology Experimental Vehicle for Exploration (STEVE) project is 

the vehicle name of the prospective Level 3 Rocket that will serve as a scaled-down 

model of a rocket in which future researchers can flight test payloads. The rocket is 

expected to be 4.877 meters in length and 0.278 meters in diameter. The rocket has a 

cylindrical payload bay with a maximum capacity of 0.0716 cubic meters and can carry a 

payload up to 13.607 kilograms.  STEVE will utilize a dual deployment technique using 

custom-built rocket avionics systems. A drogue chute will deploy at apogee and slow the 

rocket down, and the main chutes will deploy at an altitude of 1000 ft (304.8 m). 
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The initial rocket design has been completed using CAD software. The various parts 

were conceptualized based on previous experiences in model rocketry and the availability 

of commercial-off-the-shelf rocketry hardware. The primary component of the rocket is 

the body tubes which constitute the most significant part of the rocket. Three 10.75 in 

(273.05 mm) inner diameter 0.1 in (2.54 mm) thickness and 48 in (1219.2 mm) long twill 

carbon fiber weave tubes were purchased. The twill pattern was chosen due to its higher 

tensile strength and better load distribution characteristics in all fiber directions. 

 

Figure 94: STEVE level 3 rocket design 

The three body sections are labeled as the motor airframe, recovery airframe, and 

payload airframe. As their names suggest, the motor airframe will contain the motor tube, 

centering rings, and rocket motor hardware. The recovery motor tube will contain the 

main parachute, shock cord, and deployment electronics. The payload frame tube will 

serve as the payload bay volume for test payloads. Each section will be connected using 

coupler tubes using shear pins or rivets. Shear pins are used where separation of the 

rocket body is expected during deployment, and these pins break at a preset force. Rivets 

are used at the permanent attachment points, and the reason for building the rockets is to 

enable easier access to the internal rocket components while also aiding in handling and 

logistics. The nose cone will be 42 in (1066.8 mm) long. The shape parameters were 

derived from the Von Karman or Haack series nosecones with a shape parameter of zero, 

and the nose cone 2D coordinates are derived from Equations 19 and 20. 
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 𝑦 =
𝑅

√𝜋
√𝜃 −

sin(2𝜃)

2
+ 𝐶𝑠𝑖𝑛3(𝜃) (19) 

where x and y are the corresponding coordinates in each respective axis, R is the 

radius of the nose cone base, L is the total length of the nose cone, C is the shape 

parameter equal to 0 for the Von Karman nose cone. The value of θ is given by 

 𝜃 = arccos (1 −
2𝑥

𝐿
) (20) 

The Von Karman nose cone was chosen for its excellent drag reduction 

characteristics [61]. Multiple iterations on simulation software with different nose cone 

types showed the best performance results for this type of nosecone. 

 

Figure 95: STEVE design exploded view with all rocket parts labeled 

Figure 95 shows the detailed view of all the rocket hardware design components. The 

motor tube will serve as the casing for the rocket motor and transfer the rocket's thrust to 

the rocket body. The motor tube is centered using three centering rings which are held 
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together by threaded rods. The four fins assembled on the motor tube as shown in Figure 

96. A thrust ring is designed at the extremity of the motor tube, which overlaps the rocket 

body tube's outer diameter and transfers the thrust to the rocket body. A metallic motor 

retainer is designed with a bow tail shape to hold the motor and reduce drag by avoiding 

airflow separation downstream of the rocket.  

 

Figure 96: Motor tube assembly 

Due to the motor tube's extreme structural and environmental requirements, a custom 

part was fabricated by layup of carbon fiber sheets over a phenolic tube. The phenolic 

tube has been considered to show excellent thermal characteristics in the model rocket 

community. Layers of carbon fiber weave were added to the outer diameter of the 

phenolic tube to obtain the correct size for mating with the centering rings. After curing, 

the motor tube was sanded for an accurate outer diameter and roundness. However, it was 

realized that the layer of carbon fiber was too thick because it expanded due to not being 

adequately cured within a vacuum bag. Thus, the centering rings did not properly fit onto 

the motor tube, and therefore post-fabrication adjustments were necessary. The post-

processing of the motor tubes was carried out at the structures and material lab in the 
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department of Aviation Maintenance Sciences. The completed motor tube is shown in 

Figure 97, and the rocket motor is designed to fly 150 mm and 98 mm motors. 

     

Figure 97: Fabricated motor tube after completion of the sanding and grinding processes [62] 

A fin alignment box was designed and fabricated to enable the proper alignment of 

fins to the motor tube and the rocket bodies. Symmetric attachment of the fins is 

paramount to avoid any dynamic instabilities to the rocket's flight. The fin box design is 

shown in Figure 98. 

 

Figure 98: Fin alignment box 
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6.2.2 Level 3 Rocket Simulations 

Preliminary rocket simulations show that the level 3 rocket is expected to reach a 

maximum altitude of 4.25 km (class B airspace) with a payload of 30 kg. The rocket 

simulations were carried out in OpenRocket and Cambridge rocketry simulators. 

OpenRocket software environment and the level 3 rocket setup is shown in Appendix B. 

 

Figure 99: OpenRocket Level 3 rocket simulation results 

Cambridge Rocketry software was used to generate a splashdown plot, a vital 

parameter in high-power rocket launches. The splashdown range is critical in getting 

approval for launching and ensuring the rocket does not fly too downrange and land 

beyond the boundaries of the launch site. The software uses Monte Carlo simulation 

techniques to generate the plots. The splashdown plots show that the landing locations are 

within acceptable limits, as seen in Figure 100. 

 

a) Splashdown plot     b) Trajectories plot 

Figure 100: Cambridge rocketry Monte Carlo run results 
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Figure 101: Simulated level 3 rocket motion parameters 

The level 3 rocket was simulated with Cesaroni Technology’s O8000 motor, with a 

total impulse of 40960 N.s. The simulated apogee altitude was 4245 m with a maximum 

velocity of 0.96 Mach and acceleration of 7.65 G, as seen in Figure 101. A fin flutter 

analysis was performed, and based on the fin shape and the material, the flutter Mach 

number was 2.17 Mach. Therefore, the fin assembly is deemed to operate within safe 

limits throughout the flight envelope.  

Stability is a crucial parameter for rocket flight. Stability is estimated based on the 

centers of gravity and pressure locations along the length of the rocket. The rocket's 

stability varies through the flight due to the change in the total mass of the rocket as the 

solid propellant burns. As shown in Figure 102, the stability margin throughout the flight 

is within acceptable limits.  
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Figure 102: Simulated level 3 rocket stability parameters 

Building the level 3 rocket of this scale involves substantial effort and planning to 

launch and recover the payloads successfully. The design phase and the fabrication of 

fins, centering ring and motor tube, and the acquisition of drogue parachute, shock cords, 

bulkheads, and structural hardware have been completed. The next phase would require 

acquiring main parachutes, motor hardware, nose cone, and flight avionics. The 

groundwork has been completed in availing the payload research platform, and the 

further integration of the level 3 rocket is left as future work in this research. 

6.2.3 Analysis of Custom Payload Bay 

A custom payload bay was designed and fabricated by student research teams from 

the CSO390 class to accommodate suborbital payloads inside the payload airframe motor 

tube of the Level 3 rocket. The design (Figure 103) consisted of a payload volume to 

accommodate 2-2U NanoLabs, 2-1U NanoLabs, and 4 Tubesats form factors along with 

flight avionics. These payload form factors are the commonly available payload volumes 

in commercial suborbital flight platforms. 
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         a) CAD model [63]               b) Fabricated payload bay [63] 

Figure 103: Custom payload bay 

An FEA analysis is performed on the custom payload bay model in ANSYS. The 

acceleration loads from the rocket simulation were applied to the FEM. The maximum 

stresses are observed in the connecting rods of the payload structure, which were 

designed to take the flight loads. The connecting rods are the most robust design 

components, and the flight payloads were not subjected to high stresses. Further analysis 

involving launch vibrations and deployment events is required.  

     

a) Boundary conditions   b) Stress distribution 

Figure 104: Custom payload bay structural analysis 
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6.3. Vacuum Chamber Test Capability 

The payload thermal environment is an essential factor to consider in-flight 

experiment planning. Biological systems are highly susceptible to temperature changes 

and usually require a particular operating environment for survival. NanoLab 

experiments are constrained by tight capacity and weight requirements. The development 

of thermal control systems in challenging space environments requires innovative design 

and extensive testing. Post-flight analysis of the CRExIM mission highlighted the 

importance of a thermal control system for a biological payload.  In 2017, the ERHASER 

payload developed by student research teams was flown on NASA’s WB-57 aircraft up 

to 60,000 ft, and it was determined that the thermal system used could be refined. A 

vacuum thermal testbed has been developed to improve the test capabilities for future 

payloads. The testbed consists of a customized vacuum chamber with the hardware 

requirements shown in Figure 105. 

 

Figure 105: Vacuum chamber design considerations 

A custom vacuum chamber was purchased with MIL-STD electrical connectors. The 

electrical connectors are utilized to connect electrical sensors and probes inside the 

vacuum chamber. A vacuum chamber environment monitoring electronics system (see 

Appendix B) was developed with two temperature monitoring probes and a pressure 

breakout to measure the vacuum pressure inside the chamber. A rotary vane vacuum 
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pump is used to maintain vacuum pressures inside the test chamber. The test assembly is 

shown in Figure 106.  

   

                                  a) Test hardware                                b) Monitoring system electronics 

Figure 106: Assembled vacuum chamber testbed 
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7. Conclusions and Future Recommendations 

CRExIM payload was successfully flown onboard Blue Origin’s M7 mission and 

recovered. Various design challenges were overcome, and the final design was developed 

in accordance with the flight provider’s requirements and the mission requirements of the 

payload. The final design incorporated four layers of containment to prevent any liquid 

from escaping the NanoLab. FEA analysis showed that our NanoLab design could endure 

the acceleration loads experienced in flight. The investigation on the natural frequencies 

and the stresses calculated on the structure using modal and random vibration analysis, 

respectively, demonstrated the safety of the payload in a vibration environment. The mass 

of the fully assembled NanoLab is 0.497 kg which is within the maximum allowed 

payload mass of 0.499 kg. Mass optimization, 3D printed light materials, and innovative 

design changes helped adhere to the mass constraint and maximize the payload carried 

inside the Nanolab.  

CRExIM’s mass Optimization using ANSYS resulted in a mass reduction of 38% 

from the initial baseline design. A CFD analysis was performed to analyze the sloshing 

behavior of the liquid contained in the Eppendorf tubes, and the forces experienced by 

the cells are estimated. The CFD analysis showed an interesting distinction between the 1 

G and microgravity case, with the fluid forces being higher in the microgravity case. 

Common 3D printing materials such as ABS, PLA, and CFRP were compared, and ABS 

was chosen for this payload. In this research, many milestones set by the flight provider 

were completed, and the results obtained here were used to justify the safety of the 

payload. This study provided valuable data that passed the compliance reviews of PDP 

and the PSP. The utilized methodology and the information gathered in this research will 
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serve as a benchmark for improving future Nano payloads focused on space biology 

research.  

CRExIM’s post-flight analysis showed a good correlation of acceleration data as 

specified in PUG and revealed concerns about the temperatures inside the flight capsule. 

The research team did not anticipate the large temperature fluctuations that could affect 

the success criteria of the mission. Blue Origin has since added a cabin thermal control 

system in later missions, and the temperature fluctuations have not been an issue in recent 

payloads. However, appropriate thermal considerations are necessary for payloads 

containing biological components, and a thermal control system to maintain an 

acceptable temperature range throughout the mission is recommended.  

MESSI/McXIMUS payload development was derived from findings in CRExIM’s 

mission. Design modifications were made to improve NanoLab handling and payload 

capacity to accommodate two different payloads inside a single 2U NanoLab. The 

payload requirements offered insights for researchers to work with payload electronics. A 

custom data logger along with a LED lighting system for the spirulina algae growth 

chamber was devised. The payload was flown onboard Blue Origin’s NS-11 mission and 

successfully recovered. The electronics systems worked as designed and collected data 

throughout the 10-minute flight. The flight data was analyzed post-recovery. The 

NanoLabs designed at ERAU has been successfully flight-proven and can potentially be 

used by future payload researchers who would utilize the NanoRacks Feather Frame 

locker facility or other payload applications. 

The upcoming launch of PLD Space’s MIURA 1’s first mission has provided an 

opportunity for many research teams to develop sub payloads with the large payload 
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capacity available in its single payload bay compartment. An avionics payload has been 

designed, developed, and tested. The avionics/telemetry payload will serve as a 

pathfinder mission characterizing the payload bay environment on its maiden flight. 

Sophisticated electronics systems have been developed to measure acceleration, gyration, 

magnetic heading, temperature, relative humidity, air quality, magnetic field, radiation, 

infrared radiation, and pressure during flight. The payload electronics were tested on the 

ground and parabolic flight test and functioned without any problems. The groundwork 

for interfacing with the flight vehicle’s CD & H (flight data communication) system has 

been performed. This system's detailed design and fabrication are left as future work, 

pending further inputs from PLD Space as they work to evolve their systems and provide 

more information to payload customers. The avionics system has been proposed as a 

COTS system for future suborbital payload, and the current development has improved 

the project progress to TRL 5. Through the suborbital flight test onboard MIURA 1 

rocket, the technology will be improved to TRL 7.  

The MAPMD payload is a technology demonstration mission, and the design and 

development of the payload in this research will increase the technology’s TRL to 6 after 

the suborbital flight. The MAPMD CFD analysis showed that the multiphase fluids did 

not reach equilibrium during the short microgravity periods of the parabolic flight. The 

fluid membrane flipped multiple times, which was not observed in the actual flight. The 

assumptions involving DFBI degree of freedom to restrict the translation of the 

membrane in X and Y direction is observed as the reason for this behavior. This 

assumption was used to simplify the model and to reduce the computational expense of 

the solution. A high-fidelity fluid-structure interaction model with impact analysis is 
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recommended to resolve the motion of the membrane better. For the upcoming suborbital 

flight, evaluation of crucial flow parameters such as pressure, water level, membrane 

motion capture, and liquid forces on the tank during the flight mission is recommended. 

These parameters will help understand the performance of the MAPMD in a space 

environment and provide key validation points for future CFD models. 

A vibration test campaign was performed to test all the flight hardware systems and 

subsystems of the PLD ERAU payloads. Test standards recommended by PLD Space 

were strictly adhered and at first, a test plan and objectives were proposed and reviewed 

by PLD engineers. Upon clearance, the vibration tests were conducted with all the 

payloads mounted on the base plate using the shaker table at Micaplex. The MPE 

vibration excitation levels were applied on the payload assembly for the prescribed 

duration. A random vibration test followed by a low-level and high-level sine-burst test 

was conducted in each corresponding axis. Low-level sine sweep tests were performed 

between each vibration test to probe the FRF, highlighting the natural frequencies of the 

structures. MAPMD payload design was modified based on the results from the initial 

tests, and the final hardware was tested again. FRF data comparison verifies the 

MAPMD, shunt, and vertical avionics sub payload’s compliance to the test criteria. The 

test campaign initially involved a shock test which was not completed during this 

campaign. The shock spectrum supplied by PLD Space was not supported by the DVC-8 

vibration controller equipment used in these tests. Attempts were made to synthesize the 

spectrum to a readable format by the controller software without success. The shock tests 

require a more sophisticated vibration controller, which was not acquired for this 

research.  
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The feasibility of using model rockets as payloads research platforms has been 

identified, and a level 1 rocket was fabricated with a custom payload bay. The goal was 

to test prospective suborbital payloads by launching the level 1 rocket from Bunnell, 

Florida, and completed. The rocket development using flight simulations and fabrication 

techniques performed in the level 1 rocket provided the path to developing a higher 

payload capacity level 3 rocket. Rocket design, mission planning, flight simulations with 

trajectory, flight loads, and splashdown analysis were performed. A custom payload bay 

along with the rocket motor tube assembly and fins were fabricated. The ambitious level 

3 rocket project requires more research and support to supplement the development 

pipeline and test each subsystem. The framework developed in this research will aid 

future researchers in launching their payloads.  
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Appendix A 

A. MESSI/McXIMUS NanoLab Arduino Code 

Program created by Vijay Vishal Duraisamy and Morgan Shilling 

#define SerialDebug false  // Set to true 

to get Serial output for debugging 

#define ExtendedIMUcalc true 

#include <Wire.h>   //standard header 

files 

#include <SPI.h> 

#include <SD.h> 

#include 

<Sparkfun_APDS9301_Library.h>  

//header for Light sensors 

#include 

<SparkFun_Si7021_Breakout_Library.h

>   //header for temp/humidity sensor 

#include <SparkFunMPU9250-DMP.h>      

//header files for Accelerometer/IMU 

#include <Thread.h>       //header files 

for Multithreading library 

#include <StaticThreadController.h>     

//and controllor 

#define heart LED_BUILTIN 

Thread NFF_THREAD = Thread();   

//declaration of Thread object for NFF 

Thread MESSI_THREAD = Thread(); 

//declaration of Thread object for Messi 

Thread TMP_THREAD = Thread(); 

Thread HEARTBEAT = Thread(); 

StaticThreadController<4> controller 

(&NFF_THREAD, 

&MESSI_THREAD, &TMP_THREAD, 

&HEARTBEAT); 

//declaration of Thread controller object 

with two members 

MPU9250_DMP IMU;    

//accelerometer/mag/gyrometer 

APDS9301 apds;   //luminosity sensor 

//Initialization of sensors 

Weather weather;    //temp/humidity 

sensor 

//counter variables 

unsigned int count = 1; 

uint32_t elapsedTime = 0;   //amount of 

time passed since program start 

char Fl_state;    //var to convert 

nrdata.flight_state to Char 

float data[40];   //array to hold all data 

before output to file 

float imuHeading = 0; 

float q0 = 0; 

float q1 = 0; 

float q2 = 0; 

float q3 = 0; 

float imuYaw = 0; 

float imuPitch = 0; 

float imuRoll = 0; 

typedef struct NRdata   //struct used by 

NFF to store flight data 

{ 

  char flight_state; 

  double exptime; 

  double altitude; 

  double velocity[3]; 

  double acceleration[3]; 

  double attitude[3]; 

  double angular_velocity[3]; 

  bool liftoff_warn; 

  bool rcs_warn; 

  bool escape_warn; 

  bool chute_warn; 

  bool landing_warn; 

  bool fault_warn; 

} NRdata; 

NRdata* flight_info;    //declaration of 

struct pointer 

//declaration of Data Logging function 

void LogData(float data[]); 

//parse function used by NFF to get data 

from serial.read and save it to the 

appropriate struct member 

int parse_serial_packet(const char* buf, 

NRdata* flight_data); 
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void temp() { 

  float tmp[4]; 

  float humidity[4]; 

  for (byte x = 4; x < 8; x++) { 

    enableMuxPort(x); 

    tmp[x - 4] = weather.readTemp();  

//initialize weather sensor and set temp 

to local array 

    humidity[x - 4] = weather.getRH(); 

//initialize weather sensor and set hum to 

local array 

    disableMuxPort(x); //Tell mux to 

disconnect from this port 

  } 

  data[13] = tmp[0]; 

  data[14] = tmp[1]; 

  data[15] = tmp[2]; 

  data[16] = tmp[3]; 

  data[17] = humidity[0]; 

  data[18] = humidity[1]; 

  data[19] = humidity[2]; 

  data[20] = humidity[3]; 

} 

void sensors() {  //sensor polling 

function 

  float light[3] = {0};   //var for APDS 

Light sensors 

  float mpu[3][3] = {0};   //two 

dimesnional array var for MPU acc x, y, 

then z, then gyr xyz, then mag xyz 

  //float humidity[4] = {0};   //var for 

Si7021 Humidity 

  //float tmp[4] = {0};    //var for Si 

Temperature 

  //for cycles four iterations, enabling 

each mux port 0-3, querying and saving 

  //the sensor data to local var, later sets 

correllating data var to value 

  for (byte x = 0 ; x < 4 ; x++) 

  { 

    enableMuxPort(x); //Tell mux to 

connect to this port, and this port only 

    if (x == 0) {  //if MUX is connecting 

to 0th port 

      // Calibrate gyro and accelerometers, 

load biases in bias registers 

      IMU.update(UPDATE_ACCEL | 

UPDATE_GYRO | 

UPDATE_COMPASS);    //get updated 

figures from IMU Accelerometer, Gyro 

and Mag 

      mpu[0][0] = 

IMU.calcAccel(IMU.ax);                          

//appoint values to local array 

      mpu[0][1] = IMU.c 

alcAccel(IMU.ay); 

      mpu[0][2] = 

IMU.calcAccel(IMU.az); 

      mpu[1][0] = 

IMU.calcGyro(IMU.gx); 

      mpu[1][1] = 

IMU.calcGyro(IMU.gy); 

      mpu[1][2] = 

IMU.calcGyro(IMU.gz); 

      mpu[2][0] = 

IMU.calcMag(IMU.mx); 

      mpu[2][1] = 

IMU.calcMag(IMU.my); 

      mpu[2][2] = 

IMU.calcMag(IMU.mz); 

      if (ExtendedIMUcalc){ 

        if ( IMU.fifoAvailable() > 0 ){ // 

Check for new data in the FIFO 

          // Use dmpUpdateFifo to update 

the ax, gx, qx, etc. values 

          if ( IMU.dmpUpdateFifo() == 

INV_SUCCESS ){ 

            

IMU.computeCompassHeading(); 

            imuHeading = IMU.heading; 

            IMU.computeEulerAngles(1); 

            q0 = IMU.calcQuat(IMU.qw); 

            q1 = IMU.calcQuat(IMU.qx); 

            q2 = IMU.calcQuat(IMU.qy); 

            q3 = IMU.calcQuat(IMU.qz); 

            imuYaw = IMU.yaw; 

            imuPitch = IMU.pitch; 

            imuRoll = IMU.roll; 

          } 

        } 

      } 

    } else {   // (x == 1-3) 
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      apds.begin(0x39);       //initialize 

light sensor 

      light[x - 1] = apds.readLuxLevel(); 

//set lux value to local array 

    }   //if (x == 0) 

  if (x == 4)   //if MUX is connecting to 

4th port 

     { 

       tmp[0] = weather.readTemp();    

//initialize weather sensor and set temp 

to local array 

       humidity[0] = weather.getRH();  

//initialize weather sensor and set hum to 

local array 

       } 

     if (x == 5)   //if MUX is connecting to 

5th port 

     { 

       tmp[1] = weather.readTemp();    

//initialize weather sensor and set temp 

to local array 

       humidity[1] = weather.getRH();  

//initialize weather sensor and set hum to 

local array 

     } 

     if (x == 6)   //if MUX is connecting to 

6th port 

     { 

       tmp[2] = weather.readTemp();    

//initialize weather sensor and set temp 

to local array 

       humidity[2] = weather.getRH();  

//initialize weather sensor and set hum to 

local array 

     } 

     if (x == 7)   //if MUX is connecting to 

7th port 

     { 

       tmp[3] = weather.readTemp();    

//initialize weather sensor and set temp 

to local array 

       humidity[3] = weather.getRH();  

//initialize weather sensor and set hum to 

local array 

     } 

      disableMuxPort(x); //Tell mux to 

disconnect from this port 

    } 

  data[1] = mpu[0][0];    //set all local 

array values to global data array 

  data[2] = mpu[0][1]; 

  data[3] = mpu[0][2]; 

  data[4] = mpu[1][0]; 

  data[5] = mpu[1][1]; 

  data[6] = mpu[1][2]; 

  data[7] = mpu[2][0]; 

  data[8] = mpu[2][1]; 

  data[9] = mpu[2][2]; 

  data[10] = light[0]; 

  data[11] = light[1]; 

  data[12] = light[2]; 

/*data[13] = tmp[0]; 

  data[14] = tmp[1]; 

  data[15] = tmp[2]; 

  data[16] = tmp[3]; 

  data[17] = humidity[0]; 

  data[18] = humidity[1]; 

  data[19] = humidity[2]; 

  data[20] = humidity[3];*/ 

  return;           //break sensor function 

and return to main 

} 

void LogData(float data[]) {  //data 

logging function 

  File Datalog = SD.open("datalog.txt", 

FILE_WRITE);    //declare file pointer 

and create file for writing 

  if (Datalog)  //if file can be 

created/modified 

  { 

    if (count == 1) //only on first iteration, 

prints file header 

    { 

      Datalog.print(F("Sample 

Number,Flight State,Nanolab elapsed 

time (ms),NR exptime (s),X 

Acceleration (G),Y Acceleration (G),Z 

Acceleration (G),X Gyration (deg/s),Y 

Gyration (deg/s),Z Gyration (deg/s),X 

Magnetic field (mu*T),Y Magnetic field 

(mu*T),Z Magnetic field 
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(mu*T),A_Light Intensity (lux),B_Light 

Intensity (lux),C_Light Intensity 

(lux),A_Temperature 

(C),B_Temperature (C),C_Temperature 

(C),D_Temperature (C),A_Humidity 

(%),B_Humidity (%),C_Humidity 

(%),D_Humidity (%),Flight Altitude 

(ft),FV1,FV2,FV3,Facc1,Facc2,Facc3,F

att1,Fatt2,Fatt3,Fw1,Fw2,Fw3,Floff,Frcs

,Fesc,Fchu,Flan,Ffau")); 

      if (ExtendedIMUcalc){ 

        

Datalog.print(F("heading,q0,q1,q2,q3,ya

w,pitch,roll")); 

      } 

      Datalog.println(); 

    } 

    elapsedTime = millis(); 

    Datalog.print(count);   //write count 

and FL state to file 

    Datalog.write(','); 

    Datalog.print(Fl_state); 

    Datalog.write(','); 

    Datalog.print(elapsedTime); 

    for (byte i = 0; i < 40; i++)    

//increment through data[] and print to 

file 

    { 

      Datalog.write(','); 

      Datalog.print(data[i]); 

    } 

  if (ExtendedIMUcalc){ 

    Datalog.write(','); 

    Datalog.print(imuHeading); 

    Datalog.write(','); 

    Datalog.print(q0); 

    Datalog.write(','); 

    Datalog.print(q1); 

    Datalog.write(','); 

    Datalog.print(q2); 

    Datalog.write(','); 

    Datalog.print(q3); 

    Datalog.write(','); 

    Datalog.print(imuYaw); 

    Datalog.write(','); 

    Datalog.print(imuPitch); 

    Datalog.write(','); 

    Datalog.print(imuRoll); 

  } 

    Datalog.println(); 

    Datalog.close();    //close file 

  } 

  else 

  { //alternate to previous decision, if file 

can't be created sends error message 

    Serial.println(F("error opening 

datalog.txt")); 

  } 

  count++;    //increment count 

  return;    //exit function 

} 

void DebugOutput(float data[]) {  

//output values to serial monitor to 

ensure proper data logging 

  int i; 

  if (SerialDebug) { 

    Serial.print(count); 

    Serial.print(F("\t")); 

    for (i = 0; i < 40; i++) { //increments 

through data[i] and prints to serial 

monitor 

      Serial.print(data[i]); 

      Serial.print(F("\t")); 

    } 

    if(ExtendedIMUcalc){ 

      Serial.print(imuHeading); 

      Serial.print(F("\t")); 

      Serial.print(q0); 

      Serial.print(F("\t")); 

      Serial.print(q1); 

      Serial.print(F("\t")); 

      Serial.print(q2); 

      Serial.print(F("\t")); 

      Serial.print(q3); 

      Serial.print(F("\t")); 

      Serial.print(imuYaw); 

      Serial.print(F("\t")); 

      Serial.print(imuPitch); 

      Serial.print(F("\t")); 

      Serial.print(imuRoll); 

    } 

    Serial.println(); 
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  } 

  return; 

} 

void checkNRdata() { 

  if (Serial.available()) { 

    getNRdata(); 

  } 

} 

void beatHeart(){ 

  int beat=digitalRead(heart); 

  if(beat == LOW){ 

  digitalWrite(heart, HIGH); 

  Serial.print("on"); 

  } else { 

  digitalWrite(heart, LOW); 

  Serial.print("off"); 

  } 

} 

void setup() {    //setup function runs 

when Arduino boots up 

  delay(10);        //wait for hardware 

initialization 

  Wire.begin();   //initiate i2c bus and 

library 

  Serial.begin(115200);     // Set baud 

rate to 115200 (Default serial 

configuration is 8N1). 

  if (SerialDebug) { 

    while (!Serial) { 

      //Wait for serial port connection to 

establish for serial monitor use 

    } 

  } 

  if (SerialDebug) { 

    Serial.println(F("Initializing 

IMU...")); 

  } 

  enableMuxPort(0);     //connect to IMU 

  IMU.begin();        //initialize IMU 

  IMU.setSensors(INV_XYZ_GYRO | 

INV_XYZ_ACCEL | 

INV_XYZ_COMPASS);   //sets modes 

of IMU to be used 

  Serial.println(F("IMU sensors 

initialized")); 

  Serial.println(F("IMU initialized.")); 

  disableMuxPort(0);    //disconnect from 

IMU 

  Serial.println(F("Initializing SD 

card...")); 

  if (!SD.begin()) {    

    Serial.println(F("Card failed, or not 

present")); 

    // don't do anything more: 

    while (1); 

  } 

  Serial.println(F("SD card initialized.")); 

  weather.begin(); 

  // NFF timeout // 

  Serial.setTimeout(20);    // Set timeout 

to 20ms (It may take up to 17ms for all 

of the data to  // transfer from the NFF, 

this ensures that enough time has passed 

  // to allow for a complete transfer 

before timing out). 

  NFF_THREAD.onRun(checkNRdata);   

//when NFF thread runs, trigger 

getNRdata 

  MESSI_THREAD.onRun(sensors);  

//when Messi thread runs, trigger sensors 

function 

  TMP_THREAD.onRun(temp);  //when 

Messi thread runs, trigger sensors 

function 

  HEARTBEAT.onRun(beatHeart); 

  controller[0].setInterval(5);    //NFF   

set interval to 5ms 

  controller[1].setInterval(10);   //MESSI 

set interval to 100ms 

  controller[2].setInterval(2500); //tmp 

  controller[3].setInterval(625); 

//heartbeat 

  Serial.println(F("Threads initialized.")); 

  pinMode(LED_BUILTIN, OUTPUT); 

} 

void loop() {   //actual loop program 

runs after setup 

  while (1) { //endless loop 

    controller.run();   //begins static thread 

controller 
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    if (NFF_THREAD.shouldRun()) { 

//when NFF thread gets ran, LogData 

and report to serial monitor 

      LogData(data); 

      DebugOutput(data); 

    } 

    if (MESSI_THREAD.shouldRun()) { 

      LogData(data); 

      DebugOutput(data); 

    } 

    if (TMP_THREAD.shouldRun()) { 

      LogData(data); 

      DebugOutput(data); 

    } 

  } 

} 

 

B. PLD ERAU Payload – Avionics Sub payload Circuit Board 1 Arduino Program 

Program created by Vijay Vishal Duraisamy and Nikita Amberkar 

#include <Wire.h> // library for I2c 

Protocol 

#include "SparkFunCCS811.h" // 

Library for air quality 

#include 

"SparkFun_Si7021_Breakout_Library.h" 

// Library for Temp and Humidity 

#include "SparkFunMPL3115A2.h" // 

Library for altitude and pressure 

#include <SparkFunMPU9250-DMP.h> 

// Library for aceperometer 

#include <H3LIS331DL.h> // Library 

for new sensor 

#include <SPI.h> // libaray for spi 

protocol 

#include <SD.h>  // SD card library 

int LED = 8; 

float DataFile[31]; // Initaizling the array 

int SampleRate = 10; //delay/sampling 

rate in milliseconds 

float SampleCount = -1; //start sample 

code 

float Time = 0.000; // current time 

float Time1= 0.000; // time for code has 

been running 

#define CCS811_ADDR 0x5B  // 

Memory address 

CCS811 AirQuality(CCS811_ADDR); 

Weather TempHum; 

MPL3115A2 PressAlt; 

#define ExtendedIMUcalc true 

MPU9250_DMP IMU; 

#define HMCAddr 0x1E //0011110b, 

I2C 7bit address of HMC5883,  

#define VAL_X_AXIS  203 //please get 

these value by running 

H3LIS331DL_AdjVal Sketch 

#define VAL_Y_AXIS  165 

#define VAL_Z_AXIS  371 

H3LIS331DL h3lis; 

float CO2 = 0; 

float TVOC = 0; 

float Humidity = 0; 

float TempF = 0; 

float Pressure = 0; 

float BaroTemp = 0; 

float Altitude = 0; 

float accelX = 0; 

float accelY = 0; 

float accelZ = 0; 

float gyroX = 0; 

float gyroY = 0; 

float gyroZ = 0; 

float magX = 0; 

float magY = 0; 

float magZ = 0; 

float IMUHeading = 0; 

float q0 = 0; 

float q1 = 0; 

float q2 = 0; 

float q3 = 0; 

float IMUYaw = 0; 
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float IMUPitch = 0; 

float IMURoll = 0; 

int magXHMC =0; 

int magYHMC =0; 

int magZHMC =0; 

 

float accelXLIS =0; 

float accelYLIS =0; 

float accelZLIS =0; 

void setup() // This loop will run once 

when arduino is turned on  

{ 

Serial.begin(115200); // 115200 baud 

rate for serial communication between 

USB computer - Arduino 

Wire.begin(); // I2C communication 

begin 

pinMode(LED, OUTPUT); 

digitalWrite(LED, LOW); 

Serial.println(F("Initializing SD 

card...")); 

  if (!SD.begin()) 

  {    

    Serial.println(F("Card failed, or not 

present"));     //if SD card cannot be 

accessed, waits indefinitely. No point in 

performing any operations without 

ability to log data 

    while (1); // the remainder of the code 

will not execute 

  } 

Serial.println(F("SD card initialized.")); 

AirQuality.begin(); 

delay (1000); // giving extra time for air 

quailty sensor to boot up 

TempHum.begin(); 

 

PressAlt.begin(); 

PressAlt.setModeBarometer();                          

// Measure pressure in Pascals from 20 

to 110 kPa 

PressAlt.setOversampleRate(7);                        

// Set Oversample to the recommended 

128 

PressAlt.enableEventFlags();                          

// Enable all three pressure and temp 

event flags  

IMU.begin(); 

IMU.setSensors(INV_XYZ_GYRO | 

INV_XYZ_ACCEL | 

INV_XYZ_COMPASS); 

IMU.dmpBegin(DMP_FEATURE_6X_

LP_QUAT |                 // Enable 6-axis 

quat 

               

DMP_FEATURE_GYRO_CAL,                  

// Use gyro calibration 

              10);  

Wire.beginTransmission(HMCAddr); 

Wire.write(0x02);                                     

//select mode register 

Wire.write(0x00);                                     

//continuous measurement mode 

Wire.endTransmission(); 

h3lis.init(); 

h3lis.importPara(VAL_X_AXIS,VAL_

Y_AXIS,VAL_Z_AXIS);   //Import the 

data for 3 axis 

} 

void loop() // will start the main code 

and this code runs continously 

{ 

 

if (SampleCount == 1)  

{ 

  Time1 = millis(); // current program 

execution time 

} 

Time = millis(); 

Time = (Time-Time1)/1000.000; 

//Correct the recorded time and reset to 

zero when  

AirQuality.readAlgorithmResults(); 

CO2 = AirQuality.getCO2();                                     

//Collect Carbon dioxide data 

TVOC = AirQuality.getTVOC();                                   

//Collect Metal oxide data 

Humidity = TempHum.getRH();                                   

//Collect humidity data 
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TempF = TempHum.getTempF();                                   

//Collect temeprature data 

Pressure = PressAlt.readPressure();                         

//Collect pressure data 

BaroTemp = PressAlt.readTempF();                            

//Collect altitude data 

IMU.update(UPDATE_ACCEL | 

UPDATE_GYRO | 

UPDATE_COMPASS);    //Update 

acceleration, gyration, and magnetic 

field 

accelX = IMU.calcAccel(IMU.ax);    

//Collect acceleration data in the x 

direction 

accelY = IMU.calcAccel(IMU.ay);      

//Collect acceleration data in the y 

direction 

accelZ = IMU.calcAccel(IMU.az);        

//Collect acceleration data in the z 

direction 

gyroX = IMU.calcGyro(IMU.gx);       

//Collect gyration data in the x direction 

gyroY = IMU.calcGyro(IMU.gy);   

//Collect gyration data in the y direction 

gyroZ = IMU.calcGyro(IMU.gz);          

//Collect gyration data in the z direction 

magX = IMU.calcMag(IMU.mx);       

//Collect magnetic field data in the x 

direction              

magY = IMU.calcMag(IMU.my);         

//Collect magnetic field data in the y 

direction 

magZ = IMU.calcMag(IMU.mz);       

//Collect magnetic field data in the z 

direction 

if (ExtendedIMUcalc) 

{ 

   if ( IMU.fifoAvailable() ) 

   {   // Check for new data in the FIFO // 

Use dmpUpdateFifo to update the ax, gx, 

qx, etc. values 

     if ( IMU.dmpUpdateFifo() == 

INV_SUCCESS ) 

     { 

        IMU.computeCompassHeading();                       

//Calculate the rocket headings 

        IMUHeading = IMU.heading; 

        IMU.computeEulerAngles();                          

//Calculate the Euler angles 

        q0 = IMU.calcQuat(IMU.qw);                         

//Calculate initial quartenion (q0) 

        q1 = IMU.calcQuat(IMU.qx);                         

//Calculate first quartenion (q1) 

        q2 = IMU.calcQuat(IMU.qy);                         

//Calculate second quartenion (q2) 

        q3 = IMU.calcQuat(IMU.qz);                         

//Calculate third quartenion (q3) 

        IMUYaw = IMU.yaw;                                  

//Calculate yaw 

        IMUPitch = IMU.pitch;                              

//Calculate pitch 

        IMURoll = IMU.roll;                                

//Calculate roll 

     } 

   } 

} 

Wire.beginTransmission(HMCAddr); 

 Wire.write(0x03);                                        

//select register 3, X MSB register 

 Wire.endTransmission(); 

 Wire.requestFrom(HMCAddr, 6); 

 if(6<=Wire.available()) 

 { 

    magXHMC = Wire.read()<<8;                             

//X msb 

    magXHMC |= Wire.read();                               

//X lsb 

    magZHMC = Wire.read()<<8;                             

//Z msb 

    magZHMC |= Wire.read();                               

//Z lsb 

    magYHMC = Wire.read()<<8;                             

//Y msb 

    magYHMC |= Wire.read();                               

//Y lsb 

double xyz[3]; 

h3lis.getAcceleration(xyz); 

accelXLIS = xyz[0]; 

accelYLIS = xyz[1]; 

accelZLIS = xyz[2]; 

} 

DataFile[1] = SampleCount;    
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DataFile[2] = Time; 

DataFile[3] = CO2; 

DataFile[4] = TVOC; 

DataFile[5] = TempF; 

DataFile[6] = Humidity; 

DataFile[7] = Pressure; 

DataFile[8] = BaroTemp; 

DataFile[9] = accelX; 

DataFile[10] = accelY; 

DataFile[11] = accelZ; 

DataFile[12] = gyroX; 

DataFile[13] = gyroY; 

DataFile[14] = gyroZ; 

DataFile[15] = magX; 

DataFile[16] = magY; 

DataFile[17] = magZ; 

DataFile[18] = q0; 

DataFile[19] = q1; 

DataFile[20] = q2; 

DataFile[21] = q3; 

DataFile[22] = IMUHeading; 

DataFile[23] = IMUPitch; 

DataFile[24] = IMURoll; 

DataFile[25] = IMUYaw; 

DataFile[26] = magXHMC; 

DataFile[27] = magYHMC; 

DataFile[28] = magZHMC; 

DataFile[29] = accelXLIS; 

DataFile[30] = accelYLIS; 

DataFile[31] = accelZLIS; 

File Datalog = SD.open("DataLog.txt", 

FILE_WRITE); // access SD card 

 if (Datalog)                                                 

//if file can be created/modified 

  { 

    if (SampleCount == -1.0) 

    { 

      Datalog.print(F("Sampling Delay 

Time (millis), Air Quality, Barometer, 

Temp/Humidity, IMU")); 

      Datalog.println(); 

      Datalog.print(SampleRate);   

    } 

    if (SampleCount == 0.0)                                  

//only on first iteration, prints file header 

    { 

      Datalog.print(F("Sample 

Number,Time (millis),CO2 

(ppm),TVOC (ppb), Temperature 

(F),Humidity (%), Pressure(Pa), Pressure 

Sensor Temperature (F), X Acceleration 

(g), Y Acceleration (g), Z Acceleration 

(g), X Gyration (g), Y Gyration (g), Z 

Gyration (g), X Magnetic field 

(mu*T),Y Magnetic field (mu*T),Z 

Magnetic field (mu*T), Quartenion q0, 

Quartenion q1, Quartenion q2, 

Quartenion q3, Heading (Deg), Pitch 

(Deg), Roll (Deg), Yaw (Deg), X 

Mag_HMC5883L, Y Mag_HMC5883L, 

Z Mag_HMC5883L, X 

Acceleration_LIS331 (g), Y 

Acceleration_LIS331 (g), Z 

Acceleration_LIS331 (g)")); 

        } 

        if (SampleCount >= 1.0) 

    { 

    for (int i = 1; i < 32; i++)              

//increment through data[] and print to 

file 

      { 

      Datalog.print(DataFile[i],3); 

      Datalog.write(',');         

      } 

    } 

        Datalog.println(); // print a new line 

        digitalWrite(LED, HIGH); 

    Datalog.close(); // close your file 

    } 

  else 

  {              //alternate to previous 

decision, if file can't be created sends 

error message 

    Serial.println(F("error opening 

datalog.txt")); 

  } 

SampleCount= SampleCount+1; // 

Updating the sample count 

delay(SampleRate); //set the sampling 

rate (millisecond) 

digitalWrite(LED, LOW); 

} // the continous loop ends here
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C. PLD ERAU Payload – Avionics Sub payload Circuit Board 1 Arduino Program 

Program created by Vijay Vishal Duraisamy and Nikita Amberkar 

int signPin = 2; //Radiation Pulse 

(Yellow) 

int noisePin = 5; //Vibration Noise Pulse 

(White) 

#include <SPI.h> // libaray for spi 

protocol 

#include <SD.h>  // SD card library 

float DataFile[8]; // Initaizling the array 

float SampleCount = -1; //start sample 

code 

int LED = 12; 

#include <avr/dtostrf.h> 

const double alpha = 53.032; // cpm = 

uSv x alpha 

int index1 = 0; //Number of loops 

char msg[256] = ""; //Message buffer for 

serial output 

int signCount = 0; //Counter for 

Radiation Pulse 

int noiseCount = 0; //Counter for Noise 

Pulse 

int sON = 0; //Lock flag for Radiation 

Pulse 

int nON = 0; //Lock flag for Noise Puls 

double cpm = 0; //Count rate [cpm] of 

current 

double cpmHistory[200]; //History of 

count rates 

int cpmIndex = 0; //Position of current 

count rate on cpmHistory[] 

int cpmIndexPrev = 0; //Flag to prevent 

duplicative counting 

int prevTime = 0; 

int currTime = 0; 

int totalSec = 0; //Elapsed time of 

measurement [sec] 

int totalHour = 0; //Elapsed time of 

measurement [hour] 

int cpmTimeMSec = 0; 

int cpmTimeSec = 0; 

int cpmTimeMin = 0; 

char cpmBuff[20]; 

char uSvBuff[20]; 

char uSvdBuff[20]; 

void setup() 

{ 

  Serial.begin(9600); 

pinMode(LED, OUTPUT); 

digitalWrite(LED, LOW); 

  pinMode(signPin, INPUT); 

  digitalWrite(signPin, HIGH); 

    pinMode(noisePin, INPUT); 

  digitalWrite(noisePin, HIGH); 

  

Serial.println("hour[h]_sec[s]_count_cp

m_uSv/h_uSv/hError"); 

  for (int i = 0; i < 200; i++ ) 

  { 

    cpmHistory[i] = 0; 

  } 

  prevTime = millis(); 

  Serial.println(F("Initializing SD 

card...")); 

  if (!SD.begin()) 

  {    

    Serial.println(F("Card failed, or not 

present"));      

    while (1); // the remainder of the code 

will not execute 

  } 

Serial.println(F("SD card initialized.")); 

} 

void loop() 

{ 

  int sign = digitalRead(signPin); 

  int noise = digitalRead(noisePin); 

    if (sign == 0 && sON == 0) 

  { //Deactivate Radiation Pulse counting 

for a while 

    sON = 1; 

    signCount++; 

  } else if (sign == 1 && sON == 1) { 

    sON = 0; 

  } 
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  //Noise Pulse normally keeps high for 

about 100[usec] 

  if (noise == 1 && nON == 0) 

  { //Deactivate Noise Pulse counting for 

a while 

    nON = 1; 

    noiseCount++; 

  } else if (noise == 0 && nON == 1) { 

    nON = 0; 

  } 

digitalWrite(LED, LOW); 

  if (index1 == 10000) //About 160-170 

msec in Arduino Nano(ATmega328) 

  { 

        currTime = millis(); 

    if (noiseCount == 0) 

    { 

      if ( totalSec % 6 == 0 && 

cpmIndexPrev != totalSec) 

      { 

        cpmIndexPrev = totalSec; 

        cpmIndex++; 

        if (cpmIndex >= 200) 

        { 

          cpmIndex = 0; 

        } 

        if (cpmHistory[cpmIndex] > 0) 

        { 

          cpm -= cpmHistory[cpmIndex]; 

        } 

        cpmHistory[cpmIndex] = 0; 

      } 

      cpmHistory[cpmIndex] += 

signCount; 

      cpm += signCount; 

      cpmTimeMSec += abs(currTime - 

prevTime); 

      //Transform from msec. to sec. (to 

prevent overflow) 

      if (cpmTimeMSec >= 1000) 

      { 

        cpmTimeMSec -= 1000; 

        if ( cpmTimeSec >= 20 * 60 ) 

        { 

          cpmTimeSec = 20 * 60; 

        } else { 

          cpmTimeSec++; 

        } 

        totalSec++; 

        if (totalSec >= 3600) 

        { 

          totalSec -= 3600; 

          totalHour++; 

        } 

      } 

      double min = cpmTimeSec / 60.0; 

      if (min != 0) 

      { 

        dtostrf(cpm / min, -1, 3, cpmBuff); 

        dtostrf(cpm / min / alpha, -1, 3, 

uSvBuff); 

        dtostrf(sqrt(cpm) / min / alpha, -1, 

3, uSvdBuff); 

      } else { 

         dtostrf(0, -1, 3, cpmBuff); 

        dtostrf(0, -1, 3, uSvBuff); 

        dtostrf(0, -1, 3, uSvdBuff); 

      } 

      sprintf(msg, 

"%d,%d,%03d,%d,%s,%s,%s", 

              totalHour, totalSec, 

              cpmTimeMSec, 

              signCount, 

              cpmBuff, 

              uSvBuff, 

              uSvdBuff 

             ); 

      Serial.println(msg); 

DataFile[1] = SampleCount; 

DataFile[2] = totalHour;    

DataFile[3] = totalSec; 

DataFile[4] = cpmTimeMSec; 

DataFile[5] = signCount; 

DataFile[6] = atof(cpmBuff); 

DataFile[7] = atof(uSvBuff); 

DataFile[8] = atof(uSvdBuff); 

File Datalog = SD.open("DataLog.txt", 

FILE_WRITE); // access SD card 

 if (Datalog)                                                 

//if file can be created/modified 

  { 
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       if (SampleCount == 0.0)               

//only on first iteration, prints file header 

    { 

      Datalog.print(F("Sample ID, Total 

Hour, Total Seconds, cpmTimeMsec, 

signCount, cpmBuff, uSvBuff, 

uS3vdBuff")); 

        } 

        if (SampleCount >= 1.0) 

    { 

    for (int i = 1; i < 9; i++)                            

//increment through data[] and print to 

file 

      { 

      Datalog.print(DataFile[i],3); 

      Datalog.write(',');         

      } 

    } 

        Datalog.println(); // print a new line 

        digitalWrite(LED, HIGH); 

    Datalog.close(); // close your file  

  } 

  SampleCount= SampleCount+1; 

    } 

    prevTime = currTime; 

    signCount = 0; 

    noiseCount = 0; 

    index1 = 0; 

  } 

  index1 = index1+1; 

} 

 

D. MAPMD CFD Simulation: Job Execution Script 

#!/bin/bash 

#PBS -q normalq 

#PBS -l walltime=23:58:00 

#PBS -l nodes=5:ppn=36 

#PBS -e star_pbs_errors.out 

#PBS -o star_pbs_stdout.out 

module load openmpi/gcc/64/1.10.3 

module load star-ccm/12.02.011 

cd $PBS_O_WORKDIR 

# set case name here 

case=MAPMD 

rm DONE -f 

rm ABORT -f 

date >> $case.log 

echo -n "======== Run Started " >> 

$case.log 

echo -------- RUN ON PROCESSORS --

-------- >> $case.log 

cat $PBS_NODEFILE >> $case.log 

echo "========= Total Number of 

Processors" >> $case.log 

echo $PBS_NP >> $case.log 

# if necessary, add java file after batch 

tag, and before case name. 

starccm+ -v -rsh ssh -licpath 

2000@DBLicman3 -machinefile 

$PBS_NODEFILE -np $PBS_NP -time 

-cpubind off -batch automate.java 

$case.sim >> $case.log 

# Note finish wall time 

echo -n "======== Run Stopped " >> 

$case.log 

date >> $case.log 

# create a "DONE" file to indicate 

completion 

touch DONE 

 

E. MAPMD CFD Simulation: Contact Modeling Automation JAVA script 

// STAR-CCM+ macro: automate.java 

// Written by STAR-CCM+ 12.02.011 

package macro; 

import java.util.*; 

import star.common.*; 

import star.base.neo.*; 

import star.base.report.*; 

import star.sixdof.*; 
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import star.mapping.*; 

public class automate extends StarMacro 

{ 

 public void execute() { 

    execute0(); 

  } 

  private void execute0() { 

  Simulation simulation_0 = 

  getActiveSimulation(); 

  double currentPhysicalTime=0; 

  double gap1=0.000000; 

  double gap2=0.000000; 

  double vel=0.000000; 

  double k=0.000000; 

  MinReport minReport_0 = 

     ((MinReport) 

simulation_0.getReportManager().getRe

port("TopContact")); 

  MinReport minReport_1 = 

      ((MinReport) 

simulation_0.getReportManager().getRe

port("BotContact")); 

 LinearVelocityReport 

linearVelocityReport_0 = 

 ((LinearVelocityReport) 

simulation_0.getReportManager().getRe

port("Membrane Velocity Z")); 

    ContactCoupling contactCoupling_0 

= 

 ((ContactCoupling) 

simulation_0.get(SixDofBodyCoupling

Manager.class).getObject("Contact    

1"));  

 NormalContactForce 

normalContactForce_0 = 

 contactCoupling_0.getNormalForce(); 

    while (currentPhysicalTime < 40){ 

    

simulation_0.getReportManager().getRe

port("TopContact"); 

    gap1=minReport_0.getValue(); 

    simulation_0.println(""); 

    simulation_0.println("Top Contact 

gap distance (in): " + 

String.format("%.6f", gap1)); 

    simulation_0.println(""); 

    

simulation_0.getReportManager().getRe

port("BotContact"); 

    gap2=minReport_1.getValue(); 

    simulation_0.println(""); 

    simulation_0.println("Bottom Contact 

gap distance (in): " + 

String.format("%.6f", gap2)); 

    simulation_0.println(""); 

    

simulation_0.getReportManager().getRe

port("Membrane Velocity Z"); 

    

vel=Math.abs(linearVelocityReport_0.ge

tValue()); 

    k=vel*vel*70311182.32417; 

    simulation_0.println(""); 

    simulation_0.println("Z Velocity 

(m/s): " + String.format("%.6f", vel)); 

    simulation_0.println(""); 

if (gap1<0.21 || gap2<0.21) { 

    

simulation_0.get(SixDofBodyCoupling

Manager.class).getObject("Contact 1"); 

    contactCoupling_0.setEnabled(true); 

    contactCoupling_0.getNormalForce(); 

    

normalContactForce_0.getElasticCoeffic

ient().setValue(k); 

    

simulation_0.getSimulationIterator().ste

p(500); 

} 

else { 

 

simulation_0.get(SixDofBodyCoupling

Manager.class).getObject("Contact 1"); 

 contactCoupling_0.setEnabled(false); 

 

simulation_0.getSimulationIterator().ste

p(5); 

} 

currentPhysicalTime = 

simulation_0.getSolution().getPhysicalTi

me(); 

}}}
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Appendix B 

A. Research facility 

 

Figure B.1: PATO lab floorplan 

B. CRExIM Analysis 

 

Figure B.2: ANSYS optimization project view 
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C. MESSI/McXIMUS Electronics 

 

Figure B.3: Custom data logger circuit schematic 

 

Figure B.4: LED lighting system circuit schematic 
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D. PLD ERAU Payload Electronics 

 

Figure B.5 Avionics sub payload Circuit board 1 schematic 
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Figure B.6: Avionics sub payload Circuit board 2 schematic 

 

 

Figure B.7: Avionics payload data output (Circuit board 1 on top and Circuit board 2 on bottom) 
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E. Vibration Test Campaign 

 

Figure B.8: Electrodynamic shaker specifications 



198 

 

 

Figure B.9: Test article and fixture mounting specifications 



199 

 

 

Figure B.10: Shaker test setup procedures 
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F. Level 1 Rocket 

 

Figure B.11: RockSim simulation results 

 

Figure B.12: Level 1 rocket custom data logger circuit schematic 
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G. Level 3 Rocket 

 

Figure B.13: OpenRocket simulation 

 



202 

 

H. Vacuum Chamber Test Setup 

 

Figure B.14: Vacuum chamber environment monitoring system circuit schematic 
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