34 research outputs found

    Efficient decoding of some classes of binary cyclic codes beyond the Hartmann-Tzeng bound

    Get PDF
    International audienceA new bound on the distance of binary cyclic codes is proposed. The approach is based on the representation of a subset of the roots of the generator polynomial by a rational function. A new bound on the minimum distance is proven and several classes of binary cyclic codes are identified. For some classes of codes, this bound is better than the known bounds (e.g. BCH or Hartmann-Tzeng bound). Furthermore, a quadratic-time decoding algorithm up to this new bound is developed

    Decoding Cyclic Codes up to a New Bound on the Minimum Distance

    Full text link
    A new lower bound on the minimum distance of q-ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem (BCH) bound and, for some codes, upon the Hartmann-Tzeng (HT) bound. Several Boston bounds are special cases of our bound. For some classes of codes the bound on the minimum distance is refined. Furthermore, a quadratic-time decoding algorithm up to this new bound is developed. The determination of the error locations is based on the Euclidean Algorithm and a modified Chien search. The error evaluation is done by solving a generalization of Forney's formula

    Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability

    No full text
    International audienceA new probabilistic decoding algorithm for low-rate interleaved Reed-Solomon (IRS) codes is presented. This approach increases the error correcting capability of IRS codes compared to other known approaches (e.g. joint decoding) with high probability. It is a generalization of well-known decoding approaches and its complexity is quadratic with the length of the code. Asymptotic parameters of the new approach are calculated and simulation results are shown to illustrate its performance. Moreover, an upper bound on the failure probability is derived

    Describing A Cyclic Code by Another Cyclic Code

    Get PDF
    A new approach to bound the minimum distance of qq-ary cyclic codes is presented. The connection to the BCH and the Hartmann--Tzeng bound is formulated and it is shown that for several cases an improvement is achieved. We associate a second cyclic code to the original one and bound its minimum distance in terms of parameters of the associated code

    Cooperating error-correcting codes and their decoding

    Get PDF

    Versatile Error-Control Coding Systems

    Get PDF
    $NC research reported in this thesis is in the field of error-correcting codes, which has evolved as a very important branch of information theory. The main use of error-correcting codes is to increase the reliability of digital data transmitted through a noisy environment. There are, sometimes, alternative ways of increasing the reliability of data transmission, but coding methods are now competitive in cost and complexity in many cases because of recent advances in technology. The first two chapters of this thesis introduce the subject of error-correcting codes, review some of the published literature in this field and discuss the advan­tages of various coding techniques. After presenting linear block codes attention is from then on concentrated on cyclic codes, which is the subject of Chapter 3. The first part of Chapter 3 presents the mathemati­cal background necessary for the study of cyclic codes and examines existing methods of encoding and their practical implementation. In the second part of Chapter 3 various ways of decoding cyclic codes are studied and from these considerations, a general decoder for cyclic codes is devised and is presented in Chapter 4. Also, a review of the principal classes of cyclic codes is presented. Chapter 4 describes an experimental system constructed for measuring the performance of cyclic codes initially RC5GI5SCD by random errors and then by bursts of errors. Simulated channels are used both for random and burst errors. A computer simulation of the whole system was made in order to verify the accuracy of the experimental results obtained. Chapter 5 presents the various results obtained with the experimental system and by computer simulation, which allow a comparison of the efficiency of various cyclic codes to be made. Finally, Chapter 6 summarises and dis­cusses the main results of the research and suggests interesting points for future investigation in the area. The main objective of this research is to contribute towards the solution of a fairly wide range of problems arising in the design of efficient coding schemes for practical applications; i.e. a study of coding from an engineering point of view

    Topics on Reliable and Secure Communication using Rank-Metric and Classical Linear Codes

    Get PDF

    Simplified decoding techniques for linear block codes

    Get PDF
    Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications

    Contributions to folded reed-solomon codes for burst error correction

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore