
CONTRIBUTIONS TO FOLDED REED-SOLOMON

CODES FOR BURST ERROR CORRECTION

ZHANG JIANWEN

NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTRIBUTIONS TO FOLDED REED-SOLOMON

CODES FOR BURST ERROR CORRECTION

ZHANG JIANWEN

(B. Eng., M. Eng., HUST)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2008

Acknowledgment

Thanks to my supervisor, Dr. Armand, for his patience and guidance in these

four years. I learned a lot from him in shaping ideas and writing technical papers.

Thanks to Dr. Xin Yan. His encouragement is greatly appreciated. I thank him

for his time and kindness. Thanks to Professor P. Y. Kam and Professor C. S. Ng.

Their lectures helped me understand concepts in digital communications and

random processes.

Thanks to my friends in ECE-I2R-CWC lab and Communications lab. The

discussion with Jiang Jinhua, Zhang Lan, Gao Feifei, Khaisheng, Anwar, Zhang

Qi and Chong Hon Fah are helpful. Talking with Cao Wei, He Jun, Lu Yang,

Li Yan, Li Rong, Li Mi, Zhu Yonglan, Lokesh and Cao Le is joyful. The days

traveling with Kim Cheewee in Helsinki was relaxing and the discussion with him

was very interesting. Thanks to Eric in ECE-I2R-CWC. Thanks to Sun Zhenyu,

Bao Qingming, Gao Xiang and Dai Zhenning for providing me a lot of help during

these four years.

Thanks to my parents. I am indebted to them for their love, tenderness and

patience over these four years. I could not go through my education without their

understanding and support. Thanks to my wife Liu Jing. I thank her for her

love, support and understanding. Thanks to my younger sister. She has brought

us a lot precious memories.

i

Contents

Acknowledgment i

Contents ii

Summary v

List of Tables vii

List of Figures viii

Abbreviations x

Notations xii

Chapter 1. Introduction 1

1.1 Background . 1

1.2 Current Research and Challenges 12

1.3 Motivation, Objectives and Contributions 19

1.4 Organization of the Thesis . 24

Chapter 2. Generalization of FRS Codes and Decoding of TFSRS

Codes 25

2.1 Introduction . 25

2.2 FRS Codes . 26

2.3 TFSRS Codes . 35

2.4 List Decoding TFSRS Codes in a Burst Error Channel 37

2.5 Error-Correction Capability . 39

2.5.1 Probability Ps of Successful Decoding 40

ii

Contents

2.5.2 Probability of Decodable Words Pd 47

2.6 Summary . 54

Chapter 3. Retrieving Messages from Output List of the GSA 55

3.1 Introduction . 55

3.2 Lemmas Leading to the Main Result 56

3.3 The Main Result . 60

3.4 Summary . 64

Chapter 4. Synthesis of Multisequences Having Unknown

Elements in the Middle and Decoding Applications 65

4.1 Introduction . 66

4.2 Synthesizing Multisequences with Unknown Elements in the Middle 67

4.3 Decoding GRS Codes . 70

4.4 Folded GRS Codes From GRS Codes 73

4.5 Conclusion . 80

Chapter 5. A Search-Based List Decoding Algorithm for RS codes 82

5.1 Introduction . 82

5.2 Search-Based List Decoding . 83

5.2.1 The Search Tree . 83

5.2.2 Complexity Reduction Strategies 85

5.2.3 The Decoding Algorithm 87

5.3 Decoding Shortened and Punctured RS Codes 88

5.4 Performance-Complexity-List-Size Analysis 90

5.4.1 Word-Error-Rate Performance 90

5.4.2 Bounding The Average Complexity 91

5.4.3 The Average List Size . 94

5.5 Conclusion . 96

Chapter 6. Decoding RS Codes with Gröbner Bases Method and

Its Applications 98

6.1 Introduction . 98

6.2 The GNI and the Relation xdeg(σ(x))σ(x−1)h(x) = xn − 1 100

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes 104

iii

Contents

6.3.1 Outline of the Decoding Algorithm and List Size 105

6.3.2 Decoding (n, n− 3) RS Codes with up to 2 Errors 106

6.3.3 Decoding (n, n− 4) RS Codes with up to 3 Errors 109

6.3.4 Combining with Erasures 112

6.4 Decoding IRS Codes . 113

6.5 Decoding Codes of Length 7 . 115

6.5.1 Decomposition of S1, S2, S4 and Decoding (7, 3) RS Codes

over GF(8) . 116

6.5.2 Decoding RS Codes over GF(8) with Restricted Error Value 121

6.6 Summary . 125

Chapter 7. Conclusion and Proposals for Future Work 126

7.1 Conclusion . 126

7.2 Future Work . 129

Bibliography 131

iv

Summary

We show that Folded Reed-Solomon (FRS) codes can be constructed from any

Reed-Solomon (RS) code with codelength a composite number. The zeros of

the row codes of the resulting code array are shown to be a distribution of

the zeros of the original RS code. FRS codes can be used to correct burst

errors when the code array is transmitted column by column in burst error

channels. To detect burst errors effectively, Transformed Folded Shortened RS

codes and a corresponding decoding algorithm based on the Guruswami-Sudan

Algorithm (GSA) are proposed. Estimates of the probability of successful

decoding, decoder error and decoding failure for this algorithm are derived.

A RS code is often encoded by its generator polynomial. The output of

the GSA on this code is a coset of the candidate messages. How to recover the

candidate messages from this coset is studied in this thesis. A relation between the

codeword resulting from the generator-matrix-based encoding and the codeword

obtained via the evaluation map is established. Based on this relation, a transform

for retrieving the generator-polynomial-based coded message data under the

interpolation-based list decoding is derived. To retrieve the message data, an

average computational overhead of O(k2) is required for an (n, k) RS code.

It is also shown that folded codes can be constructed from Generalized

RS (GRS) codes with codelengths being composite numbers. The resulting arrays

are codewords of a Folded GRS (FGRS) code. The rows in the resulting array

can be modified as GRS codes with zeros from the same support set. However,

v

Summary

the syndromes of this row codes may not be consecutive. Also, a method for

the synthesis of multisequences with unknown elements in the middle is derived.

Based on this method, a decoding algorithm for decoding these FGRS code is

proposed.

A search-type list decoding algorithm is proposed for an (n, k) RS code.

This algorithm can correct up to n− k − 1 errors in the list decoding sense. We

show that for short, high rate codes, it is possible that the average complexity

of the proposed search procedure is less than n2 at Word Error Rates (WER’s)

of practical interests. This algorithm can be applied to decode FRS codes. An

appropriate choice of dimension for the code array will thus permit the proposed

algorithm to be applied with reasonable complexity at practical WER’s.

Finally, a list decoding algorithm based on Gröbner Bases (GB) and

Generalized Newton’s Identities (GNI) is studied. The GB are from the relation

xdeg(σ(x))σ(x−1)h(x) = xn − 1, where σ(x) is the error locator polynomial and

h(x) = xn−1
xdeg(σ(x))σ(x−1)

. The group of linear equations from GNI for a received

vector are combined with the GB. The solutions are the possible error locator

polynomials for the received vector. We also apply this method to decode some

cyclic codes over GF(8) with restricted error values.

vi

List of Tables

2.1 A codeword of BF with minimum weight. 33

6.1 Results for decoding r = (0, α, 0, α3, 1, 0, 0). 111

6.2 Result for u = 0. 120

6.3 Result for u = 1. 120

6.4 Result for u = 2. 121

6.5 Possible error position combinations. 121

vii

List of Figures

1.1 A typical point-to-point communication scenario. 2

1.2 A point-to-point communication scenario with error-correcting

coding. 3

1.3 Binary symmetric channel with crossover probability p. 6

1.4 Performance comparison between uncoded and coded systems.

The code used is a (31, 21) binary code with dmin = 5. 7

1.5 A serially concatenated code. 11

2.1 Zeros of the original RS code are distributed among row codes of

FRS code array. 31

2.2 Two cases for zeros of FRS code array. 32

2.3 Error pattern with Hamming weight w decoded to all-zero

codeword (t is the error-correction capability). 45

4.1 Nonconsecutive syndrome sequences of row codes. 78

5.1 Tree structure for a (7, 4) RS code. 85

5.2 WERs of the BMA, the GSA and the proposed list decoding

algorithm when applied to a (32, 28) RS code over GF(256) and a

(15, 10) RS code over GF(16). 91

5.3 Complexity of Step 2 for decoding a (32, 28) RS code (shortened

from a (255, 251) RS code) over GF(256) and a (15, 10) RS code

over GF(16). 94

viii

List of Figures

5.4 Average list size for a (32, 28) RS code over GF(256) and a (15, 10)

RS code over GF(16) under the proposed decoding algorithm and

the GSA. (Note that the estimated average list size of the GSA for

the former code is less than 1 when SNR is less than 7 dB, due to

the highly non-perfect nature of the code.) 96

ix

Abbreviations

ARQ automatic repeat-request.

AWGN additive white Gaussian noise.

BCH Bose-Chaudhuri-Hocquenghem.

BER bit-error-rate.

BMA Berlekamp-Massey algorithm.

BPSK binary phase shift keying.

BSC binary symmetric channel.

CD Compact disk.

EA Euclid algorithm.

FGRS folded generalized Reed-Solomon.

FIA fundamental iterative algorithm.

FRS folded Reed Solomon.

GB Gröbner Bases.

GFFT Galois field Fourier transform.

GIAMS Generalized Iterative Algorithm for Multiple Sequences.

GRS generalized Reed-Solomon.

GSA Guruswami-Sudan algorithm.

GMD generalized minimum distance.

GNI generalized Newton’s identities.

x

Abbreviations

IRS interleaved Reed-Solomon.

KVA Koetter-Vardy algorithm.

LHS left hand side.

LLR log-likelihood ratio.

LDPC low density parity check.

MDS maximum distance separable.

ML maximum Likelihood.

NMDS nearly maximum distance separable.

PGZA Perteson-Gorenstein-Zierler Algorithm.

RS Reed-Solomon.

RSC recursive systematic convolutional.

SNR signal-to-noise-ratio.

TFSRS transformed folded shortened Reed-Solomon.

WER word-error-rate.

xi

Notations

In this thesis, scalar variables are written as plain letters, row vectors

as bold-face lower-case letters, and matrices or arrays as bold-face upper-case

letters. Some further used notations and commonly used acronyms are listed in

the following:

C linear block code.

d(c1, c2) Hamming distance of vectors c1 and c2.

deg(f(x)) degree of polynomial f(x).

Diag(a) diagonal matrix with a being the vector of elements in the main diagonal.

GF(q) the finite field with q elements.

GF(q)[x] the polynomial ring over GF(q).

GF(q)[x]k the polynomial ring over GF(q) and deg(f(x)) < k, ∀f(x) ∈ GF(q)[x]k.

ord(α) order of a field element α.

w(c) Hamming weight of vector c.

xii

Chapter 1

Introduction

In this chapter, the background of error-correcting codes for point-to-point

communications and an overview of this thesis are given. Section 1.1 introduces

briefly the point-to-point communication model, how error-correcting codes help

achieve reliable communications in the presence of ambience noise in this model,

and the development of error-correcting codes since the 1950’s. Section 1.2

goes through some current research topics and the challenges in the field of

error-correcting codes. Section 1.3 describes the motivation and objective of

the work on Folded Reed-Solomon (FRS) codes presented in this thesis as well as

the contributions contained therein. Section 1.4 outlines the organization of this

thesis.

1.1 Background

A typical point-to-point communication scenario is shown in Fig. 1.1. During

a communication session, the source tries to send messages to the destination.

These messages are mapped to signals by the transmitter and which then

transverse the physical channel. The physical channel can be some medium

such as a cable in wired communications, free space in wireless communications

1

1.1 Background

Source
Noisy

channel
Destination

Signals
Impaired
signals

Transmitter Receiver
Message

Estimated
message

Figure 1.1: A typical point-to-point communication scenario.

and physical materials in storage. The receiver maps the received signals back

to messages and passes them to the destination. These messages are expected

to be sent and correctly received as fast as possible for the sake of efficiency.

However, the transmission of signals is a physical process and thus is subject

to the ubiquitous ambient noise, attenuation and imperfection of the physical

signaling itself. For instance, random noise, burst noise and fading severely impair

both the amplitude and phase of signals in a wireless channel. Moreover, since

the bandwidth resource allocated for a communication session is often limited,

a signal may interfere successive signals when they are transmitted too fast in a

bandwidth-limited channel, a disturbance known as the inter-symbol interference.

Due to these noise and disturbance, the real setting is as follows:

• Messages from the source are transmitted as signals through a channel,

• Noise and disturbance in the channel impair the signals,

• Messages are recovered from the noisy signals and passed to the destination.

The receiver may fail to recover the transmitted messages correctly due to high

level noise and disturbance. This problem may be solved by increasing the

power of the transmission signals. But the power supply for the source is almost

always stringent because of weight limitation in different situations such as space

communications, mobile communications and sensor networks. Therefore people

2

1.1 Background

Destination

Estimated
messageSource Physical

channel

Signals
Impaired
signalsTransmitter Receiver

Message
Encoder Decoder

Figure 1.2: A point-to-point communication scenario with error-correcting

coding.

have to look for other methods to achieve effective communication when noise

and disturbance are unfavorable.

So far, error-correcting codes have provided the most successful method

to resolve this problem. The scenario combined with error-correcting codes

is as shown in Fig. 1.2. The idea of error-correcting codes is to introduce

structured redundancy into the messages to combat noise and disturbance in

the channel. Specifically, the messages from the source are described by a

data stream with the data symbols from a certain finite field. This stream is

then encoded as codewords of a error-correcting code by inserting structured

redundant symbols. The redundancy introduced may reduce the average signal

transmission power if the raw data (information) rate and the power fed to

the transmitter are fixed. But as long as the performance gain due to the

error-correcting codes is more dominant than the performance loss due to the

reduction in the average signal power, the communication system can benefit

from using error-correcting codes. Research results have shown that the gain due

to error-correcting codes can be significant if they are properly designed. Hence,

by exploiting structured redundancy, error-correcting codes can help the recovery

of the transmitted messages from noise and disturbance presenting in the channel.

Consequently, reliable communication can be achieved even when high level

noise and disturbance are presented. This fact was discovered by Shannon [78]

3

1.1 Background

about sixty years ago. He proved the noisy channel coding theorem [91] stating

the existence of the maximal reliable communication rate for a noisy channel.

This rate is defined as the capacity of this channel. This capacity was shown

to be achievable by random codes of large length. However, how to design

error-correcting codes to approach the capacity in a real application was still

unknown and the research on error-correcting codes started since then.

Two substantially different classes of error-correcting codes, block codes and

convolutional codes, have been well-developed so far. An (n, k) block code C is

obtained by dividing the data stream into segments of k symbols and encoding

each of these segments into a codeword of n symbols. The block codes are

developed and analyzed using algebraic and combinatorial techniques. The use

of these branches of mathematics in coding theory can be found in [58] and [36]

respectively. In the study of block codes, three parameters, code rate, Hamming

distance and minimum distance are important.

Definition 1.1 – The Rate of a Block Codes

For a block code C over GF(q), the finite field of cardinality q, the code rate R of

C is defined as

R =
logq |C|

n
,

where |C| is the cardinality of C and n is the codelength of C.

The code rate indicates the average amount of information carried by a code

symbol. The rate of redundancy in C is then n(1−R). For the sake of efficiency,

it is desirable that C has a high rate while having reasonable error-correction

capability. Hence, most of the block codes which are of practical interest in

applications such as storage and wireless communications are high rate codes.

Definition 1.2 – Hamming Distance of Two Vectors

Let c1 = (c1,0, c1,1, . . . , c1,n−1) and c2 = (c2,0, c2,1, . . . , c2,n−1) be two vectors over

4

1.1 Background

GF(q) of length n, the Hamming distance d(c1, c2) of these two vectors is defined

as

d(c1, c2) =
n−1∑
i=0

∑

c1,i 6=c2,i

1.

The minimum distance of a block code C is defined as follows.

Definition 1.3 – Minimum Distance of a Block Code

Let c1, c2 be any two codewords in C. The minimum distance of C is defined as

dmin = min
c1,c2∈C,
c1 6=c2

(d(c1, c2)).

A block code with minimum distance dmin can correct any received vector with up

to bdmin−1
2

c errors successfully without any ambiguity1, where bxc is the maximum

integer not larger than x. Hence, minimum distance is an important metric for

block codes. We can now show the advantage of error-correcting codes in more

detail. Consider binary phase shift keying transmission in an Additive White

Gaussian Noise (AWGN) channel and soft decision decoding. The asymptotic

coding gain is 10 log10(Rdmin) dB [42], where 0 < R < 1 and dmin is a positive

integer. With a well-designed code such that Rdmin > 1, the coded system has

an advantage over the uncoded one. If the receiver makes a hard decision on the

received bits, the channel between the encoder and decoder is a Binary Symmetric

Channel (BSC) as in Fig. 1.3. Let the Signal-to-Noise-Ratio (SNR) be τ dB. The

crossover probability is computed as

p = Q(
√

2× 10τ/10),

where

Q(x) =
1√
2π

∫ +∞

x

e−
x2

2 dx,

1Viewing a brute force method as a method in the worst case, a decoding algorithm always

exists.

5

1.1 Background

0

1 1

0
1-p

1-p

p

p

Figure 1.3: Binary symmetric channel with crossover probability p.

according to [67]. Consider a (31, 21) binary code with dmin = 5. It can correct up

to 2 errors. We keep the information rate and transmission power the same. The

crossover probability for the uncoded and coded systems are p1 = Q(
√

2× 10τ/10)

and p2 = Q(
√

2× 21
31
× 10τ/10), respectively. The Bit Error Rate (BER) of the

uncoded system is p1 and the BER of the coded system is upper bounded by

1 −∑2
i=0

(
31
i

)
(1 − p2)

31−ipi
2. The advantage of coded system in the moderate to

high SNR region can be observed from Fig. 1.4. More powerful error-correcting

codes can bring this advantage further and about 6 to 9 dB coding gain can be

readily obtained in real applications.

Block codes can be linear or nonlinear. Linear block codes receive more

interest than nonlinear codes in applications because of the availability of effective

decoding algorithms. Nonlinear codes are more for theoretical study. Let C be

an (n, k) block code over GF(q). If all the codewords in C form a vector subspace

of GF(q)n, C is a linear block code. It is easy to see that the all-zero codeword,

denoted by 0, is in C. Further, assume d(c1, c2) = dmin for c1, c2 ∈ C. By

Definition 1.2, d(c1, c2) = d(c1 − c2,0). Since c1 − c2 ∈ C, by Definition 1.3,

dmin = min
c1,c2∈C,
c1 6=c2

d(c1, c2) = min
c∈C\{0}

w(c),

where w(c) denotes the Hamming weight of c. Thus, the codewords of

minimum Hamming weight determine the error-correction capability of C. The

6

1.1 Background

5 6 7 8 9 10 11 12
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

B
E

R

uncoded
coded

Figure 1.4: Performance comparison between uncoded and coded systems.

The code used is a (31, 21) binary code with dmin = 5.

SNR vs. BER curve of C on an AWGN channel has an error floor at some BER

value. This error floor is determined by the minimum Hamming weight of C and

the proportion of codewords with minimum Hamming weight in C.

Binary linear block codes were first studied. These codes include the

well-known Hamming code [37] and some other binary parity check codes. A

standard array decoder [91] is applied to decode these simple binary linear block

codes. However, these codes can only detect one or two bit error or correct only

one erroneous bit and thus they are not very powerful error-correcting codes.

Subsequently, nonbinary linear block codes were studied. These codes

with code symbols from larger finite fields are more interesting because they

are thought more powerful than binary codes in combating both random and

burst noise. Research is focused on designing nonbinary linear block codes

7

1.1 Background

with abundant algebraic and combinatorial structure such that efficient decoding

is possible. The well-known nonbinary block codes explored in this stage are

nonbinary Reed-Muller codes, nonbinary Bose-Chaudhuri-Hocquenghem (BCH)

codes and Reed-Solomon (RS) codes. The discovery of Reed-Muller codes is a

significant step beyond binary linear block codes. It leads to the invention of some

other interesting codes. BCH and RS codes are rich in algebraic structure due to

their cyclic nature. Moreover, efficient decoding algorithms were also developed

for these codes. For example, the Berlekamp-Massey Algorithm (BMA) and

Euclid’s Algorithm (EA) [91] for BCH and RS codes were proposed. In addition,

to approach the capacity of a channel, it is desirable that an error-correcting code

has a large dmin as well as a high R. However, for an (n, k) linear block code,

these two metrics cannot be arbitrarily large because the Singleton bound [91]

shows that dmin is bounded by dmin ≤ n− k +1 = n(1−R)+ 1. Error-correcting

codes that satisfy this bound with equality are said to be Maximum Distance

Separable (MDS) codes and they are thought to be optimal in the sense that

they achieve the best tradeoff between code rate and minimum distance. RS

codes and Generalized RS (GRS) codes are two important families of MDS codes

and have been adopted in a wide range of applications.

A linear block code can be characterized by the generator matrix and the

parity check matrix. Since an (n, k) linear block code C over GF(q) is a subspace

of GF(q)n, a set of k linearly independent codewords can serve as a basis of this

subspace and any codeword can be a linear combination of this basis. A k × n

generator matrix G is obtained by arranging these k codewords as rows. A

codeword c ∈ C corresponding to a message vector m = (m0,m1, . . . , mk−1) is

then encoded as

c = m×G.

8

1.1 Background

An (n− k)× n matrix H is the parity check matrix of C if

G×HT = 0k×(n−k),

where 0i×j is an i × j all zero matrix. Hence, if a received vector is r = c + e,

where e = (e0, e1, . . . , en−1) is the error vector,

r×HT = (c + e)×HT = m×G×HT + e×HT = e×HT .

The vector e×HT is known as the syndrome sequence for the received vector r.

Unlike linear block codes, convolutional codes introduce redundancy into

a data stream through a linear shift register without dividing the data stream

into segments. The construction of convolutional codes is based on heuristic

techniques [20]. They are closely related to Shannon’s random codes used

in the proof of the noisy channel coding theorem. There were no practical

decoding algorithms until Wozencraft and Reiffen presented the “sequential

algorithms” [93] in 1961. It is the first fast but suboptimal decoding algorithm

for convolutional codes. The optimal Viterbi algorithm was proposed by Viterbi

in 1967 [90] and was later shown to be a maximum-likelihood decoding algorithm

by Forney [27] for convolutional codes.

Although it was still far from discovering error-correcting codes that achieve

the Shannon limit as predicted by the noisy channel coding theorem, research on

error-correcting codes was relatively quiet after 1970. More recently, the invention

of turbo codes [6] and the rediscovery of Low Density Parity Check (LDPC)

codes are two important breakthroughs on error-correcting codes. A turbo code

is generally in systematic form where the data symbols are followed by the parity

check symbols computed by two recursive systematic convolutional (RSC) code

encoders. The data stream is fed into one RSC code encoder directly and fed into

the other RSC code encoder after interleaving. Some parity check symbols may

9

1.1 Background

be punctured to increase the code rate. Turbo codes are shown to be capacity

approaching error-correcting codes, a significant result in both information theory

and coding theory. The power of turbo codes is due to their code construction

as well as the iterative soft decision decoding algorithm used. This algorithm

iterated between two soft decision decoders corresponding to the two RSC codes.

They made use of the information obtained from the channel output instead of the

hard decision of it. In an AWGN channel, the channel output could be converted

to Log-Likelihood Ratios (LLR’s) [35] and the iterative algorithm could be easily

performed by passing the extrinsic information obtained by one decoder to the

other. Interestingly, research on turbo codes led to the rediscovery of LDPC

codes.

LDPC codes (also known as Gallager codes) were first constructed using

sparse random parity check matrices by Gallager [29]. Gallager showed that codes

obtained from this construction had promising distance properties. However,

they were largely unnoticed due to lack of computing techniques until they were

rediscovered by MacKay and Neal in [51] and [52]. It was shown that their

performance was very close to turbo codes in [52]. An LDPC code is characterized

by its sparse parity check matrix which can be depicted by a bipartite graph. If

all the column weight and row weight are the same, respectively, such codes are

termed regular LDPC codes. Otherwise, they are called irregular LDPC codes.

Methods for designing sparse parity check matrices from Euclidean geometry,

projective geometry [46] and partial geometry [41] were developed. An interesting

construction of LDPC codes from RS codes with two information symbols was

also presented in [17]. Nonbinary LDPC codes were studied in [16]. In addition,

based on the study of LDPC codes, some other codes from very sparse matrices

were reported in [49] and [50]. LDPC codes can be decoded by hard decision

decoding algorithms, such as majority-logic decoding and bit-flip decoding, as well

10

1.1 Background

Outer code Inner code
Noisy

channel
Interleaving

encoder

Figure 1.5: A serially concatenated code.

as soft decision decoding algorithms such as the sum-product algorithm [46]. The

sum-product algorithm is closely related to the iterative soft decision decoding

algorithm of turbo codes. Actually, the sum-product algorithm originates from

the message-passing algorithm first proposed by Pearl in [63, 64, 65]. And turbo

decoding was shown to be a special case of the message-passing algorithm in [57].

Sum-product algorithm also iteratively refine the LLRs of the received bits and

make hard decisions for the received bits according to the signs of the refined

LLRs.

It has been shown that well-designed irregular LDPC codes had better

performance than regular LDPC codes [72]. The best results for irregular LDPC

codes could approach the Shannon limit [67] within 0.0045dB [15] which was even

better than the best result of turbo codes. To analyze and design LDPC codes,

density evolution [72, 71] and extrinsic information transfer chart [85] had been

developed.

Error-correcting codes are also serially concatenated to protect data in some

extremely noisy channels. A serially concatenated code consists of an inner code

and an outer code as in Fig. 1.5. The inner code is over a small alphabet

whereas the outer code is over a large alphabet. Such a scheme has been

successfully applied in deep space communications with the inner code being

a binary convolutional code and the outer code being an RS code. The serially

11

1.2 Current Research and Challenges

concatenated code can be decoded by first decoding the inner code and then the

outer code by their respective hard decision decoder. By exploiting the channel

output values, an iterative soft decision decoder can achieve better performance

than the former approach. Another compound coding scheme is the product code

(also known as block turbo code). The resulting code is in array form where rows

and columns are codewords of two block codes, respectively. When this code

array is transmitted in an AWGN channel, the performance of the iterative soft

decision decoding algorithm proposed by Pyndiah [68] is impressive.

Furthermore, the error control strategy widely used in network

communications [91] is the Automatic Repeat-reQuest (ARQ). This strategy

needs to be combined with error-correcting codes in real applications because

otherwise frequent ARQ due to transmission errors will cause congestion and

consequently reduce the network throughput. So error-correcting codes also play

an important role in such a strategy.

1.2 Current Research and Challenges

Among all these error-correcting codes, RS codes are an important family adopted

in many applications such as deep space communications, storage systems, digital

video broadcasting and high definition TV. Unlike other linear block codes, RS

codes were first defined by evaluation of polynomials over finite fields [70]. To

describe this definition, we may start from the definition of GRS codes as follows.

Definition 1.4 – Generalized Reed-Solomon Codes

Let a0, a1, . . . , an−1 be distinct elements in GF(q) and v0, v1, . . . , vn−1 be nonzero

elements in GF(q). Denote a = (a0, a1, . . . , an−1) and v = (v0, v1, . . . , vn−1). A

GRS code is defined as the set of n-tuples

GRSa,v(n, k) = {(v0f(a0), v1f(a1), . . . , vn−1f(an−1))|f(x) ∈ GF(q)[x]k},

12

1.2 Current Research and Challenges

where GF(q)[x]k ⊂ GF(q)[x] and deg(f(x)) < k.

An (n, k) RS code over GF(q) is defined as a special case of GRS codes with v

being the all one vector and a being consecutive powers of α, where α ∈ GF(q)

and ord(α) = n. This definition implies an encoding method for RS codes. We

refer to this encoding method as the evaluation map. This encoding method can

also be interpreted as the Galois Field Fourier Transform (GFFT) [7].

Definition 1.5 – Galois Field Fourier Transform

Let α ∈ GF(q) and ord(α) = n|(q − 1). The GFFT of an n-tuple v =

(v0, v1, . . . , vn) ∈ GF(q)n is V = (V0, V1, . . . , Vn−1), where

Vj =
n−1∑
i=0

viα
ij, for 0 ≤ j ≤ n− 1.

When q = 2p for p ∈ Z+, the inverse GFFT of n-tuple V = (V0, V1, . . . , Vn−1) ∈
GF(q)n is v = (v0, v1, . . . , vn), where

vi =
n−1∑
j=0

Vjα
−ij, for 0 ≤ i ≤ n− 1.

Associate the polynomial v(x) =
∑n−1

i=0 vix
i to the vector v. An important

property of the GFFT is often used in this thesis is as follows.

Theorem 1.1 [91, Theorem 8-13]

1. αj is a zero of the polynomial v(x) if and only if the jth component of V is

zero.

2. α−i is a zero of the polynomial V (x) if and only if the ith component of v

is zero.

The evaluation map of a message vector m = (m0,m1, . . . , mk−1) is actually the

GFFT of the n-tuple (m0,m1, . . . , mk−1, 0, . . . , 0). By part 2 of Theorem 1.1, the

resulting code polynomial has zeros 1, α, . . . , αn−k−1.

13

1.2 Current Research and Challenges

Since a RS code is cyclic, it can be encoded via its generator polynomial

g(x). Let C be an (n, k) RS code over GF(q) with zeros αb, αb + 1, . . . , αn−k+b−1,

where α ∈ GF(q), ord(α) = n. Let g(x) =
∏n−k+b−1

i=b (x − αi) = xn−k +

∑n−k−1
i=0 gix

i. A codeword c = (c0, c1, . . . , cn−1) ∈ C can be represented

in the polynomial form as c(x) =
∑n−1

i=0 cix
i. The message vector m =

(m0,m1, . . . , mk−1) can be represented by the polynomial m(x) =
∑k−1

i=0 mix
i.

Then c can be encoded as c(x) = m(x)g(x). In addition, the RS codes are also

linear block codes and can be encoded via a generator matrix G as showed in

Section 1.1. For example, the generator polynomial encoding method is equivalent

to encoding the same message vector m by the following k× n generator matrix.

G =

g0 g1 · · · gn−k 0 · · · 0

0 g0 · · · gn−k−1 gn−k · · · 0

...
.

...

0 · · · 0 · · · · · · · · · gn−k−1

.

There are three important algebraic hard decision decoding algorithms for RS

codes. They are the Perteson-Gorenstein-Zierler Algorithm (PGZA), BMA and

EA. Given a received word, these algorithms either output a single codeword as

the decoding result or output none (decoder failure). These decoding algorithms

process the received vector r in three steps.

1. Compute the syndromes for r.

2. Find the error locations.

3. Compute the error values and subtract the error values from r.

All these algorithms first compute the syndromes of the received vector r =

(r0, r1, . . . , rn−1). The syndromes for r are computed as Sj =
∑n−1

i=0 riα
ij for

b ≤ j ≤ n−k+b−1, given an (n, k) RS codes having zeros αb, αb+1, . . . , αn−k+b−1.

14

1.2 Current Research and Challenges

Secondly, these algorithms try to find the error locations in the received word.

Assume there are t errors in the received word. The coefficients σi of the error

locator polynomial σ(x) =
∑t

i=1 σix
i +1 is solved for in this step. Then the error

locations are identified as the exponents of the reciprocal of the zeros for the

error locator polynomial. These algorithms use different methods in this step.

The PGZA sets up a group of linear equations and solved these equations for the

unknown coefficients of the error locator polynomial while the BMA uses shift

register synthesis to solve for the error locator polynomial σ(x). The EA uses

a division algorithm to solve for the error locator polynomial σ(x) from the key

equation. For an (n, k) RS code with zeros α, α2, . . . , αn−k, the key equations is

σ(x)(1 + S(x)) = Ω(x) (mod xn−k+1),

where S(x) =
∑n−k

i=1 Six
i. After obtaining the error locations, the error values

can be obtained by solving linear equations as in the PGZA or by Forney’s

procedure [26] as in the BMA and EA. Although all these decoding algorithms

can correct up to bn−k
2
c errors with an (n, k) RS code, the BMA is the most

successful one in terms of complexity. Later, all these algorithms are referred to

as classical decoding algorithms for RS codes.

The algebraic list decoding algorithm of RS codes proposed by Sudan [83]

and later improved by Guruswami and Sudan [33] was a significant step in

decoding RS codes. It is referred to as the Guruswami-Sudan Algorithm

(GSA) in this thesis. This algorithm assumes that the RS code was encoded

by the evaluation map. The evaluation points are known to both encoder

and decoder as 1, α, α2, . . . , αn−1. The elements in the received vector r are

paired with the evaluation points as (1, r0), (α, r1), (α
2, r2), . . . , (α

n−1, rn−1). A

bivariate polynomial Q(x, y) is obtained by interpolating each of these n points

with certain multiplicity m. This Q(x, y) is then factorized to find factors

15

1.2 Current Research and Challenges

of the form y − f(x). All f(x) such that deg(f(x)) < k are candidates of

the transmitted message polynomial. The interpolation step was viewed as a

constraint interpolation problem and a non-trivial interpolation algorithm based

on Gröbner Bases (GB) was proposed in [61]. Later, based on the Fundamental

Iterative Algorithm (FIA) in [23], Koetter presented a simpler interpolation

algorithm with complexity O(n2m4) [55]. For the factorization step, Roth and

Ruckenstein proposed an effective recursive algorithm in [74].

The GSA generated a list of most possible candidate messages instead of

a unique candidate codeword as in classical decoding algorithms of RS codes.

If the decoding is thought to be successful once the transmitted message is in

the output list, the GSA can correct up to bn −
√

n(k − 1)c errors for an (n, k)

RS code. Since n −
√

n(k − 1) > n−k
2

, the GSA can correct more errors than

classical decoding algorithms for RS codes. Although the GSA is a list decoding

algorithm [21], it was shown that its average list size was quite close to unity

in [56]. This result is two-fold. First, it shows that the list size is unity with very

high probability and the GSA is very close to a unique decoding algorithm for

RS codes. Secondly, RS codes are highly non-perfect codes, a fact which may be

further exploited to correct more errors.

Besides the above hard decision decoding algorithms, soft decision decoding

algorithms are also studied. The generalized minimum distance algorithm in [28]

and a variant, the Chase algorithm [10], make use of the soft channel output to

assist the hard decision decoder. They can significantly improve the performance

of RS codes although they are not Maximum Likelihood (ML) decoders. Also, a

linear block code can be described by a trellis [92]. The Bahl-Cocke-Jelinik-Raviv

algorithm [4] and the Viterbi algorithm can be applied to this trellis to perform

ML decoding. The complexity of this algorithm depends on the number of

nodes in the trellis. For an (n, k) RS code, the number of nodes in the trellis

16

1.2 Current Research and Challenges

is min(2k, 2n−k). To reduce complexity, some algorithms were developed to

find the minimal trellis of a code [59]. A suboptimal trellis-based decoding

algorithm was also studied in [79]. Moreover, Vardy and Be’ery showed that

RS codes could be represented as unions of cosets of binary BCH codes and

developed a bit level soft decision decoding algorithm [89]. This algorithm is

simpler than trellis-based soft decision decoding algorithms when the RS codes

are low rate codes or long, high rate codes. Based on this code partitioning

and the trellis of the coset, an ML and a suboptimal soft decision decoding

algorithm were presented in [66], which significantly reduces decoding complexity.

In addition, based on the GSA, Koetter and Vardy proposed a soft decision

decoding algorithm (KVA) [43]. Unlike the GSA which assigns all interpolation

points with the same multiplicity, the KVA assigns different multiplicities for

the interpolation points according to the reliability of corresponding received

symbols. The KVA converts this reliability information into multiplicities by an

iterative algorithm. The application of this algorithm is discussed in [1, 31, 30, 94].

Different multiplicity assignment schemes are developed in [69, 18].

In [39] and [40], a soft decision decoding algorithm was proposed by

considering the binary image representation of a RS code over GF(2p). In this

algorithm, the parity check matrix H of this RS code is first converted into

its binary image Hb by representing each elements in H with its binary image.

Then the algorithm iterates between two steps. In the first step, the reliability

of each bit in the received vector is computed and sorted according to their

amplitudes. The submatrix in Hb corresponding to the p(n− k) most unreliable

bits is then reduced to a sparse matrix by elementary matrix operations. In the

second step, the bit reliability is updated by the sum-product algorithm. In this

iterative algorithm, the reduction of the submatrix corresponding to the p(n−k)

most unreliable bits in Hb is quite important. With the reduced parity check

17

1.2 Current Research and Challenges

matrix, the effect of the least reliable bits is suppressed when the sum-product

algorithm is successively applied because these bits only participate in a few parity

check equations. Moreover, although short cycles may appear in the parity check

matrix after matrix reduction, the performance improvement presented in [39, 40]

was still impressive. From this result, we can see that room for improving the

performance of RS codes may still exist. We may also infer that the sum-product

algorithm can achieve good performance even with short cycles in the parity

check matrix if the effect from the least reliable bits is suppressed. This iterative

algorithm was later combined with the KVA in [19]. In this method, the bit

reliability was refined after some iterations as in [39, 40]. Then the refined bit

reliability was converted to symbol reliability and used to assign multiplicities for

each interpolation point in the KVA.

Besides RS codes, some variants of RS codes are also interesting. Let C be

an (n, k) RS code with zeros 1, α, α2, . . . , αn−k−1 and n = L × N (L,N ∈ Z+).

According to [44], a received word of C could be folded as an L×N array. After the

GFFT of the columns, the syndromes of the rows in the resulting array are some

distribution of the syndromes of the original received word. If the resulting array

is transmitted column by column in a burst error channel, the error locations

found in a row can help the decoding of the successive rows since they share the

same error pattern. Hence, FRS codes are effective in correcting burst errors.

RS codes are also used as constituent codes for some compound codes.

In [75], RS codes were used to construct Nearly-MDS (NMDS) linear expander

codes which were also linear time encodable and decodable. These codes are

optimal in the sense that they asymptotically achieve the best tradeoff between

code rate and minimum distance. Such an (n, k) code has relative minimum

distance n−k−εn
n

= 1 − R − ε and can correct up to a fraction of 1−R−ε
2

errors

with a sufficiently small ε by the modified GMD algorithm proposed in [81]. The

18

1.3 Motivation, Objectives and Contributions

construction of NMDS expander codes is based on the expander graphs [73]. The

idea of graph codes was first proposed by Tanner in [84]. In [2], Alon et al.

made use of the explicit construction of Ramanujan expander graph presented

in [48, 54] to construct polynomial-time encodable asymptotically good codes

for which both rate and minimum distance were bounded away from zero. In

[80, 82], Sipser and Spielman constructed asymptotically good codes which could

be both encoded and decoded in linear-time from expander graphs. The fraction

of errors that could be corrected by expander codes was later improved in [95]

and [81]. Surprisingly, it was shown in [5] that expander codes can achieve the

capacity of the BSC under iterative decoding and decoding complexity grows

linearly with code length. Moreover, NMDS and linear-time encodable/decodable

linear expander codes over large alphabets were constructed in [32]. Using RS

codes as the constituent codes, [75] and [3] studied codes with the same properties

but over smaller alphabets. The codes from such constructions have long code

length and good tradeoff between the code rate and the minimum distance.

1.3 Motivation, Objectives and Contributions

In [44], only (n, k) RS codes with zeros 1, α, α2, . . . , αn−k−1 and n a composite

number were used to construct FRS codes. In certain applications, RS codes may

have other n−k consecutive powers of α as zeros than 1, α, α2, . . . , αn−k−1. It will

be interesting to see if these RS codes can also be used to construct FRS codes

and find the relation between the syndrome sequence of the original received

vector and the syndrome sequence of the rows in the resulting array. It is also

interesting to find out what are the row codes in the resulting array. In this

thesis, we will show that all RS codes with codelength a composite number can

be used to construct FRS codes. The T-transformation used in [44] is identified

19

1.3 Motivation, Objectives and Contributions

as the GFFT of the columns in the folded array. The rows in the resulting array

are GRS codes. A RS code with codelength a composite number is shortened

and folded as an array. After the GFFT of the columns in the folded array, a

Transformed Folded Shortened RS (TFSRS) code is obtained. Columns and rows

of this code are GRS codes. When this array is transmitted column by column in

a burst error channel, the rows may have the same error locations and most of the

erroneous columns can be detected by the column codes. In addition, the error

locations found by both column codes and row codes can help in the decoding

of the successive rows. Such a cooperative decoding scheme is presented in this

thesis with each row decoded by the GSA. The performance of this scheme is also

analyzed.

If an RS code is folded and transformed at the transmitter side, the resulting

array may be viewed as an Interleaved RS (IRS) codes [8]. Hence, each row in the

code array can actually be encoded independently and each row in the received

array can also be decoded independently by the algebraic list decoders in [33, 43].

However, the messages are assumed to be encoded by the evaluation map by such

a decoder. If the row codes are not encoded by the evaluation map, the output

list of this decoder is a coset of the candidate messages. Each of the messages in

the output list of this decoder may be reencoded by the evaluation map. Then

the candidate messages may be obtained from these codewords. This method

is somewhat clumsy and requires much extra computation. In this thesis, we

develop a algorithm to solve this problem. The generator matrix of an RS code

is first extended and the extended generator matrix [Ḡ] is decomposed as

[Ḡ] = F−1 ×D× F,

where F is the GFFT matrix and D is a diagonal matrix as defined in Chapter 3.

The codeword obtained by the evaluation map can also be expressed as the GFFT

20

1.3 Motivation, Objectives and Contributions

of the extended message which will be defined in Chapter 3. Based on the above

two results, an algorithm to retrieve the candidate messages from the output list

of the GSA is derived. This algorithm is non-trivial and requires less computation

than the previous one.

As in the previous generalization of the construction of FRS codes, some GRS

codes can also be used to construct a folded code. After the GFFT is applied to

the columns of the array, the rows of the resulting array are shown to be GRS

codes. The zeros of these GRS codes are related to the zeros of the original

GRS code. The syndrome sequences of these GRS codes are some distribution

of the syndrome sequence of the original GRS code. These GRS codes may not

have consecutive syndrome sequences. In [23, 22], the nonconsecutive syndrome

sequences of general cyclic codes were exploited by the FIA. The nonconsecutive

syndrome sequences are arranged as an array and the error locator polynomial

characterizing the minimal initial set of linearly dependent columns is found by

the FIA. The idea behind this method is to find those minimal initial set of linearly

dependent columns before the unknown elements in the syndrome sequences are

touched. Hence the process does not involve the unknown elements. All the

unknown elements are at the tail end of the syndrome sequences in [23, 22]

whereas the unknown elements in our case may be in the middle of the syndrome

sequences. Careful study of the FIA shows that its solution is independent of

the order of how the syndrome sequences are arranged in the array. Hence,

the order of the syndrome sequences can be adjusted such that processing the

unknown elements are deferred as much as possible. If the minimal initial set

of linearly dependent columns can be found before the unknown elements are

processed, the problem is solved. Otherwise, a set of nonlinear equations involving

some unknown elements are derived and solved. In Chapter 4, this technique is

presented and applied to decode some GRS codes as well as the folded codes

21

1.3 Motivation, Objectives and Contributions

derived from GRS codes.

As the results of the GSA shows, RS codes are highly non-perfect codes.

Given a Hamming sphere with radius greater than half of the minimum distance,

the average number of valid codewords in this sphere is still small. It is interesting

to increase the error-correction capability of RS codes further by making use of

this property. Also, all the row codes in a FRS code array share the same error

pattern when the code array is transmitted column by column in burst error

channels. The length of these row codes is small compared with the length of the

original RS codes. Based on these, a search-based list decoding algorithm for RS

codes is presented in this thesis. The number of errors can be corrected in the list

decoding sense is up to n− k− 1 for an (n, k) RS codes. The syndrome sequence

of a received vector are used to search along a tree structure for all the possible

error locator polynomials. The tree structure is built up in advance. A path

from the root node to a leaf node corresponds to an error locator polynomial.

Some complexity reduction strategies are proposed to reduce the set of nodes to

search. Decoding RS codes with shortening and puncturing are also studied. The

performance, the average complexity and the average list size of this algorithm in

an AWGN channel are analyzed. This algorithm can be applied to decode FRS

codes transmitted column by column in a burst error channel.

In the classical decoding algorithms for RS codes, finding the error locator

polynomial is the key step. Sticking to find a unique solution for the error locator

polynomial σ(x) leads to the classical bound on the number of errors that can be

corrected. Motivated by the property that RS codes are highly non-perfect codes,

we try to develop a list-type decoding algorithm which can correct more errors

than the GSA while keeping the output list size small. Assume there are t errors in

a received vector of an (n, k) RS code over GF(q). The coefficients of a valid error

locator polynomial should satisfy the Generalized Newton’s Identities (GNI) [22].

22

1.3 Motivation, Objectives and Contributions

Given the syndrome sequence, n − k − t linear equations can be obtained from

the GNI. In addition, for each solution of σ(x), there is a polynomial h(x) =

xn−t +
∑n−t−1

j=1 hn−t−jx
j ∈ GF(q)[x]n−t such that

xdeg(σ(x))σ(x−1)h(x) = xn − 1. (1.1)

Here, h(x) is the product of n − t distinct linear factors and the set of zeros

of h(x) are disjoint with the set of the reciprocal of the zeros of σ(x). From (1.1),

n nonlinear equations with unknowns being the coefficients of σ(x) and h(x)

can be obtained. By combining the above linear equations and nonlinear

equations, σ(x) of degree larger than bn−k
2
c may be found. The solution may

not be unique and thus this algorithm is a list-type decoding algorithm. This

algorithm can be applied to decode IRS codes and improve its decoding failure

probability. This algorithm can also be applied to decode FRS codes transmitted

column by column in a burst error channel.

The contributions of this thesis are as follows.

• Generalize the construction of the FRS codes and analyze the properties of

the FRS codes.

• Construct the TFSRS codes and analyze their performance in burst error

channels.

• Develop an algorithm to obtain the transmitted message vector from

the output of the GSA when the RS code is encoded via the generator

polynomial.

• Construct and decode the FGRS codes by a multisequences synthesis

method.

23

1.4 Organization of the Thesis

• Develop a search-based list-type decoding algorithm for RS codes.

• Develop a decoding algorithm for RS codes based on Gröbner basis.

1.4 Organization of the Thesis

The remaining part of this thesis is organized as follows. In Chapter 2, we

generalize the construction of FRS codes. The TFSRS code and a list decoding

algorithm based on the GSA are also proposed in this chapter. The algorithm to

retrieve the messages from the output of the algebraic list decoder is derived

in Chapter 3 when the original RS code is not encoded by the evaluation

map. Moreover, the algorithm for the multisequences synthesis is proposed in

Chapter 4. The applications of this algorithm on decoding GRS codes and folded

codes obtained from GRS codes are also studied in this chapter. In addition,

the search-type list decoding algorithm for RS codes is presented and analyzed

in Chapter 5. Further, another list-type decoding algorithm for RS codes based

on GNI and the relation xdeg(σ(x))σ(x−1)h(x) = xn − 1 is proposed in Chapter 6.

Application of this algorithm to IRS is studied. Decoding some special codes

are also discussed in this chapter. Finally, this thesis is summarized and the

conclusion is drawn in Chapter 7. The future research on this and related topics

are also presented in this chapter.

24

Chapter 2

Generalization of FRS Codes and

Decoding of TFSRS Codes

In this chapter, we show that FRS codes can be constructed from primitive RS

codes with zeros {αb, αb+1, ..., αd−2+b}, where 0 ≤ b ≤ q − 2, and thus generalize

the results of [44] where only the case b = 0 was considered. Key properties

of FRS codes are also derived. We also introduce TFSRS codes and a list

decoding algorithm based on the recursive use of the GSA. The estimations for the

probability of successful decoding, decoder error and decoder failure are derived

in this chapter.

2.1 Introduction

Interleavers are often used to protect data from burst errors by randomizing the

burst errors over several codewords. Such a scheme, however, introduces delay

because of buffering these codewords. On the other hand, given n = L × N ,

d = n−k and α being primitive in GF(q), an L×N FRS code can be constructed

from an (n, k) RS code over GF(q) and with zeros 1, α, α2, . . . , αd−2. The rows

of the resulting FRS code are modified RS codes [44]. If an FRS code array is

25

2.2 FRS Codes

transmitted column by column in burst error channels, data can be protected

without interleavers and buffering delay. We characterize the burst error channel

model used in this chapter by an L × N array E where a column may be a

burst error with certain probability. In this model, a burst error can be any

nonzero vector drawn from GF(q)L\{0} according to a uniform distribution on

it. We decode FRS codes by recursive application of the GSA instead of the

classical decoding approach as in [44]. This is because the GSA can correct

up to dN − s −
√

(N − s)K − 1e errors compared to bN−K−s−1
2

c errors under

classical decoding if s erasure positions are known for a GRS code of length N

and dimension K + 1.

2.2 FRS Codes

Let C be a primitive (n, k + 1) RS code over GF(q) having zeros

{αb, αb+1, αb+2, . . . , α(b+d−2)}, where α is as previously defined, d = n − k, and

n = L×N such that N,L > 1. Then a codeword c = (c0, c1, · · · , cn−1) of C can

be folded into the following L×N array.

C =

c0 c1 · · · cN−1

cN cN+1 · · · c2N−1

...
...

. . .
...

cn−2N+1 cn−2N+2 · · · cn−N−1

cn−N cn−N+1 · · · cn−1

. (2.1)

We recall that if the order of β ∈ GF(q) is ord(β) = L, the GFFT of

(v0, v1, . . . , vL−1) ∈ GF(q)n is the vector V = (V0, V1, . . . , VL−1) where

Vj =
∑L−1

i=0
viβ

ij, (2.2)

26

2.2 FRS Codes

for 0 ≤ j ≤ L − 1 [7]. Since ord(αN) = L, we have β = αN . We then transform

the columns of (2.1) by the GFFT and obtain the array B in (2.3).

B =

b0 b1 · · · bN−1

bN bN+1 · · · b2N−1

...
...

. . .
...

bn−2N+1 bn−2N+2 · · · bn−N−1

bn−N bn−N+1 · · · bn−1

. (2.3)

Because the GFFT is linear [7], the vector (b0, b1, . . . , bn−1) is also a codeword of

a linear code of dimension k + 1.

Lemma 2.1 Let c(x) =
∑n−1

i=0 cix
i ∈ GF(q)[x] and deg(c(x)) ≤ n − 1. For

0 ≤ b ≤ q − 2 and J ≤ q−1
n

, if c(x) has distinct zeros αb, αb+J , . . . , αb+(d−2)J ,

then c = (c0, c1, . . . , cn−1) is a codeword of GRSa,v(n, n − d + 1), where a =

(1, αJ , . . . , α(n−1)J), v = (1, αb, . . . , α(n−1)b).

Proof: A parity check matrix for c can be

1 αb · · · α(n−1)b

1 αb+J · · · α(n−1)(b+J)

...
...

. . .
...

1 αb+(d−2)J · · · α(n−1)(b+(d−2)J)

=

1 1 · · · 1

1 αJ · · · α(n−1)J

...
...

. . .
...

1 α(d−2)J · · · α(n−1)(d−2)J

1 0 · · · 0

0 αb · · · 0

...
...

. . .
...

0 0 · · · α(n−1)b

. (2.4)

Let a = {1, αJ , . . . , α(n−1)J} and v = {1, αb, · · · , α(n−1)b}. Since nJ ≤ q − 1, the

components of a are all distinct elements in GF(q). It is obvious that elements in v

are all nonzero. Thus, according to [53], c is a codeword of GRSa,v(n, n− d + 1).

27

2.2 FRS Codes

With Lemma 2.1, we obtain the following Theorem 2.2.

Theorem 2.2 The rth row of the array in (2.3) is a codeword of GRSa,v(N,Kr+

1), where a = (1, αL, . . . , α(N−1)L), v = {1, αr+d b−r
L
eL, . . . , α(N−1)(r+d b−r

L
eL)} and

Kr = N − (bd + b− 2− r

L
c − db− r

L
e+ 1)− 1

for 0 ≤ r ≤ L− 1.

Proof: First, we proof the polynomial corresponding to the vector on the

rth row of (2.3) has zeros αr+sL, where

db− r

L
e ≤ s ≤ bb + d− 2− r

L
c.

From (2.1) and (2.2), the element at position (r, j) in (2.3) is

brN+j =
L−1∑

h=0

chN+jβ
hr. (2.5)

Then the polynomial b(r)(y) corresponding to the vector on the rth row of B

in (2.3) is

b(r)(y) =
N−1∑
j=0

brN+jy
j =

N−1∑
j=0

L−1∑

h=0

chN+jβ
hryj. (2.6)

On the other hand, the corresponding polynomial for a a codeword c ∈ C is

c(x) =
n−1∑
i=0

cix
i =

N−1∑

k=0

L−1∑

h=0

chN+kx
hN+k. (2.7)

The polynomial in (2.7) has zeros αb, αb+1, αb+2, . . . , α(b+d−2) as given at the

beginning of this section. Supposing s ∈ Z+ and x = αr+sL are zeros of the

polynomial in (2.7), where

b ≤ r + sL ≤ b + d− 2. (2.8)

28

2.2 FRS Codes

Since (αr+sL)hN = (αr)hN(αLN)hs = (αr)hN ,

c(αr+sL) =
N−1∑
j=0

L−1∑

h=0

chN+j(α
r+sL)hN+j

=
N−1∑
j=0

L−1∑

h=0

chN+j(α
r+sL)hN(αr+sL)j

=
N−1∑
j=0

L−1∑

h=0

chN+j(α
r)hN(αr+sL)j

=
N−1∑
j=0

L−1∑

h=0

chN+jβ
hr(αr+sL)j

= b(r)(αr+sL)

= 0. (2.9)

So if x = αr+sL is a zero of the polynomial in (2.7), y = αr+sL is also zero of the

polynomial in (2.6).

In addition, from (2.8), we have

⌈
b− r

L

⌉
≤ s ≤

⌊
d + b− 2− r

L

⌋
. (2.10)

Since

(
r +

⌊
d + b− 2− r

L

⌋
L

)
−

(
r +

⌈
b− r

L

⌉
L

)

=

⌊
d + b− 2− r

L

⌋
L−

⌈
b− r

L

⌉
L

≤
(

d + b− 2− r

L
− b− r

L

)
L

= d− 2 = d− 1 = n− k − 2 < n

and ord(α) = n, αr+d b−r
L
eL, αr+(d b−r

L
e+1)L, . . . , αr+b d−b+2−r

L
cL are different elements

in GF(q). Thus, the polynomial corresponding to the vector on the rth row

of (2.3) has bd+b−2−r
L

c − d b−r
L
e+ 1 distinct zeros.

Next, let b = r + d b−r
L
eL and J = L. From lemma 2.1, we have the theorem.

29

2.2 FRS Codes

Note that d b−r
L
e ≥ 0 since 0 ≤ r ≤ L − 1 and b ≥ 0. We also have the following

corollaries to Theorem 2.2.

Corollary 2.3 The rth row code of the array in (2.3) is MDS and has zeros, if

any, {αr+d b−r
L
eL, αr+(d b−r

L
e+1)L, . . . , αr+b d+b−2−r

L
cL}.

Proof: Since the rth row code of the array in (2.3) is a GRS code and GRS

codes are MDS codes [53], the rth row code is MDS. The zeros is as shown in the

proof of Theorem 2.2.

If we denote the minimum distance of the rth row code as dr, b̄ = b (mod L),

w̄ = d + b− 1 (mod L) and z = d−1−(L−b̄)−w̄
L

, we have the following corollary.

Corollary 2.4 The minimum distance for the rth row code of the array in (2.3)

is :

dr =

z + 1, b̄ ≥ w̄ − 1, w̄ − 1 < r < b̄;

z + 2, b̄ ≥ w̄ − 1, r ≤ w̄ − 1 or r ≥ b̄;

z + 3, b̄ < w̄ − 1, b̄ ≤ r ≤ w̄ − 1;

z + 2, b̄ < w̄ − 1, r < b̄ or r > w̄ − 1.

(2.11)

Proof: According to Corollary 1.3, the rth row code is MDS. Its minimum

distance then is thus one more than the number of zeros of this row codes.

Moreover, from the result of Theorem 2.2, the zeros of the original RS code

C are distributed among the row codes of the array in (2.3) as in Fig. 2.1. Here,

b̄ is the index of the row having the zero αb and w̄ − 1 is the index of the row

having the zero αd+b−2. Two cases as Fig. 2.2 shown need be considered. First

consider the case when b̄ ≥ w̄−1 as subfigure a. in Fig. 2.2. When w̄−1 < r < b̄,

the number of the zeros of the rth row code is d−2−(L−b̄)−w̄
L

which is z as defined.1

The minimum distance of this row code is z + 1. When r ≤ w̄ − 1 or r ≥ b̄,

the number of the zeros of the rth row codes is d−2−(L−b̄)−w̄
L

+ 1 = z + 1 and its

1Note that the index of rows in (2.3) starts from 0.

30

2.2 FRS Codes

Figure 2.1: Zeros of the original RS code are distributed among row codes

of FRS code array.

minimum distance is z+2. Next, consider the case when b̄ < w̄−1 as subfigure b.

in Fig. 2.2. When b̄ ≤ r ≤ w̄ − 1, the number of the zeros of the rth row code is

d−2−(L−b̄)−w̄
L

+ 2 = z + 2 and its minimum distance is z + 3. Moreover, if r < b̄ or

r > w̄ − 1, the number of the zeros of this row code is d−2−(L−b̄)−w̄
L

+ 1 = z + 1.

It has minimum distance z + 2. Thus, we have the corollary.

From this corollary, if we tune the parameters b and d properly, we can make

any fraction of the L row codes with one more zero than the others.

Further, the rth row code is MDS. Its weight enumerator A(r)(u) can be

found in [53]. The array in (2.3) can be viewed as a codeword of a linear block

code with dimension k + 1 and its weight enumerator A(u) can be obtained as

the corollary follows.

Corollary 2.5 Let the rth row code in (2.3) have length N and dimension Kr +1

for 0 ≤ r ≤ L − 1. The array in (2.3) is a linear code with minimum distance

N −maxr Kr. The weight enumerator of this code is

A(u) =
∑

(w0,w1,...,wL−1)

(
L−1∏
i=0

A(i)(wi)), (2.12)

where (w0, w1, . . . , wL−1) is any n-tuple with nonnegative integer elements

satisfying
∑L−1

i=0 wi = u.

31

2.2 FRS Codes

Figure 2.2: Two cases for zeros of FRS code array.

Proof: Denote the transformation which transform the array C in (2.1)

to the array B in (2.3) as Θ. Since the GFFT is a linear transformation [7]

and the transformation Θ consists of the GFFT of N columns, Θ is also linear

transformation from GF(q)L×N to GF(q)L×N , i.e. given X1,X2 ∈ GF(q)L×N ,

γΘ(X1) + δΘ(X2) = Θ(γX1 + δX2). (2.13)

In addition, since the GFFT is invertible, Θ is invertible and its inverse is denoted

by Θ−1. Denote the set of C as CF . Since CF is obtained by folding codewords

c ∈ C, CF is a linear block code with dimension k + 1. Also denote the set of B

as BF . Then BF = {Θ(C)|C ∈ CF}. It is obvious that 0 ∈ CF is transformed to

0 ∈ BF by Θ. Moreover, for any two L × N arrays Y1,Y2 ∈ BF and any two

32

2.2 FRS Codes

scalars γ, δ ∈ GF(q), by (2.13),

γY1 + δY2 = γΘ(Θ−1(Y1)) + δΘ(Θ−1(Y2))

= Θ(γΘ−1(X1) + δΘ−1(Y2)) (2.14)

Since Θ−1(Y1), Θ
−1(Y2) ∈ CF and CF is linear, γΘ−1(X1) + δΘ−1(Y2) ∈ CF . By

definition of BF , Θ(γΘ−1(X1) + δΘ−1(Y2)) ∈ BF . Hence, BF is also a linear

subspace of GF(q)L×N . Moreover, the GFFT is one-to-one mapping and so

does Θ. Hence, by definition of BF , |BF | = |CF | = qk+1. So BF is a linear

block code with dimension k + 1.

The minimum distance of a linear code is the weight of the nonzero codeword

with minimum weight. Since the rth row of B is a codeword of a GRS code with

parameter (N,Kr+1), its minimum distance is N−Kr. Let j̄ = argi min(N −Ki).

The codeword in BF with minimum weight can be the codeword with all the

rows being zero vector except the j̄th row being the minimum weight codeword

of j̄th row code. This is shown as Table 2.1. The weight of this codeword is

Table 2.1: A codeword of BF with minimum weight.

0 0 · · · 0 0 0 0 0 0 0 0 0 0 0
...

A minimum weight codeword of the j̄th row code
...

0 0 · · · 0 0 0 0 0 0 0 0 0 0 0

N −max0≤r≤L−1 Kr.

For any u ∈ Z+,

A(u) =
u∑

w0=0

u−w0∑
w1=0

· · ·
u−PL−3

j=0 wj∑
wL−2=0

((
L−2∏
i=0

A(i)(wi))A
(L−1)(u−

L−2∑
j=0

wj)), (2.15)

33

2.2 FRS Codes

which is (2.12). Here, A(i) is the weight enumerator of an (N,Ki + 1) MDS code

as given in [53].

Example 2.1 FRS codes and their properties. Let C be a primitive (15, 9) RS

code over GF(16) with b = 2. Here, L = 3, N = 5 and d = 7. Let α be a

primitive element in GF(16), which is zero of α4 + α + 1. Assume a message

vector is m = (1, α, α4, α2, α8, α5, α10, α3, 0). The generator polynomial is g(x) =

x6 + α11x5 + αx4 + α7x3 + α10x2 + α14x + α12 and the corresponding codeword

c = (α12, α2, α2, α2, α9, α2, α, 0, α14, α, α11, α14, α11, α3, 0). After folding c, we get

the array

C =

α12 α2 α2 α2 α9

α2 α 0 α14 α

α11 α14 α11 α3 0

 . (2.16)

Transforming array (2.16) column by column. we get the FRS codeword

B =

α8 α12 α9 α8 α3

α3 α α3 α9 α5

α α14 α5 α7 α2

 . (2.17)

Here, d b−r
L
e = d2−r

3
e and bd−2+b−r

L
c = b7−r

3
c. When r = 0, r + d2−r

3
eL = 3

and r + b7−r
3
cL = 6. Zeros for this row codes are {α3, α6}. When r = 1,

r + d2−r
3
eL = 4 and r + b7−r

3
cL = 7. Zeros for this row codes are {α4, α7}.

When r = 2, r + d2−r
3
eL = 2 and r + b7−r

3
cL = 5. Zeros for this row code are

{α2, α5}.
In addition, b̄ = b (mod L) = 2 (mod 3) = 2, w̄ = d + b − 1 (mod L) =

7 + 2− 1 (mod 3) = 2, z = d−1−(L−b̄)−w̄
L

= 1. b̄ > w̄ − 1. According to Corollary

2.4, for r = 0, 1, 2, dr = z + 2 = 3.

Further, the folded array corresponding to the message vector m′ =

(α12, α12, α5, α10, α11, α9, 1, 0, 0) is

C′ =

α9 α2 1 0 0

α9 α2 1 0 0

α9 α2 1 0 0

 . (2.18)

34

2.3 TFSRS Codes

After transformation of columns of (2.18), we get

B′ =

α9 α2 1 0 0

0 0 0 0 0

0 0 0 0 0

 , (2.19)

which is an FRS codeword with minimum weight.

2.3 TFSRS Codes

Let (s0, s1, . . . , sn−N−1) be a codeword of an (n − N, k + 1 − N) shortened RS

code over GF(q). We append N zero symbols to the end of this shortened RS

code and fold it into the L×N array S:

S =

s0 s1 · · · sN−1

sN sN+1 · · · s2N−1

...
...

. . .
...

sn−2N+1 sn−2N+2 · · · sn−N−1

0 0 · · · 0

. (2.20)

Applying the GFFT to each column of S yields the

U =

u0 u1 · · · uN−1

uN uN+1 · · · u2N−1

...
...

. . .
...

un−2N+1 un−2N+2 · · · un−N−1

un−N un−N+1 · · · un−1

, (2.21)

where

ujN+l =
L−1∑
i=0

siN+lβ
ij (2.22)

for β ∈ GF(q), ord(β) = L. The array U is a codeword of a TFSRS code. An

important property is given in the theorem follows.

35

2.3 TFSRS Codes

Theorem 2.6 The columns of U are codewords of a GRS code with zero β.

Proof: Since each column of (2.21) is the GFFT of the corresponding

column in (2.20) and the last element in each row of (2.20) is the zero element,

according to property of the GFFT [91, Theorem 8-13, part 2], the polynomials

corresponding to columns in (2.21) all have zero β1−L = β. From Lemma 2.1,

every column is a GRS code with one zero.

Thus, the burst errors can be detected by the column codes in a TFSRS code, if

the array in (2.21) is transmitted column by column.

When a column of U is transmitted, one of qL − 1 burst errors vector may

occur. This error vector is drawn from a uniform distribution of qL − 1 nonzero

vectors of length L over GF(q) and qL−1 − 1 of them are valid column code

codewords. So a burst error vector can be detected with probability

qL − qL−1

qL − 1
≈ 1− 1

q
.

For large q, this detection probability is very close to 1 and does not depend on

L.

Example 2.2 Consider folding a shortened (15− 5, 9− 5) RS code over GF(16)

into a 3 × 5 array. The generator polynomial for the primitive (15, 9) RS code

with b = 2 over GF(16) is

g(x) = x6 + α11x5 + αx4 + α7x3 + α10x2 + α14x + α12.

In array form, the folded codeword corresponding to the message polynomial x3 +

αx2 + α4x + α2 is

S =

α14 0 α9 α13 1

α14 α9 α11 α6 1

0 0 0 0 0

 . (2.23)

36

2.4 List Decoding TFSRS Codes in a Burst Error Channel

After the GFFT of columns, we get

U =

0 α9 α2 1 0

α9 α14 α3 α4 α10

α4 α4 α5 α12 α5

 . (2.24)

It can be verified that the first, second and third row codes have zeros {α3, α6},
{α4, α7} and {α2, α5}, respectively, while the columns have a single zero at β = α5.

2.4 List Decoding TFSRS Codes in a Burst

Error Channel

Assume that a code array U of a TSFRS code is transmitted column by column

in a burst error channel. The corresponding error array is

E =

e0 e1 · · · eN−1

eN eN+1 · · · e2N−1

...
...

. . .
...

en−N en−N+1 · · · en−1

. (2.25)

The nonzero columns of E are the burst errors occurring during the transmission.

They are uniformly distributed on GF(q)L\{0}. Therefore, a burst error may

contain zeros in this burst error model. We denote the probability that a given

column of E is nonzero as Pb.

From the channel model assumed in this chapter and the product-like code

structure of the TFSRS codes, we propose a decoding algorithm for these codes.

There are two main steps in this algorithm. In the first step, the column codes

are used to detect possible burst error locations. In the second step, the rows in

the received array are decoded by the GSA with erasure locations being the union

of the error locations detected in the first step and the error locations found in

the rows that have already been decoded.

37

2.4 List Decoding TFSRS Codes in a Burst Error Channel

Algorithm 2.1 –List decoding of TFSRS codes.

Input: received array given by R = U + E.

Output: an estimate Ŝ of S.

Step 0: Initialize Ê, the estimate of E, as an L×N all-zero array.

Step 1: Check all the columns of R using the column codes and mark the positions

of the burst errors. If more than min0≤i≤L−1{di}− 1 (di is the minimum distance

of the ith row code) burst errors are detected, declare decoder failure.

Step 2:

• Start with row code whose minimum distance is equal to max0≤i≤L−1{di}
with erasure locations supplied by Step 1.

• Perform error and erasure decoding for the ith row code to generate a list

of candidate codewords by the GSA. (Note: when there are di − 1 erasure

positions in the ith row, only erasure decoding is performed for that row.)

• Choose the codeword nearest to the ith row of R. Denote the corresponding

error pattern by êi.

• Update the estimation Ê of the error array by replacing the ith row with êi.

Also, update the set of erasure locations for the next row.

Step 3: After decoding all the rows, perform the inverse GFFT of columns in

R− Ê to obtain Ŝ. If it is a valid shortened RS codeword in array form. Output

this array, otherwise, declare decoder failure.

If n is large, we can shorten more than just one row to increase the minimum

distance of the column codes. In this case, a decoding strategy will involve error

detection and correction for both column and row codes.

38

2.5 Error-Correction Capability

2.5 Error-Correction Capability

The error-correction capability of our algorithm can be evaluated in terms of

the probability of decoder failure Pf , the probability of decoder error Pe and the

probability of successful decoding Ps. A decoder failure occurs, when the received

array R cannot be decoded to any codeword. A decoder error occurs, when R

is decoded to a codeword other than the one that was transmitted. Further, R

is said to be decodable, if it can be decoded to a codeword. If the probability of

receiving a decodable array is Pd, then

Pd + Pf = 1,

Ps + Pe = Pd. (2.26)

Assume that all possible codeword arrays of a TFSRS code are transmitted with

equal probability. Since TFSRS codes are linear, we only consider the case that

the all-zero codeword is transmitted. For simplicity, we assume L|(d− 1). Thus,

by Corollary 2.3, all the row codes have the same number of zeros and dimension

K + 1. Then the rows in the received array are sequentially proceed from the

first to the last in the second step of Algorithm 2.1. Hereafter, the rows of U

are enumerated from 1 to L instead of 0 to L − 1. In addition, if a burst error

vector at a column of E happens to be a codeword of the column code, that burst

error cannot be detected by the column code. Such a column of E is referred as

an undetected burst position (UBP). From the channel model defined, an UBP

occurs with probability

Pubp = Pb
qL−1 − 1

qL − 1
,

while a detected burst occurs with probability

Pdbp = Pb(1− qL−1 − 1

qL − 1
).

39

2.5 Error-Correction Capability

2.5.1 Probability Ps of Successful Decoding

The row codes in the TFSRS codes we consider are (N,K + 1) GRS codes.

From [33, Theorem 16], each row code can correct up to e errors when s erasure

positions are known, provided

e + s < N −
√

(N − s)K. (2.27)

Lemma 2.7 Let Tc = e+s. If e and s satisfy (2.27), then Tc is at its maximum,

i.e. N −K − 1, when e = 0.

Proof: Substituting s = Tc − e into (2.27), we have

Tc < N −
√

(N − Tc + e)K.

Since N ≥ Tc, solving above inequality, we have

N − Tc >
K +

√
K2 + 4eK

2

and

Tc < N − K +
√

K2 + 4eK

2
.

Hence Tc = N −K − 1, the maximum of Tc, when e = 0.

By Lemma 2.7, at most N − K − 1 burst errors can be corrected by

Algorithm 2.1, which occurs when all the N − K − 1 burst error positions are

detected in the first step. When the number of burst errors detected in the first

step of Algorithm 2.1 is less than N −K − 1, some UBP may be corrected in the

second step of Algorithm 2.1. Let ej be the number of errors corrected in jth row

of the received array R for j = 1, . . . , L. If there are sj−1 erasures for this row,

then ej more errors can be corrected for this row, where

ej ≤
⌈
N − sj−1 −

√
(N − sj−1)K − 1

⌉
. (2.28)

40

2.5 Error-Correction Capability

Thus, the UBP’s can be corrected provided the number of the UBP’s does not

exceed the RHS of (2.28) for j = 1, . . . , L. Moreover, for the Lth row, we have

the following lemma.

Lemma 2.8 If a received array R can be decoded to a TFSRS codeword, eL = 0.

Proof: Supposing a received array R can be decoded to a TFSRS codeword

Ū with error array Ē, i.e. R = Ū + Ē. If eL 6= 0, any one of these eL columns

in R can be denoted as rT = ūT + ēT , where ūT and ēT are the corresponding

columns in Ū and Ē, respectively.

Since ū is a codeword of a GRS code with zero β by Theorem 2.6, it is linear

and with minimum weight 2. Since those eL are UBP’s, r is also a valid codeword

of the GRS code. Hence ē is a nonzero codeword of the GRS code with minimum

weight 2.

But by definition, ē only has nonzero element at the Lth row and has

weight 1. (Otherwise this erroneous column has been detected before decoding

the Lth row and indicated as erasure during the decoding of the Lth row.) Hence

eL = 0.

By Lemma 2.8, only erasure decoding is needed for the Lth row of R.

We further denote the number of erasure positions detected in the first step of

Algorithm 2.1 by s0. We also associate with E the vector ε = (s0, e1, . . . , eL),

which we call the error pattern of E. Clearly, ε corresponds to a class of

correctable error arrays, if s0 ≤ N −K − 1, (2.28) holds for j = 1, . . . , L− 1, and

eL = 0.

Lemma 2.9 The decoding output of the Lth row under the GSA is a list with list

size either 1 or 0.

Proof: By Lemma 2.7, s0 ≤ N −K − 1 < N −K if decoder failure is not

declared. Supposing that there are sj−1 < N − K erasure positions for the jth

41

2.5 Error-Correction Capability

row code for 1 ≤ j ≤ L, by the GSA, we have

sj−1 + ej < N −
√

(N − sj−1)K < N −
√

(N − (N −K))K = N −K.

Since sj = sj−1 + ej < N −K, with the same reasoning, we have

sj+1 = sj + ej+1 < N −K. (2.29)

Hence, we have

sL−1 = sL−2 + eL−1 < N −K

and

sL = sL−1 + eL < N −K.

By Lemma 2.8, we have eL = 0. Thus, the number of erasures in the Lth

row is sL−2 < N − K and only erasure decoding is performed for the Lth row.

The number of coordinates other than the erasures is at least K + 1 in this row.

Recall that the Lth row of U is a codeword of a GRS code with dimension K +1

and a codeword of this code can be specified by any K + 1 coordinates. So the

output list size is 1 when the N − sL−1 coordinates other than the sL−1 erasures

coincide with the corresponding coordinates of a valid codeword or 0 when they

do not.

To be correctly decoded by the GSA, the erasures and errors in a row of R

should satisfy (2.27). We consider the probability of an error pattern of R that

can be corrected.

We first consider the probability of the burst errors found when decoding a

row of R.

Lemma 2.10 Assume ej errors are corrected when decoding jth row of R by

Algorithm 2.1. Then the corresponding ej burst errors occur with probability
(

N − sj−1

ej

)
Pubpc(j),

where Pubpc(j) = (pb
(q−1)qL−j−1

qL−1
)ej .

42

2.5 Error-Correction Capability

Proof: Since there are sj−1 = s0 +
∑j−1

i=1 ei erasures for the jth row of R,

the ej errors in this row have
(

N−sj−1

ej

)
choices.

Any of the ej corresponding columns has j−1 zero symbols at the first j−1

entries in E. The coordinate where this column intersects with the jth row can

only be nonzero symbol in E. The remaining L − j entries in this column are

recorded as erasures as in Algorithm 2.1. Since this column is a UBP, these L− j

entries can be any one of qL−j−1 vectors. Such a column occurs on condition that

it is a UBP with probability

(q − 1)qL−j−1

qL−1 − 1
.

Hence, the probability of these ej columns in E occurring is

(
N − sj−1

ej

)
(
(q − 1)qL−j−1

qL−1 − 1
)ej(Pubp)

ej

=

(
N − sj−1

ej

)
(
(q − 1)qL−j−1

qL−1 − 1
)ej(pb

qL−1 − 1

qL − 1
)ej

=

(
N − sj−1

ej

)
(pb

(q − 1)qL−j−1

qL − 1
)ej

We next consider the probability of a correctable error pattern occurring.

Theorem 2.11 A correctable error array with associated error pattern ε occurs

with probability

Pep(ε) =

(
N

s0

)
(Pdbp)

s0

L−1∏
j=1

(
N − sj−1

ej

)
Pubpc(j)(1− Pb)

N−s0−
PL−1

j=1 ej . (2.30)

Proof: The s0 erroneous columns are detected by the column code. There

are
(

N
s0

)
choices for the positions of these detected burst errors and each of

them occurs with probability Pdbp. Moreover, except the s0 +
∑L

j=1 ej erroneous

columns, the remaining columns are free of errors. The probability of this columns

occurring is (1− Pb)
N−s0−

PL
j=1 ej .

43

2.5 Error-Correction Capability

By Lemma 2.8 and Lemma 2.10, we have the probability of a correctable

error pattern

Pep(ε) =

(
N

s0

)
(Pdbp)

s0

L−1∏
j=1

(
N − sj−1

ej

)
Pubpc(j)(1− Pb)

N−s0−
PL−1

j=1 ej .

A received array can only be successfully decoded when its error pattern

is within the error-correction capability and all the L correct row codewords

are chosen from their output lists respectively. Before we derive the probability

of successful decoding, we need to find the probability of choosing the correct

codeword for each row given the error pattern is within the error-correction

capability. In Algorithm 2.1, the codeword most close to the corresponding

received row vector is chosen from the output list for this row. This strategy

is better than randomly choosing a codeword from the list because the error

vector for a row in the received array are more probable to have small Hamming

weight than larger Hamming weight. We first define a notation for a sphere in

the Hamming space.

Definition 2.1 The sphere centered at a vector r and with radius w in an

N-dimensional q-ary space is denoted as SqN (r, w).

Theorem 2.12 Given a correctable error array with associated error pattern ε,

the probability of successful decoding can be tightly estimated by

Pcc(ε) =
L−1∏
j=1

(1− L(N − sj−1, ej)), (2.31)

where, according to [13, 56],

L(N,w) = L(w, w − 1) =
D(w, w − 1)(

N
w

)
(q − 1)w

, (2.32)

D(w, w − 1) =

(
n

w

) 2w−d−1∑
j=0

(−1)jNj,

44

2.5 Error-Correction Capability

VN(w − 1) =
w−1∑
i=0

(
N

i

)
(q − 1)i,

when 0 ≤ j < w − d,

Nj =

(
w

j

)[
qw−d+1−jVn(w − 1)−

w−1∑
i=0

(
w − j

i

)
(q − 1)i

]
,

when w − d + 1 ≤ j ≤ 2w − d− 1,

Nj =

(
w

j

)[w−1∑

u=d−w+j

(
N − w + j

u

) u−d+w−j∑
i=0

(−1)i

(
u

i

)
(qu−d+w−j−i+1 − 1)

×
w−1∑
s=u

(
w − j

s− u

)
(q − 1)s−u

]
.

Proof: Since each row code is linear, it is sufficient to consider the all-zero

codeword is transmitted. In Fig. 2.3, a received vector r with weight w will be

successfully decoded if there are no false codewords in SqN (r, w− 1). Since r has

Hamming weight w, the true codeword, all-zero codeword, is the one most close

to r in SqN (r, w) and chosen as the decoding output for this row code according

to Algorithm 2.1.

texttext r

te
xt

te
xt

te
xt

te
xt

Received vector
with weight w

w

t

Codeword a

Codeword b

Zero codeword

Figure 2.3: Error pattern with Hamming weight w decoded to all-zero

codeword (t is the error-correction capability).

Firstly, we consider the probability of some false codewords being in

SqN (r, w− 1). According to [56], for an MDS code with length N and dimension

45

2.5 Error-Correction Capability

K +1, the average number of false codewords in SqN (r, t), where r has Hamming

weight u, is

L(u, t) =
D(u, t)(

N
u

)
(q − 1)u

, (2.33)

where D(u, t) is the total number of possible received vectors with Hamming

weight u that can be decoded to the all-zero codeword,
(

N
u

)
(q−1)u is the number

of words with Hamming weight u.2 Thus if all the r with Hamming weight w

are received with the same probability3, the average number of false codewords

in SqN (r, w − 1) is

L(N,w) = L(w, w − 1) =
D(w, w − 1)(

N
w

)
(q − 1)w

. (2.34)

On the other hand, supposing the number of false codewords in SqN (r, w−1) is lf ,

the probability of this event is Plf and the probability of some false codewords in

SqN (r, w−1) is P (lf > 0), the average number of false codewords in SqN (r, w−1)

can be expressed as

L(N,w) = L(u, t) =
∑

lf∈Z+

lfPlf =
∑

lf∈Z+

Plf +
∑

lf≥2,lf∈Z+

(lf − 1)Plf

= P (lf > 0) +
∑

lf≥2,lf∈Z+

(lf − 1)Plf . (2.35)

It is known that the GSA almost always produce either a single candidate or

an empty list [14]. From [60], the probability of a list with multiple candidates

becomes smaller when code length N and alphabet size q increase. Moreover, the

list size of the GSA is upper bounded [33]. This is also the case for codewords

in SqN (r, w − 1) when 0 ≤ w ≤ dN − √NK − 1e. Since all the codewords in

SqN (r, w − 1), if any, are false codewords by definition, lf is also upper bounded

and the probability of lf > 1 is very small. So
∑

lf≥2,lf∈Z+(lf − 1)Plf contributes

2It is easy to see that L(u, t) ≤ 1.
3This is satisfied in our burst error channel model.

46

2.5 Error-Correction Capability

little to L(N,w) compared with P (lf > 0), especially when N and q are large.

Hence,

P (lf > 0) ≈ L(N,w) ≤ 1. (2.36)

From [13, 56], when 2w−1 < N−K = d, there are no codewords in SqN (r, w−1).

When 2w−1 ≥ N−K = d, the expression of D(w, w−1) can be obtained from [13]

with slight change in notation.

According to Algorithm 2.1, there are sj−1 erasure positions for jth row

code. Since this row code is MDS, the remaining N − sj−1 coordinates is also

a codeword of an MDS code and the above analyse is applicable with the code

length becomes N − sj−1. Assume the correctable error pattern ε occurs and the

first j − 1 rows are correctly decoded. The probability of choosing the correct

codeword for jth row code is 1− L(N − sj−1, ej).

Further, by Lemma 2.8, when the first L − 1 rows of the received array are

successfully decoded, the Lth row decoding will output a list of size 1.

Thus, we sum up on all correctable error patterns and have the probability

of successful decoding.

Theorem 2.13 Let M0 = N −K−1 and Mj = dN −sj−1−
√

(N − sj−1)K−1e
for 1 ≤ j ≤ L− 1. The successful decoding probability Ps is

Ps =

M0∑
s0=0

M1∑
e1=0

· · ·
ML−1∑

eL−1=0

Pep(ε)Pcc(ε). (2.37)

2.5.2 Probability of Decodable Words Pd

Before deriving Pd, we need the following lemma about shortening GRS codes.

Lemma 2.14 Let C be a GRS code over GF(q) of length N and dimension K+1.

If ψ = {0, 1, 2, . . . , N − 1}, ι ⊂ ψ and |ι| ≤ K + 1, the number of codewords in C

47

2.5 Error-Correction Capability

with ci = 0, where i ∈ η ⊆ ψ\ι, is

NC =

qK+1−|η|, K + 1 > |η|;
1, K + 1 ≤ |η|.

(2.38)

Proof: If we puncture an MDS code C by coordinate set ι, the resulting

code C1 is an MDS code with length N1 = N − |ι| and dimension K + 1 [91].

There are qK+1 codewords for code C1.

If K + 1 ≤ |η|, since any K + 1 coordinates can be information coordinates

for an MDS code, only all-zero codeword satisfies ci = 0, where i ∈ η ⊆ ψ\{ι}. If

K + 1 > |η|, We can shorten C1 by the coordinate set η, the resulting code is an

MDS code with dimension K + 1− |η| [91]. There are qK+1−|η| codewords in this

code and each of them corresponds to a codeword in C satisfying the requirement.

Let h denote a coordinate at the jth row of an L × N array, A. Then the

column specified by h in A is denoted by 〈h〉A, the vector obtained by deleting

the jth entry to the Lth entry of 〈h〉A is denote by 〈h〉A and the vector obtained

by deleting the 1st entry to the jth entry of 〈h〉A is denoted by 〈h〉A. We also

denote the element at (j, h) of A as Ajh. Let aj1, aj2, . . . , aj5 be disjoint sets of

coordinates of the jth row of A. Correction of Ejh, occurs in one of the following

cases.

• For h ∈ aj1, Ujh = 0,Rjh ∈ GF(q)\{0}.

• For h ∈ aj2, Ujh ∈ GF(q)\{0},Rjh ∈ GF(q)\{0,Ujh}.

• For h ∈ aj3, Ujh ∈ GF(q)\{0},Rjh = 0, 〈h〉R = 〈h〉U = 0, 〈h〉R 6= 0.

• For h ∈ aj4, Ujh ∈ GF(q)\{0},Rjh = 0, 〈h〉R = 〈h〉U 6= 0.

• For h ∈ aj5, Ujh ∈ GF(q)\{0}, 〈h〉R = 0.

48

2.5 Error-Correction Capability

A decodable received array R is associated with the correction pattern

A = A(R) = {f0, A1, A2, A3, . . . , AL−1, θ, χ}. Here, f0 is the set of detected

burst errors obtained at the end of the first step of Algorithm 2.1 and Aj =

{aj1, aj2, aj3, aj4, aj5} is the set of positions of the errors corrected in the jth row.

Thus, the set of erasure locations for the jth row is fj = f0 ∪ A1 ∪ . . . ∪ Aj−1.

Further, θ is the set of positions where the columns in R− Ê contain uncorrected

burst errors in the end of decoding. The set χ denotes the positions where

columns in R − Ê are without errors. The cardinality of the sets f0, Aj , aji, θ

and χ are respectively denoted by t0, tj, tji, tθ and tχ. By Lemma 2.8, we have

aL1, aL2, . . . , aL5 are all empty. After decoding the jth row of R, the coordinates

specified by

zj =

j−1⋃
i=1

(ai3 ∪ ai5) ∪ χj ∪ aj1

in the jth row of the array R− Ê should be zeros.

Given a correction pattern A, we want to find the number of the TFSRS

codewords Ncw(A) that R may be decoded to via A. These codewords should

satisfy

(R− Ê)ji = 0,∀i ∈ zj, 1 ≤ j ≤ L. (2.39)

And from the cases of correction as previously analyzed, none of them should

satisfy any of the conditions in Y = {cond(1), cond(2), cond(3)}, where

• cond(1): Ujh = 0 when h ∈ ∪5
i=2aji, 1 ≤ j ≤ L;

• cond(2): 〈h〉U = 0 when h ∈ ∪L
j=1aj4;

• cond(3): 〈h〉U = 0 when h ∈ θ.

We first find the number of the TFSRS codewords satisfying (2.39). To this

end, the jth row code is punctured by the coordinates specified by fj and then

49

2.5 Error-Correction Capability

shortened by the coordinates specified by zj for 1 ≤ j ≤ L. By Lemma 2.14, the

number of codewords of the jth row code after above processing is

N(j, A) =

qK+1−|zj |, K + 1 ≥ |zj|;
1, K + 1 < |zj|.

Thus, the number of the TFSRS codewords satisfying the constraints in (2.39) is

NΩ(A) =
L∏

j=1

N(j, A). (2.40)

Let Ω be a set of codewords of the TFSRS code. Some codewords in Ω

may satisfy one or more conditions in Y . Denote the number of codewords in Ω

satisfying a subset Π ⊆ Y by N(Π). By the inclusion and exclusion principle [36],

the number of codewords in Ω that satisfy none of the conditions in Y is

N(0) = |Ω|+
|Y |∑
i=1

(−1)i
∑

|Π|=i

N(Π). (2.41)

A codeword satisfying (2.39) may also satisfy one or more conditions in Y . So we

need to compute Ncw(A) by (2.41) as follows. If the jth row of R − Ê satisfies

Π ⊆ Y , some coordinates of this row besides those specified by zj are also zeros.

Let zΠ(j) denote the set of these additional zeros coordinates. We also denote

the number of codewords for the jth row code satisfying both (2.39) and Π

by δ(Π, j, A). It can be computed from Lemma 2.14 by viewing the coordinates

specified by zj and zΠ(j) as shortened ones. Thus the number of the TFSRS

codewords satisfying both (2.39) and Π is ζ(Π, A) =
∏L

j=1 δ(Π, j, A). Further, the

number of codewords of the TFSRS code satisfying (2.39) and y (1 ≤ y ≤ |Y |)
conditions of Y can be computed as Ny(A) =

∑
|Π|=y ζ(Π, A). By (2.41), we have

Ncw(A) = NΩ(A) +

|Y |∑
y=1

(−1)yNy(A). (2.42)

50

2.5 Error-Correction Capability

Lemma 2.15 Given the correction pattern A and one of the Ncw(A) codewords U

of the TFSRS code, a received array R which can be decoded to U via A occurs

with probability

PU(A) = (1− Pb)
PL−1

j=1 tj5+tχ(Pdbp)
t0(

Pubp

qL−1 − 1
)tθ

L−1∏
j=1

4∏
i=1

λji(j, tji), (2.43)

where

λj1(j, tj1) = (
(q − 1)qL−j−1

qL−1 − 1
Pb)

tj1 ,

λj2(j, tj2) = (
(q − 2)qL−j−1

qL−1 − 1
Pb)

tj2 ,

λj3(j, tj3) = (
qL−j−1 − 1

qL−1 − 1
Pb)

tj3 ,

λj4(j, tj4) = (
qL−j−1

qL−1 − 1
Pb)

tj4 .

Proof: Some received array R will be decoded to U, given A and U. If

any of these words received, columns in E corresponding to
∑L−1

j=1 aj5 + χ are all

zero columns, columns in E corresponding to
∑L−1

j=1

∑4
i=1 aji + θ are undetected

bursts and columns in E corresponding to f0 are detected bursts.

Among those undetected bursts, symbols in columns θ are determined by the

codeword U and each of such nonzero columns occurs with probability 1
qL−1−1

on

condition that it is a undetected burst. Hence these undetected bursts occur with

probability (
pubp

qL−1−1
)tθ .

Since entries in 〈h〉E for each h ∈ aj1 are nonzero symbols in GF(q), the

corresponding tj1 undetected bursts happen with probability

λj1(j, tj1) = (
(q − 1)qL−j−1

qL−1 − 1
Pb)

tj1 .

By similar reasoning, tj2 undetected bursts corresponding to aj2 occur with

probability

λj2(j, tj2) = (
(q − 2)qL−j−1

qL−1 − 1
Pb)

tj2 ,

51

2.5 Error-Correction Capability

tj3 undetected bursts corresponding to aj3 occur with probability

λj3(j, tj3) = (
qL−j−1 − 1

qL−1 − 1
Pb)

tj3 ,

and tj4 undetected bursts occur with probability

λj4(j, tj4) = (
qL−j−1

qL−1 − 1
Pb)

tj4 .

There are also
∑L−1

j=1 tj5 + tχ zero columns in E, which occur with probability

(1− Pb)
PL−1

j=1 tj5+tχ .

In addition, the t0 detected bursts occur with probability (Pdbp)
t0 .

Hence, the probability of these words received with probability

PU(A) = (1− Pb)
PL−1

j=1 tj5+tχ(Pdbp)
t0(

Pubp

qL−1 − 1
)tθ

L−1∏
j=1

4∏
i=1

λji(j, tji).

Hence, the probability of R being decoded to one of the Ncw(A) codewords

is

P (A) = Ncw(A)PU(A). (2.44)

From (2.40), (2.42), (2.43) and (2.44), we can see that for two distinct error

correction patterns A and A′, if T = T ′, then P (A) = P (A′). All the possible A’s

can be partitioned such that elements in each class have the same T and P (A)

which is denoted as P (T).

Example 2.3 We use a simple example to illustrate the computation of P (A).

Supposing q = 16, n = 15, N = 5, L = 3, K + 1 = 3, a certain A with

(t0, t1, t2, t3, tθ, tχ) = (1, 0, 1, 0, 1, 2) and (t21, t22, t23, t24, t25) = (0, 0, 0, 1, 0), |z1| =
|z2| = |z3| = 2, N(1, A) = N(2, A) = N(3, A) = 16 and N0(A) = 163. The

conditions are π1 : U2h for h ∈ a24, π2 : 〈h〉U = 0 for h ∈ a24 and π3 : 〈h〉U = 0

for h ∈ θ.

52

2.5 Error-Correction Capability

With condition π1 , we have δ(π1, 1, A) = δ(π1, 2, A) = δ(π1, 3, A) = 1, so

ζ(π1, A) = 1. We also can get ζ(π2, A) = 162, ζ(π3, A) = 162 with π2 and π3,

respectively.

With condition sets π1 + π2, we have ζ(π1 + π2, A) = 16. We also have

ζ(π2 + π3, A) = 1 with with condition sets π2 + π3 and ζ(π1 + π3, A) = 1 with

condition sets π1 + π3.

With condition set π1 + π2 + π3, we have ζ(π1 + π2 + π3, A) = 1.

So by (2.42), Ncw = 163 − (162 + 162 + 1) + (16 + 2) − 1 = 3600 and by

(2.43), Pu(A) = (1−Pb)
2Pdbp(

Pubp

qL−1−1
)(qL−3

qL−1−1
Pb) = 8.8014×10−13. Consequently,

P (A) = Ncw(A)Pu(A) = 3.1685× 10−9.

Lemma 2.16 Given T ∗ = {t1, t2, . . . , tL−1, tχ, t0}, denote the summation on all

the tji satisfied
∑5

i=0 tji = tj for 1 ≤ j ≤ L − 1 as
∑

tji|T∗
. The probability

of observing a received array R which may be decoded by correction patterns

satisfying the constraints
∑5

i=1 tji = tj imposed by T ∗, is

P ′(T) =

(
N

t0

) L−1∏
i=1

(
N −∑i−1

j=0 tj
ti

)(
N −∑L−1

j=0 tj
tχ

)

∑

tji|T ′

L−1∏
j=1

4∏
v=1

(
tj −

∑v−1
i=1 tji

tjv

)
P (T). (2.45)

Proof: For t0 columns with detected burst errors by column code, there

are
(

N
t0

)
choices for their positions. Also, there are

∏L−1
i=1

(
N−Pi−1

j=0 tj
ti

)
choices for

(t1, . . . , tL−1) and
(

N−PL−1
j=0 tj

tχ

)
choices for tχ columns without errors. Further,

given tj, there are
∏4

v=1

(
tj−

Pv−1
i=1 tji

tjv

)
choices for tjv(1 ≤ v ≤ 5). These choices are

independent of each other. We then have the lemma.

According to Algorithm 2.1, at most N−K−1 bursts errors can be corrected.

In addition, if Mi = dN −∑i−1
j=0 tj −

√
(N −∑i−1

j=0 tj)K − 1e, at most Mi errors

can be corrected in the ith row using Algorithm 2.1. Summing up on all possible

T , we have the following theorem for Pd.

53

2.6 Summary

Theorem 2.17 The probability of receiving a decodable array R is

Pd =
N−K−1∑

t0=0

M1∑
t1=0

M2∑
t2=0

...

ML−1∑
tL−1=0

N−PL−1
j=0 tj∑

tχ=0

P (T ∗). (2.46)

According to (2.26), we have Pe = Pd − Ps and Pf = 1− Pd.

2.6 Summary

We have extended the results in [44] about FRS codes. We generalize the

construction of FRS code. We also derive some important properties of FRS

codes. Based on the derivation, we can see that FRS codes can also be constructed

from any non-primitive RS code with codelength a composite number.

In addition, to detect phased bursts effectively, we propose TFSRS codes

and a decoding algorithm based on the GSA. We also derive estimates of the

probability of successful decoding, decoder error and decoder failure of our

scheme.

54

Chapter 3

Retrieving Messages from

Output List of the GSA

In this chapter, we present a transform that enables the generator-matrix-based

RS coded data to be recovered under the interpolation-based list decoder of [33,

43]. The transform matrix needs to be computed only once and the method

introduces an average computational overhead of k2 field multiplications to the

decoding process, given a code of dimension k.

3.1 Introduction

RS codes are an important code family and have been adopted in a wide range

of applications such as compact discs (CDs), digital video broadcasting and

high definition TV. Denote a cyclic subgroup of GF(q)\{0} of order n and its

generator as Φ and α respectively. Then an (n, k) RS code over GF(q) with zeros

α, α2, . . . , αn−k is defined as

{(c0, c1, . . . , cn−1)|ci = m(αi), 0 ≤ i ≤ n− 1, m(x) =
k−1∑
j=0

mjx
j ∈ GF(q)[x]}.

55

3.2 Lemmas Leading to the Main Result

This definition implies the evaluation map encoding method as in

Section 1.2. Assuming the messages are encoded via the evaluation map, the

interpolation-based list decoding algorithms in [33, 43] can correct far more errors

than the classical decoding algorithms. It is advantageous to incorporate such a

decoder in a system employing RS codes. For example, the error performance of

the system can be maintained even at much lower SNR by incorporating such a

decoder. However, RS codes are often encoded via their generator polynomial in

existing applications. When such RS codes are decoded by an interpolation-based

list decoding algorithm, its output list may not include the original message.

Thus, a method for retrieving the original message from the output list of the

interpolation-based list decoder is needed.

In this chapter, a more general solution to the above problem is presented.

Let Ga be an generator matrix of a RS code. We consider retrieving the

messages coded via Ga from the output list of an interpolation-based list decoding

algorithm. Since Ga is arbitrary, the basis transformation used in this approach is

different from the one used in [34]. Especially, if messages are originally encoded

as codewords of a narrow-sense RS code, no basis transformation is required.

In the remaining part of this chapter, we first develop three lemmas. Based

on these lemmas, we further derive the main result - Theorem 3.4 and therefore

propose an algorithm to solve the aforementioned problem in Section 3.3.

3.2 Lemmas Leading to the Main Result

Without loss of generality, let q be a fixed power of 2. Let g(x) =
∏n−k−1+b

i=b (x−
αi) =

∑n−k
i=0 gix

i be the generator polynomial of an (n, k) RS code C over GF(q).

Here b is not assume to be 1 and therefore C may not be a narrow-sense RS code.

56

3.2 Lemmas Leading to the Main Result

Also, we know that the matrix

G =

g0 g1 · · · gn−k 0 · · · 0

0 g0 · · · gn−k−1 gn−k · · · 0

...
.

...

0 0 · · · · · · · · · · · · gn−k

(3.1)

is a generator matrix of C. We next derive a transformation to convert C to a

narrow-sense RS code as in Lemma 3.1.

Lemma 3.1 If c = (c0, c1, . . . , cn−1) ∈ C, then c̄ = c × W is a codeword of a

narrow-sense (n, k) RS code C̄ over GF(q), where

W =

1 0 · · · 0

0 α(b−1) · · · 0
...

...
. . .

...

0 0 · · · α(b−1)(n−1)

.

Proof: Let c(x) and c̄(y) be the code polynomials for c and c̄, respectively.

Then we have

c(x) =
n−1∑
i=0

ciα
(b−1)i

(x

αb−1

)i

=
n−1∑
i=0

c̄iy
i = c̄(y), (3.2)

where c̄i = ciα
(b−1)i, y = x

αb−1 . Since c(x) has zeros αb, αb+1, . . . , αn−k−1+b, we

have that c̄(y) has zeros α, α2, . . . , αn−k and therefore c̄ is a narrow-sense RS

code. Given W as in the lemma, the transformation from c to c̄ in (3.2) can be

expressed as c̄ = c×W.

It is easy to see that W will be an identity matrix and above transformation

is not needed if C is a narrow-sense RS code. Let ḡ(y) =
∑n−k

i=0 ḡiy
i where

ḡi = giα
(b−1)i. From the proof of Lemma 3.1, we know that ḡ(y) has zeros

57

3.2 Lemmas Leading to the Main Result

α, α2, . . . , αn−k and is a code polynomial of C̄. Then the following matrix

Ḡ =

ḡ0 ḡ1 · · · ḡn−k 0 · · · 0

0 ḡ0 · · · ḡn−k−1 ḡn−k · · · 0

...
.

...

0 0 · · · · · · · · · · · · ḡn−k

, (3.3)

is a generator matrix for C̄, since the rows of Ḡ span a vector space over GF(q)

of dimension k. Let [U] denote the n × n matrix obtained by appending n − k

rows to a k × n matrix (n > k) U such that each additional row is a right cyclic

shift of the previous row by one position. Lemma 3.2 shows the relation between

[Ḡ] and [G].

Lemma 3.2 [G]×W = W × [Ḡ].

Proof: Denote the first row of [G] and [Ḡ] by (g0, g1, . . . , gn−1) and

(ḡ0, ḡ1, . . . , ḡn−1), respectively, where gj = ḡj = 0 for n− k +1 ≤ j ≤ n− 1. From

the definitions of [G] and [Ḡ], we have that the respective elements of [G] and

[Ḡ] at the ((s + 1), (t + 1)) are gt−s mod n and ḡt−s mod n = gt−s mod nα
(b−1)t/α(b−1)s

for 0 ≤ s, t ≤ n− 1.

Thus, [Ḡ] can be obtained by multiplying the (t + 1)th column of [G]

by α(b−1)t and dividing the (s + 1)th row of the resulting matrix by α(b−1)s

for 0 ≤ s, t ≤ n − 1. In matrix form, these operations can be expressed as

[Ḡ] = W−1 × [G]×W.

Let F and F−1 denote the n-point GFFT and inverse GFFT matrices

over GF(q), i.e.

F =

1 1 · · · 1

1 α · · · αn−1

...
...

. . .
...

1 αn−1 · · · α(n−1)(n−1)

, (3.4)

58

3.2 Lemmas Leading to the Main Result

F−1 =

1 1 · · · 1

1 α−1 · · · α−(n−1)

...
...

. . .
...

1 α−(n−1) · · · α−(n−1)(n−1)

. (3.5)

The matrix [Ḡ] can be decomposed in terms of F and F−1 as Lemma 3.3 follows.

Lemma 3.3 [Ḡ] = F−1×D×F where D is an n× n diagonal matrix such that

its main diagonal is the inverse GFFT of the first row of [Ḡ].

Proof: Denote the inverse GFFT of the first row of ¯[G] by g(1) =

(G0, G1, . . . , Gn−1). Since the (i + 1)th row of [Ḡ] is the right cyclic shift of

the first row of [Ḡ] by i positions, the inverse GFFT of the (i+1)th row of ¯[G] is

g(i + 1) = (G0, G1/α
i, G2/α

2i, . . . , Gn−1/α
(n−1)i)

by the modulation property of GFFT [7, Figure 6.1]. Thus, the inverse GFFT of

the rows of [Ḡ] in matrix form is

[Ḡ]× F−1=

G0 G1 G2 · · · Gn−1

G0 G1/α G2/α
2 · · · Gn−1/α

n−1

...
...

...
. . .

...

G0 G1/α
n−1 G2/α

2(n−1) · · · Gn−1/α
(n−1)(n−1)

=

1 1 1 · · · 1

1 α−1 α−2 · · · α−(n−1)

...
...

...
. . .

...

1 α−(n−1) α−2(n−1) · · · α−(n−1)(n−1)

G0 0 · · · 0

0 G1 · · · 0

0 0
. . . 0

0 0 · · · Gn−1

=F−1 ×

G0 0 · · · 0

0 G1 · · · 0

...
...

. . .
...

0 0 · · · Gn−1

= F−1 ×D. (3.6)

59

3.3 The Main Result

Then, the lemma is obtained by left multiplying both sides of (3.6) by F.

Since α, α2, . . . , αn−k are zeros of ḡ(x), the last n − k elements of g(1)

and the last n − k elements in the main diagonal of D are all zeroes by the

property 2 of [91, Theorem 8-13]. Moreover, by the translation property of

the GFFT [7, Figure 6.1], the inverse GFFT (G0, G1, . . . , Gk−1, 0, . . . , 0) of the

n-tuple (ḡ0, ḡ1, . . . , ḡn−k, 0, . . . , 0) is the right cyclic shift of the inverse GFFT of

the n-tuple (g0, g1, . . . , gn−k, 0, . . . , 0) by b− 1 positions since ḡi = giα
(b−1)i.

3.3 The Main Result

Let A be some k × k basis transformation matrix. Then Ga = A × G is a

generator matrix of RS code C. In this section, we propose a method to retrieve

the messages encoded via Ga from the output list of an interpolation-based list

decoding algorithm. We first define some notations for the derivation follows. Let

Ã = (A 0) be a k×n matrix where 0 is a k×(n−k) all-zero matrix. Let Ui×j

denote the i× j upper-left submatrix of U. In addition, since the evaluation map

may be viewed as the n-point GFFT over GF(q), the relation between a codeword

c̄ of C̄ and its corresponding message vector (f0, f1, . . . , fk−1) ∈ GF (q)k can be

expressed as c̄ = f × F where f = (f0, f1, . . . , fk−1, 0, . . . , 0). We then have the

following theorem.

Theorem 3.4 Let m ∈ GF(q)k be encoded as c ∈ C via the generator matrix

Ga. Then mT = (AT)−1 × (Wk×k)
−1 × (F−1

k×k)
−1 × (Dk×k)

−1 × (f1×k)
T .

Proof: From Lemmas 3.1 to 3.3,

c̄ = c×W = m×Ga ×W = m×A×G×W

= m× Ã× [G]×W = m× Ã×W × [Ḡ]

= m× Ã×W × F−1 ×D× F. (3.7)

60

3.3 The Main Result

Since c̄ = f × F, we have f = m× Ã×W × F−1 ×D. Moreover, since F, F−1,

D and W are symmetric, we have

fT = D× F−1 ×W × ÃT ×mT . (3.8)

The last n− k elements in the main diagonal line of D and in the column vector

ÃT × mT are all zeros. Thus, the last n − k equations in (3.8) are all trivial

equations 0 = 0 and we can reduce (3.8) to

(fT)k×1 = Dk×k × (F−1 ×W)k×k × (ÃT ×mT)k×1.

Since W is diagonal, (F−1×W)k×k = F−1
k×k×Wk×k. Moreover, (ÃT ×mT)k×1 =

AT ×mT and F−1
k×k, Dk×k, Wk×k and A are all invertible. Thus, we have

mT = (AT)−1 × (Wk×k)
−1 × (F−1

k×k)
−1 × (Dk×k)

−1 × (f1×k)
T .

The vectors f1×k and m can be viewed as an element in the output list and

the corresponding candidate for original message, respectively. We then present

an algorithm to retrieve the messages encoded via any generator-matrix of a RS

code from the output list of an interpolation-based list decoding algorithm.

Algorithm 3.1

Input: The zeros (αb, αb+1, . . . , αn−k−1+b) of C and its generator matrix Ga.

Output: The desired messages corresponding to the elements of the output list.

Precomputation (to be performed only once):

i. Compute g(x) =
∏n−k−1

i=0 (x − αb+i) =
∑n−k

i=0 gix
i and construct the matrix

G for which the (i + 1)th row, 0 ≤ i ≤ n− 1, is the right cyclic shift of the

n-tuple (g0, g1, . . . , gn−k, 0, . . . , 0) by i positions.

ii. Find A such that Ga = A ×G and (AT)−1. (Note: The matrix A can be

easily found using standard techniques in linear algebra since G is in row

echelon form.)

61

3.3 The Main Result

iii. Compute the inverse GFFT of the n-tuple (g0, g1, . . . , gn−k, 0, . . . , 0).

Then right cyclic shift the resultant vector by b − 1 positions to obtain

(G0, G1, . . . , Gk−1, 0, . . . , 0).

iv. Set (Dk×k)
−1 = Diag(G−1

0 , G−1
1 , . . . , G−1

k−1) and (Wk×k)
−1 =

Diag(1, α−(b−1), α−2(b−1), . . . , α−(k−1)(b−1)).

v. Compute (F−1
k×k)

−1 and B = (AT)−1 × (Wk×k)
−1 × (F−1

k×k)
−1 × (Dk×k)

−1.1

List decoding & message recovery:

1. Compute r̄ = r × W = (r0, r1α
(b−1), . . . , rn−1α

(n−1)(b−1)) where r is the

hard-decision received vector.

2. List decode r̄.

3. If the output list is not empty, then for each element f1×k in this list, return

B× (fT)k×1.

We have a few remarks for the above results. First, since the average list size

of the interpolation-based algorithms have been shown very close to unity [56, 43],

about k2 + n− 1 multiplications is introduced by Step 1) and 3) on average. For

code rate of practical interest, an average overhead of O(k2) multiplications is

incurred besides the computations incurred by Step 2). Second, if b = 1, since

W is reduced to an identity matrix, Wk×k can be omitted in the computation of

B. Finally, if the messages are encoded via the generator polynomial g(x), A is

reduced to an identity matrix.

Example 3.1 Let C be a (7, 4) RS code over GF(8) with zeros α2, α3, α4. Its

1Since F−1
k×k is symmetric, its inverse can be computed by eigenvalue decomposition.

62

3.3 The Main Result

generator matrix is

Ga =

α5 α α3 α α3 α2 α

α6 0 α4 α3 α6 1 α2

α6 α2 α2 α2 0 α5 α6

α4 α6 α3 α2 1 0 α

.

Following Algorithm 3.1, we obtain

(AT)−1 =

α2 1 α2 0

α2 α α2 α

α3 α6 α5 α5

α6 α3 α2 α

.

Applying the inverse GFFT to (g0, g1, g2, g3, 0, 0, 0) = (α2, α3, 1, 1, 0, 0, 0)

and right cyclic shifting the resulting vector by 1 position yields

(G0, G1, G2, G3, 0, 0, 0) = (α6, α5, 1, α5, 0, 0, 0) and so (D4×4)
−1 =

Diag(α, α2, 1, α2). Now, (W4×4)
−1 = Diag(1, α6, α5, α4) and

(F−1
4×4)

−1 =

α4 α3 α5 α3

α3 1 0 α

α5 0 α3 α2

α3 α α2 α6

.

Hence,

B = (AT)−1 × (Wk×k)
−1 × (F−1

k×k)
−1 × (Dk×k)

−1 =

α5 α3 α α

α4 α5 α3 1

α5 α2 1 α

α α α2 α

. (3.9)

Suppose the codeword c = (α2, 0, α, 0, 0, α3, α6) is transmitted and received as r.

If list decoding the vector r̄ = r × W is successful, f = (α, 0, α5, 1, 0, 0, 0) will

be in the output list. We can recover the original message mT = B × fT
4×1 =

(α3, α2, 0, α5)T . It can be verified that c = m×Ga.

63

3.4 Summary

3.4 Summary

We have established a relationship between codewords resulting from

generator-matrix-based encoding, and codewords obtained via the evaluation

map. We have further derived from this relationship, an algorithm for recovering

generator-matrix-based coded data under interpolation-based list decoding.

64

Chapter 4

Synthesis of Multisequences

Having Unknown Elements in

the Middle and Decoding

Applications

In this chapter, we first propose an algorithm incorporating the FIA to solve the

multisequences synthesis problem when the sequences are nonconsecutive. We

then show that GRS codes with nonconsecutive syndromes can be decoded by this

algorithm. We also show that Folded GRS (FGRS) codes can be constructed from

GRS codes but their row codes may have nonconsecutive syndrome sequences.

The proposed algorithm may be applied to decode such FGRS codes with

row codes having nonconsecutive syndromes associated. FGRS codes have the

potential to be deployed in data storage applications and wireless communication

systems where burst errors tend to occur owing to uneven media surface and deep

fading caused by multipath transmission in respective systems.

65

4.1 Introduction

4.1 Introduction

The FIA [23] can be applied to find the minimal initial set of linearly dependent

columns in an array with known elements. It can also solve the multisequences

synthesis problem when the sequences contain unknown elements in the tail end.

Example 4.1 Each rows in the array in (4.1) specifies a sequences over GF(2).

The FIA can find the minimal initial set of linearly dependent columns in (4.1).

1 1 0 1 0

1 0 1 1 0

0 1 1 0 1

1 1 0 1 1

(4.1)

It generates the polynomial σ(x) = σ2x
2 + σ1x + 1 = x2 + x + 1 which annihilates

the first three columns of (4.1). i.e.,

1×

1

1

0

1

+ σ1 ×

1

0

1

1

+ σ2 ×

0

1

1

0

= 0. (4.2)

Applying the FIA, we can find the error locator polynomials from the syndrome

sequences of BCH codes, RS codes [23] and FRS codes [44].

However, the FIA may fail when nonconsecutive sequences are involved. By

nonconsecutive sequence, we mean a sequence with unknown elements in the

middle of it. The FIA fails in this case because it may need the values for the

unknown elements to compute discrepancies and update σ(x).

Example 4.2 Consider finding the minimal initial set of linearly dependent

columns in (4.3) which is over GF(2). Each of the two sequences (1, 1, w, 1, 0)

66

4.2 Synthesizing Multisequences with Unknown Elements in the
Middle

and (1, w, 1, 1, 0) has an element with unknown value w.

1 1 w 1 0

1 w 1 1 0

0 1 1 0 1

1 1 0 1 1

(4.3)

The FIA can only process the elements at (0, 0) and (1, 0) and fails to find the

minimal initial set of linearly dependent columns in (4.3). But we can see that

the solution for Example 4.1 is a solution for this example if w = 0.

4.2 Synthesizing Multisequences with Unknown

Elements in the Middle

To solve the problem in Example 4.2, since deg(σ(x)) ≥ 1, we begin with the

assumption L := deg(σ(x)) = 1 and the sub-array of (4.3).

1 1

1 w

0 1

1 1

(4.4)

Since the 2× 2 sub-array in (4.4),

0 1

1 1

 , (4.5)

has full row and column rank, we increase L by 1 and set σ(x) := σ2x
2 +σ1x+1.

For the columns of the following sub-array,

1 1 w

1 w 1

0 1 1

1 1 0

, (4.6)

67

4.2 Synthesizing Multisequences with Unknown Elements in the
Middle

to be linearly dependent, it is required that

w + σ1w + σ2 = 0

1 + σ1w + σ2 = 0

1 + σ1 = 0

σ1 + σ2 = 0. (4.7)

An obvious solution to (4.7) involves setting σ1 = 1, σ2 = 1 and w = 0.

A careful study on the FIA shows that permutating the rows of an array

will not change the final solution for the minimal initial set of linearly dependent

columns of the array. If we order the rows of the array in (4.3) as

0 1 1 0 1

1 1 0 1 1

1 1 w 1 0

1 w 1 1 0

, (4.8)

we have σ(x) = x2+x+1 by applying the FIA to the array in (4.8). The unknown

elements are not involved in the computation of σ(x). Also, from the last two

rows of the following sub-array of the array in (4.8),

0 1 1

1 1 0

1 1 w

1 w 1

, (4.9)

we have the equations

w + 1 + 1 = 0

1 + w + 1 = 0, (4.10)

which imply w = 0. Thus, the minimal initial set of linearly dependent columns

in (4.8) consists of the first 3 columns with w = 0.

68

4.2 Synthesizing Multisequences with Unknown Elements in the
Middle

From these examples, we can derive a general procedure for the synthesis

of the multisequences with unknown elements in the middle. Denote by A, the

array whose rows are given sequences including unknown elements in the middle.

Denote the sub-array consists of the first L+1 columns of A by AL+1 with given

L. Also, denote by Order(AL+1) a procedure which permutes the rows in AL+1

such that all the rows containing unknown elements are bottom-most rows in

the resulting array, denoted by BL+1. We further denote the largest sub-array of

BL+1 by UL+1 which has L + 1 columns and no unknown elements. It is possible

that UL+1 does not exist.

Assume that UL+1 exists for certain L. To make use of the rows in

AL+1 which do not contain unknown elements, we process the rows of AL+1

by Order(AL+1) and obtain BL+1. From BL+1, we have UL+1. The FIA can

be applied to UL+1 and we denote such a operation by FIA(UL+1). If the

FIA fails to generate the σ(x) from UL+1, then UL+1 must have full column

rank. We therefore increase L by one and the above steps are repeated.

Otherwise, if a particular σ(x) with degree L is generated, by the FIA, a group

of equations Ψ similar to (4.10), involving the values of the unknown elements

in BL+1, are derived. If deg(σ(x)) < L, we ignore the σ(x) generated and set

σ(x) :=
∑L

i=1 σix
i + 1 with σL 6= 0. We then derive a group of equations Ψ

involving the unknown elements in BL+1 and the σi’s where 1 ≤ i ≤ L.

If UL+1 does not exist, we also set σ(x) :=
∑L

i=1 σix
i + 1 with σL 6= 0 and

derive Ψ involving the unknown elements in BL+1 and the σi’s.
1

If a solution to Ψ exists, then σ(x) specifies the minimal initial set of linearly

dependent columns of A. If no solution exists, we increase L by one and repeat

the above steps.

The procedure fails when all the columns of A are linearly independent. The

1The set of equations Ψ can be solved using standard techniques.

69

4.3 Decoding GRS Codes

following algorithm explicitly summarizes the above procedure.

Algorithm 4.1

Input: An array A ∈ GF(q)m×n whose rows are the prescribed sequences.

Output: σ(x) ∈ GF(q)[x].

Initialize L := 1.

1. If L > n− 1, declare failure and exit; otherwise, apply Order(AL+1).

2. If UL+1 exists, invoke FIA(UL+1) to generate σ(x). Otherwise, go to 4).

3. If FIA(UL+1) fails, go to step 7). Otherwise, if deg(σ(x)) = L, construct

Ψ with unknowns being the unknown elements in BL+1 and go to step 5).

4. Set σ(x) :=
∑L

i=1 σix
i+1 and construct Ψ with unknowns being the unknown

elements in BL+1 and σi’s (1 ≤ i ≤ L).

5. If no solution to Ψ exists, go to step 7).

6. Output σ(x) and exit.

7. L := L + 1, go to step 1).

4.3 Decoding GRS Codes

Let α be primitive in GF(q = pm), v = (v0, v1, . . . , vn−1) where v0, v1, . . . , vn−1 ∈
GF(q)\{0} and a = (αi0 , αi1 , . . . , αin−1) such that αi0 , αi1 , . . . , αin−1 are distinct

elements in GF(q). The GRSa,v(n, k+1) code over GF(q) encodes an information

vector (f0, f1, . . . , fk) ∈ GF(q)k+1 to a codeword c = (c0, c1, . . . , cn−1) of this GRS

code, where cj = vjf(αij) ∈ GF(q) for 0 ≤ j ≤ n − 1 and f(x) =
∑k

l=0 flx
l ∈

GF(q)[x]k+1. Without loss of generality, let 0 ≤ ij ≤ q − 2. We call the set

{αi0 , αi1 , . . . , αin−1} the support set of GRSa,v(n, k + 1).

70

4.3 Decoding GRS Codes

Let r = (r0, r1, . . . , rn−1). The transmitted codeword can be recovered as

c = r − e if the error vector e = (e0, e1, . . . , en−1) can be recovered from the

syndrome sequence s in the decoding.

Let ord(β) = n. The GFFT of the error vector e is E = (E0, E1, . . . , En−1)

where Ej =
∑n−1

i=0 eiβ
ij as defined in [7]. Let Φ be a multiplicative cyclic subgroup

of GF(q)\{0} and β its generator. If Φ is the support set of GRSa,v(n, k +1) and

βj is a zero of the code, the jth syndrome is computed as

Sj =
n−1∑
i=0

riβ
ij =

n−1∑
i=0

(ci + ei)β
ij =

n−1∑
i=0

eiβ
ij = Ej. (4.11)

Thus, if we can recover the vector E from the syndrome sequence and then

obtain e by the inverse GFFT of E, we can also recover the transmitted codeword.

If the zeros of GRSa,v(n, k + 1) are consecutive powers of β, its syndrome

sequence is consecutive and E can be recovered by the Generalized Iterative

Algorithm for Multiple Sequences (GIAMS) as in [23]. When the number of

errors v in the received vector does not exceed the corresponding Hartmann-Tzeng

bound [38], the GIAMS may be used to find the error locator polynomial σ(x) =

∑v
i=1 σix

i + 1 by viewing E as a linear recurring sequence.

However, if the zeros of GRSa,v(n, k+1) code are not consecutive powers of β,

the syndrome sequence will have unknown elements. To find σ(x), Algorithm 4.1

can be applied. In this application, the rows of A are the left-shifts of the

syndrome sequence. We give an example of this application as follows.

Example 4.3 Let α be primitive in GF(8). Let a = (1, α, . . . , α6) and v =

(1, 1, 1, 1, 1, 1, 1). The GRSa,v(7, 3) over GF(8) has zeros α, α3, α4, α6. Suppose

a codeword is transmitted and received as r = (0, 0, α, 0, 1, 0, 0). Using (4.11),

the known elements of E are E1 = α6, E3 = α4, E4 = 0, E6 = α4. Due to the

unknown elements E2 and E5, as in [23], we arrange the syndrome sequence and

its left-shifts in the following array, where X can be viewed as a wildcard and E2

71

4.3 Decoding GRS Codes

and E5 represent the unknown elements in the syndrome sequence.

A =

α6 E2 α4 0 E5 α4

E2 α4 0 E5 α4 X

α4 0 E5 α4 X X

0 E5 α4 X X X

E5 α4 X X X X

α4 X X X X X

. (4.12)

We apply Algorithm 4.1 to find the error locator polynomial.

Initially, L = 1,

BL+1 =

 α4 α6 E2 0 E5 α4

0 E2 α4 E5 α4 X

T

and UL+1 =
(

α4 0
)
.

Applying the FIA to UL+1 to generate σ(x) = σ1x + 1 results in failure,

since 0× 1 + α4 × σ1 = 0 implies σ1 = 0. So we increase L to 2.

Now,

AL+1 = BL+1 =

α6 E2 α4 0 E5 α4

E2 α4 0 E5 α4 X

α4 0 E5 α4 X X

T

.

UL+1 does not exist in this case, since all the rows in A3 contain unknown

elements. We therefore set σ(x) := σ2x
2 + σ1x + 1, derive the set Ψ of equations

in (4.13). We then solve for the solution to the σi’s and the unknown elements

in BL+1. From the first four rows of BL+1, we have

α4 + σ1E2 + σ2α
6 = 0

σ1α
4 + σ2E2 = 0

E5 + σ2α
4 = 0

α4 + σ1E5 = 0. (4.13)

From (4.13), we have

α2σ4
2 + σ3

2 + 1 = 0.

72

4.4 Folded GRS Codes From GRS Codes

The LHS of the last equality is a polynomial in GF(8)[σ2]. Its coefficients

in vector form is (1, 0, 0, 1, α2, 0, 0) ∈ GF(8)7. The GFFT of this vector is

(α2, α5, α5, α2, 0, 1, 0). By property of GFFT [7, GFFT Property 6], σ2 has

two solutions, α4 and α6. The corresponding solutions for σ1 are α3 and α,

respectively.

The polynomial α4x2 +α3x+1 is not a valid error locator polynomial because

it cannot be factorized into distinct linear factors over the support set GF(8)\{0}
of this code. The other solution σ(x) = α6x2 + αx + 1 can be factorized as

σ(x) = (α2x + 1)(α4x + 1) which indicates the error locations α2 and α4.

Substituting σ1 = α and σ2 = α6 into (4.13) yields E2 = α6 and E5 =

α3. We also have E0 = α3. Then E turns out to be (α3, α6, α6, α4, 0, α3, α4).

Its inverse GFFT is e = (0, 0, α, 0, 1, 0, 0). Hence, the transmitted codeword is

r− e = (0, 0, 0, 0, 0, 0, 0).

When the support set Φ̂ of a GRS code over GF(q) is not a cyclic subgroup

of GF(q)\{0}, we can always find a minimal cyclic subgroup Φ in GF(q)\{0} with

generator β such that Φ̂ ⊂ Φ. If the zeros of this code are not consecutive powers

of β, we can view this code as a shortened code of a GRS code which has support

set Φ. This reduces the problem to the case studied above.

Moreover, according to the results in [23], the solution to Ψ corresponding

to a valid error locator polynomial is unique when we decode up to the

Hartmann-Tzeng bound.

4.4 Folded GRS Codes From GRS Codes

Let C be a primitive (n, k + 1) RS code over GF(q) where n = L × N such

that L,N > 1. We can fold a codeword (c0, c1, . . . , cn−1) of C into the following

73

4.4 Folded GRS Codes From GRS Codes

L×N array.

c0 c1 · · · cN−1

cN cN+1 · · · c2N−1

...
...

. . .
...

cn−2N+1 cn−2N+2 · · · cn−N−1

cn−N cn−N−1 · · · cn−1

. (4.14)

After applying the GFFT to each column of the array in (4.14), we have the FRS

code given by

b0 b1 · · · bN−1

bN bN+1 · · · b2N−1

...
...

. . .
...

bn−2N+1 bn−2N+2 · · · bn−N−1

bn−N bn−N−1 · · · bn−1

. (4.15)

Let the order of α be ord(α) = n. Generally, if a q-ary (n, k) RS code has

zeros αb, αb+1, . . . , αb+d−2, each row of the array in (4.15) is a GRS code [96,

Theorem 2] and the zeros of the rth (0 ≤ r ≤ L − 1) row code are

αr+d b−r
L
eL, αr+(d b−r

L
e+1)L, . . . , αr+b d+b−2−r

L
cL [96, Corollary 4].

In the following, we will show that any GRS code over GF(q) can be

transformed to an L × N FGRS code if its support set is a subset of a cyclic

subgroup Φ of GF(q)\{0} and |Φ| = n = L×N .

Let Ĉ be a GRS code over GF(q) with length n′(≤ n), dimension k + 1 and

support set Φ̂. Assume βl ∈ GF (q)\{0} be a zero of Ĉ. There is a minimal

cyclic subgroup Φ ⊆ GF(q)\{0} of order n with generator β such that Φ̂ ⊆ Φ

and βl ∈ Φ. Then code Ĉ can be extended to a new GRS code, denoted by

C, by inserting zero symbols at coordinates specified by Φ − Φ̂. This new GRS

code has codelength n and the same dimension as Ĉ. Assume that ĉ ∈ Ĉ is

extended to c ∈ C as above. Denote their code polynomial as ĉ(x) =
∑n′−1

i=0 ĉix
i

74

4.4 Folded GRS Codes From GRS Codes

and c(x) =
∑n−1

i=0 cix
i, respectively, where ĉi and ci are the respective ith code

symbols of ĉ and c. By the above extension, we have

ci = ĉi, if βi ∈ Φ̂;

ci = 0, if βi ∈ (Φ− Φ̂).

(4.16)

Thus, we have c(βl) =
∑n−1

i=0 ciβ
li

∑n′−1
i=0 ĉiβ

li = 0 and C has the same zeros as Ĉ.

If n = L×N , C can be folded into an array as in (4.14) and there is an element

θ ∈ Φ of order L in GF(q). The columns of (4.14) can be transformed by the

L-point GFFT and an FGRS code corresponding to the original code Ĉ can be

obtained. From above, we have Theorem 4.1.

Theorem 4.1 If the extended support set Φ of a GRS code satisfies |Φ| = L×N ,

where L,N ∈ Z+, an L×N FGRS code can be constructed from this GRS code.

A property of the resulting FGRS code is given by Theorem 4.2.

Theorem 4.2 Let a GRS code Ĉ over GF(q) of length n′ have βl ∈ GF(q)\{0}
as a zero where ord(β) = n = L×N ≥ n′. Also, let B be the L×N FGRS code

constructed from Ĉ. The l̄th row code of B has zero βl where l̄ = l (mod L).

Proof: Assume the FGRS code array B as in (4.15) is obtained from the

GRS code Ĉ and θ = βN . Thus, we have ord(θ) = L. By the definition of the

GFFT, we have bsN+j =
∑L−1

i=0 ciN+jθ
si. The sth row code of B in polynomial

form is

bs(y) =
N−1∑
j=0

bsN+jy
j =

N−1∑
j=0

L−1∑
i=0

ciN+jθ
siyj

=
L−1∑
i=0

N−1∑
j=0

ciN+jβ
sNiyj. (4.17)

75

4.4 Folded GRS Codes From GRS Codes

Assume l = l̄ + hL. Since βl is a zero of Ĉ and also a zero of C, we have

0 = c(x)|x=βl =
L−1∑
i=0

N−1∑
j=0

ciN+jx
iN+j|x=βl

=
L−1∑
i=0

N−1∑
j=0

xiN+j(β
l̄+hL)iN+j

=
L−1∑
i=0

N−1∑
j=0

ciN+jβ
l̄NiβhiLN(βl)j

=
L−1∑
i=0

N−1∑
j=0

ciN+jβ
l̄Ni(βl)j. (4.18)

The last equality is because ord(β) = L × N . Comparing (4.17) and (4.18), we

have bs(β
l) = 0, when s = l̄.

According to Theorem 4.2, the zeros of the original code Ĉ are distributed

among the row codes of the corresponding FGRS code B. As in [96, Lemma 1],

all the row codes have the same support set {1, γ1, . . . , γN−1} where ord(γ) = N .

However, the zeros of the row codes except the 0th row code may be not from

this support set.

Example 4.4 A (15, 6) RS code over GF(16) has zeros 1, β1, . . . , β8 where β is

primitive in GF(16). This code can be folded into a 3× 5 FRS code. The 0th row

has zeros {1, β3, β6} = {1, γ, γ2}, the 1st row has zeros {β, βγ, βγ2} and the 2nd

row has zeros {β2, β2γ, β2γ2} where γ = β3. But the support set of the row codes

of this FRS code is a cyclic subgroup Φ = {1, γ, γ2, γ3, γ4}.

Let the code polynomial of the codeword č = (č0, č1, . . . , čN−1) of the vth

row code Č be č(x) =
∑N−1

j=0 čjx
j. If βvγi is a zero of this row code, we have

č(x) =
∑N−1

j=0 čj(β
vγi)j =

∑N−1
j=0 (čjβ

vj)γij. Such a row code can be mapped to

another code C ′ where c′ = (č0, β
v č1, . . . , β

v(N−1)čN−1) ∈ C ′. The code C ′ has the

same support set Φ and its zeros are from Φ as well. The mapping of Č to C ′ and

its inverse is denoted as T and T −1, respectively. Thus, all the L T -mapped row

76

4.4 Folded GRS Codes From GRS Codes

codes in the FGRS code array can be decoded as codes with zeros in the same

support set.

Suppose that the array in (4.14) is transmitted column by column in a burst

error channel. We can obtained the syndromes for the T -mapped row codes

of the FGRS code from the syndromes for the original code Ĉ. This is shown

as follows. If βl (l = l̄ + Lh) is a zero of the original GRS code Ĉ and the

corresponding syndrome is Sl, by Theorem 4.2, βl is a zero of the l̄th row code

in the corresponding FGRS code array. Let the corresponding syndrome for the

T -mapped row code be denoted by S
(l̄)
l and let r

(b)
lN+j be the entry at (l, j) in the

array obtained by the GFFT of each column in the received array and γ = βL.

El = Sl =
n′−1∑
i=0

r̂i(β
l)i =

n−1∑
i=0

ri(β
l)i

=
L−1∑
i=0

N−1∑
j=0

riN+j(β
l)iN+j =

N−1∑
j=0

L−1∑
i=0

riN+j(β
N)liβlj

=
N−1∑
j=0

r
(b)
lN+j(β

l)j =
N−1∑
j=0

r
(b)
lN+j(β

l̄+hL)j

=
N−1∑
j=0

(r
(b)
lN+jβ

l̄j)(βL)hj =
N−1∑
j=0

(r
(b)
lN+jβ

l̄j)γhj

= S
(l̄)
l = E

(l̄)
l . (4.19)

If the support set of the original GRS code is a cyclic subgroup with

generator β and its zeros are consecutive powers of β, the syndrome sequences

for the T -mapped row codes are also consecutive. Thus, E can be recovered by

the GIAMS. However, if its zeros are not consecutive powers of β, the syndromes

for the T -mapped row codes may not be consecutive.

Example 4.5 Let a = (1, α, α2, . . . , α14) and v = (1, 1, 1, . . . , 1) where

α is primitive in GF(16). A GRSa,v(15, 3) code over GF(16) has zeros

1, α, α2, α3, α4, α5, α7, α8, α9, α11, α12, α13. A 3× 5 FGRS code can be constructed

77

4.4 Folded GRS Codes From GRS Codes

Figure 4.1: Nonconsecutive syndrome sequences of row codes.

from this code. The syndromes of the T -mapped row codes are shown in Fig. 4.1

where E6 and E10 are unknown elements in the middle of the sequences.

The algorithm in [23] cannot recover E. However, it can be recovered by

Algorithm 4.1. We show this by Example 4.6.

Example 4.6 Continuing with Example 4.5, supposing the FGRS code is

transmitted column by column and the received array is

α3 0 α10 α4 0

1 0 0 α7 0

α 0 α12 α8 0

 (4.20)

After GFFT of columns and mapping rows by T , it becomes to

α7 0 α3 α13 0

0 0 α8 α5 0

α4 0 α8 1 0

 (4.21)

The syndromes for the row codes in (4.21) are

α11 α9 E6 0 α10

α4 0 α4 E10 α9

α10 0 α13 α X

 (4.22)

78

4.4 Folded GRS Codes From GRS Codes

where E6 and E10 are unknown elements. We arrange these sequences and their

left-shifts to form the array in (4.23) where X is a wildcard.

Start with L = 1, we have

UL+1 =

 α11 α4 α10 0 0 α13 0

α9 0 0 α4 α13 α4 α10

T

.

By the FIA, UL+1 has full column rank, so increase L to 2. Now,

UL+1 =

α4 0 α4

α10 0 α13

0 α13 α

 .

A =

α11 α9 E6 0 α10

α4 0 α4 E10 α9

α10 0 α13 α X

α9 E6 0 α10 X

0 α4 E10 α9 X

0 α13 α X X

E6 0 α10 X X

α4 E10 α9 X X

α13 α X X X

0 α10 X X X

E10 α9 X X X

α X X X X

α10 X X X X

α9 X X X X

, (4.23)

It is also full column rank and we increase L to 3.

At this step,

UL+1 =
(

α10 0 α13 α
)

.

The σ(x) obtained from UL+1 by the FIA has degree 1, which is less than L = 3.

79

4.5 Conclusion

Therefore, we set σ(x) = σ3x
3 + σ2x

2 + σ1x + 1 and derive Ψ as

E6σ1 + α9σ2 + α11σ3 = 0

E10 + α4σ1 + α4σ3 = 0

α + α13σ1 + α10σ3 = 0

α10 + E6σ2 + α9σ3 = 0

α9 + E10σ1 + α4σ2 = 0 (4.24)

Solving Ψ, we have σ3 = 1, σ2 = α10 and σ1 = α10. So σ(x) = x3+α10x2+α10x+1

and the error array can be recovered as

α7 0 α3 α13 0

0 0 α8 α5 0

α4 0 α8 1 0

 (4.25)

After applying T −1 to the rows and inverse GFFT to the columns of array
in (4.25), we have

α3 0 α10 α4 0

1 0 0 α7 0

α 0 α12 α8 0

 . (4.26)

Hence, the all-zero codeword is the transmitted FGRS codeword and 3 burst errors

are corrected.

4.5 Conclusion

In this chapter, an algorithm for the synthesis of multisequences with unknown

elements in the middle is proposed. This algorithm is applied to decode GRS

codes with nonconsecutive syndromes, which could not be solved by sequence

synthesis method before. We also show that folded codes can be constructed

from GRS codes besides RS codes as in [96] and all the row codes in the resulting

FGRS codes can be viewed as equivalent GRS codes with zeros from the same

80

4.5 Conclusion

support set. Therefore, the proposed algorithm can also be used to decode FGRS

codes.

We note that the proposed algorithm may involve nonlinear equations. The

proposed algorithm minimizes the degree of these nonlinear equations by putting

the process of these unknown elements off. However, bounding the complexity of

the proposed algorithm is difficult due to the random occurrence of the errors.

Nevertheless, when the number of the unknown elements involved in the nonlinear

equations is small, the complexity is reasonable.

81

Chapter 5

A Search-Based List Decoding

Algorithm for RS codes

In this chapter, we propose a search-based list decoding algorithm which can

correct up to n−k−1 errors with an (n, k) RS code. The performance, complexity

and average list size of this search procedure are analyzed when the RS code is

transmitted in an AWGN channel with BPSK signaling.

5.1 Introduction

Given an (n, k) RS code, the GSA can correct up to dn−
√

n(k − 1)− 1e errors

in polynomial time. This error-correction capability is far more than that of the

classical decoding algorithms. This algorithm outputs a list of the most possible

candidate messages. The average list size was shown very close to unity [56].

Motivated by these results of the GSA, we propose a search-based list decoding

algorithm for RS codes. This algorithm can correct up to n− k− 1 errors (in the

list decoding sense). The idea of this decoding technique is from the fact that any

solution1 to the classical key equation leads to a possible solution for decoding

1An error locator polynomial and the corresponding error evaluator polynomial.

82

5.2 Search-Based List Decoding

a received vector of a RS code. If and only at most bn−k
2
c errors occur, the

minimal solution to the key equation is unique and coincides with the error locator

polynomial. However, the proposed algorithm in this chapter does not stick to

find the minimal solution and can correct beyond the classical error-correction

bound.

Let s = (S1, S2, . . . , Sn−k) ∈ GF(q)n−k be the syndrome sequence for a

received vector of a (n, k) RS code. We denote by Anni(s), the set of polynomials

f(x) =
∑deg(f(x))

l=1 flx
l + 1 ∈ GF(q)[x], which annihilate s as

deg(f(x))−1∑
j=0

Si+jfdeg(f(x))−j + Si+deg(f(x)) = 0,∀1 ≥ i ≥ n− k − deg(f(x)). (5.1)

A list of candidate error locator polynomials in Anni(s) are constructed by a

search routine in the proposed algorithm. For each element in this list, the

corresponding error values are then computed by Forney’s method. The candidate

error locator polynomials with degree up to n − k − 1 are constructed in the

proposed algorithm, the error-correction capability of this algorithm is therefore

n− k − 1 and larger than that of the GSA. We proceed to present this decoding

approach in detail.

5.2 Search-Based List Decoding

5.2.1 The Search Tree

Let α ∈ GF(q), ord(α) = n and C an (n, k) RS code over GF(q) with zeros

α, α2, . . . , αd−1, where d = n−k+1. Further, Let Z = {1, α, . . . , αn−1} which are

all the zeros of Xn − 1 in GF(q). Denote the following set of polynomials by Ξ.

Ξ = {f(x)|f(x) ∈ GF (q)[x]d−1, f(x)|(xn − 1)}.

Thus, each polynomial from Ξ can be factorized as product of distinct linear

factors over GF(q) and all the zeros of this polynomial are from Z. The algorithm

83

5.2 Search-Based List Decoding

we will present in this chapter is to find the polynomials in Ξ ∩ Anni(s) for a

given syndrome sequence. Such polynomials are called candidate error locator

polynomials. Each of them is associated with an estimate ê of the error pattern.

Let β primitive in GF(q) and denote the support of ê by Supp(ê). Then a

candidate error locator polynomial can be written as

σ(x) =
∏

αj∈Supp(ê)

(1− αjx) =

|Supp(ê)|∑
i=0

βjixi,

where βj0 = 1 by definition. As special cases, when the number of errors is not

greater than b(d− 1)/2c, there is only one element in Ξ ∩ Anni(s).

The elements of Ξ ∩ Anni(s) can be found by searching a tree structure

constructed in advance. This tree has d−1 levels which are labeled from 0 to d−2.

Each node at the level v of the tree represents a particular polynomial in GF(q)[x]

of degree v. Those nodes representing elements of Ξ are called check nodes2. Each

node on the tree is labeled by a integer outside parenthesis. Such labels of the

nodes along the path linking the root node (at 0th level) to a check node specify

the coefficients of the element of Ξ represented by this check node. Specifically,

the label of the node at the level i on this path is the exponent ji of the coefficient

βji for the monomial xi of this element. The path as mentioned above is later

referred to by the concatenation of those integer labels. Each check node has

another label in parenthesis. It is the exponents of the reciprocal of the zeros of

the element of Ξ this check node represents.

Example 5.1 Fig. 5.1 shows the structure of the tree just described for C, a (7, 4)

RS code over GF(8). The path 0-4-3 corresponds to the element σ(x) = 1+α4x+

α3x2 ∈ Ξ. Assume the all-zero codeword is transmitted and (0, α2, α4, 0, 0, 0, 0) is

received. The corresponding syndrome sequence is s = (α4, α2, α2). One checks

that σ(x) satisfies (5.1) so that σ(x) ∈ Ξ ∩ Anni(s) and is a candidate error

2Since Ξ ⊂ GF(q)[x], not all the nodes are elements of Ξ.

84

5.2 Search-Based List Decoding

locator polynomial. From Fig. 5.1, the reciprocals of its zeros are α and α2 which

indicates the locations of the errors introduced by the channel, as desired. One

further checks that 1 + α6x + x2 is also a candidate error locator polynomial

corresponding to the path 0-6-0.

Level 0 0

Level 2

1

(2,6)

2

(4,5)

4

(1,3)

3

(0,3)

4

(5,6)

6

(0,6)

0

(2,5)

1

(0,1)

3

(4,6)

1

(3,5)

5

(1,4)

6

(0,6)

2

(3,6)

3

(1,2)

5

(0,5)

0

(1,6)

4

(0,4)

5

(2,3)

0

(3,4)

2

(0,2)

6

(1,5)

Level 1
0

(0)

1

(1)

2

(2)

3

(3)

4

(4)

5

(5)

6

(6)

Figure 5.1: Tree structure for a (7, 4) RS code.

To find all the candidate error locator polynomials of degree up to d− 2, we

need to check the linear constraints in (5.1) for each check node on the tree. There

are
(

n
i

)
check nodes at the level i of the tree. Thus,

∑d−2
i=1

(
n
i

)
check nodes need

to be processed. Such a procedure will have exorbitantly large computational

complexity. We thus propose several ways to reduce the complexity in next

subsection.

5.2.2 Complexity Reduction Strategies

In this subsection, two ways are presented to reduce the complexity of the search

procedure. The first one is due to Lemma 5.1 below.

Lemma 5.1 Consider the code C and associated search tree as described in

Section 5.2.1. If a check node at level j (0 < j < d−1) corresponds to a candidate

error locator polynomial, then there are no check nodes at level i (0 < i < d− j)

corresponding to other candidate error locator polynomials.

85

5.2 Search-Based List Decoding

Proof: Denote the candidate error locator polynomial represented by a

check node at level j as σ(1)(x). Let r be decoded to a codeword c(1) with σ(1)(x).

Assume another candidate error locator polynomial represented by another check

node at level i is found, where 0 < i < d− j. Denote it as σ(2)(x) which decodes

r to another codeword c(2). Then

d(r, c(1)) + d(r, c(2)) ≥ d(c(1), c(2)) ≥ d. (5.2)

Since σ(1)(x) is a candidate error locator polynomial with degree j, r is decoded to

c(1) by correcting j symbols in r and d(r, c(1)) = j. Similarly, we have d(r, c(2)) =

i. According to (5.2), we have j + i ≥ d(c(1), c(2)) ≥ d. But from 0 < i < d − j,

we have 0 < i + j < d. Thus, σ(2)(x) does not exist. There are no check nodes

representing candidate error locator polynomials on level i for 0 < i < d − j in

this case.

By Lemma 5.1, we can skip level i for 0 < i < d − j, if we have found a

candidate error locator polynomial at level j.

Example 5.2 If C is a (63, 57) RS code over GF(64), the corresponding search

tree has 5 levels. By Lemma 5.1, if a candidate error locator polynomial at level 1

is found, we can skip all other check nodes at level i for 0 < i < 6, i.e., we can

terminate the search immediately. In such a situation, we need search at most
∑1

j=1

(
63
j

)
= 63, instead of

∑5
j=1

(
63
j

)
= 7666239.

Lemma 5.2 below shows another way to reduce the search complexity.

Lemma 5.2 For the code C and associated search tree as described in

Section 5.2.1, suppose we have two candidate error locator polynomials, one at

level i, the other at level j such that i + j ≥ d. Then, the cardinality |z(i) ∪ z(j)|
of z(i) ∪ z(j) is at least d where z(i) and z(j) denote the supports of the respective

error pattern.

86

5.2 Search-Based List Decoding

Proof: Assume two candidate error locator polynomials correct a received

vector to two distinct codewords c(1) and c(2) respectively. Let z(i) and z(j) be the

supports of the error patterns associated with these two error locator polynomials,

respectively. Then d(c(1), c(2)) is at most |z(i) ∪ z(j)|. We have |z(i) ∪ z(j)| ≥
d(c(1), c(2)) ≥ d.

Assume a candidate error locator polynomial whose associated error pattern

has support set z(i) is found at level i. Any check node representing an element

of Ξ with reciprocals of zeros z(j) at level j can be skipped if i + j ≥ d and

|z(i) ∪ z(j)| < d. Let δ = i + j − d and suppose i ≤ j. If l = |z(i) ∩ z(j)| > δ, then

|z(i) ∪ z(j)| = i + j − l < i + j − δ = d. (5.3)

Thus,
i∑

l=δ+1

(
i

l

)(
n− i

j − l

)
(5.4)

check nodes can be skipped at level j, given a candidate error locator polynomial

is found at level i.

Example 5.3 Let C be a (15, 10) RS code for which the tree structure has 5

levels. Suppose we have found a candidate error locator polynomial at level 2.

Since the criterion to skip nodes implied by Lemma 5.1 is not satisfied, we still

need to search through level 4 where there are
(
15
4

)
= 1365 check nodes. By (5.4),

we can skip
∑2

l=1

(
2
l

)(
15−2
4−l

)
= 650 of them. The number of check nodes to process

is reduced by almost half at level 4.

5.2.3 The Decoding Algorithm

Assume the search tree for the code C is available. We give an explicitly

exposition of the proposed decoding method for C in Algorithm 5.1 below. The

complexity reduction strategies proposed in previous section are incorporated in

this algorithm.

87

5.3 Decoding Shortened and Punctured RS Codes

Algorithm 5.1 Search-Based List Decoding

• Step 1: Compute the syndrome sequence s, given the received vector r.

• Step 2: Initialize l := 1, lmin := d− 2 and L := {}. (Note: lmin denotes the

level where the first candidate error locator polynomial is found.)

(a) For every check node at level l, check the set of reciprocals of the zeros

of the corresponding element of Ξ and skip that node according to

Lemma 5.2, if possible.

(b) For each check node at the lth level which could not be skipped in Step

2(a), determine if the corresponding constraints, as specified by (5.1),

are satisfied. For each check nodes where the corresponding constraints

are satisfied, place the associated set of reciprocals of the zeros of the

corresponding element of Ξ, in L. If the first candidate error locator

polynomial is found in the current level, then set lmin := l.

(c) Set l := max(l + 1, d − lmin).(Note: this assignment is due to Lemma

5.1.) If l < d− 2, return to Step 2(a), else exit Step 2.

• Step 3: For each element of L, recover the corresponding estimate ê of the

error pattern induced by the channel and output r− ê.

5.3 Decoding Shortened and Punctured RS

Codes

In this section, we analyze decoding shortened and punctured RS codes by the

proposed search-based list decoding algorithm.

• Shortening

Assume φ is a subset of the support set of an (n, k) RS code and |φ| < k.

By shortening by φ, we mean the resulting code is a subset of the original

88

5.3 Decoding Shortened and Punctured RS Codes

RS code such that the codewords of the resulting code have zero symbols at

coordinate subset φ. Since RS codes are MDS codes, an (n, k) RS code is

shortened to an (n− t, k − t) MDS code, when |φ| = t < k. The minimum

distance of the (n− t, k− t) code is n− t− (k− t)+1 = n− k +1 = d. The

tree structure for the resulting code has the same number of levels as that

for the original code. However, the number of elements in the support set

of the (n− t, k− t) code is reduced to n− t. The number of check nodes in

the tree is also reduced to
∑d−2

i=1

(
n−t

i

)
from

∑d−2
i=1

(
n
i

)
.

• Puncturing

Assume ψ is a subset of the support set of an (n, k) RS code and |ψ| = s <

n − k. By puncturing, we mean the resulting code has the same number

of codewords as the original RS code and they are obtained by deleting

the symbols at coordinate set ψ of the codewords in the original RS code.

Hence, the resulting code is an (n−s, k) MDS code. The minimum distance

of the resulting (n − s, k) code is d = n − s − k + 1. The search tree for

this code has n− s− k − 1 levels. Since the length of the resulting code is

reduced to n− s, the number of check nodes in the tree is also reduced to

∑n−s−k−1
i=1

(
n−s

i

)
from

∑n−k−1
i=1

(
n
i

)
.

If s coordinates in a received vector are detected as erasures, the received

vector can be decoded as if these s coordinates are punctured. The complexity will

decrease since the number of check nodes to process reduces. This is especially

important for the decoding of FRS or TFSRS codes transmitted in burst error

channels as in Chapter 2.

Example 5.4 In compact disk system, (32, 28) RS code is applied [91]. It is

obtained from shortening (255, 251) RS code over GF(256). Our algorithm can

correct up to 3 symbol errors with this code. The search tree for the (32, 28)

89

5.4 Performance-Complexity-List-Size Analysis

RS codes has 4 levels. To decode a received vector of this code, for the worst

case, we need to search all the check nodes in the tree. The number of the check

nodes is
∑3

i=1

(
32
i

)
= 5488. If an erasure position can be identified, in the worst

case, we need to search the tree to level 2 and the number of the check nodes is
∑2

i=1

(
31
i

)
= 496, which is less than 1

10
of the previous one.

5.4 Performance-Complexity-List-Size Analysis

5.4.1 Word-Error-Rate Performance

The proposed algorithm can correct more errors than the BMA and the GSA. To

illustrate the advantageous error correcting capability of the proposed algorithm,

it is enough to compare the performance of these algorithms in AWGN channels

with simple BPSK signaling.

We compare the Word-Error-Rate (WER) of the proposed list decoding

algorithm against that of the BMA as well as the GSA. We consider transmitting

the codewords of a RS code in an AWGN channel by BPSK signaling. The

equivalent BSC has crossover probability

p = Q(

√
2REb

N0

) (5.5)

where Eb is the received bit energy of an information bit, R is the code rate, N0

is the single-sided noise spectral density and Q(·) is the Q-function. For a 2m-ary

code C, the code symbol error probability is computed as

ps = 1− (1− p)m (5.6)

and the probability of a received vector containing v errors is computed as

Pv =

(
n

v

)
(ps)

v(1− ps)
n−v. (5.7)

90

5.4 Performance-Complexity-List-Size Analysis

The WERs of the proposed list decoding algorithm, BMA and GSA are then

computed as
∑n

v=t+1 Pv where t is equal to n − k − 1, b(n − k)/2c and dn −
√

n(k − 1) − 1e, respectively. The WERs of these three decoders for two RS

codes is shown in Fig. 5.2. We can see that at a WER of 10−6, the proposed

decoding algorithm offers an additional coding gain of about 1 dB over the GSA

for both codes.

4 5 6 7 8 9 10
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

W
E

R

BMA − RS (32,28)
GSA − RS(32,28)
Propose algorithm − RS(32,28)
BMA − RS(15,10)
GSA − RS(15,10)
Proposed algorithm − RS(15,10)

Figure 5.2: WERs of the BMA, the GSA and the proposed list decoding

algorithm when applied to a (32, 28) RS code over GF(256) and a (15, 10) RS

code over GF(16).

5.4.2 Bounding The Average Complexity

The Step 2 in Algorithm 5.1 is the most computationally intensive step of

this algorithm. In this subsection, we derive an upper bound for the average

complexity of this step in terms of the field multiplication.

91

5.4 Performance-Complexity-List-Size Analysis

From the previous description, evaluating n− k− v constraints are required

to process a check node at level v on the tree. Since this check node represents

a polynomial of degree v and with constant term 1, evaluating each constraint

requires v multiplications. Thus, to processing a check node at level v, at most

Mv = (n− k − v)v multiplications are required.

There are
(

n
v

)
check nodes in the vth level. According to the channel model

considered in Section 5.4.1, error pattern with the same weight occur with the

same probability. Thus, if a received vector has v errors, on average, half of

the check nodes at level v need to be processed to find the desired error locator

polynomial. If v = 1, searching half of the check nodes at level 1 will yield the

desired error locator polynomial on average. Also, Algorithm 5.1 will exit Step 2

after that according to Lemma 5.1. Thus, the average complexity of Step 2 in

this case can be upperbounded by

κ1 =
1

2
P1

(
n

1

)
M1 =

n2

2
ps(1− ps)

n−1M1.

If 2 ≤ v ≤ bn−k
2
c, we need to search through level 1 to level v − 1 in

the worst case. This requires an average number of multiplications at most

Pv

∑v−1
i=1

(
n
i

)
Mi. The desired error locator polynomial can be found at level v

in this case. Since error patterns of the same weight occur with equal probability,

the average number of multiplication required for finding the desired error locator

polynomial at level v is at most 1
2
Pv

(
n
v

)
Mv. Since v + v < d, the remaining check

nodes at level v can be skipped by Lemma 5.2. Further, due to Lemma 5.1, levels

max(v + 1, d − v) = d − v to d − 2 need to be searched after searching level v.

By (5.4), from level d− v to d− 2, only

d−2∑

j=d−v

[(
n

j

)
−

v∑

l=v+j−d+1

(
v

l

)(
n− v

j − l

)]

check nodes need to be processed. The average number of multiplications required

92

5.4 Performance-Complexity-List-Size Analysis

for searching these levels is upperbounded by

Pv

d−2∑

j=d−v

[(
n

j

)
−

v∑

l=v+j−d+1

(
v

l

)(
n− v

j − l

)]
Mj.

Thus, when 2 ≤ v ≤ bn−k
2
c, the average complexity of Step 2 can be

upperbounded by

κ2 =

bn−k
2
c∑

v=2

Pv

{
v−1∑
i=1

(
n

i

)
Mi +

1

2

(
n

v

)
Mv +

d−2∑

j=d−v

[(
n

j

)
−

v∑

l=v+j−d+1

(
v

l

)(
n− v

j − l

)]
Mj

}
.

If bn−k
2
c + 1 ≤ v ≤ n − k − 1, the analysis of complexity is similar as the

previous case except two differences. The first one is that since v + v ≥ d in this

case, the remaining check nodes at level v need to be processed after we have

found the desired error locator polynomial. By (5.4), among these remaining

check nodes, only

1

2

((
n

v

)
−

v−1∑

l=2v−d+1

(
v

l

)(
n− v

v − l

))

need to be searched on average. The second is that after searching level v, levels

max(v + 1, d − v) = v + 1 to d − 2 need to be searched. Thus, in this case, the

average complexity of Step 2 can be upperbounded by

κ3=
d−2∑

v=bn−k
2
c+1

Pv

{
v−1∑
i=1

(
n

i

)
Mi +

1

2

(
n

v

)
Mv+

1

2

[(
n

v

)
−

v−1∑

l=2v−d+1

(
v

l

)(
n− v

v − l

)]
Mv

+
d−2∑

j=v+1

[(
n

j

)
−

v∑

l=v+j−d+1

(
v

l

)(
n− v

j − l

)]
Mj

}

=
d−2∑

v=bn−k
2
c+1

Pv

{
v∑

i=1

(
n

i

)
Mi+

d−2∑
j=v+1

[(
n

j

)
−

v∑

l=v+j−d+1

(
v

l

)(
n− v

j − l

)]
Mj

−1

2
Mv

v−1∑

l=2v−d+1

(
v

l

)(
n− v

v − l

)}
. (5.8)

Finally, if n − k ≤ v ≤ n, all the d − 2 levels need to be searched without

skipping any nodes in the worst case. The average complexity of Step 2 in this

93

5.4 Performance-Complexity-List-Size Analysis

case can be upperbounded by

κ4 =
n∑

v=d−1

Pv

d−2∑
j=1

(
n

j

)
Mj.

The average complexity of Step 2 can therfore be upperbounded by

κ = κ1 + κ2 + κ3 + κ4.

The κ vs. SNR curves for the two RS codes considered in Section 5.4.1 are

shown in Fig. 5.3. Combining Fig. 5.2 and Fig. 5.3, we see that at a WER of 10−6,

6 6.5 7 7.5 8 8.5 9
0

50

100

150

200

250

300

350

400

SNR (dB)

RS (32,28)

RS (15,10)

Figure 5.3: Complexity of Step 2 for decoding a (32, 28) RS code (shortened

from a (255, 251) RS code) over GF(256) and a (15, 10) RS code over GF(16).

the average number of multiplications incurred by Step 2 is less than n2.

5.4.3 The Average List Size

Denote the Hamming sphere of radius d − 2 centers at an vector v ∈ GF(q)n

as Sv(d−2). We estimate the average number of codewords contain in Sv(d−2) in

94

5.4 Performance-Complexity-List-Size Analysis

this subsection. This quantity coincides with the average list size of the proposed

list decoder. Since C is linear, we may assume that the causal codeword (i.e.

the transmitted codeword) is the all-zero codeword. The corresponding received

vector is denoted by r.

When v, the weight of r, is equal to unity, only one codeword is in Sv(d− 2)

by Lemma 5.1. Clearly, this codeword is the causal one.

When v ≥ 2, it has been shown in [55] that the average number of noncausal

codewords in Sr(d− 2) can be closely estimated by

L(d− 2) =
1

qn−k

d−2∑
i=0

(
n

i

)
(q − 1)i. (5.9)

An estimate of the average number of codewords (causal and noncausal) in Sr(d−
2) is thus L(d−2)+1 and L(d−2) for d−2 ≥ v ≥ 2 and n ≥ v ≥ d−1, respectively.

Thus, the average list size A(n, k, q) of the proposed decoding algorithm

when applied to decode C can be closely estimated by

A(n, k, q) = (P (0) + P (1))× 1 +
d−2∑
v=2

P (v)(L(d− 2) + 1) +
n∑

v=d−1

P (v)L(d− 2)

=
d−2∑
v=0

P (v) +
n∑

v=2

P (v)L(d− 2) (5.10)

Fig. 5.4 shows the curves of A(n, k, q) vs. SNR for the proposed decoding

algorithm applied to decode a (32, 28) RS code over GF(256) and a (15, 10) RS

code over GF(16) . From Fig. 5.2 and Fig. 5.4, we can see that at a WER of 10−6,

the estimated average list size is less than 3 for the latter code and less than 2 for

the former code. For the purpose of comparison, Fig. 5.4 also shows the curves of

the average list size of the GSA for these codes3. We can see that the average list

size for both decoding algorithms are comparable at WERs of practical interest,

for these two codes.
3Using additional results from [55]

95

5.5 Conclusion

5 5.5 6 6.5 7 7.5 8 8.5 9
10

−1

10
0

10
1

10
2

SNR (dB)

A
ve

ra
ge

 li
st

 s
iz

e

Proposed algorithm − RS(32,28)
GSA − RS(32,28)
Proposed algorithm − RS(15,10)
GSA − RS(15,10)

Figure 5.4: Average list size for a (32, 28) RS code over GF(256) and a (15, 10)

RS code over GF(16) under the proposed decoding algorithm and the GSA.

(Note that the estimated average list size of the GSA for the former code

is less than 1 when SNR is less than 7 dB, due to the highly non-perfect

nature of the code.)

5.5 Conclusion

Given an (n, k) RS code, we present a search-based list decoding algorithm

capable of correcting up to n − k − 1 errors in this chapter. Its error-correction

capability exceeds that of the GSA for a wide range of code parameters, although

with larger complexity. we show that for short, high rate RS codes, it is possible

that the average complexity of the proposed search procedure is less than n2 at

WERs of practical interests. This decoding algorithm can be applied to FRS

and TSFRS codes presented in [96]. Choosing the dimension of the code array

properly, we thus can apply the proposed algorithm with reasonable complexity

96

5.5 Conclusion

at practical WERs. In addition, the proposed algorithm is also applicable to

some GRS codes and its subfield subcodes with consecutive syndrome sequence

from the derivation.

The complexity of this algorithm is related with the number of nodes to

be processed on the tree. For a low rate code, there are more levels in the

corresponding tree structure compared with that of a high rate code with the

same length. Hence, the number of nodes to be processed may increase and the

complexity may become prohibitive. For a code with long length, there may be

more nodes on each level to be processed in the corresponding tree structure

compared with that of a code with short length and the same minimum distance.

The overall number of nodes to be processed may increase and the complexity

may also becomes undesirable. Nevertheless, the row codes in a FRS code are

often short codes with high rate for practical interest. They can be decoded by

the proposed algorithm with reasonable complexity.

97

Chapter 6

Decoding RS Codes with

Gröbner Bases Method and Its

Applications

In this chapter, we present a list-type decoding algorithm for high rate RS codes

and its applications. This algorithm is based on Generalized Newton’s Identities

(GNI) and Gröbner Basis (GB) induced by the orthogonal relation defined in

Section 6.2. Decoding IRS codes and some cyclic codes over GF(8) are also

studied.

6.1 Introduction

RS codes are important linear block codes with abundant algebraic structures.

The classical decoding algorithms of RS codes can decode an (n, k) RS code with

up to bn−k
2
c errors and output a single codeword if the decoding is successful.

These classical decoding algorithms are related with the GNI and the number of

independent linear equations derived from the GNI limits their error-correction

capability. On the other hand, the GSA can decode an (n, k) RS code with up

98

6.1 Introduction

to bn−
√

n(k − 1)c errors and produce a short list of most possible messages. It

is also shown that the average list size is very close to unity [56], which means the

output list is a singleton in almost all the time. When a code array of an IRS or

FRS code is transmitted column by column over a burst error channel, all the row

codes share the same error pattern. Then, far more errors can probabilistically

be corrected than the classical bound via the collaborations of the row codes as

in [8, 44, 9, 76]. The decoding algorithms in [44, 76] are based on the equations

from the GNI. The decoding algorithm in [8, 9] is based on the simultaneous

polynomial reconstruction.

The GB method is applied to solve the key equation of cyclic codes in [25].

It is also applied to decode BCH codes with up to bdt−1
2
c, where dt is the true

minimum distance of the BCH codes, in [12] and decode cyclic codes in [11]. This

method is further studied in [47, 24, 62]. In these papers, polynomial ideals are

constructed according to the GNI and the equation xq−1 + 1 = 0, where x is a

nonzero element in GF(q). The variables in these ideals are the error locations

and the corresponding error values. To decode a received vector, we need find

the GB of these ideals. However, since finding the GB of an ideal is hard, the

complexity is prohibiting.

In this chapter, we propose a decoding algorithm based on the equations

from the GB and the GNI. Instead of solving for GB for each received vector,

we compute the GB in advance. The variables in this ideal are the elementary

symmetric functions of the error locations.

In the following part, we review the GNI and the relation

xdeg(σ(x))σ(x−1)h(x) = xn − 1 (This relation will be explained later.). A

polynomial ideal is constructed. Then a decoding strategy for correcting

more errors than the classical decoding bound is proposed. We show that

an (n, n − 3) RS code can correct up to 2 errors by this strategy with

99

6.2 The GNI and the Relation xdeg(σ(x))σ(x−1)h(x) = xn − 1

complexity O(n2) and an (n, n − 4) RS code can correct up to 3 errors by this

strategy with complexity O(n3). In addition, a decoding algorithm to correct up

to decoding b (dmin−1)
2

c+ 1 errors with an (n, k) RS codes is proposed. The result

can be applied for decoding IRS codes to increase the probability of successful

decoding.

Combining the above method with the decomposition of the syndromes

S1, S2, S4, new decoding algorithms for (7, 3) RS code and (7, 4) cyclic codes over

GF(8) correcting up to 3 errors are presented. If the error values are restricted,

decoding some cyclic codes over GF(8) is studied.

6.2 The GNI and the Relation

xdeg(σ(x))σ(x−1)h(x) = xn − 1

Without loss of generality, assume that C is an (n, k) RS code over GF(q) with

consecutive zeros α, α2, . . . , α(n−k), where α is the generator of a cyclic subgroup G
in GF(q) and ord(α) = n. Let [n] = {0, 1, . . . , n− 1}. Assume a codeword c ∈ C
is transmitted over a noisy channel and the received vector is r = c + e, where

e = (e0, e1, . . . , en−1) is the error vector. Let Ī = {i|i ∈ [n], ei 6= 0}, |̄I| = t

and I = [n]\Ī. The error locator polynomial for r can be defined as σ(x) =

x−t
∏

i∈Ī(x − αi) =
∑t

i=0 σix
i where σ0 = 1. The zeros of the monic polynomial

φ(x) = xtσ(x−1) =
∑t

i=0 σt−ix
i are αi where i ∈ Ī. Then σj, the (t − j)th

coefficient of φ(x), is the jth elementary symmetric function [86] of αi for 1 ≤
j ≤ t and i ∈ Ī. The coefficients of φ(x) and σ(x) are in reverse order.

In the classical decoding algorithms and the algorithm in [25], the error

locator polynomial need be found first. When the number of errors t ≤ bdmin−1
2

c, a

unique solution for error locator polynomial can be determined from the syndrome

100

6.2 The GNI and the Relation xdeg(σ(x))σ(x−1)h(x) = xn − 1

sequence S1, S2, . . . , Sn−k via the GNI

Sj =
t∑

i=1

σiSj−i, (6.1)

where n− k ≥ j ≥ t. Since σ0 = 1, we have

t∑
i=0

σiSj−i = 0, n− k ≥ j ≥ t. (6.2)

When t ≤ bn−k
2
c, a unique solution for σ(x) such that deg(σ(x)) = t can be solved

from (6.2). When n − k − 1 ≥ t > bn−k
2
c, there are t unknowns and n − k − t

equations in (6.2). Since n − k − t < t, there are q2t+k−n possible solutions

for σ(x) from (6.2). However, not all of them are valid solutions of σ(x) and

checking them one by one is not effective. By valid solution of σ(x), we mean

the solutions for σ(x) that can be factorized into distinct linear factors over G
and satisfies (6.2). Moreover, since we do not know the number of errors t in

advance, any valid solutions for σ(x) from (6.2) can be the true one if there are

more than one.

To find the valid solutions for σ(x) from the syndromes for r when

n− k − 1 ≥ t > bn− k

2
c,

the relation follows may be useful. Since ord(α) = n, there is a polynomial

h(x) =
∏

i∈I(x − αi) =
∑n−t

i=0 hn−t−ix
i, where h0 = 1 and |I| = n − t, such that

h(x)φ(x) = 0 (mod xn − 1). We refer this relation to orthogonal relation later.

Denote the coefficient of xi in xn − 1 as (xn − 1)i. Let

λ(s) = {i|max(0, s− t) ≤ i ≤ min(s, n− t)},

θ(s) = {j|max(0, s− (n− t)) ≤ j ≤ min(s, t)}.

101

6.2 The GNI and the Relation xdeg(σ(x))σ(x−1)h(x) = xn − 1

From the orthogonal relation, we have the following n equations.

(xn − 1)n−1 =
∑

i+j=n−1,
i∈λ(n−1),
j∈θ(n−1)

hn−t−iσt−j = 0

(xn − 1)n−2 =
∑

i+j=n−2,
i∈λ(n−2),
j∈θ(n−2)

hn−t−iσt−j = 0

...

(xn − 1)1 =
∑

i+j=1,
i∈λ(1),
j∈θ(1)

hn−t−iσt−j = 0

(xn − 1)0 − 1 = hn−tσt − 1 = 0. (6.3)

If σ = (σt, σt−1, . . . , σ1, 1) satisfies the equations in (6.3), the polynomial σ(x)

can be factorized into distinct linear factors over G. If a solution for σ(x) also

satisfies the equations in (6.2), it will be a valid solution for the error locator

polynomial.

Since

(xn − 1)s =
∑

i+j=s,
s−t ≤ i ≤ min(s,n−t)

max(0,s−(n−t)) ≤ j ≤ t,

hn−t−iσt−j = 0

for t ≤ s ≤ n− 1 and σ0 = 1,

hn−t−(s−t) = hn−s =
∑

i+j=s,
s−t < i ≤ min(s,n−t)

max(0,s−(n−t)) ≤ j < t,

−hn−t−iσt−j. (6.4)

Let i′ = s − t + i. Then n − t − i = n − s − i′, j = s − i = t − i′ and i′ ∈ η,

where η = {i′|0 < i′ ≤ min(t − max(0, s − (n − t)), min(s, n − t) − (s − t)) =

min(t, n− s)}. When s = n− 1, (6.4) simplifies to

h1 = σ0h1 = −h0σ1 = −σ1, (6.5a)

102

6.2 The GNI and the Relation xdeg(σ(x))σ(x−1)h(x) = xn − 1

Similarly, for t ≤ s < n− 1,

hn−s =
∑

i+j=s,
s−t < i ≤ min(s,n−t)

max(0,s−(n−t)) ≤ j < t,

−hn−t−iσt−j =
∑

i′∈η

−hn−s−i′σi′ . (6.5b)

So each hn−s is a linear function of hn−t−i′ for i′ ∈ η. Since h0 = 1 and h1 = −σ1,

each of the hi’s, 1 ≤ i ≤ n−t, can be expressed as a multivariate polynomial on σj

for 1 ≤ j ≤ t. Substituting (6.5) into the left hand side of the last t equations

in (6.3) yields t non-linear constraints on σt, σt−1, . . . , σ1, denoted as F . Each

monomial in these non-linear constraints has binary coefficient.

The equations in F are a group of multivariate polynomial equations. There

are t variables (i.e. unknowns) σt, σt−1, . . . , σ1 and t equations in F . Since the t

zeros of any valid σ(x) are distinct elements in G, there are
(

n
t

)
solutions for

the unknowns. The left hand side of the equations in F form a zero dimensional

multivariate polynomial system. This system F can be solved by reducing it into a

triangular form by a GB approach, where t reduced basis elements can be obtained

assuming the ordering σ1 > σ2 > . . . > σt. We express F in the triangular form

with t reduced basis elements as the LHS of the following equations.

ft−1(σt, σt−1, . . . , σ1) = 0

ft−2(σt, σt−1, . . . , σ2) = 0

...

f1(σt, σt−1) = 0

f0(σt) = 0. (6.6)

The computation complexity of the base elements is exponential. But they only

need to be computed once in advance. The monomials in the elements also have

binary coefficients.

103

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

Example 6.1 Let q = 8, n = 7, deg(σ(x)) = 3 and deg(h(x)) = 4. Assume α is

the primitive element in GF(8). Here G = {1, α, α2, . . . , α6} and x3σ(x−1)h(x) =

x7 − 1. From (6.3)

σ1 + h1 = 0

σ2 + σ1h1 + h2 = 0

σ3 + σ2h1 + σ1h2 + h3 = 0

σ3h1 + σ2h2 + σ1h3 + h4 = 0

σ3h2 + σ2h3 + σ1h4 = 0

σ3h3 + σ2h4 = 0

σ3h4 + 1 = 0. (6.7)

We only want to solve σ(x). So we eliminate the coefficients of h(x) from (6.7)

using (6.5) and obtained the following equations.

σ5
1 + σ1σ

2
2 + σ2

1σ3 = 0

σ4
1σ2 + σ3

1σ3 + σ2
1σ

2
2 + σ3

2 + σ2
3 = 0

σ4
1σ3 + σ2

1σ2σ3 + σ2
2σ3 + 1 = 0. (6.8)

The following equations are from the reduced GB for the LHS of (6.8)1.

f2(σ3, σ2, σ1) = σ1 + σ3
2σ

3
3 + σ5

3 = 0

f1(σ3, σ2) = σ5
2 + σ4

2σ
3
3 + σ3

2σ
6
3 + σ2σ

5
3 = 0

f0(σ3) = σ7
3 + 1 = 0 (6.9)

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

Although it is shown in [34] that decoding a restricted class of RS codes up

to n− k − 1 is NP-hard, correcting high rate RS codes up to n− k − 1 errors is

still feasible. High rate codes are more interested than low rate RS codes in data

1computed by MAPLE.

104

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

storage and wireless communication systems. The equations in the triangular

form of F can be used to decode an (n, k) RS codes with up to n− k − 1 errors.

In this section, we develop hard decision decoding algorithms for (n, n − 3)

and (n, n − 4) RS codes by using the equations in the triangular form of F
and equations in the GNI. We show these algorithms are advantageous in

decoding complexity or error-correction capability when compared with the

classical decoding algorithms and the GSA. These decoding algorithms can be

generalized to decode an (n, k) RS code with up to bn−k
2
c+ 1 errors.

6.3.1 Outline of the Decoding Algorithm and List Size

In the description of the outline of the decoding algorithms for (n, n − 3)

and (n, n − 4) RS codes, Lemma 5.2 can serve as a criteria to terminate the

decoding process after Step 1 as well as to rule out some plausible error locator

polynomials obtained in Step 2 for (n, n−4) RS codes. This is because Lemma 5.2

implies two things. First, there is no codeword c such that d(c, r) < n−k+1−l′, if

a valid error locator polynomial of degree l′ is identified. Second, if an error locator

polynomial σ(x) with associated error location set W1 is valid, another error

locator polynomial σ′(x) with associated error location set W2 and |W1| < |W2|
should satisfy |W1∪W2| ≥ n−k +1. Otherwise, σ′(x) is a plausible error locator

polynomial.

Both decoding algorithms consist of three steps. The classical decoding

algorithm is employed to find the possible error locator polynomial with t ≤ bn−k
2
c

errors in Step 1, if there is. In Step 2, since n− k − 1 = bn−k
2
c+ 1 for (n, n− 3)

and (n, n − 4) RS codes, we look for error locator polynomials for bn−k
2
c + 1

errors. The algorithm terminates if an error locator polynomial with degree 1 is

found in Step 1 according to Lemma 5.2 because n − k − 1 < (n − k + 1) − 1.

105

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

Otherwise we make use of the equations in the triangular form of F to solve for

the possible error locator polynomials for n − k − 1 errors. For (n, n − 4) RS

codes, if an error locator polynomial σ(x) with degree 2 and error location set W1

is found in Step 1, error locator polynomials with error location set W2 such that

|W1 + W2| < n− k + 1 may be found in Step 2. These error locator polynomials

are plausible according to Lemma 5.2 and thus should be ruled out. In Step 3,

the error values are computed by Forney’s algorithm for each valid error locator

polynomial obtained in the previous steps and subtracted from r.

Since the decoding radius is larger than bn−k
2
c, there may be more than one

valid error locator polynomials. Hence, the decoding algorithms are list-type.

Since the list size varies with different syndrome sequences, it is difficult to

calculate the list size for all cases. However, a method to estimate the average

list size is proposed in [56] for a bounded distance decoder. For an (n, k) RS code

over GF(q), the average number of noncausal codewords in a Hamming sphere

with radius t ≤ n− k − 1 can be estimated as

L̄(t) =
1

qn−k

t∑
i=0

(
n

i

)
(q − 1)i.

It is shown that this estimation is quite accurate in [56]. So, assume t̄ is the

number of errors occur in r, the average list size in our case can be estimated

as L̄(t) + p(t̄ ≤ t).

6.3.2 Decoding (n, n− 3) RS Codes with up to 2 Errors

For an (n, n− 3) RS code, the classical decoding algorithm can correct one error

only. The GSA can decoding up to 2 errors. The complexity of the GSA with

Koetter’s interpolation algorithm is O(r4n2), where r is the multiplicity for each

interpolation point in the GSA [55].

For an (n, n−3) RS codes, up to n−k−1 = 2 errors can be corrected by the

106

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

algorithm outlined in subsection 6.3.1. We give the details for finding the valid

error locator polynomials with degree 2 as follows. Let σ(x) = σ2x
2 + σ1x + 1,

the underlying field have cardinality q and L = q−1
|G| = q−1

n
. If there is a solution

for σ(x) with error location set W1 = {w1, w2}, σ2 = αw1 × αw2 ∈ G. Let the

syndromes be S1, S2, S3. From (6.2), S1σ2 + S2σ1 + S3 = 0. We consider the

following four cases.

If S2 = 0 and S1 = 0, it cannot has two errors and decoding fails. Since

e(x)|x=α = e(α) = S1 = 0 and e(x)|x=α2 = e(α2) = S2 = 0, e is a codeword of

a RS codes with zeros α and α2 in this case. Assume i errors occur in r with

probability pi. The probability of decoding failure in this case is
∑n

i=3 Aipi where

Ai are the number of i-weight codewords in an (n, n − 2) RS codes, which is

available from the weight distribution of RS codes [91].

If S2 = 0 and S1 6= 0, σ2 = −S3

S1
. Since monomials in f1(σ2, σ1) have unit

coefficients and σn
2 = 1, f1(σ2, σ1) =

∑q
i=0

∑n
j=0 ai,jσ

j
2σ

i
1 = 0 where ai,j ∈ GF(2).

Substituting σ2 = −S3

S1
into

∑n
j=0 ai,jσ

j
2 requires at most n multiplications for

each i. Solving f1(σ2, σ1) = 0 requires at most q2 multiplications since σ1 ∈
GF(q). The over all complexity in number of multiplications is at most O(qn+q2)

which is O((L2 + L)n2).

If S2 6= 0 and S1 6= 0, σ1 = −S1

S2
(σ2 + S3

S1
). Computing all the σj

1 for 1 ≤
j ≤ q at most requires q(q − 1)/2 + q − 1 multiplications. Substitute σj

1 into

f1(σ2, σ1) =
∑n

j=0

∑q
i=0 ai,jσ

i
1σ

j
2 = 0 and solve for σ2 from the resultant equation.

This requires at most n2 multiplications. Back substituting solutions for σ2 to

σ1 = −S1

S2
(σ2 + S3

S1
), we have the corresponding σ1. The over all complexity is at

most O((L2

2
+ 1)n2).

If S2 6= 0 and S1 = 0, σ1 = −S3

S2
. Computing

∑q
i=0 ai,jσ

i
1 requires at most q

multiplications for each 0 ≤ j ≤ n. Solving for σ2 from the resultant f1(σ2, σ1) =

0 needs at most n2 multiplications. The overall complexity is at mostO((L+1)n2)

107

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

in this case.

The decoding complexity is upper bounded by O((L + L2)n2). Here, we

assume f1(σ2, σ1) = 0 dense which means all the monomials σi
1σ

j
2 for 0 ≤ i ≤ q−2

and 0 ≤ j ≤ n − 1 have unit coefficients. The real computation complexity

may be far less than this bound, because f1(σ2, σ1) may not be dense as shown

in Example 6.2. At least, this algorithm achieves the same error-correction

capability and less complexity for (n, n − 3) RS codes compared with the GSA

when L + L2 < r4.

Example 6.2 Let a (7,4) RS codes over GF(8) have zeros α, α2, α3, where α is

the primitive element in GF(8). Assume a received vector r = (0, 1, 0, 0, 0, α4, 0).

The syndrome sequence of this received vector is (α5, α4, α6). First let t ≤ 1. The

BMA cannot find any solution for error locator polynomial. Then let t = 2 and

σ(x) = σ2x
2 + σ1x + 1. By (6.2), α6 + α4σ1 + α5σ2 = 0 and rearranging, we have

σ1 = ασ2 + α2. (6.10)

The triangular form basis for the orthogonal relation are two polynomial

equations.

f1(σ2, σ1) = σ3
1 + σ2

1σ
4
2 + σ5

2 = 0 (6.11)

f0(σ2) = σ7
2 + 1 = 0. (6.12)

Since the solutions for (6.12) are all the nonzero elements in GF(8), we only need

to solve (6.11). Substitute (6.10) into (6.11),

α2σ6
2 + σ5

2 + α4σ4
2 + α3σ3

2 + α4σ2
2 + α5σ2 + α6 = 0.

The roots of this univariate equation in the indeterminate σ2 are α3 and α6. The

corresponding solution σ1 are α and α6 respectively. So there are two solutions

for the error locator polynomial,

σ(x) = α3x2 + αx + 1

108

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

and

σ(x) = α6x2 + αx + 1.

The error locations are (0, 3) and (1, 5), respectively. The corresponding error

values are (α, α6) and (1, α4). Hence this received vector is decoded as two

candidate codewords c1 = (α, 1, 0, α6, 0, α4, 0) and c2 = (0, 0, 0, 0, 0, 0, 0).

The method can be applied to decode (n, k) RS codes with up to t =

bn−k
2
c+1 = n−k+1

2
errors if n−k is odd. From (6.2), there are n−k−n−k+1

2
= n−k−1

2

linear equations for σi, 1 ≤ i ≤ t. All the σi can be expressed as linear

functions of σt. One of these equations only involves σt, σt−1. Combining this

linear equation with f1(σt, σt−1) = 0, we can find the solutions for (σt, σt−1).

Back substituting each solution for (σt, σt−1) into the linear equations gives the

corresponding candidate σ(x). The validity of these σ(x) can be checked by

factorizing each resulting σ(x), which requires at most qtn = Ltn2 multiplications.

The complexity is thus O((L2 + L + Lt)n2).

6.3.3 Decoding (n, n− 4) RS Codes with up to 3 Errors

When n ≥ 9, both the BMA and the GSA can decoding (n, n − 4) codes with

at most 2 errors with complexity O(n2) and O(r4n2) respectively. The algorithm

outlined in subsection 6.3.1 can correct an (n, n−4) RS codes with up to 3 errors

with complexityO((L2+L)n3). When t ≤ 2, the possible error locator polynomial

can be found by classical decoding algorithm. When t = 3, the detailed decoding

algorithm is as follows.

Let the syndromes for r be S1,S2, S3, S4 and the error locator polynomial

be σ(x) = σ3x
3 + σ2x

2 + σ1x + 1. In this case, σ3 ∈ G and σ2, σ1 ∈ GF(q). From

(6.2), S4 + S3σ1 + S2σ2 + S1σ3 = 0.

109

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

If S3 6= 0,

σ1 = −S1σ3 + S2σ2 + S4

S3

. (6.13)

The equation f1(σ3, σ2) = 0 can be written as

q∑
i=0

n∑
j=0

ai,jσ
i
3σ

i
2 = 0, where ai,j ∈ GF(2). (6.14)

We substitute all possible σ3 ∈ G into (6.14) and solve for σ2 from the resultant

univariate polynomial equation. This requires n(q + 1) + q2 multiplications at

most. Then σ1 can be solved from (6.13). The valid σ(x) should be products of

distinct linear factors and checking the σ(x) obtained requires nq × 3n = 3Ln3

multiplications at most. The overall complexity is at most O(n(n(q + 1) + q2) +

3Ln3) in terms of multiplications, which is O((L2 + 4L)n3).

If S3 = 0,

S1σ3 + S2σ2 + S4 = 0. (6.15)

the possible solution for (σ3, σ2) can be found as in the previous case. Since

the linear constraint in (6.15) is for σ3 and σ2, there are at most q solutions for

(σ3, σ2). However, since σ1 is not involved in (6.15), each element in GF(q) may

be a solution for σ1. Hence, there are at most q2 possible solutions for σ(x) and

their validity are checked with 3q2n multiplications. The overall complexity is at

most O(n(n(q + 1) + q2) + 3q2n) which is O((4L2 + L)n3).

Hence, the decoding complexity of an (n, n − 4) RS code is upper bounded

by O((4L2 + L)n3).

The strategy described above can be applied to any (n, n − 4) RS codes.

Example 6.3 illustrates the algorithm as describe above. For simplicity, we show

the decoding of a (7, 3) RS code over GF(8).

Example 6.3 Let C be a (7, 3) RS codes over GF(8) and with zeros α, α2, α3, α4.

A noisy received vector of C is r = (0, α, 0, α3, 1, 0, 0). The corresponding

110

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

syndrome sequence is α5, α6, α4, 1. By the BMA, an error locator polynomial

α3x2 + x + 1 for two errors is found and the error locations are (0, 2). We

next assume there are three errors in r. Let the error locator polynomial be

σ3x
3 + σ2x

2 + σ1x + 1. From (6.2),

σ1 = α2σ2 + ασ3 + α3. (6.16)

From Example 6.1, f0(σ3) = σ7
3 + 1 = 0 and all the nonzero elements in GF(8)

are solutions for σ3. Substitute each σ3 in f1(σ3, σ2) = σ5
2 + σ4

2σ
3
3 + σ3

2σ
6
3 + σ2σ

5
3

and solve for σ2. Then solutions for σ1 is obtained by (6.16) from the solutions

of (σ3, σ2). The results is as shown in the table follows.

Table 6.1: Results for decoding r = (0, α, 0, α3, 1, 0, 0).

σ3 σ2 σ1 valid (σ3, σ2, σ1)

1 (0, 1, α, α2, α4) (1, α6, α, α5, α2) (1, 0, 1), (1, α, α)

α (0, 1, α3, α5, α6) (α5, α3, 0, α4, α6) (α, 0, α5), (α, α3, 0)

α2 (0, 1, α, α3, α6) (0, α2, α3, α5, α) –

α3 (0, α2, α3, α4, α6) (α6, α3, α, 0, α5) (α3, α6, α5)

α4 (0, 1, α2, α5, α6) (α2, 0, α, α6, α4) –

α5 (0, α, α2, α3, α5) (α4, α6, 0, 1, α5) (α5, 0, α4)

α6 (0, α, α4, α5, α6) (α, 1, α5, α3, 0) (α6, α5, α3)

In the table, the entry “valid (σ3, σ2, σ1)” means the corresponding σ(x) is

products of distinct linear factors over GF(8). From the table, we can see that we

have 7 solutions for error locator polynomials of degree 3 and their corresponding

error locations are (3, 5, 6), (0, 2, 5), (1, 3, 4), (0, 2, 6), (0, 1, 2), (0, 3, 2), (0, 2, 4).

But some of the error location sets do not satisfy Lemma 5.2, such as (0, 1, 2)

and (0, 3, 2). Actually, the error locator polynomials, corresponding to the error

location sets (0, 2), (0, 2, 5), (0, 2, 6), (0, 1, 2), (0, 3, 2), (0, 2, 4), decode the received

111

6.3 Decoding (n, n− 3) and (n, n− 4) RS Codes

vector to the same codeword c = (α3, α, 1, α3, 1, 0, 0). Hence, only three error

locator polynomials, α2x2 + x + 1, x3 + x + 1, αx3 + α5x + 1, correct r to three

different codewords, (α3, α, 1, α3, 1, 0, 0), (0, α, 0, 1, 1, α, α3) and (0, 0, 0, 0, 0, 0, 0),

respectively.

This strategy can also be used to decode (n, k) RS codes with up to t = n−k
2

+

1 errors when n−k is even. From (6.2), there are n−k− n−k
2
−1 = n−k

2
−1 linear

equations for σi. All σi can be expressed as linear combination of σt and σt−1.

One of these linear equations only involves σt, σt−1, σt−2. Combining these linear

equations and f1(σt, σt−1) = 0, we can solve for σ(x) with complexity at most

O(((t + 1)L2 + L)n3) in terms of multiplications.

6.3.4 Combining with Erasures

It is possible that some positions in the received vector are identified as erasures.

Given an (n, k) RS codes, when the number of erasures s ≤ n − k − 1,

bn−k−1−s
2

c errors can be corrected by classical decoding algorithm and bn − s −
√

(n− s)(k − 1)c errors can be corrected by GS algorithm. Making use of the

triangular form of F , up to bn−k−1−s
2

c+ 1 errors can be corrected.

Let ψ(x) be the erasure locator polynomial, whose inverse zeros indicates the

erasure positions. Let σ′(x) = ψ(x)σ(x) be the modified error locator polynomial.

Since the coefficients of σ′(x) instead of σ(x) are the unknowns in the basis of F ,

some process is required to solve for the coefficients of σ(x). Since ψ(x) is known,

each σ′i, for 1 ≤ i ≤ s + t, can be represented as linear functions of σj, 1 ≤ j ≤ t.

Only the first t σ′i are independent and σj can be expressed as the linear function

of these first t σ′i. Let this relation be

σj = uj(σ
′
1, σ

′
1, . . . , σ

′
t). (6.17)

Assume the syndrome sequence is S1, S2, . . . , Sn−k. The erasure polynomial

112

6.4 Decoding IRS Codes

modified the syndrome sequence to S ′1, S
′
2, . . . , S

′
n−k−s by S ′j =

∑s+1
i=1 Siψs+j−i,

1 ≤ j ≤ n − k − s. This modified syndrome sequence and coefficients

of σ(x) satisfy (6.1). After substituting (6.17) to this equations, linear

relations for σ′1, σ
′
2, . . . , σ

′
t similar to (6.2) can be derived. After solving

for the σ′1, . . . , σ
′
2t−(n−k−s) from the basis of F , valid σ′1, σ

′
2, . . . , σ

′
t and

valid σ1, σ2, . . . , σt can be found.

6.4 Decoding IRS Codes

Let C be an (n, k) RS code over GF(q) with zeros α, α2, . . . , αn−k. An r′×n array

can be constructed by arranging one codeword of C in each row of this array.

All such arrays are called IRS code. It is assumed that an array is transmitted

column by column in a burst error channel and that a burst error vector has

length r′. It is also assumed all the error values are independent. IRS codes can

be used to combat the burst errors which occur frequently in storage channel and

wireless fading channels. In [8], it is shown an r′ × n IRS code, where row codes

are (n, k) RS codes over GF(q), can correct t ≤ b (n−k)r′
r′+1

c burst errors with high

probability by simultaneous polynomial reconstruction when r′ ≥ t
n−k−t

. The

probability of correcting t burst errors is 1− t
q
.

Since all the row codes in an IRS code share the same error locator

polynomial, the IRS code can also be decoded via error locator polynomial.

Let ci ∈ C and r′ ≥ 1. A code array for an IRS code can be C = (cT
1 , cT

2 , . . . , cT
r)T .

Assume t ≤ b (n−k)r′
r′+1

c burst errors occur. Let the error vector in the ith row

be (ei,0, ei,1, . . . , ei,n−1) for 1 ≤ i ≤ r′. The jth syndrome for the ith row code is

113

6.4 Decoding IRS Codes

Si,j =
∑n−1

v=0 ei,vα
vj. Let

St =

S1,1 S1,2 . . . S1,t

...
...

...
...

S1,n−k−1−t S1,n−k−t . . . S1,n−k−1

...
...

...
...

Sr′,1 Sr′,2 . . . Sr′,t

...
...

...
...

Sr′,n−k−1−t Sr′,n−k−t . . . Sr′,n−k−1

.

By the (6.2),

St

σt

σt−1

...

σ1

=

S1,t+1

...

S1,n−k

...

Sr′,t+1

...

Sr′,n−k

(6.18)

When t ≤ bn−k
2
c, St is full rank. A unique solution for the error locator

polynomial can be found from (6.18). When bn−k
2
c < t ≤ b (n−k)r′

r′+1
c, St may

not be full rank. Since each entry in St is linear combination of the error values,

the rank of St depends on the error values. All the error values are random

variables and the Lemma 6.1 shows the probability of St being full rank is at

least 1− t
q
.

Lemma 6.1 The matrix St is full rank with probability at least 1− t
q
.

Proof: Let S̄t be any t× t submatrix of St. The matrix St is full rank if S̄t is

full rank. Let the rows in St is indexed by integers 1, 2, . . . , r′(n−k− t). Let B be

the set of indexes of rows in S̄t. Then Si,j is in S̄t for any i ∈ B and 0 ≤ j ≤ n−1.

114

6.5 Decoding Codes of Length 7

Since Si,j is a linear combination of the entries in ei, the determinant det(S̄t) is

a non-trivial multivariate polynomial of ei,j for i ∈ B and 0 ≤ j ≤ n − 1. The

total degree of this polynomial is t. Since ei,j are random variables over GF(q),

by [77], the probability of this polynomial equal to zero is at most t
q
. Hence, St

is full rank with probability at least 1− t
q
.

From Lemma 6.1, the probability of successful decoding t burst errors is

1− t
q
. When the rank of St is less than t, it is still possible to decode the received

array by making use of (6.18) and the equations in the triangular form of F . Due

to complexity, we only consider the cases when rank of St are t − 1 and t − 2.

If rank(St) = t − 1, all the σi, 1 ≤ i ≤ t, can be expressed as linear functions

of σt from (6.18). This is similar as decoding an (n, k) RS codes up to bn−k
2
c+ 1

errors when n−k is odd and it has the same complexity. If rank(St) = t−2, it is

similar as decoding an (n, k) RS codes up to bn−k
2
c+ 1 errors when n− k is even

and it has the same complexity. Hence, the decoding failure is with probability

at most t−2
q

. When cardinality of noise is small, this improvement is significant.

Hence, this probabilistic decoding algorithm can correct up to n − k − 1 burst

errors with probability at least 1− t−2
q

if there are n− k− 1 rows in an IRS code

array. Since k < n and r′ ≥ t
n−k−t

, t ≤ b (n−k)r′
r′+1

c ≤ n− k − 1.

6.5 Decoding Codes of Length 7

In this section, decoding RS codes of length 7 over GF(8) is considered. Since

these short RS codes are applied in high speed communications and the real-time

communications over wireless channel [87, 88], it is interesting to consider these

short codes with mediate and high rate.

The decoding algorithm is based on the decomposition of the conjugate

syndrome sequence of S1, S2, S4. Before we present the algorithm for this class of

115

6.5 Decoding Codes of Length 7

RS codes, a method for fining the decomposition of these syndromes is needed.

6.5.1 Decomposition of S1, S2, S4 and Decoding (7, 3) RS

Codes over GF(8)

Assume a received vector r = c + e, where c is a codeword of an (n, k) RS code

over GF(2m) and the error vector e = (e0, e1, . . . , en−1). Assume the syndromes

Sj =
∑n−1

i=0 riα
ij, where 1 ≤ j ≤ n−k and ord(α) = n, are known. The finite field

GF(2m) is isomorphic to the residue class GF(2)[x]/p(x), where p(x) is a primitive

polynomial in GF(2) and deg(p(x)) = m. Then ei ∈ GF(2m) can be represented

by its binary image (ei,0, ei,1, . . . , ei,m−1) ∈ GF(2)m or ei =
∑m−1

u=0 ei,uα
u. Let

S
(u)
j =

∑n−1
i=0 ei,uα

ij. The syndromes of r can be decomposed as

Sj =
n−1∑
i=0

riα
ij =

n−1∑
i=0

ciα
ij + eiα

ij =
n−1∑
i=0

m−1∑
u=0

ei,uα
uαij

=
m−1∑
u=0

αu

n−1∑
i=0

ei,uα
ij =

m−1∑
u=0

αuS
(u)
j . (6.19)

The decomposition of S1, S2, S4, . . . , S2m−1 can be obtained by Theorem 6.2.

Theorem 6.2 Given the syndromes S1, S2, S4, . . . , S2m−1 for a received word r ∈
GF(2m)n, their decomposition can be obtained with O(m2) multiplications.

Proof: Recall that if x, y ∈ GF(pm) and p is a prime integer, (x + y)pl
=

xpl
+ ypl

[91] and if x ∈ GF(2) and y ∈ GF(2m), (xy)l = xyl for l ∈ Z+. From

(6.19) and j = 2l′ for l′ ∈ [0,m− 1], we have

S2l

j = (
m−1∑
u=0

αu

n−1∑
i=0

ei,uα
ij)2l

=
m−1∑
u=0

αu2l
n−1∑
i=0

ei,uα
ij2l

=
m−1∑
u=0

αu2l
n−1∑
i=0

S
(u)

j2l (mod 2m−1)
=

m−1∑
u=0

αu2l
n−1∑
i=0

S
(u)

2(l+l′) (mod m) . (6.20)

Since S2m

j = Sj, there are m equations from (6.20) for all l ∈ [0,m − 1] and

given j. Among these m equations, there is one and only one linear equation

116

6.5 Decoding Codes of Length 7

involving S
(u)

2l′ for each u ∈ [0,m − 1], given l′ ∈ [0,m − 1]. Hence, there are m2

equations from (6.20). Among them, m are linear equations involving S
(u)

2l for

given l and u. Denoting 〈l − l′〉 = l − l′ (mod m), these m equations are as

follows.

S2l

1 =
m−1∑
u=0

αu2l

S
(u)

2l

S2〈l−1〉
2 =

m−1∑
u=0

αu2〈l−1〉
S

(u)

2l

S2〈l−2〉
22 =

m−1∑
u=0

αu2〈l−2〉
S

(u)

2l

...

S2〈l−(m−1)〉
2m−1 =

m−1∑
u=0

αu2〈l−(m−1)〉
S

(u)

2l . (6.21)

These equations in matrix form are

S2l

1

S2〈l−2〉
2

...

S
〈l−(m−1)〉
2m−1

=

1 α2l · · · α(m−1)2l

1 α2〈l−1〉 · · · α(m−1)2〈l−1〉

...
...

. . .
...

1 α2〈l−(m−1)〉 · · · α(m−1)2〈l−(m−1)〉

S2l,0

S2l,1

...

S2l,m−1

= A×

S2l,0

S2l,1

...

S2l,m−1

, (6.22)

where

A =

1 α2l · · · α(m−1)2l

1 α2〈l−1〉 · · · α(m−1)2〈l−1〉

...
...

. . .
...

1 α2〈l−(m−1)〉 · · · α(m−1)2〈l−(m−1)〉

.

117

6.5 Decoding Codes of Length 7

Since 0 ≤ l ≤ m − 1, α2l
, α2〈l−1〉

, . . . , α2〈l−(m−1)〉
are distinct nonzero elements in

GF(2m), the Vandermonde matrix A is invertible. So the decomposition of the

syndromes S1, S2, S4, . . . , S2m−1 is decided by

S2l,0

S2l,1

...

S2l,m−1

= A−1 ×

S2l

1

S2〈l−2〉
2

...

S
〈l−(m−1)〉
2m−1

, for 0 ≤ l ≤ m− 1. (6.23)

It is sufficient to solve for S1,0, S1,1, . . . , S1,m−1 to find the decomposition because

S
(u)

2l =
n−1∑
i=0

ei,uα
i2l

= (
n−1∑
i=0

ei,uα
i)2l

= (S
(u)
1)2l

, for 0 ≤ l ≤ m− 1.

Thus, the m2 multiplications over GF(2m) in computing S1,0, S1,1, . . . , S1,m−1

is the major computation required since the matrix A−1 can be computed in

advance.

We next consider decoding (7, 3) RS codes over GF(23) with up to 3 errors

to show the application of this decomposition. Let the reciprocals of the zeros

of a polynomial σ(u)(x) =
∑tu

i=1 σ
(u)
i xi + 1 indicate the positions of the nonzero

coordinates in (e0,u, e1,u, . . . , en−1,u). Since the (e0,u, e1,u, . . . , en−1,u) is binary, S
(u)
j

for 1 ≤ j ≤ n − k and σ(u)(x) satisfies the GNI and σ
(u)
1 = S

(u)
1 . For example,

when tu = 3, according to the GNI,

S
(u)
1 = σ

(u)
1

S
(u)
2 = (σ

(u)
1)2

S
(u)
3 = σ

(u)
1 S

(u)
2 + σ

(u)
2 S

(u)
1 + σ

(u)
3 = (S

(u)
1)3 + σ

(u)
2 S

(u)
1 + σ

(u)
3

S
(u)
4 = (σ

(u)
1)4 (6.24)

For t = 1, 2, the received vector of the (7, 3) RS code can be decoded by the

classical decoding algorithms. For t = 3, we make use of the above decomposition.

118

6.5 Decoding Codes of Length 7

For each u, there are 4 possible cases for (e0,u, e1,u, . . . , en−1,u), which are tu =

0, 1, 2, 3. If tu = 0, S
(u)
1 = S

(u)
2 = S

(u)
3 = S

(u)
4 = 0. If tu = 1, from (6.24),

S
(u)
3 = (S

(u)
1)3 since σ

(u)
2 = σ

(u)
3 = 0. If tu = 2, S

(u)
3 = (S

(u)
1)3 + σ

(u)
2 S

(u)
1 .

Since σ
(u)
1 is known, the possible σ

(u)
2 can be solved from f1(σ

(u)
1 , σ

(u)
2) = 0. If

tu = 3, σ(u)(x) = σ(x) and σ1 = S
(u)
1 . Then S4 = S3σ1 + S2σ2 + S1σ3 =

S3S
(u)
1 + S2σ2 + S1σ3. If S1 6= 0,

σ3 =
S4 + S3S

(u)
1 + S2σ2

S1

. (6.25)

substituting (6.25) into f1(σ2, σ3) = 0, the σ3 can be solved. If S1 = 0, then σ2 can

be solve directly and substitute into f1(σ2, σ3) = 0 to solve for σ3. For 0 ≤ u ≤ 2,

the errors in (e0,u, e1,u, . . . , en−1,u) share 3 error locations. Then the possible error

location combinations can be constructed. Moreover, For each valid combination

of error locations, S3 =
∑2

i=0 αuS
(u)
3 . This is shown in the example follows.

Example 6.4 Let r = (0, α, α2, 0, 0, α4, 0) be a received vector of a (7, 3) RS code.

The syndromes are S1 = α4, S2 = α5, S3 = α3, S4 = α5. If t = 2, by classical

decoding algorithm, an error locator polynomial is σ(x) = α3x2 + α3x + 1, which

indicates two errors in locations 4 and 6, respectively. The received vector is

decoded as (0, α, α2, 0, α2, α4, α4). If t = 3, the decomposition of (S1, S2, S4) are

(S
(0)
1 , S

(0)
2 , S

(0)
4) = (0, 0, 0), (S

(1)
1 , S

(1)
2 , S

(1)
4) = (α6, α5, α3) and (S

(2)
1 , S

(2)
2 , S

(2)
4) =

(α3, α6, α5). For u = 0, 1, 2, the results are as Table 6.2, 6.3 and 6.4, respectively.

(When tu = 2, f1(σ
(2)
1 , σ

(2)
2) = σ6

1 + σ2σ
4
1 + σ3

2. When tu = 3, f1(σ2, σ3) =

σ5
2 + σ4

2σ
3
3 + σ3

2σ
6
3 + σ2σ

5
3, f2(σ1, σ2, σ3) = σ3 + σ3

2σ
3
3 + σ5

3.) When t = 3,

(3, 4, 6), (2, 5, 6) and (0, 1, 6) are possible error location combinations. However,

by Lemma 5.2, they are plausible since (4, 6) are error position set for t = 2. The

remaining possible error position combinations are as the first column in Table 6.5

and validity of them are checked by comparing the corresponding S3 and the given

true value of S3 = α3. Only one possible error position set, (1, 2, 5), is valid when

t = 3. The corresponding error locator polynomial is x3 + x2 + α5x + α and the

received vector is decoded as (0, 0, 0, 0, 0, 0, 0).

119

6.5 Decoding Codes of Length 7

Table 6.2: Result for u = 0.

t0 S
(0)
3 σ(0)(x) error locations

0 0 - -

1 - - -

2 - - -

3 - - -

Table 6.3: Result for u = 1.

t1 S
(1)
3 σ(1)(x) error locations

0 - - -

1 α4 α6x + 1 6

2 α3 x2 + α6x + 1 3, 4

α2 α2x2 + α6x + 1 0, 2

1 α6x2 + α6x + 1 1, 5

3 - - -

If the code is a (7, 4) cyclic code over GF(8) with zeros α, α2, α4, S3 is not

available. Correcting up to 3 errors is still possible in this case. When t = 1,

the error locator polynomial can be solved from S1, S2. When t = 2, since S3 =

σ1S2 + σ2S1 and S4 = σ1S3 + σ2S2, we have σ2 =
S4+σ2

1S2

σ1S1+S2
. Then the possible

solutions for σ1 and σ2 can be solved from f1(σ2, σ3) = 0. When t = 3, the

decomposition of S1, S2, S4 can be computed and used to solve for σ(u)(x) for

each u. But the checking of the error position combinations is not needed, since

S3 is not known. Hence, all the combinations with 3 error positions are valid

solutions.

120

6.5 Decoding Codes of Length 7

Table 6.4: Result for u = 2.

t2 S
(2)
3 σ(2)(x) error locations

0 - - -

1 α2 α3x + 1 3

2 α5 x2 + α3x + 1 2, 5

α αx2 + α3x + 1 0, 1

1 α3x2 + α3x + 1 4, 6

3 - - -

Table 6.5: Possible error position combinations.

error positions S3 validity

(0, 2, 3) α6 -

(0, 2, 5) α -

(0, 1, 2) 0 -

(1, 3, 5) α2 -

(1, 2, 5) α3
√

(0, 1, 5) 1 -

6.5.2 Decoding RS Codes over GF(8) with Restricted

Error Value

We consider case that the error values are a subset of the RS code symbol

alphabet. This is possible in concatenated coding scheme when the RS code over

GF(q) is the outer code, because the inner code may introduce error symbols only

in a subset of GF(q) due to the error propagation. With this limited error value

set, more errors can be corrected.

121

6.5 Decoding Codes of Length 7

If β ∈ GF(q) and q = pm, the trace of this element over GF(p) is

defined as Tr(β) =
∑m−1

u=0 βpu
. The trace operation has been shown as a linear

transformation from GF(q) to GF(p) in [45, Theorem 2.23]. The following

Theorem 6.3 also gives a property of the trace operation.

Theorem 6.3 [45, Theorem 2.25] Let β ∈ GF(q) and q = pm. If and only if

β = γp − γ for some γ ∈ GF(q), Tr(β) = 0.

When p = 2, there are only two elements, 0 and 1, in GF(2). Then Tr(γ) is

either 1 or 0. We consider the number of elements in GF(2m) mapped to 0 and

1 by trace operation, respectively.

Theorem 6.4 There are 2m−1 elements in GF(2m) mapped to 0, 1 ∈ GF(2) by

trace operation, respectively.

Proof: According to Theorem 6.3, if Tr(β) = 0, the equation y2 + y = β

must have solutions over GF(2m). If y1 and y2 are solutions of this equation

over GF(2m), y1 6= y2. This is because y1 + y2 = 1 from the coefficients of this

equation. In addition, for β1 6= β2 and Tr(β1) = Tr(β2) = 0, the sets of solutions

for y2 + y = β1 and y2 + y = β2 are disjointed.

On the other hand, y2 + y maps each y ∈ GF(2m) to an element in GF(2m).

Here y2 + y is a surjective mapping and exact 2 elements y1 and y2 satisfying

y1 + y2 = 1 in the domain are mapped to an element in the codomain. Let the

codomain have x elements. We have 2x = 2m and x = 2m−1. This means there

are 2m−1 elements in GF(2m) can be represented as y2 + y for some y ∈ GF(2m).

Hence, 2m−1 elements in GF(2m) are mapped to 0 and the remaining 2m−1 are

mapped to 1 by the trace operation.

Denote the sets S0,S1 ⊂ GF(2m) as the subsets of elements mapped to

0, 1 ∈ GF(2) by the trace operation, respectively. Then |S0| = |S1| = 2m−1.

122

6.5 Decoding Codes of Length 7

We next describe the decoding of the received vector with restricted error

values. Two cases are considered, where the error values are in S0 and S1,

respectively.

ei ∈ S0

When the error value are in S0, (7, 4) and (7, 5) RS code over GF(8) can correct

up to 3 errors by the decomposition of the syndromes S1, S2, S4. The decoding

algorithm makes use of the following Theorem 6.5.

Theorem 6.5 For RS codes over GF(2m), if all the error values are in S0,

S2m−1 =
∑m−2

i=0 S2m−1−i

2i .

Proof: Since S2i =
∑

ej 6=0 ejα
j2i

, we have S2m−1−i

2i =
∑

ej 6=0 e2m−1−i

j αj2m−1
.

From ej ∈ S0, we have Tr(ej) = 0 and

m−2∑
i=0

S2m−1−i

2i =
m−2∑
i=0

∑

ej 6=0

e2m−1−i

j αj2m−1

=
∑

ej 6=0

αj2m−1
m−2∑
i=0

e2m−1−i

j

=
∑

ej 6=0

αj2m−1

(Tr(ej) + ej) =
∑

ej 6=0

ejα
j2m−1

= S2m−1 .

If all ej ∈ S0 and S2i for 0 ≤ i ≤ m− 2 are known, S2m−1 can be computed

according to Theorem 6.5. The syndromes S1, S2 and S3 can be obtained from

the received vector of a (7, 4) RS code over GF(8). Since the error values are in

S0, S4 can be computed from S1, S2. Then the decoding procedure is similar as

decoding a (7, 3) RS code over GF(8) in the previous subsection. But the error

values are in S0.

Further, the syndromes S1and S2 can be obtained from a received vector of

a (7, 5) RS code. If the error values are in S0, S4 can also be obtained. Then the

decoding is similar as decoding (7, 3) cyclic codes over GF(8) with zeros α, α2, α4.

Moreover, when ei ∈ S0 of GF(8), ei,0 = 0 for 0 ≤ i ≤ 7. So, there is no need to

find the possible σ(0)(x).

123

6.5 Decoding Codes of Length 7

ei ∈ S1

Assume r is a received vector of a (7, 3) RS code over GF(8). When the error

values in r are from S1, the complexity of decoding r with up to 3 errors can be

reduced based on the Theorem 6.6 follows.

Theorem 6.6 For RS codes over GF(2m), if all the error values are in S1,

σ2m−1

1 =
∑m−1

i=0 S2m−1−i

2i .

Proof: From S2i =
∑

ej 6=0 ejα
j2i

, we have S2m−1−i

2i =
∑

ej 6=0 e2m−1−i

j αj2m−1
.

Also, σ1 =
∑

ej 6=0 αj. Since ej ∈ S1, we have Tr(ej) = 1 and

m−1∑
i=0

S2m−1−i

2i =
m−1∑
i=0

∑

ej 6=0

e2m−1−i

j αj2m−1

=
∑

ej 6=0

αj2m−1
m−1∑
i=0

e2m−1−i

j

=
∑

ej 6=0

αj2m−1

Tr(ej) =
∑

ej 6=0

αj2m−1

= (
∑

ej 6=0

αj)2m−1

= σ2m−1

1 .

The syndromes S1, S2, S3, S4 are available for a received vector of a (7, 3)

RS code. When t ≤ 2, the possible error locator polynomial can be found by

the equation from (6.1). When t = 3, assume the error locator polynomial is

σ3x
3 + σ2x

2 + σ1x + 1, where σ1 can be computed according to Theorem 6.6.

From (6.1), S4 = σ1S3 + σ2S2 + σ3S1. Combined with f2(σ1, σ2, σ3) = 0, all the

possible σ1 and σ2 can be solved.

For a (7, 4) cyclic code over GF(q) with zeros α, α2, α4, if the error values

are in S1, it is possible correcting up to 3 errors in the received vector. Let

the syndromes for a received vector be S1, S2, S4. If t = 1, σ1 can be computed

according to Theorem 6.6. If t = 2, assume the error locator polynomial is

σ2x
2 + σ1x + 1. From (6.1),

S4 = σ1S3 + σ2S2,

S3 = σ1S2 + σ2S1.

124

6.6 Summary

Then S4 = σ2
1S2 + σ1σ2S1 + σ2S2. Since σ1 is known, σ2 can be solved. If t = 3,

there are only one equations from (6.1) and there are three unknowns, S3, σ2, σ3,

in this equation. We can solve σ2 from f2(σ1, σ2, σ3) = 0 for each possible σ3.

About 72 × 5 multiplications are involved to solve for all the possible σ2 and σ3.

6.6 Summary

A decoding strategy for RS codes based on the GNI and the orthogonal relation

are proposed in this chapter. It is a list-type decoding method with improved

error-correction capability. For (n, n−3) RS codes, 2 errors can be corrected with

lower complexity than the GSA. For (n, n−4) RS codes, 3 errors can be corrected

when n ≥ 9. The error-correction capability is better than that of the classical

algorithms and the GSA in this case. The algorithm can be applied in decoding

mediate and high rate RS codes, BCH codes, IRS codes and FRS codes. The

application of this technique in decoding cyclic codes over GF(8) with restricted

error values is also studied.

125

Chapter 7

Conclusion and Proposals for

Future Work

In this chapter, we draw the conclusion for the research work conducted in this

thesis. Possible future research topics are also proposed and applications are

suggested.

7.1 Conclusion

In this thesis, we have shown that FRS codes could be constructed from any RS

code with codelength a composite number, which generalizes the construction of

FRS codes in [44]. Instead of studying the syndromes of the row codes in the

resulting code array, we analyze the zeros of the code polynomials of these row

codes. We show that the zeros of these row codes can be obtained by distributing

the zeros of the original RS code. In addition, these row codes are identified as

GRS codes. Also, the syndromes of the row codes can be obtained by distributing

the syndromes of the original RS code. FRS codes have an interleaved structure

due to their construction. They are advantageous in correcting burst errors when

transmitted column by column in burst error channels. Moreover, to detect burst

126

7.1 Conclusion

errors effectively, TFSRS codes and a decoding algorithm based on the GSA are

proposed. We also derive estimations of the probability of successful decoding,

decoder error and decoding failure of our algorithm.

An FRS code can be viewed as an IRS code if the column transformation

is performed before the transmission. Thus each row code can be encoded

independently. However, if these row codes are not encoded via the evaluation

mapping, the output list of the interpolation-based list decoders is a coset of

the most possible candidate messages. So we need retrieve these most possible

candidate messages from the output list of such a decoder. In this thesis, we

interpret the evaluation map as the GFFT of the extended message vectors and

derive a decomposition of the extended generator matrix. We then establish

a relationship between codewords resulting from the generator-matrix-based

encoding, and codewords obtained via the evaluation map. We further derive

from this relationship, a transformation for recovering the generator-matrix-based

coded message under the interpolation-based list decoder. The transformation

matrix can be computed in advance. To retrieve the message data, an average

computational overhead of O(k2) is required for an (n, k) RS code. In addition,

to improve the performance of systems employing RS codes, incorporating the

interpolation-based list decoder in existing systems employing RS codes is obvious

a good choice. But most of these systems encode RS codes by the generator

polynomial. The technique proposed in this thesis can be a way to solve this

problem.

Moreover, we show that FGRS codes can be constructed from GRS codes

and that all the row codes of the resulting FGRS code array can be modified

as GRS codes with the zeros from the same support set. The syndromes of the

row codes in the resulting FGRS code array may not be consecutive. To decode

such FGRS codes, we proposed a method for the synthesis of multisequences with

127

7.1 Conclusion

unknown elements in the middle. Based on this method, we present a decoding

algorithm for FGRS codes. When an FGRS code array is transmitted column by

column in burst error channels, this algorithm can exploit the fact that all the

rows in the code array share the same error pattern. From the construction of

FGRS codes, we can see that folded codes can also been constructed from BCH

codes. The proposed algorithm can be applied to decode the resulting folded

codes.

Further, it is shown by the results of the algebraic list decoding that RS codes

are highly non-perfect codes. Their error-correction capability can be improved

by the list decoding technique. Given a Hamming sphere with radius significant

larger than the classical error-correction capability, there are a few codewords in

this sphere in most of the cases. We expect decoding row codes of an FRS codes

by the list decoding to be advantageous. Especially, when all the row codes in an

FRS code array shared the same error pattern, the decoding of successive rows

can make use of the error locations found in the previous row codes. Hence, the

error-correcting performance can be improved. Based on these, we propose two

list decoding algorithms for RS codes.

First, we present a search-based list decoding algorithm capable of correcting

up to n − k − 1 errors, given an (n, k) RS code. Its error-correction capability

exceeds that of the GSA for a wide range of code parameters, although with

increased decoding complexity. Nevertheless, we have demonstrated that for

short, high rate codes, it is possible that the average complexity of the proposed

search procedure is less than n2 at WERs of practical interests. This algorithm

can be applied to decode FRS code, where the rows of the array are short and high

rate RS codes. An appropriate choice of dimension for this array will thus permit

the proposed algorithm to be applied with reasonable complexity at practical

WERs. Moreover, although we describe our decoding algorithm in the context of

128

7.2 Future Work

RS codes, it is clear that our decoding method is in fact applicable to some GRS

codes and its subfield subcodes which have consecutive syndrome sequences.

Next, we study the list decoding algorithm based on the combination of the

GNI and the GB method. For an (n, k) RS code over GF(q), the GB is for the

equations from the relation of xdeg(σ(x))σ(x−1)h(x) = xn − 1, where σ(x) is the

error locator polynomial and the h(x) can be factorized as products of deg(h(x))

distinct linear factors over GF(q). Moreover, the group of linear equations from

the GNI for a received vector are combined with the equations obtained from

the GB. The solutions give a list of the most possible error locator polynomials

for a received vector. For (n, n − 3) RS codes, 2 errors can be corrected with

lower complexity than that of the GSA. For (n, n− 4) RS codes, 3 errors can be

corrected when n ≥ 9. In this case, the error-correction capability is more than

those of the classical algorithms and the GSA. This method can be applied to

decode FRS/IRS codes with rows codes being mediate and high rate RS codes.

In addition, we apply this method to decode some cyclic codes over GF(8) and

with restricted error values.

7.2 Future Work

The decoding of folded codes in this thesis is only a unidirectional corporation

method. The performance of the folded codes studied in this thesis may be further

improved by using an iterative decoding technique. In this technique, the erasure

information may be used in an iterative fashion.

Codes constructed from expander graphs in [82] are asymptotical good codes.

They can also be encoded and decoded in linear time. In addition, linear time

encodable and decodable NMDS codes based on expander graphs are studied

in [75]. These NMDS codes have RS codes as constituent codes and achieve a

129

7.2 Future Work

good tradeoff between code rate and minimum distance. FRS codes discussed in

this thesis have the same rate as the original RS codes. Also, row codes of an

FRS code are GRS codes. Because of these features, it will be interesting to use

FRS codes as constituent codes in expander codes.

Long burst errors frequently occur in wireless communications due to deep

fading and other interferences in wireless channels. Also, burst errors occur in

the storage channel because of the error propagation or dust and scratches on the

media surface. The folded codes studied in this thesis can effectively correct long

burst errors and therefore can be applied in such systems.

130

Bibliography

[1] A. Ahmed, R. Koetter, and N. R. Shanbhag, “VLSI architectures for
soft-decision decoding of Reed-Solomon codes,” In ICC2004, Chicago, USA,
pp. 2584–2590, 2004.

[2] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth, “Construction of
asymptotically good low-rate error-correcting codes through pseudorandom
graphs,” IEEE Trans. Inform. Theory, vol. 38, pp. 509–516, Mar. 1992.

[3] Marc A. Armand and Jianwen Zhang, “Nearly MDS expander codes with
reduced alphabet size,” submitted to IEEE Trans. Inform. Theory, 2007.

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. 20, pp. 284–287, Mar. 1974.

[5] A. Barg and G. Zemor, “Error exponents of expander codes,” IEEE Trans.
Inf. Theory, vol 48, pp. 1725–1729, Jun. 2002.

[6] Claude Berrou, Alain Glavieux, and Punya Thitimajshima, “Near shannon
limit error-correcting coding and decoding: Turbo-codes,” In Proceedings of
IEEE International Communications Conference, 1993.

[7] Richard. E. Blahut, Algebraic Codes for Data Transmission, Cambridge
University Press, 2003.

[8] D. Bleichenbacher, A. Kiyayias, and M. Yung, “Decoding of interleaved
Reed-Solomon codes over noisy data,” In Proceedings of ICALP 2003,
pp. 97–108, 2003.

[9] Andrew Brown, Lorenz Minder, and Amin Shokrollahi, “Probabilistic
decoding of Interleaved RS-Codes on the Q-ary symmetric channel,” In
ISIT2004, Chicago, USA, pp. 326, 2004.

[10] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inform. Theory, vol. 18,
pp. 170–182, Jan. 1972.

131

Bibliography

[11] Chen, Reed, Helleseth, and Truong, “General principles for the algebraic
decoding of cyclic codes,” IEEE Trans. Inform. Theory, vol. 40,
pp. 1661–1663, Sep. 1994.

[12] Chen, Reed, Helleseth, and Truong, “Use of grobner bases to decode binary
cyclic codes up to the true minimum distance,” IEEE Trans. Inform. Theory,
vol. 40, pp. 1654–1661, Sep. 1994.

[13] Kar Ming Cheng, “More on the decoder error probability for Reed-Solomon
codes,” IEEE Trans. Inform. Theory, vol. 35, pp. 895–900, Jul. 1989.

[14] Michael K. Cheng, Jorge Campello, and Paul H. Siegel, “Soft-decision
Reed-Solomon decoding on partial response channels,” Global
Telecommunications Conference, 2002, vol. 2, pp. 1026–1030.

[15] Sae Young Chung, G. David Forney, Thomas J. Richardson, and Rdiger
Urbanke, “On the design of low-density parity-check codes within 0.0045
db of the shannon limit,” IEEE Communications Letters, vol. 5, pp. 58–60,
Feb. 2001.

[16] M. C. Davey and D. MacKay, “Low-density parity check codes over GF(q),”
IEEE Communications Letters, vol. 2, pp. 165–167, Jun. 1998.

[17] Ivana Djurdjevic, Jun Xu, Khaled Abdel-Ghaffar, and Shu Lin, “A class of
low-density parity-check codes constructed based on Reed-Solomon codes
with two information symbols,” IEEE Communications Letters, vol. 7,
pp. 317–319, Jul. 2003.

[18] M. El-Khamy, R. J. McEliece, and J. Harel, “Performance enhancements for
algebraic soft decision decoding of Reed-Solomon codes,” In International
Symposium on Information Theory, pp. 419–419, 2004.

[19] Mostafa El-Khamy and Robert J. McEliece, “Iterative algebraic soft-decision
list decoding of Reed-Solomon codes,” IEEE Journal on Selected Areas in
Communications, vol. 24, pp. 481–490, Mar. 2006.

[20] P. Elias, “Coding for noisy channels,” IRE Conv. Record part 4, pp. 37–46,
1955.

[21] P. Elias, “Error-correcting codes for list decoding,” IEEE Trans. Inform.
Theory, vol. 37, pp. 5–12, Jan. 1991.

[22] Gui-Liang Feng and Kenneth K. Tzeng, “Decoding cyclic and BCH codes
up to actual minimum distance using nonrecurrent syndrome dependence
relations,” IEEE Trans. Inform. Theory, vol. 37, pp. 1716–1723, Nov. 1991.

132

Bibliography

[23] Gui-Liang Feng and Kenneth K. Tzeng, “A generalization of the
Berlekamp-Massey algorithm for multisequence shift-register synthesis with
applications to decoding cyclic codes ,” IEEE Trans. Inform. Theory, vol. 37,
pp. 1274–1287, Sep. 1991.

[24] J. Fitzgerald and R. F. Lax, “Decoding affine variety codes using Gröbner
Bases,” Designs, Codes and Cryptography, vol. 13, issue 2, pp. 147–158,Feb.
1998.

[25] P. Fitzpatrick, “On the key equation,” IEEE Trans. Inform. Theory, vol 41,
pp. 1290–1302, Sep. 1995.

[26] G. D. Forney, “On decoding bch codes,” IEEE Trans. Inform. Theory,
vol. 11, pp. 549–557, Oct. 1965.

[27] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol 61,
pp. 268–278, 1973.

[28] Jr. G. D. Forney, “Generalized minimum distance decoding,” IEEE Trans.
Inform. Theory, vol. 12, pp. 125–131, Apr. 1966.

[29] Robert G. Gallager, Low-Density Parity-Check coding. Ph.d thesis, 1963,
MIT.

[30] W. J. Gross, F. R. Kschischang, and P. G. Gulak, “Architecture and
implementation of an interpolation processor for soft-decision Reed-Solomon
decoding,” IEEE Trans. on very Large Scale Integration (VLSI) Systems,
vol. 15, pp. 309–318, Mar. 2007.

[31] W. J. Gross, Frank R. Kschischang, Ralf Koetter, and P. Glenn Gulak,
“Applications of algebraic soft-decision decoding of Reed-Solomon codes,”
IEEE Trans. on Comms., vol. 54, pp. 1224–1234, Jul. 2006.

[32] V. Guruswami and P. Indyk, “Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets,” In Proc. 34th
Annu. ACM Symp. Theory of Computing (STOC), Montreal, QC, Canada,
pp. 812–821, May 2002.

[33] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45,
pp. 1757–1767, Sep. 1999.

[34] Venkatesan Guruswami and Alexander Vardy, “Maximum-likelihood
decoding of Reed-Solomon codes is NP-hard,” IEEE Trans. Inform. Theory,
vol. 51, pp. 2249–2256, Jul. 2005.

133

Bibliography

[35] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429–445,
Mar. 1996.

[36] M. Hall Jr. Combinatorial theory. A Wiley-Interscience publication, 1986.

[37] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, 29:147–160, 1950.

[38] C. R. P. Hartmann and K. K. Tzeng, “Generalizations of BCH bound,”
Inform. Contr., vol. 20, pp. 489–498, Jun. 1972.

[39] Jing Jiang and Krishna R. Narayanan, “Iterative soft decision decoding
of Reed Solomon codes based on adaptive parity check matrices,” In
International Symposium on Information Theory, 2005.

[40] Jing Jiang and Krishna R. Narayanan, “Iterative soft-input-soft-output
decoding of Reed-Solomon codes by adapting the parity check matrix,” IEEE
Trans. Inform. Theory, vol. 52 , pp. 3746–3756, Aug. 2006.

[41] Sarah J. Johnson and Steven R. Weller, “Codes for iterative decoding from
partial geometries,” IEEE Trans. on Comms, vol. 52, pp. 236–243, Feb.
2004.

[42] P. Y. Kam. Lecture notes of digital communications. 2004.

[43] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon
codes,” IEEE Trans. Inform. Theory, vol. 46, pp. 809–2825, Nov. 2003.

[44] Victor Y. Krachkovsky, “Reed-Solomon codes for correcting phased error
bursts,” IEEE Trans. Inform. Theory, vol. 49, pp. 2975–2984, Nov. 2003.

[45] Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their
applications. Cambridge University Press, revised edition.

[46] Shu Lin and Daniel J. Costello, Error Control Coding: Fundamentals and
Applications. Pearson Prentice Hall, 2 edition.

[47] Philippe Loustaunau and Eric V. York, On the decoding of cyclic codes
using Gröbner Bases. Applicable Algebra in Engineering, Communication
and Computing, vol. 8, issue 6, pp. 469–483, Dec. 1997.

[48] A. Lubotsky, R. Philips, and P. Sarnak, Ramanujan graphs. Combinatorica,
vol. 8, pp. 261–277, 1988.

[49] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” In International Symposium on Information Theory, pp. 113,
1997.

134

Bibliography

[50] David J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar. 1999.

[51] David J. C. MacKay and Radford M. Neal, “Near shannon limit
performance of Low Density Parity Check codes,” Electronics Letters, vol. 32,
pp. 1645–1646, Aug. 1996.

[52] David J. C. MacKay and Radford M. Neal, Near shannon limit performance
of Low Density Parity Check codes. Electronics Letters, vol. 33, pp. 457–458,
Mar. 1997.

[53] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes.
North-Holland, Amsterdam, 1977.

[54] G. A. Margulis, “Explicit group theoretical constructions of combinatorial
schemes and their applications to the design of expanders and concentrators,”
Probl. Inform. Transm., vol. 24, pp. 39–46, 1988.

[55] R. J. McEliece, “The Guruswam-Sudan decoding algorithm for
Reed-Solomon codes,” report in Caltech, Apr. 2003.

[56] R. J. McEliece, “On the average list size for the Guruswami-Sudan decoder,”
7th. International Symposium on Communication Theory and Applications,
pp. 2–6, 2003.

[57] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding as an
instance of pearls belief propagation algorithm,” IEEE Journal on Selected
Areas in Comm., vol. 16, pp. 140–152, Feb. 1998.

[58] Robert J. McEliece, Finite fields for computer scientists and engineers.
Kluwer Academic Publishers, Boston, 1987.

[59] D. J. Muder, “Minimal trellises for block codes,” IEEE Trans. Inform.
Theory, vol. 34, pp. 1049–1053, Sep. 1988.

[60] R. R. Nielsen, Decoding AG-codes Beyond Half the Minimum Distance. Ph.d
thesis, Danmarks Tekniske Universitet, Aug. 1998.

[61] Henry O’Keeffe and Patrick Fitzpatrick, “Gröbner basis solutions of
constrained interpolation problems,” Linear algebra and its Applications,
vol. 351, pp. 533–551, 2002.

[62] Emmanuela Orsinia and Massimiliano Sala, “Correcting errors and erasures
via the syndrome variety,” Journal of Pure and Applied Algebra, vol. 200,
pp. 191–226, Feb. 2005.

[63] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical
approach,” In Proc. Conf. Nat. Conf. AI, Pittsburgh, PA, pp. 133–136, 1982.

135

Bibliography

[64] J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artif.
Intell., vol. 29, pp. 241–288, Sep. 1986.

[65] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[66] Vishakan Ponnampalam and Branka Vucetic, “Soft decision decoding of
Reed-Solomon codes,” IEEE Trans. on Comms., vol. 50, pp. 5–12, Nov.
2002.

[67] John G. Proakis, Digital Communications, Fourth Edition. McGraw-Hill.

[68] Ramesh Mahendra Pyndiah, “Near-optimum decoding of product codes:
Block turbo codes,” IEEE Trans. on Comms., vol. 46, pp. 1003–1010, Aug.
1998.

[69] N. Ratnakar and R. Koetter, “Exponential error bounds for algebraic
soft-decision decoding of Reed-Solomon codes,” IEEE Trans. Inform.
Theory, vol. 51, pp. 3899–3917, Nov. 2005.

[70] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
SIAM Journal on Applied Mathematics, vol. 4, pp. 300–304, 1960.

[71] T. Richardson and R. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inform. Theory,
vol. 47, pp. 599–618, Feb. 2001.

[72] Thomas J. Richardson, M. Amin Shokrollahi, and Rdiger L. Urbanke,
“Design of capacity-approaching irregular low-density parity-check codes,”
IEEE Trans. Inform. Theory, vol. 47, pp. 619–637, Feb. 2001.

[73] Roth M. Ron, Introduction to coding theory. Cambridge, UK ; New York :
Cambridge University Press, 2006.

[74] Ron M. Roth and Gitit Ruckenstein, “Efficient decoding of Reed-Solomon
codes beyond half the minimum distance,” IEEE Trans. Inform. Theory,
vol. 49, pp. 246–257, Jan. 2000.

[75] Ron M. Roth and Vitaly Skachek, “Improved nearly-MDS expander codes,”
IEEE Trans. Inform. Theory, vol. 52, pp. 3650–3661, Aug. 2006.

[76] Georg Schmidt, Vladimir R. Sidorenko, and Martin Bossert, ”Collaborative
decoding of interleaved Reed-Solomon codes and concatenated code designs,”
Oct. 2006, available at http://arxiv.org/abs/cs/0610074.

136

Bibliography

[77] Jacob T. Schwartz, “Probabilistic algorithms for verification of polynomial
identities (invited),” In EUROSAM ’79: Proceedings of the International
Symposiumon on Symbolic and Algebraic Computation, pp. 200–215,
London, UK, 1979. Springer-Verlag.

[78] Claude E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, vol.27, pp. 379–423 and 623–656, Jul. and Oct.
1948.

[79] S. K. Shin and P. Sweeney, “Soft decision decoding of Reed-Solomon codes
using trellis methods,” Electron. Lett., vol. 14, pp. 303–308, Oct. 1994.

[80] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inform.
Theory, vol. 42, pp. 1710–1722, Nov. 1996.

[81] V. Skachek and R. M. Roth, “Generalized minimum distance iterative
decoding of expander codes,” In Proc. IEEE Information Theory Workshop
(ITW), pp. 245–248, Mar. 2003.

[82] D. A. Spielman, “Linear-time encodable and decodable error-correcting
codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 1723–1731, Nov. 1996.

[83] M. Sudan, “Decoding of Reed Solomon codes beyond the error-correction
bound,” J. Complexity, vol. 13, pp. 180–193, Mar. 1997.

[84] R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE Trans.
Inform. Theory, vol. 27, pp. 533–547, Sep. 1981.

[85] Stephan ten Brink, “Convergence of iterative decoding,” Electronics Letters,
vol. 35, pp. 806–808, May 1999.

[86] Jean-Pierre Tignol, Galois’ Theory of Algebraic Equations. World Scientific
Publishing Company, 2001.

[87] E. Uhlemann, P.-A. Wiberg, T.M. Aulin, and L.R. Rasmussen, “Deadline
dependent coding-a framework for wireless real-time communication,”” In
Real-Time Computing Systems and Applications, 2000. Proceedings. Seventh
International Conference on, pp. 135–142.

[88] E. Uhlemann, P.-A. Wiberg, T.M. Aulin, and L.R. Rasmussen,
“Concatenated hybrid ARQ - a flexible scheme for wireless real-time
communication,” In Real-Time and Embedded Technology and Applications
Symposium, 2002. Proceedings. Eighth IEEE, 2002.

[89] A. Vardy and Yair Be’ery, “Bit-Level Soft-Decision Decoding of
Reed-Solomon codes,” IEEE Trans on Comms, vol. 39, pp. 440–444, Mar.
1991.

137

Bibliography

[90] A. J. Viterbi, “Error bound for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13,
pp. 260–269, Apr. 1967.

[91] Stephen B. Wicker, Error Control Systems for Digital Communication and
Storage. Prentice Hall, 1995.

[92] J. K. Wolf, “Efficient maximum likelihood decoding of linear block codes
using a trellis,” IEEE Trans. Inform. Theory, vol. 24, pp. 76–80, Jan. 1978.

[93] J. M. Wozencraft and B. Reiffen, Sequential Decoding. Cambridge, MA,
MIT Press.

[94] Haitao Xia and J. R. Cruz, “Application of soft-decision Reed-Solomon
decoding to magnetic recording channels,” IEEE Trans. on Magn., vol. 40,
pp. 3419–3430, Sep. 2004.

[95] G. Zemor, “On expander codes,” IEEE Trans. Inform. Theory, vol. 47,
pp. 835–837, Feb. 2001.

[96] Jianwen Zhang and Marc A. Armand. On transformed folded shortened
Reed-Solomon codes for the correction of phased bursts. In The Fifth
International Conference on Information, Communications and Signal
Processing, 2005.

138

List of Publications

Journal Papers (under review)

1. M. A. Armand and J. Zhang, “Nearly MDS expander codes with reduced
alphabet size,” submitted to IEEE Transactions on Information Theory.

Conference Papers (published)

1. J. Zhang and M. Armand, “Synthesis of multi-sequence having unknown
elements in the middle with decoding applications,” in PIMRC2006, Sep.
11-14, Helsinki, Finland.

2. J. Zhang and M. A. Armand, “On transformed folded shortened
Reed-Solomon codes for the correction of phased bursts,” in The Fifth
International Conference on Information, Communications and Signal
Processing, 2005.

139

