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Abstract

Error correcting codes are combinatorial objects, designed to enable reliable trans-

mission of digital data over noisy channels. They are ubiquitously used in communica-

tion, data storage etc. Error correction allows reconstruction of the original data from

received word. The classical decoding algorithms are constrained to output just one

codeword. However, in the late 50’s researchers proposed a relaxed error correction

model for potentially large error rates known as list decoding.

The research presented in this thesis focuses on reducing the computational effort

and enhancing the efficiency of decoding algorithms for several codes from algorithmic

as well as architectural standpoint. The codes in consideration are linear block codes

closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm

and architecture are presented for encoding and decoding RS codes based on evaluation.

The implementation results show that the hardware resources and the total execution

time are significantly reduced as compared to the classical decoder. The evaluation

based encoding and decoding schemes are modified and extended for shortened RS

codes and software implementation shows substantial reduction in memory footprint

at the expense of latency. Hermitian codes can be seen as concatenated RS codes and

are much longer than RS codes over the same alphabet. A fast, novel and efficient

VLSI architecture for Hermitian codes is proposed based on interpolation decoding.

The proposed architecture is proven to have better than Kötter’s decoder for high rate

codes.

The thesis work also explores a method of constructing optimal codes by computing

the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS

codes over several dimensions. The polynomial generators or evaluation polynomials

for subfield-subcodes of GT codes are identified based on which dimension and bound

for the minimum distance are computed. The algebraic structure for the polynomials

evaluating to subfield is used to simplify the list decoding algorithm for BCH codes.

Finally, an efficient and novel approach is proposed for exploiting powerful codes having

complex decoding but simple encoding scheme (comparable to RS codes) for multihop

wireless sensor network (WSN) applications.
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Chapter 1

Introduction

“The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another

point.”

Claude E. Shannon - A Mathematical Theory of Communication

Noise causing data corruption is an inherent part of communication systems. In

everyday life, where one wants to transmit a message or some information from the

sender’s to receiver’s end, noisy communication channels cause message distortion dur-

ing transmission. Hence, a fundamental challenge is to design a strategy which makes

it possible for information to be reliably transmitted over a noisy channel. In order to

ensure reliable communication, Automatic Repeat Query (ARQ) [1] and Forward Error

Correction (FEC) [2] are the two main techniques that are used. ARQ achieves error

free communication by resending the lost or damaged packets until all the packets are

correctly received. The basic advantage is that the error only needs to be detected and

not corrected at the decoder’s end. This simplifies the operations at the receiver’s end.

However, the caveat is that as the Signal to Noise Ratio (SNR) decreases the ARQ

must spend more and more time and power in retransmitting the packets. A poten-

tial solution is the use of FEC, which corrects the packets having a limited number of

errors. This step is computationally heavier at decoder’s end in comparison to using

ARQ scheme and can be quite demanding if the message is long. Another approach is to

combine both schemes in form of Hybrid-ARQ (HARQ) [3] to achieve a communication

strategy that best utilizes the resources and meets the bit error rate (BER) requirement
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of the application.

Error correcting codes are designed to cope with the problem of unreliable commu-

nication. The basic idea is to introduce redundancy in the data before transmitting

so that the original data can be recovered using the redundancy even if part of the

transmitted data (codeword) is in error. Communication is perhaps the most common

application for error correcting codes such as transmitting data over the internet, tele-

phone lines, wireless channels and for satellite broadcasting. Although it is not limited

just to communication, it is also used widely for data storage such as compact disk

players or hard drives where the errors are introduced by scratches, etc [4].

1.1 Historical interlude

The basis of error correcting codes is called coding theory and is closely related to var-

ious disciplines like Mathematics, Engineering and Computer Science. The journey of

coding theory started in 1948 when Claude Shannon published a landmark paper “A

mathematical theory of communication” [5]. He introduced the definition of informa-

tion and also gave a precise real number called channel capacity such that arbitrarily

reliable communication is possible at any rate below the channel capacity. Shannon also

proved the converse result that there exist codes for any rate less than the capacity of

the channel for which one can have reliable communication. These remarkable results

marked the birth of Coding and Information theories. Shortly after Shannon’s work,

Hamming [6] addressed the problem that was causing a job on a computer machinery

to be aborted, with error correction. He defined the Hamming code that can correct

up to one bit error. Since then many mathematicians and engineers are trying to build

and improve upon the numerous coding schemes for a variety of applications. They at-

tempted to achieve the performance promised by Shannon with a reasonable complexity

of implementation.

Shannon modeled the noise probabilistically [5] such that the behavior of the channel

is well known. It also ensured that the probability of occurrence of too many or too

few errors is low. An undesirable effect of this model is its dependency on how well the

noise is modeled. For some cases, it is nearly impossible to model the channel closely

and accurately. Therefore, one solution is to consider a channel as an adversary such

that the noise can be added randomly with the only constraint on the number of errors.
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This channel model was proposed by Hamming [6] and will be used throughout the

thesis.

1.2 Basics of communication

The main building blocks of a communication system are [7]:

1. An information source producing the message to be transmitted;

2. A transmitter operating on the message to produce a codeword that can be sent

through the channel;

3. A channel performing as a medium to transmit the codeword which is carrying

the information needed to be transmitted;

4. A receiver transforming the signal back to the original message;

5. A destination that can be a machine or a person who requires the information;

The problem with this communication system is that the channel is generally noisy

and it adds error while sending the data over the channel which results in the modifi-

cation of the message that has been sent. With all the noise in the channel, whatever

information is transmitted from the source might not be received in the same form at

receiver. Suppose if a binary string “1100” is transmitted, it can be received as “1101”

due to noise. The common structure of a communication system with error correction

blocks is shown in Figure 1.1. It shows all the five components of the communication

system as mentioned above.

Figure 1.1: Communication system

A symbol is defined as an element of finite field. In this thesis, we will assume

that there is a sender who wants to send k message symbols over a channel. The sent
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message is encoded to n symbols (codeword) before passing it to the channel. At the

receiver, we receive n symbols which may not be the same as the transmitted n symbols,

so the decoder tries to recover the original message symbol using the n − k redundant

symbols added during encoding. The main goals of coding theory are the construction

of new codes with simple encoding and decoding schemes and to use them efficiently

for communication, computing, storage etc applications.

Some of the important milestones in algebraic coding theory were the discovery of a

class of multiple error correcting codes known as BCH codes by Hocquenghem [8] and

independently by Bose and Chaudhuri [9] around 1960. Further, the related non-binary

Reed-Solomon (RS) codes were found by Reed and Solomon [10] around 1960 as well.

Then the search started to find the most efficient encoding and decoding schemes for

these codes. Typically, the definition of a code gives the encoding algorithm as well.

The decoding procedure is more challenging from the algorithmic and architectural

perspectives. The list decoding algorithm, which is a relaxation over the traditional

decoding algorithms, outputs either the original message or gives the decoding failure

when the number of errors that occurred is more than the error correction capability

of the code. In this thesis, we focus more on the decoding algorithms as they are more

complex than encoding algorithms and also on some applications of error correction

codes in WSN.

1.3 Decoding problem for error correcting codes

A code is a finite subset of a metrical space such as Hamming space [11]. While trans-

mitting the codeword, the channel causing distortion in the codeword can be modeled

as additive noise, which means that some random element of the space in consideration

gets added to the transmitted codeword. From Figure 1.2, it can be seen that the code

construction can be defined as the sphere packing problem where the dots at the center

(as shown in the figure of the circles) are the codewords [12].

One of the important algorithmic tasks in coding theory is the decoding function

for error correcting codes. Since, the encoding functions are generally easier to perform

the main focus of coding theory has always been the decoding function. A code with no

algebraic structure can only be defined as an exhaustive list of codewords. The decoding

problem will also become much more exhaustive as the received word would need to
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Figure 1.2: Code with minimum distance d

be compared with all the codewords present in the list. This will make the decoding

more difficult with the increasing length of the list of codewords. This is not a practical

nor an optimum solution. In order to obtain codes that allow efficient encoding and

decoding algorithms, coding theorists imposed an algebraic structure on the code. The

codes studied in this thesis are linear codes which means that the codes are linear spaces

which allows the application of linear algebra in the algebraic coding theory. In the case

of linear cyclic codes, we further require that any cyclic shift of a codeword also results

in a codeword [11]. Algebraic geometric codes are obtained by evaluating a space of

functions in a fixed set of points. The construction of these codes involve choosing

the point set for evaluation from an algebraic curve and the codes differ according to

the curve in consideration. The positions in a codeword are associated with the points

on the curve. Because of their algebraic structure, the codes are much more easier to

encode and decode than the non linear codes.

For decoding to be performed in an easier manner, the codes should be designed

such that the receiver should be able to identify the actual transmitted word. So, the

codewords are assumed to be far apart from each other that means the optimal code is

the one with the maximum of minimum distance as d [13]. The classical decoders can

correct up to half of the minimum distance i.e. d−1
2 . But, what will be the case if the

number of errors exceeds this bound? The classical decoder reports a decoding failure

and does not give any output. Although, it is true when the number of errors exceeds

d−1
2 , error patterns can not be corrected due to the presence of multiple codewords at

a distance d
2 from received word. However, the sparsity of the codewords gives this a
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relaxation and it implies that most received words have a unique closest codeword and

yet classical (unique) decoding algorithm will result in decoding failure. This limitation

stems from the requirement that the decoder should compute a single codeword which

should be same as transmitted word. Unique decoding will either compute the actual

transmitted word or will result in decoding failure. There is a useful relaxation over

unique decoding called list decoding which excluded the condition of unique codeword

and thus allowed coding theorists to correct beyond half the minimum distance bound.

The concept of list decoding was introduced by Elias [14] and Wozencraft [15] in late

50’s. List decoding allows the decoder to output a list of codewords including the trans-

mitted word instead of just one word as in the case of classical unique decoders. During

the communication, if the number of errors exceeds the error correction capability of the

code the unique decoder will give a decoding failure. But, what if the decoding failure

is not a feasible option? The receiver can use the list decoding algorithm. If the result

of list decoding is just one codeword, the receiver accepts it as transmitted codeword

and works as a unique decoder. Even if the list contains more than one codeword then

it is more desirable as compared to the decoding failure. Especially when information

transmission is really costly like space communication then list decoding is much more

desirable than a decoding failure. Lets assume a situation where pictures of a planet

say Mars are transmitted after encoding via satellite to some space station located on

Earth. Due to the noise added by the natural interference in space, the encoded data

gets severely distorted. In these cases, the re-transmission will be really costly but with

the help of list decoding algorithm we can at least get a list of codewords which contains

the transmitted word. The list size can further be reduced with the added information

that the decoded information should look something like a planet and therefore the

picture can be recovered.

1.4 Wireless sensor networks

As already mentioned, FEC is used to reduce the cost of retransmitting a message.

Often this cost translates into power consumption. A fast emerging technology which

is affected by power due to low cost is Wireless Sensor Network (WSN). A WSN is a

collection of nodes that are organized to form a cooperative system [16]. Each node

is capable of processing as they contain microcontrollers or DSP chips, various kinds
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of memories like flash, program or data, an RF transceiver and a power source. The

continuous analog signal produced by the sensors is digitized by an analog-to-digital

converter (ADC) for further processing. This new technology consisting of sensors

and actuators has an unlimited potential for various application areas like medical,

transportation and defense. WSNs are highly dynamic and are prone to faults because of

certain environmental conditions or connectivity interruptions. Hence error correction

codes are used in order to have reliable communication and for low power.

In this thesis, we target WSN as the end application and we focused on the error

control coding side while other researchers in the embedded systems group at UCC

were also working on the motes design and implementation side. A sensor node may

come in various sizes however motes are of genuine small dimensions. Sensor nodes are

great for deployment in hostile areas or even over large regions. The main components

of a sensor node as shown if Figure 1.3 are a microcontroller for data processing, flash

memory due to cost and storage capacity, power source that is a battery, transceiver

and one or multiple sensors. A sensor node should consume the lowest possible energy

and should be small in size.

Transceiver

Sensor 1

Sensor 2

ADCMicro-controller

External Memory

P
o
w

e
r S

o
u

rc
e

Figure 1.3: Sensor node architecture

One of the biggest constraints on the lifetime and maintenance of WSN is the

battery life of sensor nodes. Any operation like computation or transmission can have a

significant effect on the battery life of sensor nodes. Certainly, energy consumption at

node level has been an important design consideration for WSNs [17]. In this thesis, we

made an attempt to reduce the energy consumption at node level while transmitting the

data through a WSN. Various codes have been examined for reliable communication of
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data over multihop WSN. A new model for data transmission has been designed which

is different from the previous works involving encoding/decoding at each and every

node.

1.5 Thesis contribution

The main focus of this thesis is RS type linear block codes like Hermitian [18], BCH

and Toric codes [19]. The various codes discussed in the thesis are similar to RS codes

in terms of the encoder’s complexity which makes them useful for WSNs. Hermitian

codes can be seen as a concatenation of generalized RS codes [20] which simplifies the

encoding scheme resulting in an encoder’s complexity comparable to RS codes [21]. The

simplified encoding scheme for Hermitian codes based on this fact makes it useful for

a transmission scheme in multihop WSNs. Also, BCH codes can be seen as subfield

subcodes of RS codes whereas Toric codes are the natural extension of RS codes over

r dimensions. The main idea is reduce the complexity and enhance the efficiency of

unique and list decoding algorithms for BCH, RS and Hermitian codes. In this thesis,

we have simplified some of the existing decoding algorithms for BCH and RS codes.

The codes are studied from an evaluation perspective (which we will explain later in

chapter 3). The main focus is on direct decoding algorithms similar in complexity to

Berlekamp-Massey (BM) type algorithm [22], [23], [24] as the BM algorithms is one of

the most efficient methods used in decoding of linear block codes. This thesis presents

new algorithms and architectures for Hermitian codes and improved decoding algorithm

and architectures for RS and BCH codes.

1.6 Thesis organization

As coding theory is a combination of mathematics and engineering, the thesis exploits

both the aspects of coding theory. The fundamental objectives of coding theory is code

construction (which covers the encoding part as well) and finding an efficient decod-

ing algorithm with simple hardware implementations. RS codes are the most popular

algebraic geometric codes which are widely used in industrial applications [25]. To sum-

marize, in this thesis we present a high speed low complexity algorithm and architecture

for encoding and decoding RS codes and Hermitian codes based on evaluation. The
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thesis presents an approach of constructing codes by computing the subfield subcodes

of GT Codes which are basically the multidimensional analogues of BCH codes. BCH

codes can also be seen as subfield subcodes of RS codes, which provides a mathematical

structure that can simplify the list decoding scheme for BCH codes. In the end, we

present an approach of utilizing powerful codes for eg. Hermitian, RS (list decoded)

etc. with low complexity encoding for multihop WSN.

Chapter 2 introduces the basic concepts of finite field and error correcting codes. It

also discusses about the construction of BCH, RS, Hermitian and Toric codes. Chapter

3 discusses the aspects of efficient implementation of the RS decoder. It presents a high

speed low complexity algorithm and architecture for encoding and decoding RS codes

based on evaluation. The idea is also extended for shortened RS codes and the modified

decoding algorithm is also presented for shortened codes.

In chapter 4, we discuss about the efficient architecture of a Hermitian decoder

based on a new unique decoding algorithm presented recently in a paper by Lee and

O’Sullivan from an interpolation perspective. We present the complete architecture for

the Lee-O’Sullivan algorithm. In chapter 5, we study the concept of subfield subcodes

and also how BCH codes can be seen as subfield-subcodes of generalized RS codes.

We study the subfield subcodes of GT codes over Fpm which are the multidimensional

analogues of BCH codes.

The problem of decoding cyclic codes can be written as an algebraic system of

equations where the solutions are closely related to the errors occurred. Based on

the algebraic structure for the polynomial generators of BCH codes in chapter 5, the

list decoding algorithm for BCH codes via syndrome variety is simplified. Chapter 6

discusses how the use of this algebraic structure reduces the number of variables in the

system of equations, which in turn modifies and simplifies the list decoding problem

for BCH codes. Also, it is discussed how this structure can be used for simplifying the

Roth Ruckenstein factorization step for BCH codes.

Among the codes discussed, RS codes are already widely used in the industry. But,

some of the very powerful codes like Hermitian and list decoder RS codes do not find

applications due to their complex decoding schemes. Chapter 7 discusses the usage of

powerful codes with low complexity encoding as the transmission method in multihop

WSN such that the encoding is performed only at the first node and decoding only at
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the base station.

With Chapter 8 we conclude the thesis. It also discusses the contributions of this

thesis along with ideas for future work. In the next chapter, we will introduce the

concepts of group, ring and field to understand better the mathematical parts of the

thesis. Also, we will discuss about the linear block codes and several classes of it.
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Chapter 2

Background

In this chapter, we will review some of the basic definitions relating to the error correct-

ing codes and will define some of the standard notations that will be followed throughout

the thesis. We will initially present the basic definition of finite field, linear block codes

and then discuss several families of linear block codes. The main focus will be on RS

type codes like BCH, RS, Toric and Hermitian on which the thesis chapters are based.

The outline of the chapter is as follows. Section 2.1 introduces the basic concepts of

finite field algebra. The basics of error correcting codes are defined in section 2.2 and

the mathematical definitions related to linear error correcting codes are given in section

2.3. In section 2.4, we discuss about the construction of several codes on which the

thesis chapters are based.

2.1 Basic finite field algebra

Many communication and storage systems require a special type of arithmetic over

finite fields. In this section, we will review the basic notions and facts about finite field

algebra. The notations are followed from [26]. A finite field is also often known as

Galois Field (GF), after the French mathematician Pierre Galois. A finite field with q

elements will be represented as Fq of GF (q). A field is a subset of a larger set called a

group and the formal definition of group is given as follows:

Definition 2.1.1. A set G on which a binary operation ∗ is defined is called a group

if the following conditions are satisfied.

1. The binary operation ∗ is associative.
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2. G contains an element e such that, for any a in G, a∗e = e∗a = a. This element

e is the identity element in G, and is unique for the group G.

3. For any element a in G, there exists another element a′ in G such that a ∗ a′ =
a′ ∗ a = e. The element a′ is called an inverse of a, where a is also an inverse of

a′. The inverse of a group element is unique in the group.

A group is also commutative if the binary operation ∗ also satisfies the condition

that for any a and b in G, a ∗ b = b ∗ a. A subset H of G is called a subgroup if it is a

group with respect to the operation ∗ of G. The next definitions introduce the concept

of ring and finite field.

Definition 2.1.2. A ring R is a set of elements together with the binary operations +

and ∗ satisfying the following properties:

1. R is a group under addition ‘+’.

2. Closure: For every a, b ∈ R, a ∗ b = c ∈ R

3. Associativity: For every a, b, c ∈ R, (a ∗ b) ∗ c = a ∗ (b ∗ c)

4. Distributivity: Multiplication is distributive over addition; that is for any three

elements a, b, c ∈ R, a ∗ (b+ c) = a ∗ b+ a ∗ c

Definition 2.1.3. Let F be a set of elements on which two binary operations, called

addition ‘+’ and multiplication ‘∗’ are defined. The set F together with the two binary

operations ‘+’ and ‘∗’ is a field if the following conditions are satisfied.

1. F is a group under ‘+’. The identity element with respect to addition is called the

zero element or the additive identify of F and is denoted by 0.

2. The set of non-zero elements in F is a group under multiplication ‘∗’. The identity
element with respect to multiplication is called the unit element or the multiplica-

tive identity of F and is denoted by 1.

3. Multiplication is distributive over addition that is for any three elements a, b, c ∈ F,

a ∗ (b+ c) = a ∗ b+ a ∗ c.
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The ring R of uni-variate polynomials with coefficients from F can be denoted as

F[x]. The polynomial is called monic if the coefficient of the leading term is 1. An

interesting property to be noted is that any polynomial f(x) ∈ F[x] of degree at most

d can have at most d roots. A subset S of a ring R is called a subring of R, if S is

closed under addition and multiplication, and forms a ring under those operations. The

formal definition of subring is as follows:

Definition 2.1.4. A subring I of a ring R is an ideal if whenever r ∈ R and a ∈ I

then ra ∈ I and ar ∈ I.

If a1, a2, . . . , as ∈ R, < a1, a2, . . . , as is denoted as the ideal generated by {a1, a2, . . . , as}
which is the smallest ideal of R containing a1, a2, . . . , as.

Definition 2.1.5. Let F be a field and let K be a subset of F such that K is a field under

the operations of F. Then K is called the subfield of F and F is called an extension field

of K and is denoted by F/K (read as ”F over K”) is a field extension to signify that

F is an extension field of K. If F 6= K then K is called proper subfield of F. A field

containing no proper subfields is called a prime field.

Definition 2.1.6. A Galois extension is an algebraic field extension F/K such that F

is a splitting field of a separable polynomial with coefficients in K. A splitting field of

a polynomial with coefficients in a field is a smallest field extension of that field over

which the polynomial splits or decomposes into linear factors. The term [F : K] denotes

the degree of field extension.

All finite fields are in the form of either Fp (p being prime) or an extension of a

prime field. Thus, the number of elements in the field is always prime. Also, for any

q = pm, where p is a prime number there exists only one finite field. The number p

for any field Fq is known as the characteristic of that field. The group of non-zero

elements F∗, also known as a multiplicative group, is cyclic and can be represented as

F∗
q = {1, α, α2, . . . , αq−2} where α ∈ Fq \ 0 and is called the primitive element of the

field.

2.2 Basics of error correcting codes

As already mentioned, error correcting codes provide a systematic method of adding

redundancy to a message before sending it. A familiar example to understand the
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redundancy principle is the Ispell program [27] that checks for the spelling when someone

makes some mistakes while typing. The set of all words in English is a small subset of

all possible strings, and a large amount of redundancy is built into the valid English

words. If someone makes a mistake it will change it to some correct word that is a valid

word in English dictionary. In most cases, the misspelled word resembles the correct

word and thus Ispell gives us a method to correct the wrong word. The principle of

error correcting codes is similar to Ispell and is based on the in-built redundancy.

The two important functions or concepts involved with the error correcting codes

are encoding and decoding. Before going in to any details, we would like to explain

these notions.

• Encoding: The encoding function performed at the sender’s end maps a message

word m having k symbols or message length k to a codeword c containing n

symbols where
∑

is the alphabet. Here, the data stream m that has to be

encoded can be seen as string over some alphabet
∑

, where the size of alphabet

is q. In most of the applications q is considered to be prime power and
∑

as finite

field Fq. The encoding function can be written mathematically as E :
∑k → ∑n,

such that E(m) will give us the codeword c.

• Decoding: The encoded message is sent to the receiver via a channel which adds

noise resulting in a distorted copy of the actual sent codeword. The goal of the

decoding function is just the reverse of encoding, where the decoding function

maps an n symbol received word to a k symbol message word at the receiver’s

end. It can be defined mathematically as D :
∑n → ∑k. But, there is a bound

on the correction capability of a code. It is not possible to correct any amount of

errors that occur during transmission. The bound is related to a code parameter

called a ‘minimum distance’ which is the smallest distance between two distinct

codewords of a code and this bound determines how far a code can correct.

The ideal code should be designed such that the possibility of one codeword to be

confused with another should be negligible even if errors occur during transmission.

This means if the codewords are far apart from each other then after the introduction

of errors during transmission, the decoder will be able to provide the original codeword

instead of any other codeword. The notion of distance between two codewords was given
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by Richard Hamming and is now referred to as Hamming distance. He also formally

gave the concept of (minimum) distance of a code as the smallest distance between two

distinct codewords. Figure 1.2 shows a code with minimum distance ‘d’. It also shows

the spheres of radius d−1
2 around each codeword which are all disjoint and is called as

Hamming balls. In this model, the optimal code is the one with the largest Hamming

distance among all the codes that have a certain number of codewords. The concept

of Hamming and minimum distance will be discussed more mathematically in the next

section.

2.3 Definitions

We will present here some of the basic definitions. The number of elements in the finite

field is of the form q = pm where p is a prime number and m is a positive integer. The

prime p is called the characteristic of the field and the positive integer m is called the

dimension of the field over its prime field. The notations in this subsection are mainly

followed from [27].

2.3.1 Basic mathematical definitions for codes

For any integer q > 1, we will use [q] to denote the set {1, ..., q}.

• Code: An error correcting code C is a subset of [q]n for positive integers q and n.

The elements of C are called as the codewords.

• Alphabet size: The number q is referred as to the alphabet size of the code and

is generally called as q-ary code. For q = 2, it is called as binary code.

• Block length: The integer n is the block length of the code.

• Dimension: For a code defined over Fq, the quantity k = logq|C| is known as

the dimension of the code. This definition makes much more sense in the case of

linear block codes which we will discuss in the next section.

• Rate: It is defined as the ratio of dimension and block length of the code and can

be simply represented by the quantity R = k/n
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• Hamming Distance: For any two strings x, y ∈ [q]n such that x =< x1, x2, . . . , xn >

and y =< y1, y2, . . . , yn >, the Hamming distance (represented as △(x, y)) be-

tween them can be defined as the number of coordinates in which they differ i.e.

△(x, y) = |{i|xi 6= yi}|.

• Minimum Distance: Minimum distance of a code C is the minimum Hamming

distance between any two codewords and can be formally defined as, dist(C) =

min
c1,c2∈C,c1 6=c2

△ (c1, c2).

2.3.2 Linear Codes

An important family of codes is known as linear codes. They do not only have sim-

ple representations but also have practical advantages in terms of providing efficient

encoding and decoding schemes.

Definition 2.3.1. A linear code of block length n is a linear subspace (over some field

Fq) of Fn
q .

A linear code C defined has qk elements, where k is the dimension of the code as a

vector space over Fq. The important code characteristics to define a code is length n,

dimension k, minimum distance d and its alphabet size q. Thus, the parameters of the

code is written as [n, k, d]q . For linear codes, the all zero string is always a codeword.

Hence the minimum distance for a linear code is the minimum Hamming weight of any

non-zero codeword, where the Hamming weight of a vector is the number of positions

with non-zero values. For linear codes, one of the most fundamental bounds is the

Singleton Bound [28] which combines the three main parameters k, n and d as given in

lemma 2.3.2. Another popular bound is the GilbertVarshamov bound [29], [30], which

limits the parameters of a code which are not necessarily linear, is given in 2.3.3.

Lemma 2.3.2. Singleton Bound: Every linear code [n, k, d] code C satisfies k + d ≤
n− 1.

Definition 2.3.3. Gilbert-Varshamov bound: Let Aq(n, d) denote the maximum possible

size of q−ary code C with parameters [n, k, d]. Then:

Aq(n, d) ≥
qn

∑d−1
j=0

(
n
j

)
(q − 1)j

.
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In block codes, data is encoded in discrete blocks and not continuously unlike con-

volutional codes [31]. Another important property of some block codes are that they

are cyclic in nature which means a cyclic shift of a codeword will also give a codeword.

The development of cyclic codes was started by Prange[32] in 1957.

2.4 Basic linear code families and their constructions

The design of error correcting codes should first consider the application and the require-

ments. Many codes exist that have characteristics and capabilities that are suited to

different applications. In an optical communication systems where the main constraint

is throughput and error correction capability, the decoder can be complex to achieve

high performance. However in the case of short range multihop wireless networks where

there is a constraint on memory and power, the design of FEC for this application is a

trade-off between architectural complexity and power. Although, a FEC may result in

significant reduction in the BER for any given value of transmit power, the additional

processing power that is consumed during encoding and decoding must be considered

while using FEC for WSN. If the additional processing power is greater than the coding

gain then the system is better off without FEC. However, FEC is an incredible asset for

WSN if the processing power is smaller than additional transmission power for ARQ

[33]. The nodes must be able to encode and decode at every point in the network if

it is a full-duplex or a multihop network. In the case of Wireless Body Area Network

(WBAN), the communication range of sensor nodes is quite small. Thus, the SNR is

presumed to be quite high. In these cases, a large error correction scheme would be

a waste of resources (because of the decoder’s complexity) and the need is to design

codes that are relatively simple to both encode and decode with small error correction

capability at high rate and would be able to handle the case of burst errors.

In this section, we will describe basic code families that are important from an

algorithmic and architectural perspective for this thesis. All these codes are cyclic

linear block codes.
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2.4.1 BCH codes

One interesting key feature of BCH codes is that during the design of a code, there is

a precise control over the number of symbol errors that can be corrected by the code.

This directly implies that we can design a binary BCH code which can correct multiple

bit errors. Here, we will mainly discuss about primitive narrow sense BCH codes. Let

q = pm. A BCH code defined over Fq with n = pm − 1 is known as a primitive BCH

code. For a given prime p and positive integers m and d such that d ≤ pm − 1, a

primitive narrow-sense BCH code over the finite field Fq and minimum distance at least

d can be constructed by the following method:

Let α be a primitive element of Fq. For any positive integer i, let mi(x) be the

minimal polynomial of αi. The generator polynomial of the primitive BCH code is

defined as the least common multiple g(x) = lcm(m1(x), . . . ,md−1(x)). The polynomial

g(x) has coefficients in Fq and divides xn − 1. The polynomial code defined by it is a

cyclic code [25]. The consecutive roots of a generator polynomial g(x) may run from

αc, . . . , αc+d−2 but if the consecutive roots of generator polynomials are starting from

α1 (c = 1), it is called a narrow sense primitive BCH code.

2.4.2 Reed-Solomon codes

RS codes introduced in [10] are one of the most important cyclic codes which are

well studied and are widely use in industrial applications like compact disk players,

high speed modems such as ADSL, xDSL and space communications. Some detailed

applications can be found in [34] [35].

Proposition 2.4.1. A RS code is an [n, k, d = n− k + 1]q code.

RS codes actually match the singleton bound as mentioned in Lemma 2.3.2. Such

codes are called as maximum distance separable (MDS) codes, since they have the

maximum possible distance for a given block length and dimension. The MDS property

of this algebraic code is advantageous to build several efficient encoding and decoding

algorithms. In the thesis. we tried to find some efficient encoding and decoding schemes

for RS codes.

A systematic code is any error-correcting code in which the message symbols are

embedded in the codeword. However, for a non-systematic code the codeword does not
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contain the input symbols. Every non-systematic linear code can be transformed into a

systematic code with the same properties essentially. Systematic codes have the advan-

tage that the parity data can simply be appended to the source block, and receivers do

not need to recover the original source symbols if received correctly. However, in this

thesis, we will follow the non-systematic encoding technique for several codes and will

prove that the decoding technique based on evaluation has much better performance as

compared to the classical decoder.

2.4.2.1 Non-systematic encoder from an evaluation perspective

The message that is needed to be sent is mapped to a univariate polynomial and the

codeword is constructed by evaluating that polynomial at several points of the field.

Lets say the n distinct field points are α1, α2, . . . , αn. The message space consists of

polynomial m ∈ Fq[x] with degree at most k − 1 and a message ′m′ is encoded as:

m → 〈m(α1),m(α2), ...,m(αn)〉.

The message space can be seen as 〈mo,m1, . . . ,mk−1〉 with the polynomial in the

form m0 +m1x+ . . .+mk−1x
k−1.

2.4.2.2 Systematic encoder

For systematic encoding, a codeword polynomial is obtained by concatenating a message

polynomial, m(x) with a parity polynomial p(x) such that

c(x) = p(x) + xn−km(x)

We can think of shifting a message polynomial m(x), into the rightmost k positions

of the codeword and then the last n− k positions at the leftmost side are occupied by

the parity polynomial. For computing the parity polynomial p(x), we divide xn−km(x)

with the generator polynomial g(x) and it can be written as:

xn−km(x) = q(x)g(x) + p(x)

such that q(x) and p(x) are the quotient and the remainder polynomials respectively.

p(x) can also be computed directly as p(x) = xn−km(x) mod g(x).
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2.4.3 Toric Codes

J. Hansen introduced recently the notion of a Toric code [19] which are also studied

in [36], [37], [38]. Toric codes are a class of r-dimensional cyclic codes. They are in a

sense a natural extension of RS codes over r dimensions. Let P be a convex polytope

such that P ∩Zr is properly contained in the rectangular box [0, q− 2]r for some prime

power q. A Toric code can then be obtained by evaluating linear combinations of the

monomials with exponent vector in P ∩Zr at some subset of points or at all the points

of (F∗
q)

r. D. Ruano introduced a natural generalization of this family, the so called

Generalized Toric Codes (GT) [39], which consist of the evaluation of any polynomial

algebra in the algebraic torus. It is clear from his construction that any Toric code is a

GT code. The formal definition is taken from [40]:

Definition 2.4.2. Let Fq be a finite field with primitive element α. For f ∈ Zr with 0 ≤
fi ≤ q−2 for all i, let Pf = (αf1 , . . . , αfr ) in (F∗

q)
r. For each e = (e1, e2, . . . , er) ∈ P ∩

Zr, let xe be the corresponding monomial and write

(pf )
e = (αf1)e1 · · · (αfr)er

The Toric code CP (Fq) over the field Fq associated to P is the linear code of block

length n = (q − 1)r with generator matrix G = ((pf )
e), where the rows are indexed by

the e ∈ P ∩ Zr, and the columns are indexed by pf ∈ (F∗
q)

r. In other words, letting

L = Span{xe : e ∈ P ∩ Zr}, we define the evaluation mapping as:

ev : L → F(q−1)r
q

g 7→ (g(pf ) : f ∈ (F∗
q)

r)

Then CP = ev(L). If the field is clear from the context, we will often omit it in the

notation and simply write CP . The matrix G will be called the standard generator

matrix for the Toric code.

Substituting r = 1 will make P then just a line segment in [0, q − 2] ∈ R with end

points as integers. This clearly implies that 1− dimensional Toric Codes will simply

correspond to RS codes. From here, we can easily deduce that higher dimensional

Toric codes will be the natural extension of RS codes and will thus have several similar

properties. One of them is that they are all m−dimensional cyclic codes [36]. So,
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the hope is that Toric codes will have similarly good parameters as RS codes. Several

examples showing that Toric codes have very good parameters are given in [38], where

the minimum distances are either equal or better than the best known codes for a given

code length and dimension.

2.4.4 Hermitian Codes

Hermitian codes are a very interesting subclass of Algebraic Geometric (AG) codes

having lots of good properties. The codes constructed by choosing points from a curve

and a space of rational functions on this curve are called AG codes. RS codes are a

particular case of AG codes where the curve is an affine line [41]. With RS codes,

the main disadvantage of RS codes is that it is not possible to create codes with long

lengths. For RS codes, the code length is limited to the size of the finite field (Fq) over

which they are defined i.e. q. Goppa [42] constructed efficient long block codes using

methods from algebraic geometry. Later, Ţsfasman, Vládut and Zink [43] constructed

a sequence of codes from algebraic geometry which perform better than the Gilbert-

Varshamov bound . Since this discovery, many of the coding theorists have focused

their attention on this area which is codes from curves. Hermitian curves are one of

the most famous curves in this category as it is a maximal curve. Curves defined over

Fq2 whose number of points on the curve reaches the Serre bound [44] (which gives

an upper bound on the number of rational points for an algebraic curve) are called

maximal curves. The curve has total q3+1 points including one point at infinity. Thus,

Hermitian codes offer desirable properties over RS codes such as large code lengths over

the same finite field, good error correction at high code rates, etc.

We will follow the notations and the construction from [45]. Before going into detail,

we recall some definitions from [46]. A homogeneous polynomial is a sum of monomials

with all the terms having the same degree. A projective plain curve over Fq is the set of

zeros of a homogeneous monomial. The complexity of the curve is defined by its genus.

A rational point Pi on curve is a point having coordinates in Fq. A rational function is

given by a quotient of homogeneous polynomials of same degree. A divisor is defined

as a formal sum of rational points Pi over the curve. The Hermitian curve H over Fq2

is described by the homogeneous equation:

H : Xq+1 = ZY q + ZqY.
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Using the notation in [47], with x = X/Z and y = Y/Z the curve equation can be

re written as:

H : xq+1 = yq + y.

H has genus g = q(q − 1)/2, contains one point at infinity P∞ (the point where the

curve H intersects the line at infinity) and q3 non-singular affine rational points. The

curve H is a maximal curve as it attains the Serre upper bound which is a bound on

maximum number of points on the curve over a field Fq. The two divisors of the curve

are defined as D =
∑n=q3

i=1 Pi and G = mP∞ such that G has disjoint support from D.

We restrict our attention to codes with a divisor G as it will allow the maximum code

length because it has just one point in its support. The functional code can be defined

as:

CL(D,G) = {(f(P1), f(P2), . . . , f(Pn))|f ∈ L(G)}

where, L(G) is the set of rational functions which may have a pole at P∞ with order

at most m.

The residual code is defined as:

CΩ(D,G) = (CL(D,G))⊥.

The code is called a residual code since it evaluates residues of differentials at point

Pi defining the divisor D [11].

Systematic encoding of Hermitian codes is discussed in [45]. In Chapter 4, we will

discuss about the non-systematic evaluation based encoding of Hermitian codes. Also,

we will propose an efficient VLSI architecture for Hermitian decoder based on a new

decoding scheme from Lee and O’Sullivan.

In this chapter, we presented several linear block codes and their construction. RS

codes are industrially most popular codes among all these codes and the next chapter

discusses an efficient way on encoding and decoding it. Also, the encoding and decoding

algorithms are modified and extended for shortened codes.
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Chapter 3

Efficient Berlekamp-Massey

based recursive decoder for RS

and shortened RS codes

RS codes are one of the most popular AG codes. These codes have great power and

utility with common usage in all kinds of industrial applications like computing, com-

munications and storage. RS decoders are used to protect the digital data against the

errors that occurred and reduce the signal to noise ratio in the transmission process.

Due to the balanced encoding and decoding complexities of RS codes and robust er-

ror correction capability, RS codes are chosen to provide reliable and energy efficient

communication in most of the cases.

However for a few applications like WSN [48], there is a limitation on the memory

and hardware resources. In those cases, it is not always necessary to use the full length

RS codes but a shortened code. RS codes used in a systematic context can be shortened

to any arbitrary extent by keeping the redundancy fixed which means the minimum

distance will remain the same and the values of n and k will be decreased. The process

of shortening can produce a smaller code of desired length from a large code over the

same field. For example, the widely used code (255, 223) RS code can be converted to

(160, 128) code by padding the unwanted portion with zeros and not transmitting them

[25]. Shortening a block code will remove the symbols from the message portion. For

shortening a (63, 53) code to a (54, 44) code, we can simply put the n and k value as
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54 and 44 respectively, in the encoder and decoder block masks. However, if it has to

be shortened to a (28, 18) code, it is needed to explicitly specify that the field is F26 .

Otherwise, the RS blocks will assume that the code is shortened from a (31, 21) code.

The choice of using an error correcting code depends on the decoding speed and the

area consumed by the decoder as well as the amount of the simplicity with which it can

be implemented in hardware and software,

3.1 Introduction

Much effort and research in the past has been focused to obtain a high speed and

area efficient implementations for RS decoders in order to meet the demand for low

power consumption at high data rates. The traditional RS decoder has three blocks

i.e. syndrome computation, key equation solver (combined with the computation of

error evaluator polynomial) and Chien Search combined with Forney’s Formula used

for error evaluation. The key equation solver is based on the Euclidean algorithm [49]

or Berlekamp Massey Algorithm. In the next definition, we will introduce the concept

of shortened codes. Let C be an RS code defined over Fq with parameters [n, k, d] such

that the length of the code is n, dimension is k and the minimum distance is d. A

shortened code Cs is constructed by dropping data symbols. This implies the length ns

of shortened code Cs is reduced by dropping out data symbols resulting in a decrease

of dimension from k to ks.

For a shortened code, say Cs, the length of codeword is ns < n as we do not want

to transmit the full length code for some of the applications due to system constraints

or by design. The most convenient approach to implement it is to set the last n −
ns symbols to zero and then not transmit them. The dimension of the shortened

code will be ks such that the minimum distance (d) remains the same for both the

shortened and full length code. This preserves the error correction capability of the

shortened codes. The original message can be recovered if the number of errors occurred

ν satisfies the condition, ν ≤ t = ⌊d−1
2 ⌋, where t is the error correction capability of

the RS code. The idea is to find an efficient decoding algorithm and architecture for

RS and Shortened RS based on recursive use of the discrepancy computation step of

the Berlekamp Massey algorithm. In [50], decoding of RS codes directly to the message

polynomial (without using the Chien search and Forney’s formula) has been discussed
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in frequency domain. In [51], another algorithm for direct decoding has been discussed

based on fast Fourier transforms and the Euclidean algorithm. This algorithm also has

the same time complexity as the direct decoding algorithm based on BM algorithm.

But, any of these papers did not discuss about the benefits of the direct decoding

algorithm in hardware like speed or simple circuitry. In this chapter, we focus on the

efficiency of the direct decoding algorithm from a hardware perspective. The scheme

proposed in this chapter requires less clock cycles and smaller area as compared to

the classical decoder leading to lower energy and area consumption for RS codes. The

extended algorithm for shortened RS codes has shown memory savings for the software

implementations making it more beneficial for memory constrained WSN applications.

The outline of the chapter is as follows. Section 3.2 describes the encoding scheme

based on evaluation for RS codes and a modified version for Shortened RS codes. The

classical and the proposed decoder are discussed in Section 3.3 which also discusses

about the dual property of evaluation based decoding scheme which explains how mes-

sage can directly be obtained with the proposed decoder. In section 3.5, the evaluation

based decoding scheme is proposed for shortened RS codes. In section 3.6, hardware

implementation issues are discussed and also the results for implementations are pre-

sented along with the some software implementation results for Shortened RS codes.

Finally section 3.7 concludes the chapter.

3.2 Encoder block

3.2.1 Evaluation based RS encoder

In its original construction, RS codes can be viewed as evaluation codes over a Finite

Field Fq [11]. Consider (1, α1, ..., αn−1) to be the elements of the field Fq. A packet of k

information symbols (m0,m1, ...,mk−1) forms a message polynomial m(x) = m0+m1x+

... +mk−1x
k−1 over the field Fq as discussed already. For encoding, m(x) is evaluated

at n distinct elements of the field in order to have an RS code with parameters [n, k, d],

where d = n− k + 1 and t = ⌊d−1
2 ⌋. The codeword can be defined then as

c = (c0, ..., cn−1) = (m(1),m(α1), ...,m(αn−1))

where, m(x) ∈ F [x], degree of m(x) < k and F [x] is a polynomial ring over Fq and

1 ≤ k ≤ n ≤ q. The encoding from evaluation can also be shown in matrix form:
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(
c0 c1 . . . cn−1

)
=

(
m0 m1 . . . mk−1

)
∗




1 1 1 · · · 1

1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...

1 αk−1 α2(k−1) . . . α(k−1)(n−1)




Here α is the primitive element of the field and αi is shown as αi−1 for i = 1, 2, . . . , q−
1. This evaluation based encoder is non-systematic and is shown in Figure 3.1. The

encoder is just a simple evaluation of the message polynomial whose coefficients are

(m0,m1, ...,mk−1) which is similar to the syndrome computation block in the classical

decoder [21] but for the syndromes, evaluation is done for 2t symbols while here it is

done for n symbols. This results in higher area as it needs n registers and multipliers

for the proposed encoder compared to 2t registers and multipliers for the syndrome

computation in classical decoder. The number of clock cycles are n for both of them.

Figure 3.1: RS encoder block

3.2.2 Proposed encoding scheme for shortened RS codes

The message polynomial for shortened code can be written as ms(x) = m0 + m1x +

. . . + mks−1x
ks−1. For the encoding based on evaluation, the message polynomial for

shortened code needs to be evaluated at all the points of the field for computing the

codeword. If we evaluate this polynomial at all the points of field the resulting codeword

will not have n−ns zeros in the end. Thus, for attaining the required length of shortened

code that is ns, we need to have n− ns zeros in the codeword. The obtained codeword

is the shortened code where only ns symbols will be transmitted instead of n symbols

making it suitable for certain applications.

This section proposes the novel concept of obtaining shortened code from evaluation

based encoding scheme. As already discussed, only evaluation of shortened message will

not give us shortened code. Now, the question is what can be done to obtain n − ns
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zeros in the codeword from an evaluation scheme? One method of achieving this is to

multiply the message polynomial with some other polynomial which has n − ns zeros

at the field elements. A potential candidate for this operation would be:

P (x) = (x− αns) . . . (x− αn−1) (3.1)

It has zeros at the last n−ns elements of the field i.e. αns , αns+1, . . . , αn−1. Evaluating

this polynomial at all the field points will automatically give n − ns zeros in the last

n− ns field elements. Thus, the new message polynomial can then be obtained as:

m′(x) = ms(x)P (x) = (m0+m1x+. . .+mks−1x
ks−1)(p0+p1x+. . .+pn−nsx

n−ns) (3.2)

By computing the degree of the polynomial m′(x), we can easily see that it’s degree is

same as the degree of full length RS code that is ks + n− ns = k, which is same as the

dimension of the full length RS code. Evaluating m′(x) at all the elements of the field

forces the last n− ns symbols to be zero which is the shortened code.

We can see asm′(x) = ms(x)P (x), it follows that cs = ev(m′(x)) = ev(ms(x)P (x)) =

ev(ms(x))ev(P (x)) , where ev is the evaluation over the elements of the field. Now,

evaluating m′(x) will be a complex job (comparable to the full length code) as the

degree of the polynomial is k. This can be simplified as we already know the P (x) that

is fixed polynomial for specific code parameters. Thus, ev(P (x)) are just constant field

elements for those code parameters. Thus, the encoder can be seen only as a syndrome

computer with constant multipliers as shown in the Figure 3.2.

Algorithm 1 Evaluation based encoding for shortened RS codes

Input: ms(x) = m0 +m1x+ . . .+mks−1x
ks−1, P (0), P (1), . . . , P (αns−1)

1: for i = 1 : ns do

2: m′(i) = ms(α
i−1) ∗ P (αi−1)

3: end for

4: return cs = (c0, c1, . . . , cns−1)

3.3 Classical decoding scheme

In this section, we give a detailed introduction to classical decoding scheme before

proceeding to the direct decoding scheme. This section will help to differentiate between
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Figure 3.2: Shortened RS encoder block

the two decoding schemes. The codeword c(x) is transmitted over a noisy channel and

may get corrupted by an error vector e(x). The result is a received word r(x) =

c(x) + e(x) at the receiver. The error vector can be viewed as:

e(x) =

e∑

j=1

YjXj (3.3)

where Yj are the error values that have occurred at error locations Xj in Fq. Since the

error locations are in Fq, Xj = αij . If the number of errors e is less than or equal to

the error correction capability t, then the decoder is able to correct all the errors and

hence the receiver will have the correct information that has been transmitted. The

standard algebraic decoding method calculates the 2t syndromes corresponding to the

2t roots of g(x) and uses these syndromes to calculate the error locations Xj and the

error values Yj.

3.3.1 Block level architecture for classical decoder

A block diagram of the classical decoding architecture for the RS codes is shown in

Figure 3.3. The figure shows that there are four stages (syndrome computation, BM

algorithm, Chien search and Forney formula) in the classical decoder while there are

only two stages (syndrome computation and BM algorithm) in the proposed decoder.

We will discuss each of the four stages in the next part as discussed in [22] [23] [25].

3.3.2 Syndrome computation

The first step in decoding RS codes is the syndrome computation. Assuming that the

code is built using the generator polynomial approach, the received polynomial r(x) is

evaluated at the roots of the generator polynomial g(x), which are α,α2, α3, . . . , α2t.

Since the codeword polynomial c(x) is a multiple of g(x), it follows that c(αi) = 0 for i
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Figure 3.3: RS classical decoder

= 0, 1, . . . , 2t− 1. The syndromes are defined as,

Si = r(αi) = e(αi) =

e∑

j=1

Yj(Xjα
i) =

e∑

j=1

YjX
i
j (3.4)

The 2t syndromes form the syndrome polynomial S(x) = S0+S1x+. . .+S2t−1x
2t−1.

This polynomial is dependent only on the error vector e(x). If all the syndromes are

zero, then c(x) = r(x) which means that no errors have occurred.

3.3.3 Error locations

Let us define an error locator polynomial Λ(x) of degree e and an error evaluator

polynomial Ω(x) of degree e− 1 as follows [50],

Λ(x) =
e∏

j=1

(1−Xjx) = 1 + λ1x+ λ2x
2 + . . .+ λex

e (3.5)

Ω(x) =
e∑

i=1

YiX
m0
i

e∏

j=1,j 6=i

(1−Xjx) = ω0 + ω1 + . . . + ωe−1x
e−1. (3.6)

From equations 3.3, 3.5 and 3.6 that the syndromes, error locator polynomial and

the error evaluator polynomial are related in the following manner as stated in the key

equation [50],

Λ(x)S(x) = Ω(x) mod x2t. (3.7)

Solving the key equation then allows us to find Xj and Yj . Several algorithms such

as extended Euclidean algorithm [52], Berlekamp-Massey algorithm [53] etc can be used

to solve this problem. The algorithms produce a solution as long as e ≤ t, or else a

decoding error occurs. In this work, the Berlekamp-Massey algorithm is presented.
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3.3.4 Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm is an iterative process for generating Λ(x) and Ω(x)

polynomials from S(x) polynomial using the relation as mentioned in Equation 3.7.

The algorithm uses the key equation in an iterative manner such that,

Λ(x, r)S(x) = Ω(x, r) mod xr r = 1, 2, . . . , 2t.

The Λ(x) and Ω(x) polynomials are initialized in the beginning to Λ(0, x) = 0 and

Ω(0, x) = 0, and after 2t iterations, it gives the polynomials Λ(2t, x) and Ω(2t, x). The

algorithm uses two update polynomials, B(x) for Λ(x) and H(x) for Ω(x), which are

initialized as B(0, x) = 1 and H(0, x) = −1.

Berlekamp-Massey algorithm is an alternative procedure to solve the set of algebraic

linear equations described in Reed-Solomon Peterson decoder [54], which can be seen

as:
t∑

j=0

ΛjS
r
i−j = 0 i = t+ 1, . . . , 2t. (3.8)

The goal of the algorithm is to find the error locator polynomial as mentioned in

Equation 3.5. The idea is to determine the minimal degree Λ(x) which satisfies Equation

3.8. The algorithm starts with L(x) = 1 and number of errors initialized to 0. 2t is the

total number of syndromes and and r is the iterator running from 0 to 2t − 1. B(x)

is the copy of the last Λ(x) since its degree was updated. Each iteration computes a

discrepancy. Each iteration computes a discrepancy,

δ(r) = Srλ0(r) + Sr−1λ1(r) + . . .+ Sr−tλt(r)

for the rth iteration. It δ(r) = 0, the algorithm assumes that current Λ(x) is correct

for the moment and increases r. If δ(r) 6= 0, the algorithm adjusts Λ(x) to ensure that

δ(r) = 0. After 2t iterations, the algorithm outputs the coefficients of Λ(x) and Ω(x).

The pseudo code for the algorithm is shown in Algorithm 2 following the notations from

[50].

3.3.5 Chien Search and Forney’s formula

The most common method used in finding the roots of the error locator polynomial

Λ(x) is a brute force approach known as Chien search [55]. It consists of testing all
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Algorithm 2 The Berlekamp-Massey Algorithm

Input: : Si, i = 0, 1, . . . , 2t− 1

1: Initialization: λ0(0) = b0(0) = 1, λi(0) = bi(0) = 0, for i = 1, 2, . . . , 2t, k(0) = 0

2: for r = 0; r < 2t; r ++ do

3: δ(r) = Srλ0(r) + Sr−1λ1(r) + . . . + Sr−tλt(r)

4: λi(r + 1) = λi(r)− δ(r)bi−1(r), (i = 0, 1, . . . , t)

5: if δ(r) 6= 0&k(r) ≥ 0 then

6: bi(r + 1) = λi(r)δ
−1(r)

7: k(r + 1) = −k(r)− 1

8: else

9: bi(r + 1) = bi−1(r), (i = 0, 1, . . . , t)

10: k(r + 1) = k(r) + 1

11: end if

12: end for

13: for i = 0; i < t; i++ do

14: ωi(2t) = Siλ0(2t) + Si−1λ1(2t) + . . .+ S0λi(2t)

15: end for

Output: λi(2t), i = 0, 1, . . . , t. ωi(2t), i = 0, 1, . . . , t− 1

31



the values of the field. The search is a cyclic procedure that evaluates the polynomial

through all the elements in the finite field until e number of roots are found, where e

is the degree of Λ(x). Once the roots of Λ(x) have been found, the decoder proceeds

to calculate the error values, Yj, j = 1, 2, . . . , e. This is achieved through a Lagrange

interpolation method known as the Forney’s algorithm [56]. The last step consist of

correcting the received message, knowing the error location with the computed error

values.

3.4 Proposed decoder based on evaluation

In order to make a fair comparison, we discussed about the classical decoding algorithm

for RS codes which involved the Chien Search and Forney’s formula for computing the

error locations and error values respectively in the last section. We will now present

the proposed decoding algorithm in detail. In this section, we will discuss the different

blocks of the proposed decoder. The proposed decoder is discussed from frequency do-

main perspective in [50], however we will discuss it from evaluation perspective. Also,

we will discuss how the algorithm can be made more efficient in hardware implementa-

tion based on the proposed decoding algorithm. The proposed scheme does not require

the extra steps like Chien Search and Forney’s algorithm for computing the error loca-

tions and error values respectively. The algorithm directly calculates the message that

has been transmitted from the source.

3.4.1 Block level architecture for the proposed decoder

The blocks and circuitry required for the proposed decoder are shown in Figure 3.4.

The multiplexer is used to decide whether it is required to use both the discrepancy

computation step and polynomial update step (for initial 2t iterations) or just the

discrepancy computation step (for the last n− 2t iterations).

3.4.2 Direct decoding algorithm

The syndrome calculation for the direct decoding algorithm is equivalent to evaluating

the received message polynomial r(x) in all the field elements. The syndromes of the
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Figure 3.4: RS proposed decoder

received message r are given by:

r(αj) = Sr
j =

n∑

i=1

αijri j = 1, 2, ..., 2t (3.9)

Let the syndromes of the codeword be denoted as Sc
j and the syndromes for the errors

be denoted as Se
j . As r(x) = c(x) + e(x), it follows that r(αj) = c(αj) + e(αj) which

means that Sr
j = Sc

j + Se
j . From the construction of RS codes, c(αj) = 0 for j =

1, 2, ..., 2t (proved in section 3.4.3), or in frequency domain terms it can be said that

the parity frequencies have spectral components equal to zero [50]. Therefore, Sr
j = Se

j

for j = 1, 2, . . . 2t.

The error locator polynomial Λ(x) is defined as the polynomial with the inverse of

error location as its roots as discussed in previous section. In other words, Λ(α−j) = 0

when ej 6= 0. Let

Se(x) = Se
0 + Se

1x+ . . .+ Se
n−1x

n−1

is a polynomial of degree n − 1 with coefficients as Se
j . For any αj , which is a root of

Λ(x), we can equate the coefficients to 0 in the equation Λ(x)Se(x) = 0. Therefore,

t∑

j=0

ΛjS
e
i−j = 0 i = 0, . . . , n− 1, (3.10)

where, Se
i−j = 0 if i−j < 0. This linear recursion can also be proved from error spectrum

as explained in [50]. The sum is from 0 to t because the degree of Λ(x) is at most t.

This is an algebraic system of n equations. The unknowns are t, the coefficients of Λ(x)

and n−2t components of Se. As mentioned above, 2t components of Se are equal to Sr

and hence t equations as shown in Equation 3.11 involve only the components of Λ(x) .

t∑

j=0

ΛjS
r
i−j = 0 i = t+ 1, . . . , 2t (3.11)
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Equation 3.11 is solvable and will give the correct error locator polynomial using

BM algorithm if less than or equal to t errors have occurred.

With the use of Equation 3.10, Equation 3.12 can be easily derived to compute

the remaining Se in an iterative fashion. This method is also mentioned is [50]. After

running the BM algorithm for 2t syndromes, we already know the values of Λj for j =

1, 2, . . . , 2t and all the previous error syndromes are known. Thus, by using the Equation

3.12, we can easily and efficiently compute the rest of Se
k from k = 2t + 1, . . . , n − 1.

This part is same as the discrepancy computation part of the BM algorithm as discussed

before.

Se
k = −

t∑

j=0

ΛjS
e
k−j k = 2t+ 1, . . . , n − 1 (3.12)

In other words, the first 2t error syndromes (Se = Sr) are used to compute Λ(x)

(from BM algorithm), then Λ(x) and the known Se are used to compute the remaining

error syndromes. Once all error syndromes Se are known, the codeword syndromes can

be computed by subtraction (symbolwise-XOR). With the presented decoding process,

the message can be found in the last k positions of the codeword syndromes, which will

be proved in the next section. Syndromes for the codeword Sc are again the evaluation of

the codeword polynomial c(x) in Fq which gives the coefficients of message polynomial

i.e. m(x) in reverse order. Hence Sc results in the recovered original message. The

detailed explanation for these based on evaluation can be found in Section 3.4.3. The

direct decoding algorithm is mentioned in Algorithm 3. Also, we can see the algorithm

starts outputting the message after n+2t cycles as mk−1 will be computed at n+2t+1st

clock cycle. This type of strategy is most effective if the next block accepts serial data,

and is not dependent on other data elements in the packet.

3.4.3 Duality of evaluation

In this section, the dual nature of evaluation will be explained for clear understanding

of algorithm 3. The syndromes for the codeword Sc are again the evaluation of the

codeword polynomial c in Fq which will actually give the coefficients of message poly-

nomial i.e. m(x) in reverse order. The message can be found in the last k components

of Sc. This operation can be explained by examining the matrix multiplications.

For encoding or obtaining the codeword, we have c = m ∗ A, where
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Algorithm 3 Evaluation based decoding algorithm for RS codes

Input: r(x) = r0 + r1x+ . . .+ rn−1x
n−1

1: for j = 1 : n do

2: Sr
j =

∑n−1
i=1 αijri

3: end for

4: for i = 1 : 2t do

5: BM algorithm to obtain Λ(x).

6: Se
i = Sr

i

7: end for

8: δ1 = 0

9: for i = 2t+ 1 : n do

10: Se
i = −∑t

j=0ΛjS
e
i−j

11: mn−i = Sc
i = Sr

i + Se
i

12: end for

13: return (m0,m1, . . . ,mk−1)

A =




1 1 1 · · · 1

1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...

1 αk−1 α2(k−1) . . . α(k−1)(n−1)




After encoding the codeword is computed. It is transmitted and the errors get added

such that the received word is r = c+e. For the computation of syndromes, Sr = r ∗B,

where

B =




1 1 1 · · · 1

1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...

1 αn−1 α2(n−1) . . . α(n−1)(n−1)




Assuming that we have no errors while transmitting the codeword, r = c and thus
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Sr = Sc = c ∗B = m ∗ A ∗B.

A ∗B =




1 0 · · · 0 · · · 0 0 0

0 0 · · · 0 · · · 0 1 0

0 0 · · · 0 · · · 1 0 0
...

...
. . .

...
. . .

...
...

...

0 0 · · · 1 · · · 0 0 0




Therefore the coefficients of the message polynomial m(x) = [m0 0 0....0 mk−1...m1]

can be directly obtained. In the next section, we will give an example to explain the

direct decoding algorithm for RS codes.

Example 3.4.1. Consider C be a RS code with parameters [31, 23, 9] defined over F25.

The error correction capability is 4. Suppose, we choose a message word as:

m = [α22 α30 α29 α9 α18 α29 α18 α20 α6 α14 α25 α3 1 0 α10 α26 α25 α17 α11α2 α7 α14 α25].

The codeword is computed by evaluating the polynomial m(x) with m(i) as coefficients

at all the points of the field F25:

c = [α29 α5 0 α11 α16 α14 α25 α4 α12 α13 α α23 α23 α11 α9 α8 α13 α19 α27 α3 α8 α26

α28 α24 α16 α4 α24 α22 α α23 α26].

Suppose the errors introduced is:

e = [0 0 0 0 0 α19 0 0 α19 α7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0].

Received word is computed as r = c+ e:

r = [α29 α5 0 α11 α16 α3 α3 α4 α12 α13 α α23 α23 α11 α9 α8 α14 α19 α27 α3 α8 α26

α28 α24 α16 α4 α24 α22 α α23 α26].

Syndromes for received word Sr is computed by evaluating polynomial with coefficients

in received word r(x) at all the points of the field:

Sr = [0 α22 α α14 α27 α10 α13 α21 α8 α23 α28 α18 α14 α7 α α3 α7 α20 α10 α7 α30 α13 α18 α22

α12 α α18 α15 α11 α5 α24] ..

By first 2t (in our case from 2 to 2t+1) syndromes, error locator polynomial is computed

as:

Λ = [1 α29 α8 α6 α7].

By using the discrepancy computation step iteratively, Se is computed as:

Se = [α22 α22 α α14 α27 α10 α13 α21 α8 α28 α27 α26 α25 α6 α10 α10 α18 α14 α10 α22 α9 α5 α24

α15 α 1 α6 α13 α14 α20 α20].
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Therefore, codeword syndromes are computed as Sc = Sr + Se:

Sc = [α22 α5 0 α11 α16 α16 α25 α4 0 α25 α14 α7 α2 α11 α17 α25 α26 α10 0 1 α3 α25 α14 α6 α20

α18 α29 α18 α9 α29 α30].

The decoded message word can be computed from last k symbols of Sc in reverse order:

mdec = [α22 α30 α29 α9 α18 α29 α18 α20 α6 α14 α25 α3 1 0 α10 α26 α25 α17 α11α2 α7 α14 α25]

, which is same as the transmitted message.

3.5 Evaluation based decoding for shortened RS codes

The decoding of shortened RS codes is performed using the algorithm as defined for

the RS codes in section 3 with some modifications which are discussed in this section.

It starts by computing the ns syndromes for the received word using Equation 3.13.

Sr
j =

ns−1∑

i=1

αijri j = 1, 2, ..., ns (3.13)

As discussed in section 3.4, using Equation 3.12 allows the ns − 2t syndromes for the

error to be computed. During the computation of the error syndromes, the polynomial

updating step is not needed. Based on our proposed encoding algorithm for shortened

codes, the direct decoding algorithm will yield the coefficients of m′(x) instead of ms(x).

This result has also been confirmed computationally by MATLAB results. Since the

degree of m′(x) is more than m(x), we need to compute more coefficients. This will

result in more clock cycles. Moreover, instead of getting the original message polynomial

ms(x), the modified version of the message polynomial is obtained i.e. m′(x). This

decoding method will also require a polynomial division at the end in order to extract

the original message polynomial i.e. ms(x) = m′(x)
P (x) which is quite costly in terms of

hardware or software. The most efficient method is to avoid the polynomial division

and get the coefficients of ms in the algorithm itself. We modified the direct decoding

algorithm for shortened codes in order to obtain directly the coefficients for ms(x). As

already mentioned, m′(x) = ms(x)P (x), therefore by comparing the coefficients of both

sides with respect to x-degree, we can obtain the equations discussed below:

m′
k−i = mks−i + δ(i) i = 1, 2, . . . , ks (3.14)

where, δ(i) =
∑i−1

j=1mks−jPn−ns−i+j, for i = 2, 3, ..., ks and for i = 1, δ(1) = 0.
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We can use these iterative equations in order to obtain the coefficients of ms(x)

without any polynomial division. This can be performed during the BM algorithm cal-

culating the complete ms(x) by using an in-line division scheme as defined in Equation

3.15, 3.16 and 3.17. Thus, it will not require any extra polynomial division or extra

clocks for obtaining original shortened message.

δ(1) = 0 (3.15)

δ(i) =

i−1∑

j=1

mks−jPn−ns−i+j, i = 2, 3, ..., ks (3.16)

mks−i = m′
k−i − δ(i) i = 1, 2, . . . , ks (3.17)

3.5.1 Algorithm

By using the above equations, all the coefficients for ms(x) can be calculated after ks

clock cycles using an Linear Feedback Shift Register (LFSR) circuit [57]. The decoding

algorithm is summarized in Algorithm 4.

Algorithm 4 Evaluation based decoding for shortened RS codes

Input: r(x) = r0 + r1x+ . . .+ rns−1x
ns−1, P (x) = (p0 + p1x+ . . .+ pn−nsx

n−ns)

1: for j = 1 : ns do

2: Sr
j =

∑ns−1
i=1 αijri

3: end for

4: for i = 1 : 2t do

5: Run BM algorithm to obtain the error locator polynomial Λ(x).

6: end for

7: δ1 = 0

8: for i = 2t+ 1 : ns do

9: Se
i = −∑t

j=0ΛjS
e
i−j

10: m′
n−i = Sc

i = Sr
i + Se

i

11: mns−i = m′
n−i − δi−2t

12: δi−2t =
∑i−2t

j=1 mns−2t−jPn−ns−i+2t+j

13: end for

14: return (ms0 ,ms1 , . . . ,msks−1
)
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Figure 3.5: Shortened RS decoder block

3.5.2 Block level architecture

Block diagrams of the classical and the proposed decoding architectures for the short-

ened RS codes are shown in Figure 3.5. The difference in the decoder for shortened

codes from full length RS codes is that it needs one more LFSR for computing the

message polynomial ms(x) from m′(x) as discussed in section 3.5.

3.5.3 Example for encoding and decoding shortened RS code

Consider a shortened RS code with parameters [12, 4, 9] shortened from [15, 7, 9] RS

code. The code has error correction capability, t = 4. Suppose the message polyno-

mial is m3x
3 + m1x

2 + m1x + m0, P (x) = (x + b0)(x + b1)(x + b2), where b0, b1, b2

are just α12, α13, α14. P (x) is a constant polynomial for fixed code parameters and

m′(x) = m(x)P (x) = m3x
6+ ...+b0bob1b2. The codeword obtained by evaluating m′(x)

at all field points Fq −{0} is c = (c0, c1, ..., cns , 0, 0, 0). The last 3 symbols are forced to

zero because of P (x) and only 12 symbols are transmitted through the channel. Suppose

the error introduced is e = (e0, e1, 0, 0, e4, 0, 0, 0, 0, e9 , 0, 0). The ns = 12 syndromes are

calculated and with 2t = 8 syndromes the error locator polynomial Λ(x) is calculated

and the rest ns − 2t syndromes are used to calculate the message polynomial. During

the message polynomial calculation the obtained result is the answer for m′(x) instead

of m(x), so the algorithm is modified slightly in order to get ms(x) directly in ns clock

cycles. In this example ks = 4; which means ks coefficients for the message polynomial

need to be computed. Without using an in-line division method, coefficients for m′(x)
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are obtained which is m(x) ∗ P (x). By applying the equations Equation 3.15, 3.16 and

3.17: m3 = m′
6;

m2 = m′
5 −m3(b0 + b1 + b2);

m1 = m′
4 −m2(b0 + b1 + b2)−m3(b0 ∗ b1 + ..+ b2 ∗ b0)

m0 = m′
3 −m1 ∗ (b0 + b1 + b2)−m2(b0 ∗ b1 + ..+ b2 ∗ b0) + a0b0b1b2

Thus, the equations are used to modify the algorithm to directly obtain the original

message polynomial ms(x) by using ns syndromes and ns clock cycles.

Example 3.5.1. Consider C be a shortened-RS code with parameters [28, 20, 9] defined

over F25. The error correction capability is 4. Suppose, we choose a shortened message

word as:

ms = [1 α28 α14 α2 α20 α α8 α9 α20 α11 α6 α26 α7 α14 α25 α12 α17 1 α4 α12].

If we evaluate ms(x) polynomial, we will not get the last 3 symbols as zero. Thus, we

define P (x) = (x − α28)(x − α29)(x − α30) and m′(x) = ms(x)P (x). The shortened

codeword is computed by evaluating the polynomial m(x) with ms(i) as coefficients at

ns = 28 points of the field F25 . Here, we have done the computation at all the points of

the field in order to show that the last 3 symbols are zero and we do not need to transmit

them:

c = [α α18 α29 α26 α18 α30 α17 α14 α27 α5 α29 α4 α21 α5 α20 α12 α20 0 α2 α12 α 0 α21 α30

α16 α4 α9 α12 0 0 0].

Suppose the errors introduced is:

e = [0 0 0 0 0 0 α11 0 α8 α9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α5 0 0].

Received word is computed as r = c+ e:

r = [α α18 α29 α26 α18 α30 α7 α14 α19 α15 α29 α4 α21 α5 α20 α12 α20 0 α2 α12 α 0 α21 α30

α16 α22 α9 α12].

Syndromes for received word Sr is computed by evaluating polynomial with coefficients

in received word r(x) at ns points of the field:

Sr = [α20 α25 α2 α8 α25 α11 1 α25 α11 α23 α23 α19 α17 α10 α28 1 α7 α14 α10 α16 α30 α13 α8

α23 α29 α15 α26 α14] ..

By first 2t (in our case from 2 to 2t+1) syndromes, error locator polynomial is computed

as:

Λ = [1 α2 α13 α15 α17].
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By using the discrepancy computation step iteratively, Se is computed as:

Se = [0 α25 α2 α8 α25 α11 1 α25 α11 1 α17 α6 α28 α5 α22 α13 α24 α15 α 1 α9 α 1 α7 α6 α14

α16 α12].

Therefore, codeword syndromes are computed as Sc = Sr + Se:

Sc = [α α18 α29 α26 α18 α30 α7 α14 0 α12 α13 α20 α5 α7 α18 α14 α6 α α17 α9 α3 α24 α20 α16

α18 α α20 α17].

The decoded message word m′(x) can be computed from last ks symbols of Sc in reverse

order but by applying in-line division scheme developed by us, we can obtain mdec = ms

in the same step:

mdec = [1 α28 α14 α2 α20 α α8 α9 α20 α11 α6 α26 α7 α14 α25 α12 α17 1 α4 α12]

,which is same as transmitted message.

3.6 Hardware and software implementation results

The classical decoding scheme for RS uses n cycles for the syndromes computation, 2t for

the BM algorithm, n for the Chien search and 2t for the Forney’s formula which results

2n + 4t cycles in total. The new evaluation based decoding scheme needs n cycles for

the syndromes calculation, 2t for the BM algorithm and k for the message polynomial

calculation resulting in 2n cycles. The proposed decoding algorithm also allows the

serial usage of data only after n + 2t clock cycles compared to the classical decoder

which starts outputting the message after 2n + 4t clock cycles. Thus, the proposed

algorithm can be useful for communications. In terms of area, the new encoding and

the syndrome computation share the same hardware and the decoder needs only a BM

block instead of the classical decoder (which includes BM, Chien search and Forney

formula). The circuitry is much more simple and small as compared to the classical

decoding algorithm because we do not need any extra hardware for the Chien search

and Forney’s formula. This not only reduces the circuit area but also makes the circuit

operate at much higher frequency as compared to the classical circuit.

The hardware implementations are done for commercially available 65nm Applica-

tion Specific Integrated Circuit (ASIC) process. The implementation results for total

number of cells and maximum clock rate of RS code over F256 with the error correction

capability of t = 2, t = 4, t = 6 and t = 8 are shown in Figure 3.6 and Figure 3.7

[58]. The proposed decoder is compared to the classical decoder. Both the classical
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and the proposed decoder is implemented utilizing the same conventional architecture

of Berlekamp-Massey algorithm from an efficiency point of view.

The total number of cells needed against the error correction capability (t) plot

is shown in Figure 3.6 and it can be seen that for any t the total number of cells is

smaller for the proposed decoder. Also, an important point to be noticed is that with

the increasing error correction capability the total number of cells increases drastically

(resulting in a very high slope) for the classical decoder. This means that with the in-

creasing t, the required circuitry size is increasing very rapidly for the classical decoder

and for t = 8, there is a total area reduction of 57.6%. As t increases, the classical

decoder needs more circuitry for all the blocks including the syndrome, key equation,

Chien Search and Forney’s Formula while for the proposed decoder circuitry only in-

creases due to the key equation block. That is why the area is increasing drastically

in Figure 3.6 with increasing t, for the classical decoder as compared to the proposed

decoder.

The maximum clock rate against the error correction capability (t) plot is shown

in Figure 3.7 and it can be clearly seen that the proposed decoder can be operated at

higher clock rates. For t = 8, there is a total decoding time reduction of 53.07% which

is highly significant.
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Figure 3.6: ASIC implementation results for area
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Figure 3.7: ASIC implementation results for maximum clock rate

Software implementation results for a resource constrained WSN application on

a ATMEL Atmega 128 microcontroller are shown in Table 3.1 for RS (32, 24) [59].

RS (32, 24) is quite commonly used for Wireless Body Area network applications as

it satisfies the code rate which should be around 0.8 and has packet length that is

acceptable by transmitter [60]. The new decoder and encoder is 52% and 72% in memory

footprint of the traditional method respectively. Significant reduction in memory is

achieved at the expense of decoding time because it is sufficient to run the discrepancy

computation loop longer and there is no need to code for Chien search and Forney’s

formula. It is ideal for applications requiring small software FEC codes operating at

low data rates.

3.7 Conclusion

A new efficient evaluation based encoding and decoding scheme has been proposed for

full length RS codes which can also be adapted for shortened RS codes. The hardware

circuitry for the proposed decoder is simple as compared to the classical decoding al-

gorithm since it requires only the syndrome calculation and BM algorithm blocks. The

hardware implementations on a commercially available 65nm ASIC process shows that
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Table 3.1: Memory and decoding time implementation results for RS(32, 24)

Program Size Clock cycles

(Bytes) (103)

Classical Encoder 450 10.024

Proposed Encoder 324 48.68

Classical Decoder 2744 30.016

Proposed Decoder 1426 65.208

the proposed decoder is area efficient as well as faster in comparison to the classical one.

For an RS(255, 239) code, the proposed decoder has a total cell count of 16075 which

gives a reduction of 57.6% in hardware area as compared to the classical decoder. Also,

a 53.07% reduction in decoding time is obtained with the proposed decoder which is a

significant improvement.

Figure 3.6 shows that the rate of increase in area for the classical decoder is very

high in comparison to the proposed decoder. It clearly indicates that the area for

the classical decoder increases significantly even for small variation in error correction

capability or with the dimension of the code. But, for the proposed decoder it does not

vary much which is a significant improvement in terms of hardware area as compared

to classical one.

Significant memory savings for software implementations were observed at the ex-

pense of processing time, throughput and latency for shortened RS codes. RS (32, 24)

for resource constrained WSN application on a ATMEL Atmega 128 microcontroller

shows that the new decoder and encoder is 52% and 72% in memory footprint with

respect to the traditional method respectively.

In this chapter, we discussed about the efficient evaluation based algorithm and

architecture for RS codes. But, one of the restrictions of RS codes is that code lengths

are limited to the size of the chosen alphabet, that is, the finite field. Goppa general-

ized RS codes to algebraic geometry (AG) codes which allowed the code length to be

much longer than the size of the codeword alphabet [42]. A subclass of these codes

called Hermitian codes is one of the popular AG codes defined over Hermitian curve.

Hermitian codes offer desirable properties over RS codes such as large code lengths over
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the same finite field and good error correction capability at high code rates. Hermitian

codes are closely related to RS codes and can be seen as their concatenation with the

added advantage of larger length over same alphabet. However, the RS codes are still

among the most extensively used error correcting codes with many industrial applica-

tions because of the highly complex Hermitian decoders. In the next chapter, we will

propose an efficient architecture for Hemrmitian decoders.

45



Chapter 4

Architecture for Interpolation

Decoding of Hermitian Codes

4.1 Introduction

The performance of a block code is measured in terms of probability of decoding error

which can be improved by increasing the length of the code relative to the codeword

alphabet [61]. The main problem in making Hermitian codes industrially more appli-

cable is to find a computationally simpler and area efficient method for the decoding

algorithm so that it satisfies the resource and throughput constraints imposed by the

application. For a long time, researchers were trying to find more efficient decoding

algorithms and architectures for AG codes[62][63].

To improve the efficiency and simplicity of unique decoding techniques for AG codes

is a classical research subject for a long time. A computationally efficient decoding

algorithm for AG codes was first described by Justesen et al. [64]. In [65], Sakata et al.

extended the algorithm to decode up to half the minimum distance. The running time

of the algorithm was estimated to be An7/3, where A is large enough to impact the term.

There is a considerable amount of literature on efficient decoding of AG codes [66], [67],

[68], [69], [70]. Until the advent of Guruswami and Sudan’s list decoding algorithm based

on interpolation which was a relaxation over unique decoding, the syndrome decoding

was the only choice for decoding AG codes. But, due to the high computational demands

and the architectural complexity of Hermitian codes, the unique decoding algorithm

is much more interesting from implementation perspective, and researchers are still
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trying to optimize time and area complexity. The list decoding algorithm for AG codes

is discussed using Gröbner bases in [71]. In [72], it is observed that by setting the

parameters list size and multiplicity as 1, the list decoding algorithm of [71] will just be

reminiscent of Kötter’s implementation of the Berlekamp-Massey syndrome decoding

algorithm [73] without the majority voting enhancement. In [72], the majority voting

part which makes the algorithm decode up to half of the order bound was devised.

In this chapter, we will present an efficient VLSI architecture for the Lee-O’Sullivan

interpolation based decoding algorithm [72] explicitly for Hermitian codes. We devel-

oped the architecture for the Lee-O’Sullivan algorithm based on interpolation and we

proved that the hardware implementation complexity for the widely used high rate

codes, the time complexity will be O(q5) which is q times faster than Kötter’s and the

space complexity will be of O(q4) which is same as Kötter’s algorithm. The new algo-

rithm computes the message directly from the received word under evaluation encoding

without computing the error locations and the values unlike Kötter’s algorithm. All

the comparisons in this chapter are made with just the key equation part of Kötter’s

algorithm with minor modifications, and without taking into account the extra memory

and extra clock cycles, required by Chien Search and Forney’s Formula, which follow

the key equation part in Kötter’s algorithm.

4.1.1 Introduction to Gröbner basis

We present some introductory definitions for Gröbner basis [74] before going into the

details of the Lee-O’Sullivan algorithm. Let F be a field and A = F[x1, x2, . . . , xn]. An

element xi1 . . . xin is called a term. If T is the set of all terms, we can define an order

relation < if:

• For any pair of terms m and n we have m < n or n < m or m = n

• if m < n and n < p then m < p

• if m < n then pm < pn for any term p

With such ordering, f ∈ A can be written uniquely as sum of monomials:

f = c1m1 + c2m2 + . . .+ ckmk
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such that m1 > m2 > . . . > mk. We define the leading term of f to be lt(f) = m1 and

corresponding leading monomial as lm(f) = c1m1. The definition of Gröbner basis is

as follows:

Definition 4.1.1. A set of non-zero polynomials G = {g1, g2, . . . , gn} contained in an

ideal I, is called a Gröbner basis of I iff for all f ∈ I such that f 6= 0 there exists

i ∈ {1, 2, . . . , t} such that lt(gi) divides lt(f).

Hence, f ∈ I iff f has remainder 0 under division by Gröbner basis of I, where

division means successive reduction of f by multiples of generators based on comparison

of the leading terms of Gröbner basis with the leading terms of dividend/remainder. In

other words, the leading term of any polynomial in I is divisible by the leading term of

some polynomial in the basis G.

4.1.2 Introduction to list decoding and interpolation problem

As we discussed, the unique decoding problem can be solved in two parts, that is

first to find the error locator polynomial and then to compute the error locations and

error values. Based on the problem of the computing error locator polynomial being

seen as a problem of finding a plane curve interpolating points, Sudan developed list

decoding algorithm [75]. Similarly, the list decoding algorithm consists of two steps:

the interpolation step and the root finding step. Both of these problems can be solved

in multiple ways. Since, the interpolation problem can be solved by finding a solution

of a system of linear equations over a field, it left the researchers to search for an

efficient interpolation algorithm. There are two important perspectives to look at for

the interpolation problem. Several authors including Kötter’s algorithm (as presented

by McEliece in [76]), formulated the interpolation problem as a problem of finding the

minimal polynomial with respect to weighted monomial order of the ideal of polynomials

interpolating certain points. The algorithm was based on the point by point approach

by building the Gröbner basis of the ideal for points {P1, P2, . . . , Pn} by recursively

computing the Gröbner basis of the ideal for points {P1, P2, . . . , Pi} while i increases

from 1 to n.

Another approach is also based on the Gröbner basis but the strategy is different.

The algorithm starts with a set of generators of the module induced from the ideal for

{P1, P2, . . . , Pn} and converts the generators to a Gröbner basis of the module, in which
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the minimal polynomial is found. This results in an efficient algorithm for solving the

interpolation problem. The Lee-O’Sullivan algorithm discussed in this chapter is based

on this approach and will be the direct decoding algorithm as discussed for RS codes.

The algorithm will output the message word directly. We will discuss the detailed

algorithm in next section.

The structure of this chapter is as follows. Section 4.2 introduces the Hermitian

codes and their evaluation based encoding. In section 4.3, we discuss the Lee-O’Sullivan

decoding algorithm based on interpolation. The difference between the Kötter and

the Lee-O’Sullivan decoder architectures is pointed out in section 4.5 at block level.

Section 4.6 presents the architectures for the computational units required in the Lee-

O’Sullivan decoder. In Section 4.7, we discuss increasing the efficiency of the Lee-

O’Sullivan decoder further with the addition of a division block. Finally, section 4.8

concludes the chapter.

4.2 Hermitian code construction

4.2.1 Hermitian curve

The codes constructed by choosing points from a curve and a space of rational functions

on this curve are called AG codes as discussed in Chapter 2. In this chapter, we will

discuss about the encoding from the evaluation perspective.

4.2.2 Encoding by evaluation

Hermitian curve has q3 + 1 points with a unique point P∞ at infinity with a unique

valuation of νP∞
associated with it. Let δ(x) = q and δ(y) = q + 1. A function in the

coordinate ring F[x, y] can be written as a unique F-linear combination of monomials

xiyj with i ≥ 0 and 0 ≤ j < q. The numerical semigroup of R at P∞ can be defined as

[71]:

S = {s0, s1, . . .} = {δ(f)|f ∈ R} = {δ(xiyj)|i ≥ 0, 0 ≤ j < q}

= {qi+ (q + 1)j|i ≥ 0, 0 ≤ j < q}

and is known as non-gaps. As already mentioned in Chapter 2, for each non-gap

there is a unique monomial xiyj with 0 ≤ j < q such that δ(xiyj) = qi+ (q + 1)j = s.
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Let us denote the monomial as ϕs. Let Fn be the Hamming space over F. Hamming

space is a mathematical space in which words of some given length (here n) are situated.

The evaluation map ev : R → Fn is defined by

ϕ 7→ (ϕ(P1), ϕ(P2), . . . , ϕ(Pn))

which is a linear map over F.

Hermitian codes are obtained by evaluation of functions f in the linear span of

{xiyj : iq + j(q + 1) ≤ u, 0 ≤ i, 0 ≤ j < q} for a fixed positive integer u.

A message m = (m0,m1, . . . ,mk) ∈ Fk is encoded ev(µ) ∈ Cu where,

µ =

k∑

s=1

msϕs ∈ f

and Cu is hermitian code with parameter u. Note that it is a non-systematic en-

coding. For systematic encoding, the reader is referred to [21].

4.3 Lee-O’Sullivan decoder based on interpolation

This section presents an algorithm of the general Lee-O’Sullivan algorithm tailored for

Hermitian codes. The Lee-O’Sullivan algorithm first constructs a set of generators for

the module induced from the ideal of polynomials passing through all the interpolation

points. Then the set of generators are converted to a Gröbner basis. It does not involve

any complex computations like discrepancy computation as in [73]. Hence, it can be

useful for a much more efficient implementation. The detailed algorithm is discussed in

[71]. We will explain the algorithm briefly.

4.3.1 Unique decoding by interpolation

In this section, we will explain the theory behind the Lee-O’Sullivan algorithm. As-

suming a codeword c ∈ Cu is sent through noisy transmission channel and v = c+ e is

received. Then c = ev(µ) for a unique:

µ =
∑

s∈S,s≤u

wsϕs, ws ∈ F

Under evaluation encoding, the vector (ws|s ∈ S, s ≤ u) ∈ Fk is the message encoded

to codeword c. The decoding problem essentially is then to find out ws for all non-gaps
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s ≤ u from the given received word v. For s ≥ u, let v(s) = v, c(s) = c and µ(s) = µ.

For non-gap s ≤ u,

µ(s−1) = µ(s) − wsϕs,

c(s−1) = c(s) − ev(wsϕs),

v(s−1) = v(s) − ev(wsϕs),

and for gap s ≤ u, v(s−1) = v, c(s−1) = c and µ(s−1) = µ. Note that, µs ∈ Ls,

c(s) ∈ Cs and v(s) = c(s) + e for all s. Hence, the decoding problem can be re written

as iteratively figuring out ws for each non-gap s from u to 0.

A polynomial in R[z] defines a function on the product surface of Hermitian curve

and affine line and can be evaluated at a point (P, v) such that P is a point on curve

and v ∈ F. Hence, the module of z− linear polynomials over R that interpolates the

point (Pi, vi) is given by:

Iv = {f ∈ Rz ⊕ R|f(Pi, vi) = 0, 0 ≤ i ≤ n− 1}.

The Lee-O’Sullivan decoding algorithm works with the Gröbner basis of Iv(s) with

respect to the monomial order >s on Rz⊕R. The monomial xiyjzk of R[z] is given the

weight o(xiyj) + sk. The monomial order >s orders the monomials of Rz ⊕ R by their

weighted degrees. For any f ∈ Rz ⊕ R, the notations lts(f), lms(f) and lcs(f) denote

the leading term, leading monomial and leading coefficient of f with respect to >s and

degsf is the weighted degree of lts(f). Let M is a submodule of Rz⊕R. A subset B of

M is called a Gröbner basis with respect to >s if the leading term of every element of

M is divided by the leading term of some element of B. We can write,

B = {Gi, Fj}

with i and j as some index sets assuming lts(Gi) ∈ R and lts(Fj) ∈ Rz. Suppose B(s)

is a Gröbner basis of Iv(s) with respect to >s then the majority voting procedure makes

a guess of w(s) of ws from B(s).
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4.4 Unique decoding algorithm

The unique decoding algorithm is presented in Algorithm 5.

Algorithm 5 Unique decoding algorithm

Input: Received word v

1: INITIALIZATION: Compute hv and N = o(hv)

2: for i = 0 : n− 1 do

3: if s is a non-gap ≤ u then

4: Make a guess w(s) for ws and let B1 = {Gi(z + w(s)ϕs), Fj(z + w(s)ϕs}.
5: else

6: B1 = B(s).

7: end if

8: Compute B(s−1) from B(s).

9: end for

10: return w(s) for non-gaps s ≤ u

Before going through the detailed algorithm for Hermitian codes, we will introduce

some notations. Let q be a prime power. Let

n = q3 number of points on the curve used for encoding

u parameter that determines the dimension of the code

F finite field of q2 elements

F[x, y] bivariate polynomial ring over F

degx a x-degree of polynomial a in x

a[xk] coefficient of the term xk in polynomial a

s mod q integer remainder of s divided by q

s/q integer quotient of s divided by q

a mod yq + y − xq+1 polynomial a reduced by yq = xq+1 − y

lc(a) leading coefficient of polynomial a

τ = ⌊(du − 1)/2⌋ with order bound du

For 1 ≤ i ≤ n, let (αi, βi) denote the i-th point on the Hermitian curve.
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4.4.1 Precomputation

For computing the initial Gröbner basis, the Lagrange interpolation polynomial needs

to be computed. The Lee-O’Sullivan paper discussed the computation of the Lagrange

polynomial hv for the received word v. The Lagrange polynomial can be computed

as hv =
∑n

i=1 vihi, where hi is Lagrange basis for points corresponding to P1, . . . , Pn.

Also, hi’s can be computed in advance as shown in Equation 4.1.

hi = −(xq
2 − x)(yq + y − βq

i − βi)

(x− αi)(y − βi)
∈ F[x, y]. (4.1)

For Hermitian curve, Pi = (αi, βi) are the points on the curve, which we will discuss

in details in section 4.4.2. In the proposed architecture, we will compute hi’s along

with the computation of hv as it will reduce the storage space dramatically and is more

appropriate from circuit perspective. The details will be discussed later in section 4.6.1.

4.4.2 Points on the curve

The q3 rational points representation (on Hermitian curve) is taken from [77]. The

n = q3 points which are represented in the form (αi, βi) on the curve are given as

(αsi , αsi(q+1)+1+γj) where i = 0, 1, . . . , q2−1 and j = 0, 1, . . . , q−1 such that si = i−1

if i ≥ 1 and s0 = −∞, α−∞ = 0. Also, {γ0, γ1, . . . , γq−1} are the q solutions to the

equation yq + y = 0 in Fq2 and α is the primitive element in F2
q. The total q

3 points are

shown below:

P0 = (0, γ0) P1 = (1, α + γ0) · · · Pq2−1 = (αq2−2, α(q2−2)(q+1)+1 + γ0)

Pq2 = (0, γ1) Pq2+1 = (1, α + γ1) · · · P2q2−1 = (αq2−2, α(q2−2)(q+1)+1 + γ1)
...

...
. . .

...

Pq2(q−1) = (0, γq − 1) Pq2(q−1)+1 = (1, α + γq−1) · · · Pq3−1 = (αq2−2, α(q2−2)(q+1)+1 + γq−1)

4.4.3 Decoding

Let v = [vi] be the received vector in Fn. Let s be a non-gap such that s ≤ u. Suppose

{g(s)i , f
(s)
i |0 ≤ i < r} is a Gröbner basis of the module of z−linear polynomial that

interpolates the point (Pi, vi) with respect to >s. For further details, please refer to
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[72]. The polynomials fi, gi can be interpreted as following throughout the algorithm:

gi =
∑

0≤j<q

ci,jy
jz +

∑

0≤j<q

di,jy
j

fi =
∑

0≤j<q

ai,jy
jz +

∑

0≤j<q

bi,jy
j

(4.2)

with ai,j , bi,j, ci,j , di,j ∈ F[x] during the execution.

Initialization The Lagrange polynomial hv can be computed from (4.3) using the

received word v and the pre-computed values of hi.

hv =

n∑

i=1

vihi. (4.3)

The initialization of Gröbner basis can be done as: For 0 ≤ i < q, set

gi = yi(xq
2 − x)

fi = yi(z − hv) mod yq + y − xq+1
(4.4)

The iterations will be performed from s = δ(hv) to s = 0, where δ(hv) is the weighted

degree of hv. Further simplification will result in, s = δx ∗ degxhv + δy ∗ degyhv =

q ∗ (q2− 1)+ (q+1)(q− 1) = q3+ q2− q− 1 (which is same as the initialization value of

s) to s = 0. The decoding will be done from majority voting and hence for computing

the message word [w(s)]0≤s≤u,sx≥0, majority voting will be performed from s = u to

s = 0.

Pairing Set

sy = s mod q

sx =
(s − sy)

q
− sy

For 0 ≤ i < q − sy, set

ki = degx ai,i + sx

i′ = i+ sy

For q − sy ≤ i < q, set

ki = degx ai,i + sx + q + 1

i′ = i+ sy − q

For 0 ≤ i < q, set

ci = degx di′,i′ − ki.
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Voting If s > u or sx < 0, then set w = 0, and for i with ki < 0, set

wi = −bi,i′ [x
ki ], µi = 1

and for i with ki ≥ 0, set

wi = 0, µi = 1.

If sx ≥ 0, then for 0 ≤ i < q, set

µi = lc(ai,i), wi = −bi,i′ [x
ki ]

µi

and let c̄i = max{ci, 0}, and let w be the element of {wi} with the largest

∑

w=wi

c̄i.

Finally if s ≤ u and sx ≥ 0, set w(s) = w.

Rebasing If w 6= 0, then for 0 ≤ i < q, set

gi = gi(z + wxsxysy) mod yq + y − xq+1

fi = fi(z + wxsxysy) mod yq + y − xq+1
(4.5)

For 0 ≤ i < q, do the following. If wi 6= w and ci > 0, then set (saving fi in a

temporary variable)

fi = xcifi −
µi(w −wi)

νi′
gi′

gi′ = fi

(4.6)

and set νi′ = µi(w − wi). If wi 6= w and ci ≤ 0, then set

fi = fi −
µi(w − wi)

νi′
x−cigi′ . (4.7)

If s > 0, then set s = s− 1 and go back to Pairing, otherwise go to Output.

Output Output [w(s)]0≤s≤u,sx≥0.

This is the basic description of the algorithm defined in the paper of Lee-O’Sullivan.

We will present an efficient VLSI architecture for this algorithm, where we simplified

the equations by using some mathematical tricks which will be shown in the later parts

of the chapter. We have also compared our architecture with the best existing algorithm

for Hermitian decoding. The differences at block level between both the algorithms are

covered in next section.
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4.5 Difference between the architectures of Kötter’s and

Lee-O’Sullivan decoding algorithm at block level

As we already know that the decoding problem in coding theory is split into two sub-

problems. One is to find the support of the error vector that computes the the error

locator polynomial and then computing the roots of the polynomial to determine the

error locations. Second is to find the error values corresponding to the error locations.

Kötter’s algorithm works on the same decoding principle.

The various blocks of Kötter’s decoding scheme are shown in Figure 4.1. The syn-

drome computation block where computes the syndromes from the received word. The

syndromes are then passed to the key equation block to compute the error locator poly-

nomial. There is a feedback loop for the majority voting block because without using

the majority voting block, the decoding algorithm can not correct up to the full error

correction capability of Hermitian codes. Thus, with the use of the majority voting

block, some extra syndromes can be computed and those extra syndromes are again fed

back to the key equation block. With the known error locator polynomial, the roots of

the polynomial (error locations) can be determined using a Chien Search and the error

values can be determined using the Forney’s Formula. The received word is stored in

a register which can be added at the end of the decoding process with the error values

at specific error locations in order to determine the originally transmitted codeword.

Figure 4.1: Kötter decoder

Following the description of the algorithm in the previous section, the different
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blocks for the Lee-O’Sullivan decoding or the interpolation decoding algorithm are

shown in Figure 4.2. Like the syndrome decoding algorithm, the Lee-O’Sullivan de-

coding algorithm corrects errors of up to half of the order bound and is also suitable

for deriving a parallel hardware architecture. It computes the message vector directly

from the received vector under evaluation encoding, which is a distinctive feature of

the list decoding algorithm. The Lee-O’Sullivan decoding algorithm uses the theory

of Gröbner basis of modules which allows simple and regular structure. The detailed

architecture for each block will be discussed in later sections of the chapter. The first

block computes the Lagrange polynomial that is hv which is needed to compute the ini-

tial Gröbner basis with respect to (wrt) s that is the initialization of the polynomials fi

and gi for i = 0, . . . , q−1. At the rebasing block, the polynomials fi, gi for 0 ≤ i ≤ q−1

are updated and thus will give the new Gröbner basis with respect to s − 1. When s

reaches u, the algorithm will start outputting the message word as w
(s)
0≤s≤u,sx≥0.

Figure 4.2: Lee-O’Sullivan decoder

4.6 Architecture for the Lee-O’Sullivan decoder

We developed the complete VLSI architecture for various blocks of Lee-O’Sullivan de-

coder and also simplifeid some of the parts mathematically to make the architecture

more efficient. In the following subsections, the algorithm and the architecture for all

the blocks shown in Figure 4.2 will be covered in detail.

4.6.1 Architecture for the computation of hv

The set of hi is called the Lagrange basis for the points P1, P2, . . . , Pn on the curve and

v = [vi] is the received word. In the Lee-O’Sullivan algorithm, the hi’s are precomputed

but from the hardware point of view it requires significant space for storing n = q3

different hi’s. It takes q3 registers for storing each of the hi, thus in total it needs
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q3 ∗ q3 = q6 registers for storing all hi’s which is a large storage space. We developed a

method to compute hv simultaneously with hi’s as shown in Figure 4.3, instead of pre-

computing and storing it. We need q replicas of this same circuit, for the computation

of complete hv.

For practical usage, the field used is of the form F2m which means all the subtractions

is treated as bitwise xor and we will use it throughout the chapter.

These hi as shown in (4.1) can be rewritten as the polynomial given below under

the condition αi 6= 0:

hi = yq−1(xq
2−1 + . . . + αq2−2

i x) + . . . + (βq−1
i + 1)(xq

2−1 + . . . + αq2−2
i x) (4.8)

and we write all these hi’s as a two dimensional matrix in x and y for our particular

case where codes are defined over Fq2 .

hi =




0 αq2−2
i (βq−1

i + 1) αq2−3
i (βq−1

i + 1) · · · (βq−1
i + 1)

0 αq2−2
i βq−2

i αq2−3
i βq−2

i · · · βq−2
i

...
...

...
. . .

...

0 αq2−2
i β0

i αq2−3
i β1

i · · · β0
i




Figure 4.3: Architecture for computation of hv at block level

If αi = 0 then the first column of hi will be [1 0 . . . 0 1]. The first and last row

values of the first column of hv will be just the addition of the vi corresponding to the

zero values of αi.

For the ease of computation, the q3 values for the terms βq−1
i + 1, βq−2

i , . . ., βi are

pre-computed and are initially saved in the dual port memories which can be reused for
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Figure 4.4: Circuit for computing hv
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the storage of the polynomials f and g later in the algorithm after the hv computation as

they are not needed for the rest of the algorithm. The architecture for the computation

of the rest q2 − 1 columns of hv (except the 1st column) based on the matrix structure

discussed above is shown in Figure 4.3. The circuity inside the box is shown in Figure

4.4. In Figure 4.3, with the changing values of inputs βq−1
i + 1, βq−2

i , . . ., 1 will

compute the 1st ,2nd, . . ., (q − 1)th rows of hv respectively. Figure 4.4 shows only the

the computations for the first row elements of hv matrix that is the multiplication term

is βq−1
i +1. In the first row of hv, if we focus on the 2nd element that is αq2−2

i (βq−1
i +1),

which is represented by the last row in Figure 4.4, we can easily see that at each clock

cycle αq2−2
i (βq−1

i + 1) is computed for various (αi, βi) and gets added to the previous

value stored in register R. This will continue for n = q3 clock cycles and hv will be

obtained. There can be q−1 more circuits similar to this with the multiplication values

set as βq−2
i , βq−3

i , . . ., 1. The computation of hv requires q3 registers for storing the

hv . It also needs 3q3 multipliers, q3 adders, q3 registers and in terms of time it is

performed in q3 clocks. Also, if we don’t use q of this circuits, it would take a bit longer

for computing the hv that is q4 clocks but then only 3q2 multipliers and q2 adders are

needed which actually keeps the product of area and time as a constant. This step is

used only once and the received word does not need to be stored after computing hv.

The structure for storing fi’s and gi’s for 0 ≤ i ≤ q − 1 is shown in Figure 4.5. The

memory used is dual port RAM so that it will allow multiple reads or writes to occur

at the same time. The coefficients are stored as shown in the figure as 1, x, . . . , xdf on

the columns and 1, y, . . . , yq−1, z, yz, . . . , yq−1z on 2q rows.

4.6.2 Intialization

The polynomials fi and gi can be initialized according to (4.4). The upper bounds on

the degree of f and g can be given as:

degx fi ≤ (q3 + 2q2 + 4q − 5− u+ (u mod q))/2

degx gi ≤ q2 + q − 1

For storing each of the polynomial of fi and gi, 2q dual port memory blocks of size

degxf and degxg are used. For total storage, we need 2q2(degxf + degxg) which results

in total as O(q5) in terms of memory. But, for the high rate codes where n = q3 ≃ u

makes the x-degree of f as O(q2) and so the space complexity is O(q4) which is the
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Figure 4.5: Storage structure for fi and gi in dual port memories

same as Kötter’s. For convenience in the implementation of various blocks, the same x

degrees is used for both f and g which makes them of the same size. This means we

need the memory blocks of size degxf . For doing the modulo yq + y− xq+1 polynomial

part, the same circuitry from a part of rebasing can be used with all the wi’s taken

as 1. The architecture for modulo is discussed later in the rebasing step in section

4.6.4. The steps discussed below that is pairing, voting and rebasing are iterated for

s = q3 + q2 − q − 1 times but the voting is performed only after s = u.

4.6.3 Voting

For the ease of implementation in hardware, the voting algorithm as discussed in section

4.4.3 is rewritten as Algorithm 6.

The circuitry for the voting part described in Algorithm 6 is discussed in Figure

4.6 and is mentioned in [21]. The voting circuit requires q multipliers and 4q2 registers

along with 2 multiplexers.

4.6.4 Rebasing

We developed the architecture for rebasing and updating the polynomial which is dis-

cussed in this section. The complete rebasing part is mentioned in (4.5), (4.6) and
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Figure 4.6: Voting
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Algorithm 6 Voting

Input: {wi}, {ci}
1: max =

∑q−1
i=0 ci

2: for k = 0 : q − 1 do

3: for j = 0 : q − 1 do

4: if wk == wj then

5: if cj ≥ 0 then

6: Sum = Sum+ cj

7: end if

8: end if

9: end for

10: if Sum > max/2 then

11: w(s) = wk

12: end if

13: end for

14: return w(s)

(4.7).

The term with z is replaced by (z + wxsxysy) and a modulo yq + y − xq+1 after

that as mentioned in (4.5). As shown in Figure 4.7, the terms from f or g are read

columnwise and is multiplied with wi and are stored in registers D1, . . . ,Dq. At the

same time the address for them are read as a1 = iq+j(q+1), where i is column number

and j is row number and for taking care for the multiplication by xsxysy (having address

as a2 = qsx + (q + 1)sy), the new address is generated as a1 + a2 if (a1 mod q)+(a2

mod q) ≤ q or a1 + a2 and a1 + a2 − q2 + 1 two addresses are generated otherwise.

The address generation comes from polynomial multiplication ((xsxysy)(xiyj)) modulo

yq+y−xq+1. For details please refer to [73]. The same addresses are read in the q upper

memory blocks and the values stored in registers R1, R
′
1, . . . , R

′
q and the values stored in

D1, . . . ,Dq are added to the values present at the registers R1, . . . , R
′
q depending upon

the addresses and is written to the same address at the same clock as the memories are

dual port, thus every column will take 1 clock cycle. This would effectively take degxf

clocks which will be q2 for high rate codes. It requires 2q replicas of this circuit for all

of fi and gi. Each circuit needs 5q registers, 2q adders, q multipliers and 1 multiplexer.
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Figure 4.7: Rebasing
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Thus, in total we need 10q2 registers, 4q2 adders, 2q2 multipliers and 2q multiplexers.

The updating of the polynomials part is given by the set of equations mentioned in

(4.6) and (4.7). The architecture is shown in Figure 4.8. For updating, the two columns

of fi should be read at the same time. Suppose for the first iteration, the last non-zero

column say nz, then (nz + ci)
th column and nzth column should be read and stored in

registers as shown at the same time. The coefficients stored in (nz + ci)th column of

gi′ should also be read simultaneously and multiplied with µi(w−wi)
νi′

and stored in the

register. The addition of these values should be written on the last non-zero column

read of fi and the values of (nz + ci)th column of fi should be written on (nz + ci)th

column of gi. The next iteration will be done for (nz + ci − 1)th column and so on.

This effectively takes degxf clock cycles which is q2 for high rate codes. It requires 2q

replicas of this circuit for all of fi and gi. Each circuit needs 6q registers, q adders and

q multipliers. Thus, in total we need 12q2 registers, 2q2 adders and 2q2 multipliers.

Figure 4.8: Updating

The total number of iterations that will include the rebasing and the updating steps

are q3 + q2 − q− 1 which is of O(q3). Thus, the total clock cycles needed effectively for

the decoder is of O(q3 ∗ degxf) which is maximum of O(q5) in any case for high rate

codes.
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Example 4.6.1. Consider a Hermitian curve x3 = y2 + y and a code defined over it

with u = 3. The error correction capability is t = 2 and α is the primitive element of F22.

There are q3 = 8 points on the curve and can be written as [(0, 0), (0, α), (1, α), (1, α2), (α,

α), (α,α2), (α2, α), (α2, α2)]. The message needs to be transmitted is w = [0 α α2]. The

set of non-gaps is S = {0, 2, 3, 4, 5, 6, 7, 8}.
The codeword is computed by evaluating the message polynomial at all the points of

the curve. The message polynomial in our case is a2y + ax. The codeword is: c =

(0 α2 α2 0 α 1 0 α2).

Suppose the error introduced is: e = (0 0 0 α 0 α 0 0).

The received word is r = c+ e: r = (0 α2 α2 α α α2 0 α2)

Now, the decoding starts by computing the Lagrange interpolation polynomial hv

which is q ∗ q2 matrix.

hv =


 0 α2 α 0

α2 α2 1 0




The upper bound on the x degree for fi and gi can be computed as, degxfi =

degxgi = 8. The Gröbner basis initialization:

f(:, :, 0) =




0 α2 α 0 0 0 0 0

α2 α2 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




f(:, :, 1) =




0 0 0 α2 α2 1 0 0

α2 0 α2 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




g(:, :, 0) =




0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



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g(:, :, 1) =




0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




The iteration will start from s = q3+q2−q−1 = 9. For the first iteration, after pairing:

sx = 3 sy = 1

k0 = 3 i
′

0 = 1 c0 = 1

k1 = 6 i
′

1 = 0 c1 = −2.

After the voting step:

w0 = 0 µ0 = 1

w1 = 0 µ1 = 1.

There will not be any substitution of z to z + wxsxysy for s > u. After the rebasing

step, the polynomials will be updated:

f(:, :, 0) =




0 α2 α 0 0 0 0 0

α2 α2 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




f(:, :, 1) =




0 0 0 α2 α2 1 0 0

α2 0 α2 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




g(:, :, 0) =




0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



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g(:, :, 1) =




0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




The procedure will continue similarly until s = 3 where s = u. For the s = 3

iteration, after pairing:

sx = 0 sy = 1

k0 = 2 i
′

0 = 1 c0 = 0

k1 = 3 i
′

1 = 0 c1 = 1.

the majority voting for outputting the message word will start for s ≤ u. After the

voting step:

w0 = 1 µ0 = 1 c̄0 = 0

w1 = α2 µ1 = 1 c̄1 = 1

Therefore, selected w is a2.

There will be substitution of z to z+wxsxysy for s > u followed by polynomial updating.

The polynomials will be updated:

f(:, :, 0) =




0 α2 1 α 0 0 0 0

0 0 0 0 0 0 0 0

α α2 1 0 0 0 0 0

0 0 0 0 0 0 0 0




f(:, :, 1) =




1 0 0 0 0 0 0 0

0 α 0 0 0 0 0 0

α2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




g(:, :, 0) =




0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



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g(:, :, 1) =




0 α2 α 0 0 0 0 0

0 α2 1 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




The decoding process will continue similarly till s = 0 and the obtained message word

is w = [0 α α2].

4.7 Optimized Lee-O’Sullivan algorithm

The Lee-O’Sullivan algorithm can be further optimized in terms of time. It turns out

that the interpolation-based unique decoding algorithm may benefit more from the list

decoding, as the central concept of the Guruswami-Sudan list decoding, namely the

Q-polynomial can be used along with the majority voting. The idea is that the compu-

tationally expensive Gröbner basis computation is iterated only until a Q-polynomial

is found, and then the root of the Q-polynomial reveals the rest of the sent message.

This simple idea boosts the decoding speed significantly. After the pairing step, if the

qki + (q + 1)i′ + τ < q3 is satisfied which means we have the Q polynomial now then

the algorithm directly goes to the division block and now the message is obtained only

by division as shown in Figure 4.9.

Figure 4.9: Conditional circuit for inclusion of division block

This results in skipping the voting and the polynomial updating part of the rebasing

step which effectively saves up to q3 clocks (q2 clocks for high rate codes) at every

iteration. This makes the algorithm 2 times faster than the above algorithm. The
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modified Lee-O’Sullivan algorithm decoder circuit at block level is shown in Figure

4.10. The division block does not require any extra circuitry. It just uses the circuitry

from pairing and part of the rebasing circuit. The division block arithmetic is discussed

below and is taken from [78]. After the initialization and the pairing blocks depending

upon the control unit for the de-multiplexer, the decoding procedure can proceed either

with the blocks of voting and rebasing or simply through the division block which re-use

the circuitry from pairing block and the rest is a part of the rebasing block. The final

output is the message word w
(s)
1≤s≤u,sx≥0.

Division Set

sy = s mod q

sx = (s− sy)/q − sy

and if i < q − sy, set

ki = degx(ai,i) + sx

i′ = i+ sy

and if i ≥ q − sy, set

ki = degx(ai,i) + sx + q + 1

i′ = i+ sy − q

If s ≤ u and sx ≥ 0, then set

w = −bi,i′ [x
ki ]

lc(ai,i)

and set w(s) = w, and if w 6= 0, then set

fi = fi(z + wxsxysy) mod yq + y − xq+1

If s > 0, then set s = s− 1 and go back to Division, otherwise go to Output.

In the next chapter, we will discuss about the Generalized Toric codes that are also

closely related to RS codes. They are the extension of RS codes over r-dimensions. With

the Toric codes, we can construct longer codes as compared to RS codes over the same

alphabet that can in turn improve the performance of the code in terms of probability

of decoding error. We construct the subfield subcodes of GT codes which are essentially

the multidimensional analogues of BCH codes and compute their parameters. Also, we

will show with the help of several examples that this method can be used as a method

to construct some optimal codes.
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Figure 4.10: Lee-O’Sullivan decoder with division block

4.8 Conclusion

We developed and presented a novel and efficient architecture for the implementation of

Lee-O’Sullivan decoder in this chapter. We computed the complexity of the algorithm

from the hardware perspective in terms of area and decoding time and found that it

is similar to the Kötter’s algorithm. The decoding time complexity is O(q5) which is q

times faster than the Kötter’s algorithm for high rate codes and the space complexity

in terms of registers, memories, adders and multipliers is of O(q4) which is same as

Kötter’s algorithm. Also, Lee-O’Sullivan appended the division block which makes

the circuitry 2 times faster than the original circuit implementations of Lee-O’Sullivan

algorithm. We presented the control circuit for faster Lee-O’Sullivan algorithm.
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Chapter 5

Subfield Subcodes

In the previous chapters, we have already discussed about RS and Hermitian codes. In

this chapter, we will discuss about the extension of RS codes over r dimensions that

is known as Generalized Toric codes and then about its subfield subcodes. Similar to

Hermitian codes, GT codes are also much longer than RS codes over same alphabet. The

chapter describes a method to construct several optimal codes which is an important

problem for coding theorists. The subfield subcodes of Generalized Toric codes is the

multidimensional analogue of BCH codes which are essentially the subfield subcodes

of RS codes. It is a known fact that BCH codes, Goppa codes and more generally

alternant codes [79] can be defined as subfield subcodes. Subfield subcodes can also be

used as a method of constructing new codes from old codes. Assuming q = ps, where

p is a prime number. A very useful method of constructing codes over Fp is to restrict

the codes which are defined over Fps . In this chapter, we study subfield-subcodes of

Generalized Toric (GT) codes over Fps. These are the multidimensional analogues of

BCH codes, which may be seen as subfield-subcodes of generalized RS codes [80], [81],

[82], [83], [84].

5.1 Subfield-Subcodes

Definition 5.1.1. Let C be a linear code of length n over Fps, the subfield-subcode of

C, say D, is the set of the codewords c ∈ C such that c ∈ Fn
p , i.e., D = C ∩ Fn

p .

Many authors have been interested in computing the dimension of subfield-subcodes.

Delsarte studied in [81] the subfield-subcodes of modified RS codes. Stichtenoth im-
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proved the bound on dimension in [84] and Shibuya et al gave a better lower bound on

dimension [83]. Later on Hattori, McEliece and Solomon [85] gave a lower bound on the

dimension of subspace-subcodes of RS codes. Finally Jie and Junying [86] generalized

the previous bound for Generalized RS codes.

There is a method of defining a code over Fp if a code over Fps is given [11]. This

construction uses the trace mapping defined in Equation 5.1. The class of cyclic codes

can be naturally represented as trace codes. Consider the field extension Fps/Fp, which

is a Galois extension of degree [Fps : Fp] = s. The trace map Tr, takes the elements of

Fps to Fp and can be denoted as:

Tr : Fps −→ Fp

For a = (a1, a2, . . . , an) ∈ Fn
ps, we define:

Tr (a) := (Tr (a1),Tr (a2), . . . ,Tr (an)) ∈ Fn
p . (5.1)

This is the method to obtain the Fp-linear map Tr : Fn
ps → Fn

p .

Definition 5.1.2. Tr (C) := {Tr (C)|c ∈ C} ⊆ Fn
p is called the trace code of C.

Definition 5.1.3. Dual code of a linear code C ⊂ Fn
q is the linear code defined as

C⊥ = {x ∈ Fn
q | 〈x, c〉 = 0 ∀ c ∈ C}, where 〈x, c〉 = ∑n

i=1 xici is a scalar product.

An important thing to be noted is both subfield subcode and trace code of a code

C ∈ Fn
ps are codes over Fp having length n. In particular Delsarte provides the following

result (Theorem 5.1.4) which gave a relation between subfield subcodes and trace codes

[81]:

Theorem 5.1.4.

(C ∩ Fn
p)

⊥ = Tr (C⊥)

where Tr : Fps → Fp sending x to x+ xp + · · ·+ xp
s−1

.

5.1.1 Bounds for the dimension of subfield subcodes and trace codes

There are obvious bounds on the dimensions of subfield subcodes and trace codes:

dim C|Fp ≤ dim(C) (5.2)
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dimTr (C) ≤ s dim(C) (5.3)

Equation 5.2 follows from the fact that a basis of C|Fp over Fp is also linearly

independent over Fps. Equation 5.3 follows since Tr : C → Tr (C) is a surjective Fp-

linear mapping and the dimension of C, regarded as a vector space over the field Fp, is

s dim(C).

5.2 BCH codes as subfield-subcode of a RS code

In this section, we are going to introduce a new approach for BCH codes (the authors

presented this approach in [87]) which is also discussed in [11]. The main idea is that

BCH codes are subfield-subcodes of RS codes. The latter is a well known family of

codes which may be described as an evaluation codes. This together with elementary

properties of Galois extensions allow us to describe BCH codes as an evaluation code

as well.

The next result is provided in [11] although it is possibly known before.

Proposition 5.2.1. A BCH code D over Fp of length n = ps − 1 is a subfield-subcode

of a RS code C over Fps, and therefore d(D) ≥ d(C).

In this chapter, we will extend the concept of subfield-subcodes to multidimensional

analogues of RS codes that is Toric codes.

5.3 Generalized Toric codes

Toric codes are algebraic geometry codes over Toric varieties. These codes were in-

troduced by J.P. Hansen [37], see also [88]. Let M be an integral lattice and P be a

convex polytope in M⊗R. The Toric code CP over Fq associated to P is the evaluation

code generated by the monomials xα where α ∈ P ∩M at the points of the algebraic

torus T = (F∗
q)

r. A lower bound for the minimum distance is estimated in [89] using

intersection theory and mixed volumes, extending the methods of J.P. Hansen for plane

polytopes.

D.Ruano introduces a natural generalization of this family, the so called Generalized

Toric Codes [39], which consist of the evaluation of any polynomial algebra in the
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q − 2

q − 20 1 2 · · ·
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...

✉ ✉

✉ ✉

✉ ✉
U = {u ∈ H | u = ✉ }

Figure 5.1: U ⊆ {0, . . . , q − 2}r

algebraic torus. More precisely, one may consider any subset U ⊆ {0, . . . , q− 2}r which
is pictorially shown in Figure 5.3.

The corresponding vector space Fq[U ] = 〈{xu = xu1
1 · · · xur

r | u = (u1, . . . , ur) ∈
U}〉 ⊂ Fq[x1, . . . , xr], thus the Generalized Toric code, CU , is the image under the Fq-

linear map, ev : Fq[U ] → Fn
q , ev(f) = (f(t))t∈T , n = (q − 1)r. It is clear from his

construction that any Toric code is a GT code.

Proposition 5.3.1. Let H = {0, . . . , q − 2}r and n = (q − 1)r. The Fq-linear map

ev : Fq[H] → Fn
q , f → (f(t))t∈T

is an isomorphism [11].

Corollary 5.3.2. In particular, ev restricted to Fq[U ] is injective, so dim(CU ) = |U |
[11].

The next result may be found in [90] and [39].

Proposition 5.3.3. For u ∈ H, let û ∈ H be defined by ûi = 0 if ui = 0 and ûi =

q − 1− ui if ui 6= 0. Let C be the GT code defined by U ⊂ H, then C⊥ is the GT code

defined by U⊥ = {û : u ∈ U}.

5.4 Subfield subcodes of Generalized Toric codes

Let R be Fps [y1, . . . , yr]/〈yp
s−1

1 −1, . . . , yp
s−1

r −1〉. The r-dimensional vector y1, y2, . . . , yr

is represented as y. We are looking for f ∈ R such that f(t) ∈ Fp,∀t ∈ T . If this occurs

we say that f is a polynomial evaluating to Fp. The idea is to find out first all those

polynomials evaluating to Fp in R and then restrict this set to Fps[U ].
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Proposition 5.4.1. ev(f) ∈ Fn
p ⇔ f(t) = (f(t))p ∀t ∈ T ⇔ fp = f in R.

Proof. According to Proposition 5.3.1 we know that ev(f)p = ev(fp) then it is clear

that:

ev(f) ∈ Fn
p ⇔ f(t) = (f(t))p∀t ∈ T ⇔ ev(f) = ev(f)p ⇔ ev(f) = ev(fp) ⇔

ev(f − fp) = 0 ⇔ f − fp ∈ ker(ev) ⇔ fp(y) = f(y) in R.

5.4.1 Cyclotomic cosets and their properties

Consider G = Gal(Fps | Fp) = {g0, . . . , gs−1} the Galois group, where gi maps α to

αpi . Looking at exponents, we may consider G to act on Zps−1 by multiplying by p and

this may be naturally extended to Zps−1 × · · · × Zps−1 by multiplying by p coordinate

wise. The orbits of G on Zps−1× · · · ×Zps−1 are called cyclotomic cosets, i.e., for every

b ∈ (Zps−1)
r we define the cyclotomic coset Ib by {b, pb, . . . , pnb−1b} where nb is the

smallest positive integer such that b = bpnb . The integer nb is the cardinal of Ib.

Some known properties of cyclotomic cosets [11]:

Proposition 5.4.2.

(i) Ib = {b, pb, p2b, . . . , pnb−1b} is closed under multiplication by p.

(ii) The cardinal of Ib is either s or a divisor of it.

(iii) Ib and Ib′ are either identical or they don’t intersect. Thus B = {Ib : b ∈ (Zps−1)
r}

partitions (Zps−1)
r.

5.4.2 Computation of evaluation polynomial for subfield subcodes of

GT codes

In this section, we will compute the basis for subfield subcode of GT codes and in the

process, we developed various theorems. Based on those theorems, we computed the

dimension of subfield subcodes as we already know the basis of subfield subcode. If

θ : R → R is an isomorphism and f evaluates to Fp. Then so does θ(f). This is because

θ(f)p = θ(fp) = θ(f). So it is worthwhile cataloging some isomorphisms of R.

Proposition 5.4.3. (i) For any i coprime with ps − 1, the map θi fixing Fps and

taking f(y1, . . . , yr) → f(yi1, . . . , y
i
r) is an isomorphism of R.
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(ii) For any α ∈ F∗
ps × · · · × F∗

ps, the map θα fixing Fps and taking f(y1, . . . , yr) →
f(α1y1, . . . , αryr) is an isomorphism of R.

(iii) The Frobenious map on Fps combined with yi 7→ yi for i = 1, . . . , r is an isomor-

phism of R.

Let f(y) =
∑

ai1,...,iry
i1
1 · · · yirr ∈ R, we denote supp(f) = {i | ai 6= 0} as the support

of f . If Ib is a cyclotomic coset, we denote fIb =
∑

i∈Ib
yi as the polynomial having

supp(f) = Ib and coefficients equal to one. It is easy to verify that fIb evaluates to

Fp. Note that θα(fIb) =
∑

i∈Ib
αi1
1 y

i1
1 · · ·αir

r y
ir
r is the polynomial with support Ib and

coefficients determined by α. Since θα is an isomorphism, θα(fIb) evaluates to Fp.

Let l = |B| be the number of cyclotomic cosets and let J = {b1, . . . , bl}, be a set

of representatives, so B = {Ib1 , . . . , Ibl}. From now on we will denote by fIb,β the

polynomial with support Ib and leading coefficient β, i.e., fIb,β = βyb + βpybp + · · · +
βp

nb−1
ybp

nb−1
. Note that fIb,β evaluates to Fp if and only if β ∈ Fp

nb .

Proposition 5.4.4. Let f be a function that evaluates to Fp with supp(f) = Ib and let β

be a primitive element of Fp
nb . Then, f is a linear combination of fIb , fIb,β, . . . , fIb,βnb−1.

Proof. Since supp(f) = Ib and fp = f there is some α such that f = αyb + αpybp +

· · · + αp
nb−1

ybp
nb−1

. Moreover αp
nb

= α, which implies that α ∈ Fp
nb .

We know that {1, β, . . . , β(nb−1)} is a basis of Fp
nb over Fp, so α = a0 + a1β + · · ·+

anb−1β
(nb−1), with ai ∈ Fp for all i. Therefore,

f =

nb−1∑

i=0

αpiybp
i

=

nb−1∑

i=0

ybp
i
( nb−1∑

j=0

ajβ
j
)pi

=

nb−1∑

j=0

aj

nb−1∑

i=0

βjpiybp
i

=

nb−1∑

j=0

ajfIb,βj

Proposition 5.4.5. fIb , fIb,β, . . . , fIb,β
nb−1 are linearly independent over Fp.
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Proof. Suppose it is not true. Thus, a0fIb + a1fIb,β + · · · + anb−1fIb,β
nb−1 = 0. The

smallest monomial in the left hand side is (a0 + a1β + · · ·+ anb−1β
(nb−1))yb which has

to be zero. This is true if β is a root of p(z) = a0 + a1z + · · · + anb−1z
nb−1, but this is

not possible because the minimal polynomial of β has degree nb .

Theorem 5.4.6. A basis for the set of polynomials evaluating to Fp is:

⋃

Ib∈B

{fIb,βj : j ∈ {0, . . . , nb − 1}, β primitive in Fp
nb}.

Proof. If Ib and Ib′ are two different cosets then fIb,β and fIb′ ,β′ have different de-

grees. So, there is no way to generate one from the other which proves that different

classes are linearly independent. Moreover within the set of polynomials with the same

support, say Ib, we know from Corollary 5.4.5 that the only linearly independent are

{fIb,1, fIb,β, . . . , fIb,βnb−1}. So, the only part left is to see that it is a system of genera-

tors.

Consider the smallest monomial in f , say βj1yb then fIb,βj1 =
∑nb−1

k=0 (βj1yb)p
k

must

appear in f . Since βj1yb is the smallest monomial in f , therefore b must be one of the

leaders in J = {b1, . . . , bl}. Assume without loss of generality that b1 < b2 < · · · < bl

and b = b1.

Consider f1 = f − fIb1 ,β
j1 and the first monomial on it, say βj2yb

′

. Again, the

polynomial fIb′ ,βj2 =
∑nb−1

k=0 (βj2yb
′

)p
k
must appear in f1. We may assume that b′ = b2

and consider f2 = f1 − fIb2 ,β
j2 .

In at most l-steps, we can finish the process obtaining that f = a1fIb1 ,β
j1 + · · · +

alfIbl ,β
jl , which concludes the proof.

For the next result we introduce an Fp linear mapping on R extending the trace

map, T : R → R is given by g 7→ g + gp + . . . gp
s−1

for all g ∈ R.

Corollary 5.4.7. The image of T is exactly the set of f ∈ R that evaluate to Fp.

Proof. Let f = T (g) = g + gp + · · · + gp
s−1

. Since gp
s
= g in R we have fp = f . Thus

any image of the map T evaluates to Fp.

For the converse, it is sufficient, by Proposition 5.4.4, to show that each fIbl ,β is in

the image of T for β an element of Fp
nb . Let γ ∈ Fps be such that Tr Fps/Fp

nb
(γ) = β.
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Then

T (γyb) =
s−1∑

i=0

γp
i

ybp
i

=

s
nb

−1
∑

j=0

nb−1∑

i=0

γp
i+jnb

ybp
i+jnb

Since bpnb = b,

=

nb−1∑

i=0

ybp
i
(

s
nb

−1
∑

j=0

γ(p
nb )j

)pi

The term in parentheses is Tr Fps/Fp
nb
(γ) = β, so

T (γyb) = fIbl ,β

This provides us a constructive method of producing all those polynomials which

evaluate to Fp. In particular, if we restrict to those polynomials with support in U , we

trivially have a formula for the dimension of a subfield-subcode.

Theorem 5.4.8. Let U ⊆ {0 . . . , q − 2}r and let DU = CU ∩ Fn
p .

DU = ev
(
T (Fps [H]) ∩ Fps [U ]

)

A basis for DU is:

⋃

Ib:Ib⊆U

{fIb,βj : j ∈ {0, . . . , nb − 1}, β primitive in Fp
nb}

Moreover it has dimension

dimDU =
∑

Ib:Ib⊆U

nb

.

Proof. From Theorem 5.4.6, the basis for the set of polynomials evaluating to Fp is:

⋃

Ib∈B

{fIb,βj : j ∈ {0, . . . , nb − 1}, β primitive in Fp
nb}.

Now, for ev restricted to Fp[U ], will restrict the degree of monomials to the set U

and since we know that for the polynomials evaluating to Fp their support should lie in
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cyclotomic cosets. Therefore, basis for DU will be a subset of U and can be written as

a union of polynomial with support in cyclotomic coset which is also a subset of U :

⋃

Ib:Ib⊆U

{fIb,βj : j ∈ {0, . . . , nb − 1}, β primitive in Fp
nb}

Then, the dimension is obvious from Corollary 5.3.2 and is equal to
∑

Ib:Ib⊆U nb.

Remark 5.4.1. When r = 1 and U = {0, 1, 2, . . . , k − 1} the GT code is a RS code

with parameters [ps − 1, k, ps − k].

This provide us a constructive way of producing all those polynomials which maps

F2r → F2. A possible algorithm is shown in Algorithm 7.

We have built a function in MAGMA for the above algorithm and confirmed that

every subfield-subcode of a Reed-Solomon code over F64 (except two cases) is the best

known linear code over F2. Same is true for F128 as well. For example the subfield-

subcode of the Reed-Solomon Code [63, 42, 19] is [63, 16, 23].

Example 5.4.9. Let C be an [n, k, d] RS code with q = 24, n = 15, i.e. we evaluate

all the polynomials of degree less than or equal to k− 1, at all the points of F∗
16. Let D

be the subfield-subcode of C, that is, D = C ∩F15
2 . What are the functions f : F16 → F2

we have to evaluate to get D?

The different cosets are I0 = {0}, I1 = {1, 2, 4, 8}, I3 = {3, 6, 12, 9}, I5 = {5, 10},
I7 = {7, 14, 13, 11}. Depending on the value of k we have:

• From 1 ≤ k ≤ 8, the only function is f = 1 corresponding to the coset I0, so the

code D is [15, 1, 15].

• If k = 9, C = [15, 9, 7] then we have Tr(x) = fI1 , fI1,α, fI1,α2 , fI1,α3 and fI0 = 1.

Then D is a [15, 5, 7] code.

• If k = 10 nothing new.

• If k = 11, C = [15, 11, 5] we consider I0, I1 and I5. That is fI5 = x5 + x10

and fI1,α = α5x5 + α10x10 in addition to the previous functions. Therefore, D =

[15, 7, 5].

• If k = 12 nothing new.
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Algorithm 7 BCH codes as evaluation codes

Input: Dimension of the code = k ; Field = F2r .

Output: Generator Matrix of the resultant subfield subcode of RS(n,k), where n =

2r − 1.

1: G = {0, 1, 2, ..., 2r − 1}; H = {1, 2, 4, ..., 2(r−1)} ;

2: while G 6= ϕ do

3: CHk,1 = G(k) ∗H(0) mod (2r − 1);

4: for i = {2, ..., r} do

5: if CHk,i 6= CHk,1 then

6: CHk,i = Gk ∗Hi mod (2r − 1);

7: G = G− CHk,i;

8: end if

9: end for

10: end while

11: if Grow,column > k − 1 then

12: p = row;

13: Gnew = After Removing pth row from G;

14: end if ;

15: for i = {1, ..., size(Gnew)} do

16: for j = {1, ...r} do

17: if Gnew
j,i 6= 0 then

18: P = P + xG
new
j,i ;

19: end if ;

20: end for;

21: c = 1;

22: for m = {1, ..., r} do

23: if Gnew[j,m] 6= 0 then

24: Pc(x) =Evaluate(P,α(m−1)x);

25: c = c+ 1;

26: end if ;

27: end for;

28: end for;

29: Generator Matrix =Evaluate(∀P (x),∀ elements of F2r − {0});
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• If k = 13, C = [15, 13, 3] we consider I0, I1, I5 and I3. That is fI3,αi = α3ix3 +

α6ix6 + α9ix9 + α12ix12 in addition to the previous functions, for 0 ≤ i ≤ 3.

Therefore, D = [15, 11, 3].

• If k = 14 nothing new.

• If k = 15, C = [15, 15, 1] and D = [15, 15, 1] with the 4 new functions correspond-

ing to I7: fI7,αi = α7ix7 + α11ix11 + α13ix13 + α14ix14 for 0 ≤ i ≤ 3.

5.5 Dual of Subfield-Subcodes

Theorem 5.1.4 together with Theorem 5.4.8 motivate this section.

Let U ⊆ {0, . . . , q − 2}r and let CU = ev(Fps [U ]) and DU = CU ∩ Fn
p . From

Proposition 5.3.3, we know that C⊥
U is the GT code defined by U⊥. From Delsarte’s

Theorem we have

D⊥
U = Tr (CU⊥) = Tr (ev(Fps [U

⊥])) = ev(T (Fps [U
⊥]))

The last equality follows from ev ◦ T = Tr ◦ev, which is easily verified. Clearly,

T (Fps [U
⊥]) is spanned by T (γyb) for b ∈ U⊥ and γ ∈ Fps. For b fixed and varying

γ we get exactly the set of fIb,β for β ∈ Fp
nb . Thus we have a basis for D⊥

U .

Theorem 5.5.1. D⊥
U has the basis

⋃

Ib:Ib∩U⊥ 6=∅

{fIb,βj : j ∈ {0, . . . , nb − 1}, β primitive in Fp
nb}

We therefore have

dimD⊥
U =

∑

Ib:Ib∩U⊥ 6=∅

nb.

Proposition 5.5.2. Let Û = {supp(h) | h = Tr (yb), b ∈ U⊥} = {Ib | b ∈ U⊥} = {pib |
b ∈ U⊥, i = 0, 1, . . . , nb − 1} Then D⊥

U = CÛ ∩ Fn
p = DÛ .

Corollary 5.5.3. One can always decode D⊥ up to t = ⌊d(CÛ )−1/2⌋ with the decoding

algorithm for CÛ .
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5.6 Computations

From the practical point of view it makes sense to choose U to be the union of different

cyclotomic cosets, otherwise the evaluation will not be in Fn
p .

We have written a function in MAGMA for computing the subfield-subcode of a

GT code and we have found a number of optimal codes. Consider first the field GF (23)

and r = 2 so T is the Toric surface. In each of the following cases we give a subset U of

(Z7)
2 and the parameters of D = DU and D⊥ = D⊥

U , the subfield-subcode of CU and

its dual.

i) U = [[1, 0], [2, 0], [4, 0], [0, 1], [0, 2], [0, 4]].

D is [49, 6, 24] and D⊥ is [49, 43, 3].

ii) U = [[6, 3], [5, 6], [3, 5], [3, 1], [6, 2], [5, 4], [6, 1], [5, 2], [3, 4]].

D is [49, 9, 20] and D⊥ is [49, 39, 3].

iii) U = [[2, 1], [4, 2], [1, 4], [3, 1], [6, 2], [5, 4], [4, 1], [1, 2], [2, 4], [0, 0]].

D is [49, 10, 20] and D⊥ is [49, 39, 4]. If we consider,

U ′ = U ∪ {[[1, 0], [2, 0], [5, 0], [6, 0], [1, 1], [2, 2]},

we get a new Toric code, CU ′ , with parameters [49, 16, 18], i.e, the minimum

distance drops by 2 (with respect to CU ) and the subfield-subcode DU ′ is equal

to DU . The previous is an example of a subfield-subcode DU ′ of a GT code CU ′

where d(DU ′) > d(CU ′).

iv) U = [[1, 0], [2, 0], [4, 0], [2, 3], [4, 6], [1, 5], [0, 1], [0, 2], [0, 4], [6, 3], [5, 6], [3, 5], [6, 1], [5

, 2], [3, 4]].

D is [49, 15, 16] and D⊥ is [49, 34, 6].

v) U = [[1, 0], [2, 0], [4, 0], [0, 1], [0, 2], [0, 4], [1, 1], [2, 2], [4, 4], [2, 1], [4, 2], [1, 4], [3, 1], [6

, 2], [5, 4], [4, 1], [1, 2], [2, 4], [1, 3], [2, 6], [4, 5]].

D is [49, 21, 12] and D⊥ is [49, 28, 7]. We use again the same strategy of adding

points: consider U ′ = U ∪ {[3, 0], [6, 0], [6, 1], [5, 2]}, we obtain the GT code

CU ′ with parameters [49, 25, 9] where the minimum distance drops by 3 and the

subfield-subcode DU = DU ′ .
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vi) U = [[6, 3], [5, 6], [3, 5], [1, 0], [2, 0], [4, 0], [3, 0], [6, 0], [5, 0], [2, 1], [4, 2], [1, 4], [3, 1], [6,

2], [5, 4], [4, 1], [1, 2], [2, 4], [5, 1], [3, 2], [6, 4], [1, 3], [2, 6], [4, 5], [2, 3], [4, 6], [1, 5], [3, 3]

, [6, 6], [5, 5], [4, 3], [1, 6], [2, 5]].

D is [49, 33, 6] and D⊥ is [49, 16, 7].

vii) U = [[6, 3], [5, 6], [3, 5], [0, 0], [0, 1], [0, 2], [0, 4], [1, 1], [2, 2], [4, 4], [3, 1], [6, 2], [5, 4], [5,

1], [3, 2], [6, 4], [6, 1], [5, 2], [3, 4], [0, 3], [0, 6], [0, 5], [2, 3], [4, 6], [1, 5], [3, 3], [6, 6], [5, 5]

, [4, 3], [1, 6], [2, 5], [5, 3], [3, 6], [6, 5]].

D is [49, 34, 6] and D⊥ is [49, 15, 12].

viii) U = [[6, 3], [5, 6], [3, 5], [0, 0], [1, 0], [2, 0], [4, 0], [3, 0], [6, 0], [5, 0], [1, 1], [2, 2], [4, 4]

, [2, 1], [4, 2], [1, 4], [4, 1], [1, 2], [2, 4], [5, 1], [3, 2], [6, 4], [6, 1], [5, 2], [3, 4], [0, 3], [0, 6]

, [0, 5], [1, 3], [2, 6], [4, 5], [3, 3], [6, 6], [5, 5], [4, 3], [1, 6], [2, 5], [5, 3], [3, 6], [6, 5]].

D is [49, 40, 4] and D⊥ is [49, 9, 14].

ix) U = [[0, 0], [1, 0], [2, 0], [4, 0], [3, 0], [6, 0], [5, 0], [0, 1], [0, 2], [0, 4], [1, 1], [2, 2], [4, 4]

, [2, 1], [4, 2], [1, 4], [3, 1], [6, 2], [5, 4], [4, 1], [1, 2], [2, 4], [5, 1], [3, 2], [6, 4], [6, 1], [5, 2]

, [3, 4], [0, 3], [0, 6], [0, 5], [1, 3], [2, 6], [4, 5], [2, 3], [4, 6], [1, 5], [3, 3], [6, 6], [5, 5], [4, 3]

, [1, 6], [2, 5], [5, 3], [3, 6], [6, 5]].

D is [49, 46, 2] and D⊥ is [49, 3, 28].

Notice that p = 2 ∤ s = 3 thus from Theorem 5.5.1 we know that the dual of a

subfield-subcode is again the subfield-subcode of another Toric code. In each example

the code D is the best known code for a fixed length and dimension. Also in each

example, except vi),vii) and viii) the dual code has the same correction capability as

the best known code for a fixed length and dimension.

From now on we will denote by D the subfield-subcode of the GT codes over GF (32)

and r = 2. In each of the following cases we give a subset U of (Z8)
2 and the parameters

of D = DU and D⊥ = D⊥
U , the subfield-subcode of CU and its dual.

i) U = [[5, 0], [7, 0], [5, 5], [7, 7]]

D is [64, 4, 42] and D⊥ is [64, 60, 2].

ii) U = [[5, 1], [7, 3], [0, 0], [0, 0], [7, 1], [5, 3], [1, 2], [3, 6], [2, 1], [6, 3]]

D is [64, 9, 36] and D⊥ is [64, 55, 4].
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iii) U = [[7, 1], [5, 3], [5, 0], [7, 0], [0, 1], [0, 3], [1, 5], [3, 7], [2, 1], [6, 3], [6, 2], [2, 6]].

D is [64, 12, 30] and D⊥ is [64, 52, 4].

iv) U = [[0, 0], [4, 0], [0, 4], [4, 4], [5, 0], [7, 0], [0, 1], [0, 3], [1, 1], [3, 3], [2, 1], [6, 3], [3, 1], [1

, 3], [4, 1], [4, 3], [5, 1], [7, 3], [6, 1], [2, 3], [1, 2], [3, 6], [2, 2], [6, 6], [3, 2], [1, 6], [4, 2], [4,

6], [5, 2], [7, 6], [6, 2], [2, 6], [7, 2], [5, 6], [1, 4], [3, 4], [2, 4], [6, 4], [0, 5], [0, 7], [5, 4], [7, 4]

, [1, 5], [3, 7], [2, 5], [6, 7], [3, 5], [1, 7], [7, 5], [5, 7]]

D is [64, 50, 5] andD⊥is [64, 14, 27]. Consider U ′ = U∪{[1, 0], [6, 0], [6, 5], [7, 7], [4, 7]}
the new GT code CU ′ has parameters [64, 55, 4] where the minimum distance drops

by 1 but DU = DU ′ .

In all the examples the code D has the same correction capability to the best known

codes for a fixed length and dimension.

5.7 Conclusion

This chapter presents the construction of subfield-subcodes of GT codes over Fp. We

first discussed about the subfield subcodes of RS codes i.e. BCH codes and how it

can be defined as evaluation codes. We extended it to more generic scenario by con-

structing the subfield subcodes of GT codes. The subfield subcodes of GT codes are

the multidimensional analogues of BCH codes. We defined the subfield subcodes of GT

codes as evaluation codes, identified the evaluation polynomials and determined the

dimensions and obtain bounds for the minimum distance. Several examples of binary

and ternary subfield-subcodes of GT codes are given that are the best known codes of

a given dimension and length. This also gave us a new method to construct the best

known codes for a given length and minimum distance.

From this chapter, we know that the polynomial evaluating to Fp should have sup-

port in cyclotomic cosets. Based on this fact, we make an attempt to simplify the

existing decoding algorithms for BCH codes which can be seen as subfield subcodes of

RS codes. In the next chapter, we will demonstrate the usage of cyclotomic cosets for

improving the already existing decoding algorithms of BCH codes.
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Chapter 6

Efficient decoding of BCH codes

beyond the error correction

capability of the code

BCH codes are the subfield subcodes of RS codes and form an interesting sub-class

of cyclic codes as discussed in chapter 5. The BCH code with designed minimum

distance dBCH which is same as the BCH bound can be constructed with generator

polynomial g(x) = (x − αb)(x − αb+1) . . . (x − αb+dBCH−2). Here g(x) is a minimal

degree polynomial in Fq[x] such that g(α) = . . . = g(αb+dBCH−2) = 0. The BCH

bound or designed minimum distance dBCH is only a bound on minimum distance

dmin, such that dmin ≥ dBCH [91]. While constructing an arbitrary cyclic code, an

exhaustive computer search is often needed to find the actual minimum weight of the

codewords and thereby the minimum distance. Classical algorithms for decoding BCH

codes (Berlekamp-Massey, Extended Euclidean algorithm,. . .) can decode up to the half

of the designed minimum distance, dBCH . If the true minimum distance, lets say d′ of a

BCH code is greater than dBCH , it implies we are not using the whole capacity of the

code with the above mentioned algorithms. Some algebraic algorithms which decode

beyond the half of the BCH bound have been proposed by various researchers. In [92]

Rifa J. can correct one more error if dBCH is even. In [93] Gui-Liang F. and Tzeng, K.

can decode cyclic codes up to the Hartmann-Tzeng bound and Roos bound. Bours et

al in [94] and Duursma I. together with Kötter R. in [95] provide different algorithms

86



for decoding binary cyclic codes beyond the half of the BCH bound. In [96] Nilsson J.

computes all the error patterns of weight at most d′ − 1/2 .

The list decoding algorithm is a relaxed decoding over unique decoding and it de-

codes beyond half the minimum distance bound. The motivation behind this chapter

is to use the subfield subcode and cyclotomic cosets concept for simplifying the list de-

coding algorithms of BCH codes. We first find a list decoding technique for BCH codes

by utilizing the already existing list decoding technique of RS codes. The advantage to

use RS list decoder is that it may be able to decode BCH codes uniquely even beyond

half the minimum distance. Pellikaan, R. already et al. used this idea for decoding

Reed-Muller codes [97]. This is supported by the fact that the subfield-subcodes of

RS codes over Fn
pm is a primitive narrow sense BCH code (section 2.4.1) over Fn

ps such

that s|m (converse is also true) as mentioned in chapter 5. The idea here is to use

the list decoder (LD) for RS codes for either unique decoding or list decoding of BCH

codes depending upon the inequality that exists between the actual minimum distance

of BCH codes and list error correction capability of RS codes. In most of the cases it

can uniquely decode up to the actual minimum distance of BCH code. We present a

probabilistic analysis for having more than one BCH code in the list when we use RS

LD for list decoding of BCH codes. Also, with the use of algebraic approach to BCH

codes provided in [87], we improve the Roth-Ruckenstein (RR) [98] [76] factorization

step in the list decoding algorithm.

In addition to improving the RR factorization algorithm for BCH codes, the list

decoding algorithm via syndrome variety is also modified and simplified by reducing the

number of variables in the system of equations. The problem of decoding cyclic codes

can be written as an algebraic system of equations where the solutions are closely related

to the error that occurred. The idea has been explored in many of the previous papers

where researchers have shown that the computation of the Gröbner basis of this system

of equations enables us to decode beyond the true minimum distance. Because of the

large number of variables, the complexity of previously discussed algorithms are quite

high and it becomes difficult to compute the Gröbner basis even for the codes of small

length. The idea here is to propose a computationally efficient list decoding algorithm

for BCH codes. From the subfield-subcode perspective, the polynomial evaluating to

the codeword in the subfield, i.e. evaluation polynomial for BCH codes, has some special
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algebraic properties based on its cyclotomic cosets structure as mentioned in Section 5.4

by putting r = 1. These algebraic properties can be used to improve the list decoding

via syndrome variety. We show an example of [63, 24, 15] BCH code where total number

of variables has been reduced by 73%.

6.1 Introduction

The list decoding algorithm was introduced by Elias [14] and Wozencraft [15]. In

1997, Madhu Sudan [99] discovered a polynomial time algorithm for decoding low rate

RS codes beyond the classical d
2 bound. Later, Guruswami et al. [100] discovered a

significantly improved version of the list decoder which can correct codes of any rates.

The list decoder is a relaxation over unique decoding that allows the decoder to produce

a list of codewords as answers. It can uniquely decode beyond half of the minimum

distance in some cases or else produces a list of codewords. The list decoding problem

for a code C : Fk
q −→ Fn

q is defined as : Given a received word r ∈ Fn
q , find a list of the

messages say L such that the Hamming distance between r and the elements of L is at

most τ , where τ is the number of errors we are trying to correct using the list decoder.

If τ = ⌊d−1
2 ⌋, it will result in unique decoding. The number of errors we can decode

with a list decoder depends on parameters like list size and multiplicity of its zeros

[100]. The list decoding algorithm is a polynomial time algorithm for decoding up to

tGS errors where, tGS = τmax = n − 1− ⌊
√

(k − 1)n⌋ that means tGS is the maximum

limit which could be achieved with a quite high multiplicity and list size depending

upon the various cases. Generally, for the simulation processes we use a multiplicity of

2.

Also, the list decoding algorithm via syndrome variety for binary cyclic codes is

discussed in [101] using an algebraic system of equations and computing the Gröbner

basis of this algebraic system. Using the algebraic system of equations, an ideal is

generated from the system of equations and a syndrome variety [102] associated to it

which is closely related to the error occurred. The proposed approach is similar to [101],

but the main novelty here is to reduce the number of variables in the system of equations

which in turn makes the computation of the Gröbner basis much more easier. Like [101],

the Gröbner basis technique is used to compute the solutions (instead of using brute

force which is an exhaustive method) with the significantly reduced number of variables
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in our case. This decreases the complexity of the computation of the Gröbner basis.

6.2 List Decoder of RS codes for decoding BCH codes

The list decoding error correction capability is much more than that of actual error

correction capability. As we have already stated that the d′ = dmin(D) ≥ d = dmin(C),

we can apply a list decoder for C in order to decode D which is the subfield subcode

of C over Fps. If we apply our list decoder to decode C we can decode maximum up

to tGS . We might get just one codeword or a list of codewords depending upon the

number of errors and the distribution of codes. Now, if we apply the same list decoder

to the subfield subcode D it would be the same. Thus our goal is to find out a bound

on the error correction capability of list decoder applied to D such that in the list of

final output codewords there is only one element having its coordinates in the subfield

(Fps). In [97], they have used the same idea in order to decode Reed-Muller codes.

There are two possible cases:

1. d = d′ : For this case, a unique RS decoder can be used for decoding subfield

subcodes.

2. d′ > d : In this case the list decoder of C, when used for decoding of D, will

give only one codeword in subfield under the condition which has been discussed

later in Theorem 6.2.3. There can be two possible interesting sub-cases which are

discussed below:

(a) ⌊d−1
2 ⌋ ≤ ⌊d′−1

2 ⌋ ≤ tGS : Here, the list decoder error correction capability

is more than actual error correction capability of BCH codes. This case is

discussed in this section.

(b) ⌊d−1
2 ⌋ < tGS ≤ ⌊d′−1

2 ⌋: In this case, the actual error correction capability

of BCH code is more than the list decoder error correction capability. This

case has been discussed in section 5.

Definition 6.2.1. Let D be a [n, k] cyclic code over Fps with generator polynomial

g(x) ∈ Fp[x]. Let Fpm be the decomposition field of g(x). We define the BCH bound

and we denote it by dBCH to [103]:

dBCH = max{l | g(α) = · · · = g(αl−1) = 0 : α ∈ Fpm}.
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If D is a [n, k′, d′] primitive narrow sense BCH code it is well known [11] that

D = C1∩Fn
ps = C2∩Fn

ps = · · · = Cx∩Fn
ps where C1, . . . , Cx are RS codes with parameters

[n, ki, di] for i = 1, . . . , x. Assume without lose of generality that d1 > d2 > · · · > dx.

Since D is a subcode of all of them d′ ≥ d1. From now on, if D = C ∩ Fn
ps , we are

assuming that C = C1, k = k1 and d = d1. A natural question is to ask about the

relation between d′, d and the BCH bound dBCH .

Let C be a RS code with dmin(C) = d and D = C ∩ Fps with dmin(D) = d′, then

d′ ≥ dBCH ≥ d, where dBCH is the BCH bound for D.

Example 6.2.2. Consider a RS code C with parameters [127, 99, 29] over F27. The

subfield subcode D with parameters [127, 43, 31] [104] over F2 has generator polynomial,

g(x) = x84 + x83 + x80 + x79 + x77 + x72 + x70 + x69 + x65 + x64 + x59 + x57 + x53 +

x51 + x50 + x49 + x45 + x43 + x42 + x41 + x35 + x34 + x32 + x28 + x26 + x25 + x22 + x21 +

x19 + x18 + x17 + x16 + x11 + x10 + x6 + x4 + x3 + x2 + 1.

g(x) is completely decomposable over F214 . For calculating the BCH bound, we

need to know the maximum number of consecutive roots that occurred. Two big sets

of consecutive roots are {a, a2, ..., a28} and {a32, ..., a38}, where a = ǫ129 and ǫ is the

primitive element of F214 . Thus, the maximum number of consecutive roots are 28 in

this case. It clearly implies that the generator polynomial of D has 28 consecutive roots

i.e. dBCH = 28 + 1 = 29 by definition 6.2.1. This is the first clear and interesting

example where d′ > dBCH = d.

Theorem 6.2.3. Let C be a RS code with parameters [n, k, d] ∈ Fn
pm and D a subfield

subcode with parameters [n, k′, d′] ∈ Fn
ps. Assume we receive a word r ∈ Fps, where

r = c′ + e such that c′ ∈ D and wt(e) ≤ min{tGS , ⌊d
′−1
2 ⌋}. Applying a list decoder for

RS code C (with list error correction capability of tGS) for decoding its subfield subcode

D, can uniquely decode up to the τ = min{tGS, ⌊d
′−1
2 ⌋}.

Proof. Since r = c′ + e with c′ ∈ D and wt(e) ≤ τ = min{tGS , ⌊d
′−1
2 ⌋} we have that

c′ ∈ B(r, τ) = {u ∈ Fn
pm | d(r, u) ≤ τ}. Since, τ is the minimum of list error correction

capability and half of the actual minimum distance (d′), therefore we can easily assume

that τ <= tGS for all the cases. Therefore, we can guarantee that the RS list decoding

algorithm for C applied to r always contains the right codeword as list of the codewords

always contain the actual transmitted word if number of errors are less than list error

correction capability.
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For proving that list will contain only one word that is equivalent to uniue decoding.

Suppose that the list contains two codewords ci and cj such that they have coordinates

in the subfield. Since, τ is the minimum of list error correction capability and half of

the actual minimum distance (d′), therefore we can easily assume that τ <= d′1
2 for all

the cases. This clearly states that with in distance d′ of received word there exists two

codewords. But, due to linear property of code, this clearly implies that the minimum

distance between two codewords in D is < d′, which is a contradiction. Thus, there is

only one codeword within distance d′ having coordinates in Fps.

Example 6.2.4. Consider a RS code C with parameters [127, 99, 28]. The subfield

subcode is D with parameters [127, 43, 31] [104] while dBCH is 29. Since the BCH bound

is 29, the BCH decoder can correct up to 14 errors but the true minimum distance of

BCH code is 31 which implies we can correct 15 errors. If we apply list decoder of C,

having error correction capability tGS = n− 1−
√
n(k − 1) = 127− 1−

√
127 ∗ 98 = 15,

to D we should be able to decode up to the true minimum distance of D theoretically

with the multiplicity 15 of the list decoder.

In the previous theorem, we stated that a list decoder for C can decode D up to

τ = min{tGS , ⌊d
′−1
2 ⌋}. If τ = ⌊d′−1

2 ⌋, then we will always be able to uniquely decode

up to the true minimum distance of BCH codes. If this is not the case we can not

use list decoder for the unique decoding. So the most interesting case here is when

⌊d′−1
2 ⌋ ≤ tGS .

The second interesting case is when ⌊d′−1
2 ⌋ > tGS . In this case the list decoder

for RS code will act as a list decoder for our narrow sense primitive BCH codes as

well instead of unique decoder. So, in this case there is a possibility that we will get

two codewords in the subfield. But, then the question will be why to use the list

decoder for RS code to decode BCH when there is already a list decoder for BCH

codes present. This could be answered in terms of complexity since the complexity for

RS is O(n6(1 −
√
1− d)8) while for narrow sense BCH it is O(n6(1 −

√
1− 2d)8) with

reference to [105]. Actually, recent results by Lee-O’Sullivan [106] and Beelen-Brander

[107] compute RS list decoders which run in O(l4sn2) andO(s4l4n log2n log(log n))

respectively, where l denotes the designed list-size and s the multiplicity parameter.

We can clearly see that there is a bit of advantage here in terms of complexity which
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makes this case interesting to study. But, the list error correction capability for BCH

code is n
2 (1 −

√
(1− 2D)) while for the RS case is n(1 −

√
(1−D)), where D ≃ d

n .

The list error correction capability of BCH code is always a bit larger than list error

correction capability of RS codes. Here, we gained a bit in terms of the complexity but

we are paying in terms of the list error correction capability.

6.2.1 Algorithm

In this section, we will discuss about the list decoding algorithm for RS codes in order

to decode BCH codes. The algorithm actually uses a RS unique decoder for the case

d′ = d and list decoder for cases d′ > d. Since, BCH codes are subfield subcodes of

RS codes, so we only output the list of those codewords with coordinates lying in the

subfield and all the other codewords will be removed from the list.

Algorithm 8 Unique Decoding (⌊d′−1
2 ⌋ < tGS)/List Decoding (⌊d′−1

2 ⌋ > tGS) for BCH

codes using RS list decoder

Input: n = pm−1, multiplicity(s), received word(r) = (r1, r2, ..., rn−1) ∈ Fn
ps , Degree(k)

1: Compute the parameter tGS = n− 1−
√

n(k − 1), t = ⌊d−1
2 ⌋ and t′ = ⌊d′−1

2 ⌋.
2: Compare t and t′.

3: if t′ = t then

4: Apply the unique decoder of RS code for decoding.

5: else

6: if t′ > t then

7: Apply the list decoding algorithm for RS codes to obtain a list of codewords

L.

8: end if

9: end if

10: Compute L′ = L ∩ Fps .

11: return (L′)
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6.3 Probability of multiple candidates in the list

If the list returned contains more than one BCH word, it might be a problem for a

number of applications. In this section, we do a probabilistic study for having more

than one BCH codeword in the list. Technically it is a list decoder but it is highly

unlikely that the list contains more than one codeword.

For calculating the actual probability of having more than one codeword we will be

following the notations and results from [108]. Let Au be |{c ∈ D|wt(c) = u}|, where
wt(c) is the weight of u. The weight distribution of BCH codes can be calculated with

the help of MAGMA. Let S(w, r) be the sphere {u ∈ Fn
ps |d(w, u) ≤ r} and S=(w, r)

be the surface of sphere, i.e., S=(w, r) = {u ∈ Fn
ps|d(w, u) = r}. Suppose that w is a

received word and D with parameters [n, k′, d′] is in use. Then decoding up to τ errors

from w can be specified as calculating the following set decτ (w) = S(w, τ) ∩D.

Assuming that all error vectors with weight at most τ have the same probability of

occurrence regardless of the weight of the error vector. Let υ ∈ D be the transmitted

word and at most τ errors occured in Fps. If w is the received word then P (|decτ (w)| >
1) will be given by the fraction of words in S(υ, τ) which are also within distance τ

from another codeword. Since the code is linear therefore studying the case υ = 0

will be sufficient. The exact count on the number of words in S(0, τ) within distance

τ from another codeword is very difficult so we give an upper bound i.e. M(τ) =
∑

c∈D\{0} |S(0, τ) ∩ S(c, τ)|. The formula for M(τ) can be directly given as:

M(τ) =

min{2τ,n}∑

u=d

Au

τ∑

a=u−τ

τ∑

i=u−a

|S=(0, a) ∩ S=(c, i)| (6.1)

|S=(0, a)∩S=(c, i)| =
l∑

j=0

(
u

u− a+ j

)(
n− u

j

)
(ps−1)j

(
a− j

i− (u− a)− 2j

)
(ps−2)i−(u−a)−2j

(6.2)

l = min{⌊ i− (u− a)

2
⌋, n− u} (6.3)

Thus the probability that we will obtain more than one word in the list can be given

by:

P (|decτ (w)| > 1) ≤ M(τ)

S|0, τ | .
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Remark 6.3.1. We have computed the probability of having more than one BCH code-

word in the list in the following case: we took the RS code over field F26 and the subfield

subcodes over F2, F22 and F23. As shown in figure 6.1, the probability of having more

than one codeword in the list are quite small for the codes over subfield F23 while it

is comparatively larger over subfield F2. But, we can also see that the probability for

having more than once codeword in the list is really small for all the cases which is

the main goal of this plot. This means there is a very low probability of having more

than one codeword up to list decoder error correction capability in this case. Thus, it

makes the list decoder of RS code worth using for BCH decoding beyond the designed

minimum distance. Also, while calculating the probabilities we had more than one value

of probability for same subfield subcodes. This is because for the same subfield subcode,

we have more than one RS code as parent code, as discussed in chapter 5. For this plot,

we have chosen the minimum of all the probabilities.

In Figure 6.2, we have plotted the probability of having more than one codeword

against k′ but for all the values of k. Since, in our technique we are using the RS list

decoder for BCH list decoding which implies that for calculating the value of τ we are

using k of RS code. But, as discussed in earlier, we have same k′ for several values of k.

So, we can see in the figure that correcting more errors result in higher probability. This

is because of the limitation of the list decoder. There is a trade off between number

of errors corrected and the possibility of having more than one codeword in the list

and vice-versa. Correcting a higher number of errors, will result in a higher number of

codewords in the list.

Also, in Table 6.1, we have shown how the probability is decreasing with the de-

creasing error correction capability or increasing k. The minimum distance of BCH

code in this case is 54 which allows us to correct 26 errors with a unique decoder. Now,

we can see from the table that we can correct around 5 more errors with a very small

probability of having more than one codeword in the list.
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Table 6.1: Probability values for varying k = 10, ..., 16 and constant k′ = 4

k for RS code k′ for BCH τ for list decoder of RS d of RS P

10 4 38 54 6.5 ∗ 10−5

11 4 36 53 9.06 ∗ 10−7

12 4 35 52 8.07 ∗ 10−8

13 4 34 51 5.76 ∗ 10−9

14 4 33 50 3.18 ∗ 10−10

15 4 32 49 1.29 ∗ 10−11

16 4 31 48 3.6 ∗ 10−13

6.4 Introduction to Roth Ruckenstien factorization for RS

codes

We are interested in providing a modified version of the Roth Ruckenstein (RR) algo-

rithm focusing it into the BCH case. So we are going to describe along this section the

main results represented in [76].

Given a RS codeword c ∈ C with parameters [n, k, d] is transmitted and a word r

is received. Let Fpm[x] be the ring of polynomials in x and Fpm [x, y] be the ring of

polynomials in x and y. Given the received word ri and the point on the field αi, the

interpolation step consturts a two variable polynomial Q(x, y). Q(x, y) has a zero of

certain multiplicity at each of the points (ri, αi) and has minimum weighted degree wrt

(1, k−1). After applying the interpolation algorithm, we obtain a bivariate polynomial

Q(x, y) ∈ Fpm [x, y]. Given Q(x, y), the factorization step is to find all polynomials

in Fpm [x] of degree ≤ k − 1 such that (y − f(x))|Q(x, y). Alternatively, we can say

that Q(x, f(x)) = 0 which makes f(x) as y−root of Q(x, y). We will discuss the RR

algorithm which is a method to find the y−roots.

If Q(x, y) is a bivariate polynomial such that xm|Q(x, y), but xm+1 ∤ Q(x, y), then

define

≪ Q(x, y) ≫=
Q(x, y)

xm

Suppose f(x) = a0 + a1x+ ...+ ak−1x
k−1 is a y− root then we can pick the coefficients
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one by one. Initially we will see how to determine a0. The results below are taken from

[76].

Lemma 6.4.1. If y−f(x)|Q(x, y) then y = f(0) = a0 is a root of equation Q0(0, y) = 0,

where Q0(x, y) =≪ Q(x, y) ≫.

Now, proceeding by induction, we define three sequences of polynomials fj(x), Tj(x, y)

and Qj(x, y), for j = 1, ..., k − 1 as follows: Initially, f0(x) = f(x), Q0(x, y) =≪
Q(x, y) ≫. For j ≥ 1 define

fj(x) =
fj−1(x)− fj−1(0)

x
= aj + ...+ ak−1x

k−1−j (6.4)

Tj(x, y) = Qj−1(x, xy + aj−1) (6.5)

Qj(x, y) =≪ Tj(x, y) ≫ (6.6)

We are stating the main results from [76] without making the proofs.

Theorem 6.4.2. Given f(x) = a0 + ... + ak−1x
k−1 ∈ Fpm[x] and Q(x, y) ∈ Fpm [x, y],

define the sequences for fj(x) and Qj(x, y) as defined above. Then for j ≥ 1, (y −
f(x))|Q(x, y) if and only if (y − fj(x))|Qj(x, y).

Corollary 6.4.3. If (y−f(x))|Q(x, y) then y = aj is a root of the equation Qj(0, y) =

0, for j = 0, ..., k − 1.

Corollary 6.4.4. If y|Qk(x, y), i.e., if Qk(x, 0) = 0, then f(x) = a0 + a1x + ... +

ak−1x
k−1 is a y− root of Q(x, y).

6.5 Improved Roth Ruckenstein (RR) factorization algo-

rithm for subfield subcodes of RS codes

A list decoding algorithm has two important steps: interpolation and factorization.

The motivation behind this section is to simplify the factorization step using algebraic

properties of the polynomial generators described in the chapter 5. We have made some

improvements on the stopping rule by using the fact that the polynomials evaluating

to Fp should have their support lying in cyclotomic coset. Using this property, we have
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improved the stopping rule for factorization algorithms. The details will be discussed

in this section.

The result from interpolation is a bivariate polynomial Q(x, y) which can be factor-

ized as (y−f1(x))...(y−fL(x)). The polynomials fi(x) should be of the form
∑k−1

i=1 aix
i.

As we have seen in Theorem 5.4.8 if f(x) is an evaluation polynomial for a BCH code

then f(x) =
∑

b∈J fIb,β. We can alter the algorithm by introducing a few changes that

will reduce the complexity of the factorization part. They are discussed as follows.

1. The input of the algorithm is a bivariate polynomial Q(x, y). The output is the

set of polynomials f(x) ∈ Fpm [x]≤k−1 (polynomials of degree ≤ k−1 in F[x]) with

Q(x, f(x)) = 0 and support in B = {Ib1 , . . . , Ibl} as indicated by Theorem 5.4.6.

A typical factor of Q(x, y) is of the form y − f(x) where f(x) =
∑k−1

i=0 aix
i.The

task of the factorization algorithm is to find out the coefficients a0, ..., ak−1.

2. Following Lemma 6.4.1 the candidates to be a0 are the roots of Q(0, y), therefore

we consider A0 = RootsOf(Q(0, y)). Since supp(f(x)) ⊆ B = {Ib1 , . . . , Ibl} then

a0 ∈ Fp, thus we compute A0 = A0 ∩ Fp.

3. For each element a0 ∈ A0 we compute: A0 = A0 \ {a0} (remove a0 from set A0),

T1(x, y) = Q(x, xy + a0) and Q1(x, y) =≪ T1(x, y) ≫.

4. From Corollary 6.4.3 we know that the candidates to be a1 are the roots of

Q1(0, y). So we compute A1 = RootsOf(Q1(0, y)). No special condition is im-

posed over A1.

5. Assume we have already computed a0, a1, . . . , ai−1 coefficients of f(x). We com-

pute Ti(x, y) = Qi−1(x, xy + ai−1) and Qi(x, y) =≪ Ti(x, y) ≫.

6. From Corollary 6.4.3 we know that the candidates to be ai are the roots ofQi(0, y).

So we compute Ai = RootsOf(Q1(0, y)). Since supp(f(x)) ⊆ B = {Ib1 , . . . , Ibl}
then ai ∈ Ii/p if i/p ∈ Z≥1, i.e., ai = api/p.

7. If i/p ∈ Z≥1 consider the unique element ai ∈ Ai verifying that ai = api/p. If

there exists such ai we go as in step 5. with {a0, . . . , ai}, otherwise we break the

process for this particular i and go to the next element in Aj with j = max{k :

k < i, k/p /∈ Z≥1, Ak 6= ∅}.
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8. If i/p /∈ Z≥1, for each ai ∈ Ai compute Ai = Ai \ {ai} (remove ai from set Ai)

and proceed as in step 5. with a0, . . . , ai.

9. We stop this process when we have computed am, with m = max{b1, . . . , bl}
(assuming bi is the leader of Ibi). All other coefficients aj with m < j ≤ k− 1 are

computed as p-powers of a0, . . . , am, that is, consider A = {aj : j ≤ m, j/p ∈ Z≥1}
then f(x) =

∑
a∈A fI,a.

10. If y − f(x) | Q(x, y) return f(x) otherwise go to the next element in Aj with

j = max{k : k < i, k/p /∈ Z≥1, Ak 6= ∅}.

We have modified the factorization algorithm for RS codes in order to get the

factorization algorithm for subfield subcodes of RS codes as shown in Algorithm 9.

6.6 Evaluation based decoding of BCH codes

From theorem 5.4.6, it is clear that any BCH code can be generated by some of the

elements in A. Let us consider the following family of codes:

C = {D =< Ev(S) >: S ∈ A}

Our goal is to perform list decoding for this family of codes in C . Notice that from

the definition, we are interested in BCH codes or in a subcode of them. Let D ∈ C

with parameters [n, k′, d′] and t = ⌊dBCH−1
2 ⌋, then D is a subfield subcode of RS code

with parameters [n, k, d]. Let us assume that we receive r = c + e, with wt(e) = τ .

From our interpretation of D in the previous chapter, there is a polynomial F with

deg(F ) ≤ k − 1 such that Ev(F ) = c. Since Fn
p is isomorphic to the polynomials of

degree less than or equal to n − 1 with support in the cyclotomic cosets, there exist

other polynomials, say E and R such that Ev(E) = e and Ev(R) = r.

We can write E(x) = E0+E1x+ . . .+En−1x
n−1, F (x) = F0+F1x+ . . .+Fn−1x

n−1

and R(x) = R0 + R1x + . . . + Rn−1x
n−1. We are dealing with the dual perspective of

evaluation scheme here. The syndromes for the codeword Sc is again the evaluation

of the codeword polynomial c in F∗
pm which will actually give the coefficients of F in

reverse order i.e. Sc
1 = Fn−1, . . . , S

c
n = F0. Hence, it is clear that if we will be able to

compute E, then F can be computed automatically as F = R − E and therefore will

be able to decode correctly.
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Algorithm 9 Factorization algorithm for subfield subcodes of RS codes

Input: Q(x, y) from interpolation, Degree(k)

Output: {f(x) : (y − f(x))|Q(x, y); degf(x) ≤ k − 1}

1: Find a set of cyclotomic cosets, B̂ = {Ibi : Ibi ⊂ {1, ..., k − 1}}
2: Find the coset leaders of B̂ i.e. Ĵ = {bi, bj , ..., bm}

3: π[0] = NIL; deg[0] = -1; Q0(x, y) = Q(x, y) ; t = 1; u = 0;

4: DFS[u]

/* DFS[u] : Depth First Search beginning at u */

5: if deg(u) ≤ bm then

6: R = RootList[Qu(0, y)]

7: for α ∈ R do

8: if u = 0 && α ∈ Fp then

9: v = t; t = t+ 1

10: π[v]= u; deg[v] = deg[u] + 1; Coeff[v] = α;

11: Qv(x, y) =≪ Qu(x, xy + α) ≫
12: DFS[v]

13: else if α! = Coeff[u/p]p then

14: Break;

15: else

16: v = t; t = t+ 1

17: π[v]= u; deg[v] = deg[u] + 1; Coeff[v] = α;

18: if u ∈ Ĵ then

19: Coeff[u] = P [r];

20: deg[u] = Q[r]; /*P and Q are storing the coeffs and power final ev poly.*/

21: r := r + 1;

22: end if

23: Qv(x, y) =≪ Qu(x, xy + α) ≫
24: DFS[v]

25: end if

26: f(x) = Coeff[0] +
∑

i∈Q[r] fIi,P [i]

27: if (y − f(x))|Q(x, y) then

28: Output f(x)

29: end if

30: end for 101



The standard method to proceed (refer to [50]) is to assume that ν errors occurred

in the positions i1, i2, . . . , iν . such that ν ≤ t. The error locator polynomial can be

defined then as:

∆(x) =

ν∏

j=1

(1− xαij ) = 1 + ∆1x+ . . . +∆νx
ν

The coefficients of this polynomial are related to the error syndrome Se with the fol-

lowing recurrent equation:

Se
k =

ν∑

j=1

∆jS
e
k−j k = ν + 1, . . . , n− 1 (6.7)

One can actually understand this as an infinity recurrence sequence i.e., for k =

ν + 1, . . . ,∞. By construction of code, c(αj) = 0 for j = 1, . . . , 2t, or in frequency

domain terms: the parity frequencies (Sc) have spectral components equal to zero.

This implies Sr
j = Se

j for j = 1, . . . , 2t and so we have known Se for the initial 2t

positions out of n positions. Once all of Se
j for j = 2t + 1, . . . , n are computed using

Equation 6.7 then Sc = Sr − Se and Sc will give the coefficients of F . An efficient

manner to proceed is to compute ∆(x) using BM algorithm which finds the minimal

polynomial (error locator) of a linearly recurrent sequence (syndromes) in an arbitrary

field and will give the correct error locator polynomial if less than or equal to t errors

occurred. The first 2t syndromes error syndromes (Se = Sr) are used to compute ∆(x)

then the error locator polynomial and the known Se are used to compute the remaining

error syndromes.

Remark 6.6.1. The above defined algorithm for ν ≤ t can be simplified using the

properties from theorem 5.4.6. As already mentioned, E and F have their support in

cyclotomic cosets. As discussed earlier, we have Sr
j = Se

j for j = 1, 2, . . . , 2t positions.

Using the cyclotomic coset property we can determine some more Se
j for free. Consider

the cyclotomic cosets Ib1 , Ib2 , . . . , Ibz such that 1 ≤ b1, b2, . . . , bz ≤ 2t. Now, if we know

Se
bi

with i = 1, 2, ..., z that means we know Se
j such that j = bi, pbi, ..., p

nb−1bi which is

the whole cyclotomic coset Ibi .

Se
pjbi

= (Se
bi)

pj j = 1, . . . , nb − 1 (6.8)

For determining the rest of the Se, we can use Equation 6.7. ∆(x) can be computed

using the BM algorithm. Once ∆(x) is known, the next step is to find the Se
bz+1

, where
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bz+1 is the index for the next unknown syndrome which has not been covered previously.

The equation can be re-framed as,

Se
bz+1

= −
t∑

j=1

AjS
e
bz+1−j (6.9)

Since all the Se
j with index j < bz+1 are known, so Se

bz+1
can be determined using

the above defined equation. Once we computed Se
bz+1

, we can compute all Se from the

cyclotomic coset Ibz+1. Now the same process can be repeated with bz+2 which is the index

for the next unknown syndrome index and we can repeat it until we find all of Se. The

coefficients of the evaluation polynomial can then be calculated as F (n− j) = Sr
j − Se

j .

6.7 List decoding via syndrome variety

Suppose ν > t errors occurred while transmitting the codeword c. The problem of

decoding cyclic codes up to and beyond their true minimum distance can be solved

by the use of Gröbner basis. The main concept is to convert the decoding problem in

to an algebraic system of equations and use the algebraic tools to solve the problem.

We propose a syndrome variety that can be used to decode BCH codes beyond the

error correction capability. The advantage gained over the previously defined scheme is

reduction in the number of variables using the cyclotomic coset structure.

Considering the fact that Fj = 0 for j = n − 1, . . . , n − 2t since the evaluation

polynomial has degree ≤ k − 1, it follows that Ej = Rj for some of the values of j. We

can understand Equation 6.7 as a system of equations (not necessarily linear) where

the variables are (∆1, . . . ,∆ν , S
e
2t+1, . . . , S

e
n−1). The total number of unknown variables

are ν + n − 2t. Let I be the ideal generated by the n equations in (6.7) and V (I) is

the syndrome variety associated to it. By construction it should contain the solution

to our problem. If ν = t, then it is well known that the syndrome variety will contain

only one point which is the solution and it is then bounded distance decoding. This

case has already been discussed in a more efficient manner in 6.6.1. For the rest of the

section, we will discuss the case when there are more number of errors i.e. ν > t.

Proposition 6.7.1. If ν > t then the syndrome variety V (I) provides all the codewords

at a distance at most ν to the received word r.

Proof. The syndrome polynomial can be written as a power series described in [109].
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The m− th syndrome is then Se
m =

∑n−1
i=1 eiα

m
i and the syndrome polynomial is defined

as S(x) = 1/x
∑∞

m=1 S
e
mx−m =

∑τ
i=1

ei
x−αi

. In particular, condition 6.7 implies that

S(x)∆(x) is a polynomial. The latter is true iff ∆(x)
∑ ei

x−αi
∈ Fpm[x] iff (x−αi) | ∆(x)

for every i with ei 6= 0. Therefore for any codeword at a distance at most τ to the

received word there is a ∆ satisfying condition 6.7 , which clearly implies it must be a

solution in V (I).

In general, it is difficult to find the solution of the variety in ν + n− 2t variables as

one needs to check pm(ν+n−2t) points which is the brute force or exhaustive mechanism

of doing this. However this is an inefficient way. Like in [101], we can use Gröbner basis,

although it is much more efficient than brute force but with a large number of variables

it is quite complex. Hence, we will discuss in details a nice concept that can reduce

the number of variables thus reducing the complexity of the algorithm as compared to

previously discussed algorithms. Still, we are required to compute the Gröbner basis

but the advantage is with a reduced number of variables.

In the case of BCH codes, we can apply some nice algebraic properties associated

with the evaluation polynomial of the code in order to reduce the number of variables

associated with the system of equations. As it has already been discussed, E and F

both have support in cyclotomic cosets, i.e. if the coefficient Ei 6= 0 the Epi mod pm−1 =

Ep
i mod pm − 1. Since, we know Ej for j = n − 1, . . . , n − 1 − 2t we also know all

the elements involved in their cyclotomic cosets i.e. Epkj mod pm−1, k = 1, . . . ,m − 1.

With the unknown variables, we apply the same rule. Let Se
i is an unknown variable

presented by xi then Se
pki mod pm−1

can be represented in terms of xi and is equal to

xp
k

i , k = 1, . . . ,m− 1. Using the property of cyclotomic cosets the number of variables

can be reduced significantly. So, finally we have ν + η variables where η is the number

of cyclotomic cosets which are unknowns. Under this setup, the computation of V (I) is

feasible. The decoding methodology of a BCH code defined over Fp, beyond the error

correction capability is given by the Algorithm 10. The algorithm follows [101] except

the part where cyclotomic structure is used to reduce the number of variables.
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Algorithm 10 List decoding for BCH codes over Fp

Input: received codeword, r(x) = c(x) + e(x) as a polynomial in Fp[x]/x
n − 1, BCH

decoding capability t, our list decoding capacity τ and GF (p,m).

Output: A list containing all the codewords at a distance τ to the received word

From now onwards, R and E are n−tuples representing the coefficients of the poly-

nomial we should evaluate in order to get r and e respectively.

BEGIN

1: if τ ≤ t then

2: Apply BM algorithm with the necessary modifications mentioned in remark 6.6.1

3: else

4: Compute the cyclotomic cosets:CC := [Ib : b ∈ B].

5: Compute the syndromes of received word: Sr := [Evaluate(r, αi) : i ∈ [1, . . . , n]]

6: Compute the known error syndromes: Se[i] = Sr[i] : i ∈ [1, . . . , 2t].

7: Compute more known error syndromes: Se[pki mod pm − 1] = Se[i]p
k

, for i =

1, . . . , 2t and k = 1, . . . , |Ii − 1|.
8: Repeat some error syndromes: Se[pm − 1 + i] = Se[i] : i ∈ [1, . . . , τ ].

9: Compute the unknown cyclotomic cosets U = B \ (B ∩ [1 . . . 2t]).

10: Add variables: Se[pki mod pm − 1] = Spk

i for i ∈ U and k = 0, . . . , |Ii − 1|.
11: Coefficients of error locator polynomial: ∆ = [∆τ , . . . ,∆1, 1].

12: Compute the ideal: I = [I ∪∑τ+1
j=1 ∆jS

e[i− τ − 1 + j] : i ∈ [τ + 1...pm − 1 + τ ].

13: Compute the variety:V = V (I) in the variables {∆τ , ...,∆1} ∪ {Su : u ∈ U}.
14: Compute the list: L = Ev(R−E) : E ∈ V , E is a polynomial with coefficient as

the reverse of the error syndrome provided by the each solution in V .

15: return (L).

16: end if

END
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6.8 Example and results

Consider C to be the RS code with parameters [63, 49, 15] and the subfield subcode D

which is a BCH code with parameters [63, 24, 15]. The error correction capability is 7.

We choose a word c over F2 as:

c = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1

0 0 1 1 1 0 0 0 1 1 0 1 1];

The maximum number of errors that can be corrected is 7 (unique decoding). With

our method, let us assume that we can decode maximum of τ = 10 errors. So, the error

vector e is introduced with non-zero errors in the first ten positions, hence,

r = [0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1

0 0 1 1 1 0 0 0 1 1 0 1 1].

In this case, we have: ∆ = [∆10, . . . ,∆1, 1]. Thus,

Se = [α4, α8, α55, α16, α23, α47, 1, α32, α45, α46, α38, α31, α32, 1, S15, α, α
53, α27, α8, α29, S21

, α13, S23, α
62, α52, α, S27, 1, S

4
23, S

2
15, S31, α

2, α59, α43, 1, α54, α19, α16, S32
15 , α

58, α4, S2
21, S

32
23 ,

α26, S4
27, S

2
23, S

32
31 , α

61, 1, α41, S16
15 , α

2, S16
23 , S

2
27, S

16
31 , 1, S

8
15, S

8
23, S

8
31, S

4
15, S

4
31, S

2
31, S0, α

4, α8,

α55, α16, α23, α47, 1, α32, α45, α46]

I has 63 equations and 16 variables, while if we do not use the cyclotomic structure it has

59 variables. One can check that V (I) has just one point which is [α45, α40, α10, α60, α27,

α18, α18, α42, α46, α4, α7, 1, α13, α45, α29, 0]. Thus, Se
15 = α7, Se

21 = 1, Se
23 = α13, Se

27 =

α45, Se
31 = α29, Se

0 = 0.

Therefore R and E can be computed and the polynomial evaluating to c is R−E. In

this example, we are reducing by 73% the total number of variables which are previously

required. Also, for this example we obtained just one codeword which implies unique

decoding for this case.

In table 6.2, we have shown the reduction in the number of variables as compared

to the previous scheme for various BCH codes with different parameters. For all the

codes given in the table, the algorithm corrects beyond the error correction capability

of the BCH code which is defined as subfield subcode of given RS codes. With the huge

reduction in the number of variables, the proposed algorithm is much less complex than

the previous algorithm discussed in [101].
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Table 6.2: Decoding BCH codes [n, k′, d′] beyond error correction capability

[n, k′, d′] [n, k, d] ν no. of vars no. of vars percentage

BCH codes RS codes (previous) (new) reduction

[63, 24, 15] [63, 49, 15] 10 59 16 73%

[63, 36, 11] [63, 53, 11] 7 60 15 75%

[127, 50, 27] [127, 101, 27] 15 116 23 80%

[127, 78, 15] [127, 113, 15] 9 122 21 83%

6.9 Conclusion

In this chapter, we first discussed how list decoder of RS codes can be used efficiently for

decoding BCH codes up to half of the actual minimum distance. We proved that BCH

codes are uniquely decoded up to a bound of min{tGS,
d′−1
2 } by using list decoder of

RS codes. Also, we computed the probability of having more than one BCH codeword

in the list which is found to be very low for codewords in subfield which demonstrated

the use of list decoder of RS codes for BCH codes. Also, we discussed about how the

algebraic structure of polynomials evaluating to Fp can be used in order to simplify the

list decoding algorithm for BCH codes via syndrome variety. By applying the algebraic

structure, we reduced the number of variables in variety by huge amount which in turn

facilitate the easier computation of Gröbner basis as compared to previous algorithms.
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Chapter 7

Analysis of a Set of Error

Correcting Schemes in Multihop

Wireless Sensor Networks

7.1 Introduction

The technology of WSN combines sensing, computation as well as communication into

a tiny device called sensor nodes. A WSN consists of spatially distributed sensor nodes

(or detectors) that monitor a physical or environmental condition such as temperature,

pressure, sound etc. and convert it into a signal that can be read by an observer (base

station) as shown in Figure 7.1. The idea is to pass the data cooperatively through the

network of nodes to the base station. Each wireless network is built of several hundreds

or thousands of nodes where each node is either connected to one or many sensor nodes.

Each sensor node typically consists of processing capability (microcontrollers), a radio

transceiver with an internal antenna or a connection to external antenna, may contain

various types of memories (like program data or flash memories), an energy source (like

battery or solar cells) and an electronic circuit for interfacing with the sensors or energy

source. This new technology of sensor networks has unlimited potential for numerous

applications for example environmental, medical, military, transportation, entertain-

ment, crisis management, homeland defense, and smart spaces. Although reliability is

the primary requirement of any communication, energy consumption is a major con-
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strain in any WSN. The amount of energy consumed at the node level determines the

lifetime of a sensor, which in turn determines the lifetime of a sensor network. Bat-

tery capacity of each sensor node is limited and usually it is inconvenient to replace

them. Any operation (like computation or transmission) performed on a sensor con-

sumes energy which results in discharging of battery. Hence, efficient use of resources

has now become an important issue in order to improve the life span of WSN. Among

various resource management methods power control in WSN is significant to overcome

unnecessary interference and to save the battery life of the sensors.

Figure 7.1: Multi-hop WSN architecture

The final goal of a WSN is to collect the data at a sink node where the data is

analyzed. In a multi-hop scenario, information passes through various nodes before

reaching the final destination. Passing information through such a network may result

in additional errors introduced at every node. Data reliability and security are impor-

tant issues for any communication system. For recovering the erroneous packets, three

basic schemes are FEC, ARQ and Hybrid ARQ. ARQ is very simple to use but the

disadvantage of using it is the additional retransmission energy cost and area overhead

[110]. HARQ that combines ARQ and FEC is even worse [111] since it consumes a

lot of energy and is limited to some specific applications. The limited battery capacity

of each sensor node makes the minimization of the power consumption at each sensor
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node one of the primary concerns in WSN, in order to increase their lifetime. the energy

constrained transmission issue of WSN makes FEC a popular technique to be used in

such networks rather than ARQ and HARQ. With the use of FEC, there are no delays

in message flows, though the packet might get lost if the error correction scheme is not

strong enough.

To the best of our knowledge, all the schemes using FEC either do complete or do

partial encoding/decoding at every node. For most of the codes used in WSN, encoding

is simple and energy consumption is low [112]. However, the decoding process is usually

complex and it consumes a significant amount of energy. Decoding being done at every

node, results in higher energy consumption which reduces the network life in turn.

Two important questions that need to be answered while applying any of these

schemes for data transmission via WSN are:

• What is the energy consumed while transmitting the data from source node to

sink node given the amount of data that has to be transferred? This will be

answered in section 7.3 for our transmission scheme.

• What is the probability of reproducing the original data overcoming all the errors

introduced by noisy channels while transmission? This will be discussed later in

section 7.4 for the proposed transmission method.

These two questions are important because if the coding gain is smaller than the

amount of energy consumed for transmitting extra bits then it is not worth using FEC.

It is better to transmit the uncoded data and adapt ARQ. Also, the probability of

obtaining a transmitted word in error at the receiver’s end should be low enough. This

chapter compares several powerful codes for transmission over WSN (in relation to

energy consumption at the node level and the probability of reproducing the original

data) having the encoder’s complexity similar to RS encoder complexity. The decoders

are of high complexity with good error correction capabilities at the receiver end. The

assumption made here is that decoding takes place only at the base station which is

not energy constrained. This makes the scheme independent of decoding energy and

complexity as the main motive is to reduce the power consumption on the sensor and

relay nodes. It reduces the power consumed at each of the sensor nodes because now

rather than encoding and decoding (processing) data at each of the sensor nodes it
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is just relayed, and only encoded once (at first node) and decoded once at sink. The

energy and probability model discussed in later sections tries to answer the two questions

mentioned above.

7.2 System model

Due to lack of infrastructure, the topology of a WSN is random and dynamic. For

simplicity, a linear model is assumed with equispaced nodes as shown in Figure 7.2.

It illustrates the linear model of packet forwarding from source node to sink node. It

is considered to be an optimum model for a multi-hop WSN for transmitting a single

packet of data from source node to sink node [113].

Figure 7.2: System model

7.3 Energy model

As already mentioned, in order to compare the performance of various codes, we need

to know the amount of energy consumed at node level while transmitting the data. The

architecture with annotated energy consumption for sending an n-bit data packet over

a single hop wireless link of distance d is shown in Figure 7.3.

For this model the final decoding energy has also been ignored since the base station

is not power constrained and only the encoding energy for the first node is considered.

The communication energy consumed at send a data packet can be computed as follows:

Etotal = Eenc + ETX + ERX (7.1)

where
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Figure 7.3: Energy model

Etotal : Total energy consumed in the network

Eenc : Energy consumed by the encoder at the first node

ETX : Energy consumed in transmission by all nodes

ERX : Energy consumed in receiving the data by all nodes except first one

The above equation can be written in more details:

Etotal = Eenc +
m∑

i=1

NbEtx/b +
m−1∑

i=1

NbErx/b (7.2)

where,

m : Number of hops

Nb : Total number of bits transmitted

Etx/b : Energy consumed in transmitting a single bit from a node

Erx/b : Energy consumed in receiving a single bit at a node

The term Etx/b can be represented as [114]:

Etx/b = Ete + Etad
α (7.3)

where,

Ete is the power consumption at transmitter electronics

α is the path loss component usually varies between 2−4 with α = 3 being a typical

value when scattering is considered [115].

Eta is the power consumption of transmitter amplifier can be given as:

Eta =
( S
N )r(i)(NFRX )(N0)(BW )(4πλ )α

(Gant)(ηamp)(Rbit)
(7.4)
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where, (S/N)r(i) is the desired SNR at the ith receiver, NFRX is noise figure at receiver,

N0 in the thermal noise, BW is the bandwidth of channel noise, λ is wavelength, Gant

is antenna gain, ηamp is the transmitter efficiency and Rbit is the raw channel rate in

bps.

If the channels have low noise proposed transmission scheme may completely recover

the original data with the additional advantage of low energy consumption.

7.4 Model for error probability

Also, another important parameter while comparing the performance of two codes is

the probability of receiving the correct word at the base station. In this section, we will

discuss about the computation of probability of receiving correct word or probability of

receiving wrong word at the base station. The probability of error that gets corrected

at the base station depends on several factors like channel model, number of hops and

the error decoding capability of the code.

7.4.1 Wireless channel model

For a typical multihop WSN, Rayleigh slow fading channel attenuation model is assumed

as defined in [112]. The modulation technique used here is a non-coherent (envelope or

square-law) detector with binary orthogonal FSK signals. For this particular case the

probability of bit error [116]:

PFSK =
1

2 + γ̄b
(7.5)

where, γ̄b is the average received bit signal to noise ratio which depends on the receiver

characteristics and the distance between the receiver and transmitter.

7.4.2 Probability of error for our model

Only linear block codes with encoding similar to RS codes are discussed here and it

is assumed that the channel is uniform over which the code is sent, which results in

constant symbol error probability (Ps). The model is shown in Figure 7.4.

With the above constrains and assuming FSK-modulation the probability of n sym-
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Figure 7.4: Error probability model

bol code word being in error assuming we can correct up to t errors is given by [112]:

Pe(ǫ) =
n∑

i=t+1

(
n

i

)
ǫi(1− ǫ)n−i (7.6)

where, ǫ denotes the bit error probability and
(n
i

)
is the binomial co-efficient. The

probability that the packet is received with no errors at sink node is:

Pc =
m∏

i=1

(1− P (i)) (7.7)

where P (i) is the probability of receiving a packet with errors from (m− i+ 1)th node

to (m− i)th node. For our case, the probability of having no error for each link is fixed

i.e. P (i) and is given by (1 − PFSK). Hence, Pc is given by (1 − PFSK)m. Therefore,

the bit error probability is:

ǫ = 1− (1− PFSK)m (7.8)

In our assumptions, the decoding is done only once at the sink node. All the other

nodes just keep on transmitting the code word and adding error to it. Thus the packet

error probability at sink node can be calculated as:

Pe =
n∑

i=t+1

(
n

i

)
(1− (1− PFSK)m)i(1− PFSK)m(n−i) (7.9)

which results in,

Pe =

n∑

i=t+1

(
n

i

)
(1− (1− 1

2 + γ̄b
)m)i(1− 1

2 + γ̄b
)m(n−i) (7.10)

The probability of successful transmission is 1 − Pe and the expected number of

transmissions for successful end to end packet transmission is 1
1−Pe

.
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7.5 Energy consumption and error correction capability

of different decoding schemes

In previous sections, we have computed the energy consumption at node level and

probability of error at base station for any code used while data transmission for our

system model. In this section, we will go through the code parameters for various

powerful codes in order to compute the two performance parameters for them. As the

main focus of this thesis is RS type codes so we will compare various powerful RS type

codes. Also, RS code is considered to be the best choice for WSN having maximum

energy efficiency in proper channel conditions or when relay nodes are sufficient in

numbers i.e. greater than 5 [117]. This section presents several codes that have RS

encoding complexity.

Considering,

k : Number of information symbols.

n : Length of the code word.

T : Maximum number of the errors that a code can correct.

Fq2 : Field over which codes are defined.

Etotal : Total energy consumed evaluated from Equation 7.1.

7.5.1 Uncoded data

For later comparisons uncoded data is transmitted first through the network. The

number of bits transmitted is equal k log2(q
2).

Etotal = k log2(q
2)[mEtx/b + (m− 1)Erx/b] (7.11)

Tuncoded = 0 (7.12)

7.5.2 Reed-Solomon codes

For a single RS encoder, the energy consumed in encoding is considered as ERS . The

length of the code is q2 − 1 for RS codes which is equivalent to (q2 − 1)log2(q
2) bits

transmitted.

Etotal = ERS + (q2 − 1)log2(q
2)[mEtx/b + (m− 1)Erx/b] (7.13)
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TRS ≤ q2 − k − 1

2
(7.14)

7.5.3 List-decoder for RS codes

For the list decoding scheme presented by McEliece in [76], the total energy consumed

on nodes is equal to RS codes because the encoding process is the same but the error

correction capability is much higher than that of the RS decoder.

TList−Decoded ≤ n(1−
√
R) (7.15)

where, R is the rate of the code that is k
n . If the size of the list is sufficiently small,

then it is considered to be reasonable amount of recovery from error. Also, there is a

possibility of complete recovery of codeword with the list decoding algorithm.

7.5.4 Hermitian codes

Hermitian codes (H) obtained from Hermitian curves can be considered as generalized

RS codes defined over the field Fq2 . The length of these codes are q3, which in much

larger than RS codes defined over the same alphabet. The systematic encoding of

Hermitian codes [118] can be done by using q RS like encoders. Therefore, the encoding

energy used at first node is presented by qERS .

Etotal = qERS + q3 log2(q
2)[mEtx/b + (m− 1)Erx/b] (7.16)

TH ≤ 2q3 − q2 + q − 2k + 2

2
[21] (7.17)

7.5.5 Multivariate interpolation decoded RS codes (MIDRS)

The idea is that M -RS codes transmitted together and are decoded using M +1 variate

interpolation [119]. The encoding is of complexity order of M RS encoders. It sends

M RS codes which is M(q2 − 1)log2q
2 bits in total.

Etotal = MERS +M(q2 − 1)log2(q
2)[mEtx/b + (m− 1)Erx/b] (7.18)

TMIDRS ≤ Mn(1−R
M

M+1 ) (7.19)

The decoder can correct up to TMIDRS errors in M blocks. The error correction capa-

bility is much higher than Guruswami-Sudan list decoding algorithm mentioned above

for certain conditions/error patterns.
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Table 7.1: Code parameters

code k n T

RS code k q2 − 1 ( q
2−1−k

2 )

List-Decoder k q2 − 1 n(1−
√

k
n)

Hermitian k q3 (2q
3−q2+q−2k+2

2 )

MIDRS Mk M(q2 − 1) Mn(1− k
n

M−1
M )

7.5.6 Table

The parameters of the various codes mentioned above are summarized in the Table 7.1

below: The packet error probability can be evaluated from Equation 7.6 and 7.9 using

different value for the error correction capability (T ) for various codes.

7.6 Results and discussion

Based on the computation of transmission energy and probability of error for several

codes, we will compare their performances in this section. The energy and probability

of error values are computed for Atmel Atmega 128L 8-bit microcontroller and RFM-

TR100 transceiver. For Figure 7.5 & Figure 7.6, the codes are of almost equal length.

Hermitian code transmission have the lowest energy and uncoded transmission has

the highest energy consumption for low error probability. This is because, the smallest

number of bits are transmitted for Hermitian code as when the codes are of equal length,

then the field over which Hermitian codes are defined is smaller. So, the Hermitian code

is the best to use if codes are of same length. For Figure 7.7, the codes are defined over

the same field i.e. F64.

Hermitian and MIDRS codes have almost the same performance here while un-

coded transmission is again the worst. This proves that Hermitian codes are one of

the strongest codes among the codes, we have used for transmission over WSN. Her-

mitian codes have higher correction capability and larger length over the smaller field

as compared to RS codes, or even list decoded RS codes have higher error correction

capability. Since, our transmission scheme is independent of the decoder’s complexity

or in other words the amount of energy consumed by the decoder, the most powerful
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code will consume minimum energy to give lower error probability. This is one of the

applications where we can clearly see Hermitian codes usefulness over RS codes as the

decoder’s complexity is not involved in computing energy at the node level.

7.7 Conclusion

Various coding schemes have been examined for reliable communication of data over

multi-hop WSNs. A new scheme for data transmission has been designed which is

different from the previous works of encoding/decoding at each and every node. This

new scheme encodes the data only at the source node and the final decoding takes

place on a base station which is not power constrained. Thus, it saves a lot of power

at node level which will increase the network life and is good for energy constrained

networks. Our method is to use efficient and powerful codes which are easy to encode.

According to the graphs, if the lengths of the codes are the same Hermitian codes are

the best and if they are defined over same field, Hermitian and MIDRS codes have

almost the same performance. Also, it is shown that less energy is consumed at nodes
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while maintaining a low error probability. Future work will include different channel

models, and networking schemes including non-linear model for distance between the

nodes.
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Chapter 8

Conclusion and Future work

A few interesting problems in the field of coding theory are to construct the optimal

codes having the maximum possible minimum distance for a specific code length and

dimension and to develop a simple decoding algorithm for them. However, most of

the algebraic codes involve simple encoding techniques but still decoding techniques

complexity is a huge issue under investigation by researchers. The use of error cor-

recting codes are always bounded by constraints like area (memory/total gate count)

and decoding time, which in turn is responsible for hardware resources and energy con-

sumption respectively. The thesis addressed the problem of optimal code construction

by computing the subfield subcodes of Generalized Toric codes. Addressing the need

of developing efficient decoding algorithms, which optimize the decoding time as well

as the circuits area simultaneously, the thesis presented efficient decoding algorithms

for RS, Hermitian and BCH codes. Also, a novel transmission scheme to use powerful

codes for WSN is discussed.

8.1 Concluding Remarks

In this thesis, we attacked the important issues of coding theory both from a mathe-

matical and engineering perspective. In the following subsections, we will discuss the

important contributions of the thesis.
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8.1.1 Efficient decoding techniques

The thesis focused on enhancing the efficiency of unique and list decoding algorithms

for several RS type linear block codes like BCH, RS and Hermitian codes. The classical

approach for the decoding algorithm has two sub-problems, involving the computation

of error locator polynomial firstly and then the computation of error locations and error

values. However, in this thesis the main focus is on the direct decoding algorithms. It

does not involve the computation of error locations and error values separately and

the encoding algorithms are based on an evaluation approach. The decoding algorithm

skipped the Chein search and Forney’s formula which reduced the complexity of imple-

mentation as it does not require any extra circuitry for them. We discussed the direct

decoding algorithm for RS and Hermitian codes.

An efficient encoding and decoding scheme based on evaluation has been proposed

for RS codes in chapter 3. The proposed decoding algorithm directly outputs the mes-

sage symbols without going through the steps of Chien search and Forney’s formula.

This makes the hardware circuitry much simpler for the proposed decoder. The pro-

posed decoding algorithm requires only the syndrome calculation and BM algorithm

blocks. Also, the extra clock cycles required to run the Chien search and Forney’s

formula have been saved. The hardware implementations on a commercially available

65nm ASIC process showed that the proposed decoder is area efficient as well as faster

in comparison to the classical one. For a RS(255, 239) code, the proposed decoder

resulted in a reduction of 57.6% in hardware area and 53.07% reduction in decoding

time as compared to the classical decoder [58]. One more important observation that

has been made is that the area for the classical decoder increases significantly even for

small variation in error correction capability, t or with the dimension k of the code

as compared to the proposed decoder due to the Chien search and Forney’s formula

complexity being t dependent.

The evaluation based novel encoding and decoding algorithm has been extended

for shortened RS codes [59]. The proposed decoder resulted in significant memory

savings for software implementations at the expense of latency. RS (32, 24) for resource

constrained WSN application on a ATMEL Atmega 128 microcontroller showed that

the new decoder and encoder is 52% and 72% of the traditional method respectively

in memory footprint. The algorithm is well suited for resource constrained embedded
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systems such as WSN requiring enhanced reliability.

Though RS codes are one of the most popular codes for industries their restriction

is that the size is limited to the size of the chosen alphabet that is the finite field over

which they are defined. As compared to RS codes, Hermitian codes are much longer

than the size of the codeword alphabet and have higher error correction capability at

high code rates. Although Hermitian codes offer desirable properties over RS codes,

the Hermitian decoder has higher complexity and a complicated architecture which is

the biggest hurdle to make it useful for industrial applications. From an architectural

point of view the most efficient decoding algorithm is Kötter’s algorithm. The space

complexity is O(q4) and time complexity is O(q6) for Kötter’s decoder. The thesis

also focused on reducing the complexity of the Hermitian decoder further by use of the

recently proposed Lee-O’Sullivan algorithm. We proposed an efficient architecture for

the implementation of Lee-O’Sullivan decoder. The algorithm iteratively computes the

sent message through a majority voting procedure using the Gröbner bases of inter-

polation modules. Similar to Kötter’s algorithm, Lee-O’Sullivan algorithm also has a

regular structure which makes it simple and suitable for VLSI implementation. The

decoding algorithm directly gives the message word without going through the separate

steps like Chien search and Forney’s formula as required after Kötter’s algorithm. In

terms of hardware requirements, for the widely used high rate Hermitian codes, the

Lee-O’Sullivan algorithm is q times faster than Kötter’s algorithm with the same space

complexity of O(q4). Further speed improvements are achieved by combining the main

idea of Guruswami list decoding with the Lee-O’Sullivan algorithm. In terms of hard-

ware, the addition of this concept, will further reduce the running time of the algorithm

and make the circuitry 2 times faster than the original Lee-O’Sullivan algorithm.

Another interesting sub-class of cyclic codes is BCH codes. BCH codes are subfield

subcodes of RS codes and we studied them as evaluation codes. The evaluation poly-

nomial for BCH codes has some special algebraic properties based on cyclotomic coset

structure. By exploiting those properties, we reduced the complexity of list decoding

algorithm via syndrome variety in chapter 6. From simulation, it is shown that the

number of variables are significantly reduced by 70 − 80% as compared to the algo-

rithm discussed in [101] which resulted in efficient computation of Gröbner basis. Also,

the cyclotomic coset based properties resulted in reducing the complexity of the RR
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factorization algorithm for BCH codes.

8.1.2 Construction of optimal codes

Addressing another important problem in the field of coding theory, we came to the

construction of optimal codes. A new procedure to construct the optimal codes is pro-

posed by constructing the subfield subcodes of Generalized Toric Codes [87] in chapter

5. The subfield subcodes of Generalized Toric codes are the multidimensional analogues

of BCH codes, which may be seen as subfield-subcodes of generalized RS codes. The

evaluation polynomial for subfield-subcodes of Generalized Toric Codes has been iden-

tified which in turn allowed us to determine the dimensions and obtain the bounds for

minimum distance. Several examples of binary and ternary subfield-subcodes of Gen-

eralized Toric Codes showed that these are the best known codes for a given length and

dimension which in turn prove that this can be used as a method of constructing some

of the best known codes.

8.1.3 Applications of complex coding schemes

A novel transmission scheme is presented in chapter 7 which uses efficient and powerful

codes which are easy to encode but have complex decoding schemes for reliable commu-

nication. We examined the performance of various powerful codes for data transmission

over multihop WSN [48]. We proposed a model for energy consumption at the node

level and the probability of receiving a correct word for multihop WSN at base station

using a simple transmission scheme that involves encoding only at the first node and

decoding only at the base station. The powerful codes allow the correction of a larger

number of errors. Several powerful codes like RS, list decoded RS codes, multivariate

interpolation decoded RS codes (MIDRS) and Hermitian codes, having simple encod-

ing, are investigated for this transmission scheme. According to the results, if lengths

of the codes are the same, Hermitian codes have the best performance. However, if the

codes are defined over the same field, Hermitian and MIDRS codes have almost the

same performance. Also, the results proved that less energy is consumed at nodes while

maintaining a low error probability.
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8.2 Future work

Despite many advances made in coding theory, researchers are still looking for new,

better codes and for the simplified decoding and encoding schemes. For many applica-

tions like WSN, where memory and battery life of sensor nodes are huge constrains, it

is important to find efficient encoding and decoding algorithms. We believe that sig-

nificant advances can be made in the field of coding theory by addressing the following

issues:

• Efficient Implementation of Hermitian codes: An efficient architecture for

Hermitian decoder based on the lee-O’Sullivan algorithm is presented in the the-

sis. The circuitry is much simpler than the one proposed in Kötter’s algorithm as

the decoding algorithm directly gives the message word at the end of the decod-

ing algorithm without separately using the steps like Chien search and Forney’s

formula. An interesting future work would be to implement it in hardware and

confirm the results as we would expect the reduction in decoding time from the

theoretical results. We proposed the architecture for decoder is already presented

in [120]. Hermitian codes can be made industrially more applicable by having

computationally simpler and area efficient methods. The proposed decoder may

satisfy the resource and throughput constraints imposed by the applications de-

pending upon the implementation results.

• Subfield-Subcodes of Hermitian codes: Subfield subcodes of Hermitian codes

are of particular interest to researchers as they have the simplicity of the smaller

field and the nice rich algebraic structure of the bigger code. Recently, a complete

characterization of the subfield-subcodes has already been done in [121] and it

would be a very interesting problem to compare the performances of BCH with

these codes as it is always interesting comparing Hermitian to RS codes.

• Wireless Sensor Networks: We developed a novel transmission scheme for

WSN and evaluated the performance of several powerful codes for the same. We

used a particular channel model and linear system model with equi-spaced nodes.

It will be interesting to check the same for different channel models and networking

schemes including non-linear model for distance between the nodes.
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[74] Buchberger, B. and Vinkler, F.; “Gröbner bases and applications”, Cambridge

University Press, 1997.

[75] Sudan, M.; “Decoding of Reed-Solomon codes beyond the error-correction bound”,

Journal of complexity, 1997, vol.13, No. 1, pp. 180-193.

[76] McEliece, R.J., “The Guruswami-Sudan decoding algorithm for Reed-Solomon

codes”, IPN Progress report, 2003, pp. 42-153.

[77] Ren, J.; “On the structure of Hermitian codes and decoding for burst errors”, IEEE

Transactions on Information Theory, vol. 50, no. 11, Nov. 2004, pp. 2850-2854.

[78] Lee, K.;“Fast interpolation decoding of Hermitian codes”, submitted to IEEE

Transactions on Information Theory, 2013.

[79] Helgert, H.J.;“Alternant codes(linear error correcting codes)”, Journal of Informa-

tion and Control, 1974, vol. 26, pp. 369-380.

[80] Jie, C. and Junying, P.; “Subspace subcodes of generalized Reed-Solomon codes”

Acta Mathematica Sinica English Series, vol. 17, no. 4, 2001, pp. 503-508.

[81] Delsarte, P.; “On subfield subcodes of modified Reed-Solomon codes”, IEEE Trans.

Information Theory, vol.21, no. 5, 1975, pp. 575-576.

132



[82] Hattori, M; McEliece, R. J. and Solomon, G.; “Subspace subcodes of Reed-Solomon

codes”, IEEE Trans. Inform. Theory, vol. 44, no. 5, 1998, pp. 1861-1880.

[83] Shibuya, T.; Matsumoto, R. and Sakaniwa, K.; “ An improved bound for the di-

mension of subfield subcodes” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Science, vol. E80 A, no. 5, 1997, pp. 876-880.

[84] Stichtenoth, H;“ On the dimension of subfield subcodes”, IEEE Transactions on

Information Theory, vol.36, no. 1, 1990, pp. 90-93.

[85] Hattori,M.; McEliece, R.J. and Solomon, G.; “Subspace subcodes of Reed-Solomon

codes”, IEEE Transactions on Information Theory, vol.44, no. 5, 1998, pp. 1861-

1880.

[86] Cui, J. and Ying, J., “Subspace subcodes of Generalized Reed-Solomon codes”,

Acta Mathematicae Applicatae Sinica, vol. 17, no. 4, 2001, pp. 503-508.

[87] Hernando, F.; O’Sullivan; M.; Popovici, E. and Srivastava, S.; “Subfield Subcodes

of Generalized Toric codes”, IEEE International Symposium on Information Theory,

2010, pp. 1025-1029.

[88] Little, J and Schenck, H.; “Toric surface codes and Minkowski sums”, SIAM J.

Discrete Math, vol. 20, no. 4, 2006, pp. 999-1014.

[89] Ruano, D.; “ On the parameters of r-dimensional Toric codes”, Finite Fields Ap-

plications, vol. 13, no. 4, 2007, pp. 962-976.

[90] Bras-Amorós, M. and O’Sullivan, M. E.; “Duality for some families of correction

capability optimized evaluation codes”, Adv. Math. Commun., vol. 2, no. 1, 2008,

pp. 15-33.

[91] Sloane, N. J. A.; “A survey of constructive coding theory and a table of binary

codes of highest known rate”, Discrete Mathematics, vol.3, 1972, pp. 265-294.

[92] Rifa , J.;“Decoding a bit more than the BCH bound”, Lecture Notes in Computer

Science, no. 781, Springer, ISSN: 3-540-54522-0, 1993, pp. 287-304.

133



[93] Feng, G.L. and Tzeng, K.; “ A generalization of the Berlekamp-Massey algorithm

for multisequence shift-register synthesis with applications to decoding cyclic codes”

IEEE Transactions on Information Theory, Vol. 37, no. 5, 1991, pp. 1274-1287.

[94] Bours, P.; Janssen, C. M. J.; van Asperdt, M.; van Tilborg, H. C. A.; “Alge-

braic decoding beyond eBCH of some binary cyclic codes, when e > eBCH” IEEE

Transactions on Information Theory, vol. 36, no. 1, 1990, pp. 214-222

[95] Duursma, I. M. and Kötter, R.; “Error-locating pairs for cyclic codes” IEEE Trans-

actions on Information Theory, vol. 40, no. 4, 1994, pp. 1108-1121.

[96] Nilsson, J. E. M; “An algebraic procedure for decoding beyond eBCH”, IEEE

Transactions on Information Theory, Vol. 42, no. 2, 1996, pp. 649-652.

[97] Pellikaan, R. and Wu, X.; “List decoding of q−ary Reed-Muller codes”, IEEE

Transactions on Information Theory, vol. 50, no. 4, 2004, pp. 679-682.

[98] Roth, R. and Ruckenstein, G.; “Efficient decoding of Reed-Solomon codes beyond

half the minimum distance”, IEEE Transactions on Information Theory, vol. 46, no.

1, 2000, pp. 246-257.

[99] Sudan, M.; “Decoding of Reed Solomon Codes beyond the Error-correction bound”,

Journal of Complexity, vol. 13, 1997, pp. 180-193.

[100] Guruswami, V. and Sudan, M.; “Improved decoding of Reed Solomon and alge-

braic geometric codes”, IREE Transactions on Information Theory, vo1. 45, no. 6,

1998, pp. 1757-1767.
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