3,552 research outputs found

    An error-controlled methodology for approximate hierarchical symbolic analysis

    Get PDF
    Limitations of existing approaches for symbolic analysis of large analog circuits are discussed. To address their solution, a new methodology for hierarchical symbolic analysis is introduced. The combination of a hierarchical modeling technique and approximation strategies, comprising circuit reduction, graph-based symbolic solution of circuit equations and matrix-based error control, provides optimum results in terms of speech and quality of results.European Commission ESPRIT 21812Comisión Interministerial de Ciencia y Tecnología TIC97-058

    Behavioral modeling of PWL analog circuits using symbolic analysis

    Get PDF
    Behavioral models are used both for top-down design and for bottom-up verification. During top-down design, models are created that reflect the nominal behavior of the different analog functions, as well as the constraints imposed by the parasitics. In this scenario, the availability of symbolic modeling expressions enable designers to get insight on the circuits, and reduces the computational cost of design space exploration. During bottom-up verification, models are created that capture the topological and constitutive equations of the underlying devices into behavioral descriptions. In this scenario symbolic analysis is useful because it enables to automatically obtain these descriptions in the form of equations. This paper includes an example to illustrate the use of symbolic analysis for top-down design.Comisión Interministerial de Ciencia y Tecnología TIC97-058

    Behavioral Modeling of Mixed-Mode Integrated Circuits

    Get PDF
    Open Access.-- et al.This work is partially supported by CONACyT through the grant for the sabbatical stay of the first author at University of California at Riverside, during 2009-2010. The authors acknowledge the support from UC-MEXUS-CONACYT collaboration grant CN-09-310; by Promep México under the project UATLX-PTC-088, and by Consejeria de Innovacion Ciencia y Empresa, Junta de Andalucia, Spain, under the project number TIC-2532. The third author thanks the support of the JAE-Doc program of CSIC, co-funded by FSE.Peer Reviewe

    Pathological element-based active device models and their application to symbolic analysis

    Get PDF
    This paper proposes new pathological element-based active device models which can be used in analysis tasks of linear(ized) analog circuits. Nullators and norators along with the voltage mirror-current mirror (VM-CM) pair (collectively known as pathological elements) are used to model the behavior of active devices in voltage-, current-, and mixed-mode, also considering parasitic elements. Since analog circuits are transformed to nullor-based equivalent circuits or VM-CM pairs or as a combination of both, standard nodal analysis can be used to formulate the admittance matrix. We present a formulation method in order to build the nodal admittance (NA) matrix of nullor-equivalent circuits, where the order of the matrix is given by the number of nodes minus the number of nullors. Since pathological elements are used to model the behavior of active devices, we introduce a more efficient formulation method in order to compute small-signal characteristics of pathological element-based equivalent circuits, where the order of the NA matrix is given by the number of nodes minus the number of pathological elements. Examples are discussed in order to illustrate the potential of the proposed pathological element-based active device models and the new formulation method in performing symbolic analysis of analog circuits. The improved formulation method is compared with traditional formulation methods, showing that the NA matrix is more compact and the generation of nonzero coefficients is reduced. As a consequence, the proposed formulation method is the most efficient one reported so far, since the CPU time and memory consumption is reduced when recursive determinant-expansion techniques are used to solve the NA matrix.Promep-Mexico UATLX-PTC-088Junta de Andalucía TIC-2532Ministerio de Educación y Ciencia TEC2007-67247, TEC2010-14825UC-MEXUS-CONACyT CN-09-31

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Technology Independent Synthesis of CMOS Operational Amplifiers

    Get PDF
    Analog circuit design does not enjoy as much automation as its digital counterpart. Analog sizing is inherently knowledge intensive and requires accurate modeling of the different parametric effects of the devices. Besides, the set of constraints in a typical analog design problem is large, involving complex tradeoffs. For these reasons, the task of modeling an analog design problem in a form viable for automation is much more tedious than the digital design. Consequently, analog blocks are still handcrafted intuitively and often become a bottleneck in the integrated circuit design, thereby increasing the time to market. In this work, we address the problem of automatically solving an analog circuit design problem. Specifically, we propose methods to automate the transistor-level sizing of OpAmps. Given the specifications and the netlist of the OpAmp, our methodology produces a design that has the accuracy of the BSIM models used for simulation and the advantage of a quick design time. The approach is based on generating an initial first-order design and then refining it. In principle, the refining approach is a simulated-annealing scheme that uses (i) localized simulations and (ii) convex optimization scheme (COS). The optimal set of input variables for localized simulations has been selected by using techniques from Design of Experiments (DOE). To formulate the design problem as a COS problem, we have used monomial circuit models that are fitted from simulation data. These models accurately predict the performance of the circuit in the proximity of the initial guess. The models can also be used to gain valuable insight into the behavior of the circuit and understand the interrelations between the different performance constraints. A software framework that implements this methodology has been coded in SKILL language of Cadence. The methodology can be applied to design different OpAmp topologies across different technologies. In other words, the framework is both technology independent and topology independent. In addition, we develop a scheme to empirically model the small signal parameters like \u27gm\u27 and \u27gds\u27 of CMOS transistors. The monomial device models are reusable for a given technology and can be used to formulate the OpAmp design problem as a COS problem. The efficacy of the framework has been demonstrated by automatically designing different OpAmp topologies across different technologies. We designed a two-stage OpAmp and a telescopic OpAmp in TSMC025 and AMI016 technologies. Our results show significant (10–15%) improvement in the performance of both the OpAmps in both the technologies. While the methodology has shown encouraging results in the sub-micrometer regime, the effectiveness of the tool has to be investigated in the deep-sub-micron technologies
    corecore