104 research outputs found

    Architectural and mobility management designs in internet-based infrastructure wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous ap- plications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility management techniques for mobile users to achieve seamless roam- ing. Mobility management includes handoff management and location management. The objective of this research is to design new handoff and location management techniques for Internet-based infrastructure WMNs. Handoff management enables a wireless network to maintain active connections as mobile users move into new service areas. Previous solutions on handoff manage- ment in infrastructure WMNs mainly focus on intra-gateway mobility. New handoff issues involved in inter-gateway mobility in WMNs have not been properly addressed. Hence, a new architectural design is proposed to facilitate inter-gateway handoff man- agement in infrastructure WMNs. The proposed architecture is designed to specifi- cally address the special handoff design challenges in Internet-based WMNs. It can facilitate parallel executions of handoffs from multiple layers, in conjunction with a data caching mechanism which guarantees minimum packet loss during handoffs. Based on the proposed architecture, a Quality of Service (QoS) handoff mechanism is also proposed to achieve QoS requirements for both handoff and existing traffic before and after handoffs in the inter-gateway WMN environment. Location management in wireless networks serves the purpose of tracking mobile users and locating them prior to establishing new communications. Existing location management solutions proposed for single-hop wireless networks cannot be directly applied to Internet-based WMNs. Hence, a dynamic location management framework in Internet-based WMNs is proposed that can guarantee the location management performance and also minimize the protocol overhead. In addition, a novel resilient location area design in Internet-based WMNs is also proposed. The formation of the location areas can adapt to the changes of both paging load and service load so that the tradeoff between paging overhead and mobile device power consumption can be balanced, and at the same time, the required QoS performance of existing traffic is maintained. Therefore, together with the proposed handoff management design, efficient mobility management can be realized in Internet-based infrastructure WMNs

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    Delay Contributing Factors and Strategies Towards Its Minimization in IoT

    Get PDF
    Internet of Things (IoT) refers to various interconnected devices, typically supplied with limited computational and communication resources. Most of the devices are designed to operate with limited memory and processing capability, low bandwidth, short range and other characteristics of low cost hardware. The resulting networks are exposed to traffic loss and prone to other vulnerabilities. One of the major concerns is to ensure that the network communication among these deployed devices remains at required level of Quality of Service (QoS) of different IoT applications. The purpose of this paper is to highlight delay contributing factors in Low Power and Lossy Networks (LLNs) since providing low end-to-end delay is a crucial issue in IoT environment especially for mission critical applications. Various research efforts in relevance to this aspect are then presente

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    Fast and seamless mobility management in IPV6-based next-generation wireless networks

    Get PDF
    Introduction -- Access router tunnelling protocol (ARTP) -- Proposed integrated architecture for next generation wireless networks -- Proposed seamless handoff schemes in next generation wireless networks -- Proposed fast mac layer handoff scheme for MIPV6/WLANs

    Handoff management for infotainment services over vehicular networks

    Get PDF
    Intelligent Transportation Systems (ITS) has impulsed the vehicular communications at the present time. The vehicular communications field is a hot research topic and is attracting a great interest in the automotive industry and telecommunications. There are essentially two main lines of work: (1) communication services related to road safety and traffic information; and (2) information and entertainment services, also named infotainment services. These latter services include both transmitting multimedia (voice over IP, streaming, on-line gaming, etc.) and classic data services (e-mail, access to private networks, web browsing, file sharing, etc.). In this thesis we will focus on these infotainment services because further research in this immature research field is necessary and, until nowadays, the main effort of the research community regarding vehicular communication has been focused on road safety and traffic information. Vehicular nodes need to be reached from the Internet and vice versa to be able to access to infotainment services. While vehicles move along the road infrastructure, they change their wireless point of attachment to the network. During this process, connectivity breaks down until the vehicle is connected again to a new road side unit in its area. This disconnection causes a disruption in the communications. Fast handoffs are a crucial requirement for vehicular networks to avoid long disruption times, since the high speed of vehicular nodes involves suffering a lot of handoffs during an Internet connection. This thesis is focused on Vehicular-to-Infrastructure (V2I) real-time infotainment services. The main contributions of this thesis are: i) a new testing framework for V2I communications to be able to test infotainment services in an easy way; ii) the analysis of the deployability of infotainment video services in vehicular networks using mobility protocols; and iii) the development of a new TCP architecture that will provide a better performance for all TCP-based infotainment services in a vehicular scenario with handoffs. In this thesis, firstly, we propose a new testing framework for vehicular infotainment applications. This framework is a vehicular emulation platform that allows testing real applications installed on Linux virtual machines. Using emulation, we are able to evaluate the performance of real applications with real-time requirements, so we can test multimedia applications used to offer infotainment services in vehicular scenarios in a straightforward way. Secondly, using the testing framework implemented in the first part of the thesis, we have done a performance evaluation of an infotainment service. Among these services, we think that video on demand services on highways will be interesting for users, and generate revenue to network operators. So we evaluated how network-layer handoffs can limit the deployment of a video streaming service. According to the results obtained, driving at high speeds will be an issue for a correct playback of video content, even using fast handoffs techniques. Finally, we developed a new TCP architecture to enhance performance during handoffs. Most of the non-safety services on ITS rely on the Transport Control Protocol (TCP), one of the core protocols of the Internet Protocol Suite. However there exists several issues related to TCP and mobility that can affect to TCP performance, and these issues are particularly important in vehicular networks due to its high mobility. Using new IEEE 802.21 MIH services, we propose a new TCP architecture that is able to anticipate handoffs, permitting to resume the communication after a handoff, avoiding long delays caused by TCP issues and adapting the TCP parameters to the new characteristics of the network. Using the architecture proposed, the performance of TCP is enhanced, getting a higher overall throughput and avoiding TCP fairness issues between users.Els Sistemes de Transport Intel·ligents (ITS) han impulsat les comunicacions vehiculars en l'actualitat. Les comunicacions vehiculars és un camp d'investigació de moda, i està atraient un gran interès en la indústria automobilística i de les telecomunicacions. En el camp de les comunicacions vehiculars, hi ha principalment dues línies de treball: (1) serveis de comunicacions relacionats amb la seguretat viària i la informació del trànsit; i (2) serveis d'informació i entreteniment, també anomenats serveis d'infotainment. Aquests últims inclouen tant serveis multimèdia (veu sobre IP, streaming, jocs on-line, etc.), com serveis clàssics de dades (correu electrònic, accés a xarxes privades, navegació web, compartir arxius, etc.). En aquesta tesi ens centrarem en aquests serveis d'infotainment ja que és necessari aprofundir en la investigació per aquests tipus de serveis, ja que, fins avui, els esforços de la comunitat científica en el camp de les comunicacions vehiculars s'ha centrat en els serveis relacionats amb la seguretat viària i la informació del trànsit. Els nodes vehiculars necessiten tenir connexió a Internet per a poder tenir accés als serveis d'infotainment. Mentre els vehicles estan en moviment a través de la xarxa viària, els vehicles han d'anar canviant el punt de connexió sense fils amb la xarxa. Durant aquest procés de canvi de punt de connexió, anomenat handoff, es perd la connectivitat fins que el vehicle es reconnecta a un altre punt de connexió viària prop de la seva àrea. Aquesta desconnexió causa interrupcions en les comunicacions. Uns handoffs ràpids són bàsics a les xarxes vehiculars per a evitar llargs períodes d'interrupció durant les comunicacions, ja que la gran velocitat a la que es mouen els nodes vehiculars significa un gran nombre de handoffs durant una connexió a Internet. Aquesta tesi es centra en serveis d'infotaiment en temps real per a comunicacions Vehicle-a-Infraestructura (V2I). Les principals contribucions d'aquesta tesi son: i) un nou marc de proves per a les comunicacions (V2I) per a poder provar serveis d'infotainment d'una manera fàcil; ii) l'anàlisi de la viabilitat del desplegament de serveis d'infotainment de vídeo en xarxes vehiculars utilitzant protocols de mobilitat IP; i iii) el desenvolupament d'una nova arquitectura TCP que proporciona un millor funcionament per a tots aquells serveis d'infotainment basats en el protocol TCP en un escenari vehicular amb handoffs. En aquesta tesi, primer proposem un nou marc de proves per a aplicacions vehiculars d'infotainment. Aquest marc és una plataforma d'emulació vehicular que permet provar aplicacions reals instal·lades en màquines virtuals Linux. Utilitzant l'emulació, som capaços d'avaluar el rendiment d'aplicacions reals amb característiques de temps real. D'aquesta manera es poden avaluar aplicacions multimèdia utilitzades per oferir serveis d'infotainment d'una forma senzilla en escenaris vehiculars. Segon, utilitzant el marc de prova implementat en la primera part de la tesi, hem avaluat el rendiment d'un servei d'infotainment. Entre aquest tipus de servei, creem que els serveis de vídeo sota demanda en autopistes/autovies serà interessant pels usuaris i generarà beneficis per als operadors de la xarxa. Per tant, hem avaluat com els handoffs a nivell de la capa de xarxa poden limitar el desplegament d'un servei de streaming de vídeo sota demanda. D'acord amb els resultats obtinguts, conduir a grans velocitats podria ser un problema per a poder reproduir un vídeo correctament, tot i utilitzar tècniques de handoffs ràpids. Finalment, hem desenvolupat una nova arquitectura TCP per a millorar el rendiment del protocol durant els handoffs. La majoria dels serveis d'infotainment utilitzen el Protocol de Control de Transport (TCP), un dels principals protocols de la pila de protocols d'Internet. Però existeixen forces problemes relacionats amb l'ús de TCP i la mobilitat que n'afecta el rendiment, i aquests problemes són particular

    A survey on mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology

    Get PDF
    International audienceMobility has the advantage of enlarging WSN applications. However, proposing a mobility support protocol in Wireless Sensor Networks (WSNs) represents a significant challenge. In this paper, we propose a survey on the mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology. This technology enables to connect IP sensor devices to other IP networks without any need for gateways. We highlight the advantages and drawbacks with performances issues of each studied solution. Then, in order to select a typical classification of mobility management protocols in WSNs, we provide some classification criteria and approaches on which these protocols are based. Finally, we present a comparative study of the existing protocols in terms of the required performances for this network type

    FastM: Design and Evaluation of a Fast Mobility Mechanism for Wireless Mesh Networks

    Get PDF
    Although there is a large volume of work in the literature in terms of mobility approaches for Wireless Mesh Networks, usually these approaches introduce high latency in the handover process and do not support realtime services and applications. Moreover, mobility is decoupled from routing, which leads to inefficiency to both mobility and routing approaches with respect to mobility. In this paper we present a new extension to proactive routing protocols using a fast mobility extension, FastM, with the purpose of increasing handover performance in Wireless Mesh Networks. With this new extension, a new concept is created to integrate information between neighbor wireless mesh routers, managing locations of clients associated to wireless mesh routers in a certain neighborhood, and avoiding packet loss during handover. The proposed mobility approach is able to optimize the handover process without imposing any modifications to the current IEE 802.11 MAC protocol and use unmodified clients. Results show the improved efficiency of the proposed scheme: metrics such as disconnection time, throughput, packet loss and control overhead are largely improved when compared to previous approaches. Moreover, these conclusions apply to mobility scenarios, although mobility decreases the performance of the handover approach, as expected
    corecore