17 research outputs found

    Comparative study of the performance of real-time inverse lighting with matte, semi-gloss and gloss surfaces

    Get PDF
    Augmented Reality (AR) is the interactive process of introducing virtual objects or characters to real-world scenes. An effective way to increase the realism in AR is by mimicking real-world lighting conditions on the virtual objects. The process of gathering and analyzing real-world lighting information is called inverse-lighting. The surface textures of real-world objects may have different levels of glossiness. The goal of this research is to compare the effects that different glossiness levels have on the outcomes of the calculations. Several models of a regular dodecahedron were created using the Blender modeling software. These models were used to calculate and compare inverse-lighting on different levels of surface glossiness. Physical dodecahedrons also were created and used to see whether the Blender models accurately represent reality

    Synthesis of environment maps for mixed reality

    Get PDF
    When rendering virtual objects in a mixed reality application, it is helpful to have access to an environment map that captures the appearance of the scene from the perspective of the virtual object. It is straightforward to render virtual objects into such maps, but capturing and correctly rendering the real components of the scene into the map is much more challenging. This information is often recovered from physical light probes, such as reflective spheres or fisheye cameras, placed at the location of the virtual object in the scene. For many application areas, however, real light probes would be intrusive or impractical. Ideally, all of the information necessary to produce detailed environment maps could be captured using a single device. We introduce a method using an RGBD camera and a small fisheye camera, contained in a single unit, to create environment maps at any location in an indoor scene. The method combines the output from both cameras to correct for their limited field of view and the displacement from the virtual object, producing complete environment maps suitable for rendering the virtual content in real time. Our method improves on previous probeless approaches by its ability to recover high-frequency environment maps. We demonstrate how this can be used to render virtual objects which shadow, reflect and refract their environment convincingly

    Real-Time Estimation of Illumination Direction for Augmented Reality with Low-Cost Sensors

    Get PDF
    In recent years, Augmented Reality has become a very popular topic, both as a research and commercial field. This trend has originated with the use of mobile devices as computational core and display. The appearance of virtual objects and their interaction with the real world is a key element in the success of an Augmented Reality software. A common issue in this type of software is the visual inconsistency between the virtual and real objects due to wrong illumination. Although illumination is a common research topic in Computer Graphics, few studies have been made about real time estimation of illumination direction. In this work we present a low-cost approach to detect the direction of the environment illumination, allowing the illumination of virtual objects according to the real light of the ambient, improving the integration of the scene. Our solution is open-source, based on Arduino hardware and the presented system was developed on Android.XIV Workshop Computación Gráfica, Imágenes y Visualización (WCGIV).Red de Universidades con Carreras en Informática (RedUNCI

    Real-Time Estimation of Illumination Direction for Augmented Reality with Low-Cost Sensors

    Get PDF
    In recent years, Augmented Reality has become a very popular topic, both as a research and commercial field. This trend has originated with the use of mobile devices as computational core and display. The appearance of virtual objects and their interaction with the real world is a key element in the success of an Augmented Reality software. A common issue in this type of software is the visual inconsistency between the virtual and real objects due to wrong illumination. Although illumination is a common research topic in Computer Graphics, few studies have been made about real time estimation of illumination direction. In this work we present a low-cost approach to detect the direction of the environment illumination, allowing the illumination of virtual objects according to the real light of the ambient, improving the integration of the scene. Our solution is open-source, based on Arduino hardware and the presented system was developed on Android.XIV Workshop Computación Gráfica, Imágenes y Visualización (WCGIV).Red de Universidades con Carreras en Informática (RedUNCI

    Polarization-Based Illumination Detection for Coherent Augmented Reality Scene Rendering in Dynamic Environments

    Get PDF
    A virtual object that is integrated into the real world in a perceptually coherent manner using the physical illumination information in the current environment is still under development. Several researchers investigated the problem producing a high-quality result; however, pre-computation and offline availability of resources were the essential assumption upon which the system relied. In this paper, we propose a novel and robust approach to identifying the incident light in the scene using the polarization properties of the light wave and using this information to produce a visually coherent augmented reality within a dynamic environment. This approach is part of a complete system which has three simultaneous components that run in real-time: (i) the detection of the incident light angle, (ii) the estimation of the reflected light, and (iii) the creation of the shading properties which are required to provide any virtual object with the detected lighting, reflected shadows, and adequate materials. Finally, the system performance is analyzed where our approach has reduced the overall computational cost

    Generating Light Estimation for Mixed-reality Devices through Collaborative Visual Sensing

    Get PDF
    abstract: Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment. To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.Dissertation/ThesisMasters Thesis Computer Science 201

    Dynamic HDR Environment Capture for Mixed Reality

    Get PDF
    Rendering accurate and convincing virtual content into mixed reality (MR) scenes requires detailed illumination information about the real environment. In existing MR systems, this information is often captured using light probes [1, 8, 9, 17, 19--21], or by reconstructing the real environment as a preprocess [31, 38, 54]. We present a method for capturing and updating a HDR radiance map of the real environment and tracking camera motion in real time using a self-contained camera system, without prior knowledge about the real scene. The method is capable of producing plausible results immediately and improving in quality as more of the scene is reconstructed. We demonstrate how this can be used to render convincing virtual objects whose illumination changes dynamically to reflect the changing real environment around them

    Learning Lightprobes for Mixed Reality Illumination

    Get PDF
    This paper presents the first photometric registration pipeline for Mixed Reality based on high quality illumination estimation by convolutional neural network (CNN) methods. For easy adaptation and deployment of the system, we train the CNN using purely synthetic images and apply them to real image data. To keep the pipeline accurate and efficient, we propose to fuse the light estimation results from multiple CNN instances, and we show an approach for caching estimates over time. For optimal performance, we furthermore explore multiple strategies for the CNN training. Experimental results show that the proposed method yields highly accurate estimates for photo-realistic augmentations
    corecore