183 research outputs found

    Hypercube algorithms on mesh connected multicomputers

    Get PDF
    A new methodology named CALMANT (CC-cube Algorithms on Meshes and Tori) for mapping a type of algorithm that we call CC-cube algorithm onto multicomputers with hypercube, mesh, or torus interconnection topology is proposed. This methodology is suitable when the initial problem can be expressed as a set of processes that communicate through a hypercube topology (a CC-cube algorithm). There are many important algorithms that fit into the CC-cube type. CALMANT is based on three different techniques: (a) the standard embedding to assign the processes of the algorithm to the nodes of the mesh multicomputer; (b) the communication pipelining technique to increase the level of communication parallelism inherent in the CC-cube algorithms; and (c) optimal message-scheduling algorithms proposed in this work in order to avoid conflicts and minimizing in this way the communication time. Although CALMANT is proposed for multicomputers with different interconnection network topologies, the paper only focuses on the particular case of meshes.Peer ReviewedPostprint (published version

    An assessment of the connection machine

    Get PDF
    The CM-2 is an example of a connection machine. The strengths and problems of this implementation are considered as well as important issues in the architecture and programming environment of connection machines in general. These are contrasted to the same issues in Multiple Instruction/Multiple Data (MIMD) microprocessors and multicomputers

    Visibility-Related Problems on Parallel Computational Models

    Get PDF
    Visibility-related problems find applications in seemingly unrelated and diverse fields such as computer graphics, scene analysis, robotics and VLSI design. While there are common threads running through these problems, most existing solutions do not exploit these commonalities. With this in mind, this thesis identifies these common threads and provides a unified approach to solve these problems and develops solutions that can be viewed as template algorithms for an abstract computational model. A template algorithm provides an architecture independent solution for a problem, from which solutions can be generated for diverse computational models. In particular, the template algorithms presented in this work lead to optimal solutions to various visibility-related problems on fine-grain mesh connected computers such as meshes with multiple broadcasting and reconfigurable meshes, and also on coarse-grain multicomputers. Visibility-related problems studied in this thesis can be broadly classified into Object Visibility and Triangulation problems. To demonstrate the practical relevance of these algorithms, two of the fundamental template algorithms identified as powerful tools in almost every algorithm designed in this work were implemented on an IBM-SP2. The code was developed in the C language, using MPI, and can easily be ported to many commercially available parallel computers

    Parallel rendering algorithms for distributed-memory multicomputers

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Ph. D.) -- Bilkent University, 1997.Includes bibliographical references leaves 166-176.Kurç, Tahsin MertefePh.D

    Exploiting an alternative labeling for efficient hypercube algorithms

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and Institute of Engineering and Sciences, Bilkent Univ., 1991.Thesis (Master's) -- Bilkent University, 1991.Includes bibliographical references leaves 57Aydın, CavitM.S

    Mapping Divide-and-Conquer Algorithms to Parallel Architectures

    Get PDF
    24 pagesIn this paper, we identify the binomial tree as an ideal computation structure for parallel divide-and-conquer algorithms. We show its superiority to the classic full binary tree structure with respect to speedup and efficiency. We also present elegant and efficient algorithms for mapping the binomial tree to two interconnection networks commonly used in multicomputers, namely the hypercube and the two-dimensional mesh. Our mappings are optimal with respect to both average dilation and link contention. We discuss the practical implications of these results for message-passing architectures using store-and-forward routing vs. those using wormhole routing
    corecore