72 research outputs found

    Efficient memory management in video on demand servers

    Get PDF
    In this article we present, analyse and evaluate a new memory management technique for video-on-demand servers. Our proposal, Memory Reservation Per Storage Device (MRPSD), relies on the allocation of a fixed, small number of memory buffers per storage device. Selecting adequate scheduling algorithms, information storage strategies and admission control mechanisms, we demonstrate that MRPSD is suited for the deterministic service of variable bit rate streams to intolerant clients. MRPSD allows large memory savings compared to traditional memory management techniques, based on the allocation of a certain amount of memory per client served, without a significant performance penaltyPublicad

    Efficient memory management in VOD disk array servers usingPer-Storage-Device buffering

    Get PDF
    We present a buffering technique that reduces video-on-demand server memory requirements in more than one order of magnitude. This technique, Per-Storage-Device Buffering (PSDB), is based on the allocation of a fixed number of buffers per storage device, as opposed to existing solutions based on per-stream buffering allocation. The combination of this technique with disk array servers is studied in detail, as well as the influence of Variable Bit Streams. We also present an interleaved data placement strategy, Constant Time Length Declustering, that results in optimal performance in the service of VBR streams. PSDB is evaluated by extensive simulation of a disk array server model that incorporates a simulation based admission test.This research was supported in part by the National R&D Program of Spain, Project Number TIC97-0438.Publicad

    Elevating commodity storage with the SALSA host translation layer

    Full text link
    To satisfy increasing storage demands in both capacity and performance, industry has turned to multiple storage technologies, including Flash SSDs and SMR disks. These devices employ a translation layer that conceals the idiosyncrasies of their mediums and enables random access. Device translation layers are, however, inherently constrained: resources on the drive are scarce, they cannot be adapted to application requirements, and lack visibility across multiple devices. As a result, performance and durability of many storage devices is severely degraded. In this paper, we present SALSA: a translation layer that executes on the host and allows unmodified applications to better utilize commodity storage. SALSA supports a wide range of single- and multi-device optimizations and, because is implemented in software, can adapt to specific workloads. We describe SALSA's design, and demonstrate its significant benefits using microbenchmarks and case studies based on three applications: MySQL, the Swift object store, and a video server.Comment: Presented at 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS

    Storage Area Networks (SANs) in Business Environment

    Get PDF
    Storage Area Networks (SAN) in Business Environment is titled and initiated to design and implement Storage Area Networks architecture in the business operation. The project is divided into two terms, first is the research ofStorage Area Networks and the second is system development onthe Storage Area Networks Knowledge Management System. Research on the Storage Area Networks was based on the problem statement and objective of the project while the Storage Area Networks Knowledge Management System is the system in making decision to implement Storage Area Networks. The project will require a hybrid model for System Development Life Cycle (SDLC) methodology. Reviews on the system will be made according to the SDLC and the objectives of the project. Artificial Intelligent module is used for the Storage Area Networks system to determine the best Storage Area Networks solution for the business. Research will be more onthe implementation of the Storage Area Networks in the business based onthe cost, availability and the architecture of the Storage Area Networks. Advantages of the Storage Area Networks and several criteria inthe Storage Area Networks will be part of the Storage Area Networks research. Storage Area Networks give the best solution for business as the database is an important asset for the business. Performance, availability, flexibility and scalability are the main subject in considering Storage Area Networks. Keywords: Storage Area Networks, Knowledge Management System, hybrid model. System Development Life Cycl

    Using TCP/IP traffic shaping to achieve iSCSI service predictability

    Get PDF
    This thesis reproduces the properties of load interference common in many storage devices using resource sharing for flexibility and maximum hardware utilization. The nature of resource sharing and load is studied and compared to assumptions and models used in previous work. The results are used to design a method for throttling iSCSI initiators, attached to an iSCSI target server, using a packet delay module in Linux Traffic Control. The packet delay throttle enables close-to-linear rate reduction for both read and write operations. Iptables and Ipset are used to add dynamic packet matching needed for rapidly changing throttling values. All throttling is achieved without triggering TCP retransmit timeout and subsequent slow start caused by packet loss. A control mechanism for dynamically adapting throttling values to rapidly changing workloads is implemented using a modified proportional integral derivative (PID) controller. Using experiments, control engineering filtering techniques and results from previous research, a suitable per resource saturation indicator was found. The indicator is an exponential moving average of the wait time of active resource consumers. It is used as input value to the PID controller managing the packet rates of resource consumers, creating a closed control loop managed by the PID controller. Finally a prototype of an autonomic resource prioritization framework is designed. The framework identifies and maintains information about resources, their consumers, their average wait time for active consumers and their set of throttleable consumers. The information is kept in shared memory and a PID controller is spawned for each resource, thus safeguarding read response times by throttling writers on a per-resource basis. The framework is exposed to extreme workload changes and demonstrates high ability to keep read response time below a predefined threshold. Using moderate tuning efforts the framework exhibits low overhead and resource consumption, promising suitability for large scale operation in production environments

    Understanding and Efficiently Servicing HTTP Streaming Video Workloads

    Get PDF
    Live and on-demand video streaming has emerged as the most popular application for the Internet. One reason for this success is the pragmatic decision to use HTTP to deliver video content. However, while all web servers are capable of servicing HTTP streaming video workloads, web servers were not originally designed or optimized for video workloads. Web server research has concentrated on requests for small items that exhibit high locality, while video files are much larger and have a popularity distribution with a long tail of less popular content. Given the large number of servers needed to service millions of streaming video clients, there are large potential benefits from even small improvements in servicing HTTP streaming video workloads. To investigate how web server implementations can be improved, we require a benchmark to analyze existing web servers and test alternate implementations, but no such HTTP streaming video benchmark exists. One reason for the lack of a benchmark is that video delivery is undergoing rapid evolution, so we devise a flexible methodology and tools for creating benchmarks that can be readily adapted to changes in HTTP video streaming methods. Using our methodology, we characterize YouTube traffic from early 2011 using several published studies and implement a benchmark to replicate this workload. We then demonstrate that three different widely-used web servers (Apache, nginx and the userver) are all poorly suited to servicing streaming video workloads. We modify the userver to use asynchronous serialized aggressive prefetching (ASAP). Aggressive prefetching uses a single large disk access to service multiple small sequential requests, and serialization prevents the kernel from interleaving disk accesses, which together greatly increase throughput. Using the modified userver, we show that characteristics of the workload and server affect the best prefetch size to use and we provide an algorithm that automatically finds a good prefetch size for a variety of workloads and server configurations. We conduct our own characterization of an HTTP streaming video workload, using server logs obtained from Netflix. We study this workload because, in 2015, Netflix alone accounted for 37% of peak period North American Internet traffic. Netflix clients employ DASH (Dynamic Adaptive Streaming over HTTP) to switch between different bit rates based on changes in network and server conditions. We introduce the notion of chains of sequential requests to represent the spatial locality of workloads and find that even with DASH clients, the majority of bytes are requested sequentially. We characterize rate adaptation by separating sessions into transient, stable and inactive phases, each with distinct patterns of requests. We find that playback sessions are surprisingly stable; in aggregate, 5% of total session duration is spent in transient phases, 79% in stable and 16% in inactive phases. Finally we evaluate prefetch algorithms that exploit knowledge about workload characteristics by simulating the servicing of the Netflix workload. We show that the workload can be serviced with either 13% lower hard drive utilization or 48% less system memory than a prefetch algorithm that makes no use of workload characteristics

    Fifth NASA Goddard Conference on Mass Storage Systems and Technologies

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products

    Benchmarked Hard Disk Drive Performance Characterization and Optimization Based on Design of Experiments Techniques

    Get PDF
    This paper describes an experimental study offered by Designs of Experiments (DOE) within the defined factor domains to evaluate the factor effects of simultaneous characteristics on the benchmarked hard disk drive performance by proposing well-organized statistical models for optimizations. The numerical relations of the obtained models permit to predict the behaviors of benchmarked disk performances as functions of significant factors to optimize relevant criteria based on the needs. The experimental data sets were validated to be in satisfying agreement with predicted values by analyzing the response surface plots, contour plots, model equations, and optimization plots. The adequacy of the model equations were verified effectively by a prior generation disk drive within the same model family. The retained solutions for potential industrializations were the concluded response surface models of benchmarked disk performance optimizations. The comprehensive benchmarked performance modeling procedure for hard disk drives not only saves experimental costs on physical modeling but also leads to hard-to-find quality improvement solutions to manufacturing decisions
    corecore